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Abstract 

Zip Shoes are self-propelled footwear on wheels, based off the brand Heelys. They are pictured below in 

Figure 1. They operate using two small electric drivetrains, one in each shoe. These drive trains are 

supported by a plastic chassis that contains all necessary electronic components and is embedded within 

the soles of the shoes. These drive trains provide power to two heel mounted wheels, one per each 

shoe. Such that when the user balances upon these wheels they can be propelled forward. These drive 

trains are controlled by remote controls held within the user’s hands. Such that the amount of 

propulsion they receive can be changed by the user’s input. This propulsion can then be used to 

transport the user between locations as a means of utility or recreation. The following text discusses the 

reasoning for their creation, further detail on their design, and prospects for the project. 

 

Figure 1 
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1. Introduction 
Zip shoes are designed to be used by the urban commuter, someone who cannot drive to work. Such 

that they can get to where they are going faster and expend less effort. They are designed to bridge the 

gap between walking and using a large electronic propulsion device. Examples of these large electronic 

propulsion devices include electric scooters, hoverboards, electric skateboards, and e-bikes. The reason 

for this is to streamline the user’s experience. Such that they never need to be removed, carried, or 

locked up. The user simply puts them on at the beginning of the day and wears them throughout the day 

like a normal pair of shoes. Ultimately easing the users commute while being non-intrusive. 

1.1 Product Development Process 
To design Zip Shoes, we used the product development process, or PDP, pictured in Figure 2 (Budynas & 

Nisbett, 2020). This process consists of 6 ordered phases. These phases are business planning, concept 

development, embodiment design, detail design, final testing and refinement, and production ramp up. 

In each phase we performed key tasks to move the design of our product forward. For the sake of 

continuity, the following text moves through each of these stages chronologically, detailing the activities 

and tests performed. 

 

Figure 2 

1.2 Business Planning 
This was the first phase in the creation of Zip Shoes. The only requirement of this phases is that it 

“should be done before the approval of the product development process.” (Budynas & Nisbett, 2020) 

As the name suggest, it entails planning out different aspects of the project prior to starting any form of 

design. As such, the time allocated for this section of the PDP was used to analyze the market. 

Performing actions such as searching for competing products and generating metrics of success that we 

wanted our design process to center around. 

1.2.1 Market Research 

Performing market research for Zip Shoes was a crucial first step. The most fundamental reason for this 

was to see if the product already existed. If such a product did exist, it would eliminate the need for 

designing Zip Shoes. Thankfully, after performing cursory searches of major retailers, primarily Amazon 

and Walmart, no identical products were found. However, we did find several somewhat similar 

products, these products were Razor Turbo Jetts (Razor, n.d.), Segway Ninebot Drifts (Segway, n.d.), and 

Voyager Space Shoes (Voyager, n.d.) pictured in Figure 3, Figure 4, and Figure 5 respectively. What made 

these products similar was their compact design. What differentiated them, however, was their 

independence from the user’s shoes. They are not integrated into the user’s footwear at all and some of 

them are not connected to the user entirely. It is because of this we were confident our product was 

unique. However, because these products were still like our intended design, they became the baseline 
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for Zip Shoes. As such, more in-depth research was performed on these products, looking into a variety 

of statistics. The most important of these statistics are summarized in Table 1 below. 

 

Figure 3     Figure 4     Figure 5 

Market Research Comparison 

 Razor Turbo Jetts Segway Ninebot Drift Voyager Space Shoes 

Top Speed 10 mph 7.5 mph 6.2 mph 

Run Time 30 min 45 min 40 min 

Weight Rating 176 lbs. 220 lbs. 200 lbs. 

Size 7.7 x 5.94 x 10.8 in 11.5 x 6.4 x 4.8 in 6.5 in (tire diameter) 

Weight 5 lbs. (powered unit) 7.72 lbs. (each unit) 6 lbs. (each unit) 

Charge Time Unknown 3 hr. 3 hr. 

Cost $129.99 $469.99 $185.00 
Table 1, (GS Mag, n.d.), (Razor, n.d.), (Amazon, n.d.), (Segway, n.d.), (Voyager, n.d.), (Walmart, n.d.) 

1.2.2 Metrics of Success 

Metrics of success are generalized goals that are desired to be achieved by Zip Shoes. Broadly speaking, 

they are the framework that a designer will judge the success of their final design against. However, this 

does not set them in stone. Rather, for this project, they are fluid entities. As the product design process 

moved forward, they were able to change as necessary to conform to the abilities of the designers and 

other outside factors. 

These metrics of success, listed in Table 2, were decided early on. Specifically, they were decided 

immediately after performing market research. These metrics are also included later in our House of 

Quality Diagram, Figure 6. This House of Quality diagram will be discussed in more depth in the design 

section of this report. These metrics each have their own reason for being selected. The top speed was 

selected to match the minimum performance of a competitor while also being safe and simple to design 

around. The run time was selected to approach that of similar products, while allowing for compactness. 

The weight rating was selected to allow full grown adults to use the product. The size, weight, and 

comfort were selected to achieve the project’s goal of being as streamline as possible. The charge time 

was selected to undercut competitors and accommodate a shorter run time. Finally, the cost was 

selected to be on par with competitors. In summation, the design of Zip Shoes desires to achieve all 

these listed metrics for these listed reasons. 
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Metrics of Success 

Top Speed 6 mph 

Run Time 20 min 

Cost $200.00 

Weight Rating 225 lbs. 

Size Fit within the footprint of a shoe 

Added Weight 3 lbs. per unit 

Charge Time 1.5 hours 

Comfort Be able to walk normally while wearing 
Table 2 
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2. Design 
Having completed business planning, the next PDP phases are all design related. They consist of Concept 

Development, Embodiment Design, and Detail design. They make up phases one, two, and three, 

respectively. Throughout these phases the designer goes from having a problem they wish to solve to 

developing a solution. Furthermore, a common tool was used throughout these three phases know as a 

house of quality, which is picture in totality in Figure 6. The excel sheet layout used for this house of 

quality was obtained online (Battles, 2010). This house of quality diagram is rather large, such that 

pieces of this tool will be extracted and zoomed in upon to further discuss. 

 

Figure 6 
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2.1 Concept Development 
“Concept development considers the different ways that the product and each subsystem can be 

designed.” (Budynas & Nisbett, 2020) This step of the PDP is more commonly referred to as brain 

storming. During this step we created six different concepts, of which we would select only one for 

further development. Furthermore, as part of this step, all concepts were considered, operating under 

the mantra that there are no bad ideas. These six concepts are shown in their original drawing in Figure 

7. 

 

Figure 7 
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Concept 1 is a Heely concept, based off the brand Heelys namesake product (Heelys, n.d.). The reader 
can note this is the eventual design that was chosen to be used for Zip Shoes. It is a one wheeled design, 
in which the user would balance upon their heels to roll. It is also self-contained, such that all the 
electronics for it to operate, omitting the remote control, are located within the shoe itself. The 
advantages and disadvantages for this design are stated in Table 3. 
 

Concept 1: Heely 

Advantages Disadvantages 

Compact Larger learning curve for balancing 

Most available sole space for components Limited component space 

Already evaluated form factor N/A 
Table 3 

Concept 2 is a two wheeled Heely design. This design is like a roller skate with only two wheels. This 

would help provide the user better means by which to balance but would drastically cut down on space 

for electronic components. This is based off a two-wheeled version of a Heely that is already produced 

by Heelys as a children’s product (Heelys, n.d.). The advantages and disadvantages for this design are 

stated in Table 4. 

Concept 2: Two Wheel Heely 

Advantages Disadvantages 

Compact Limited component space 

Already evaluated form factor Added level of complexity 

N/A Base design not available in adult sizes 
Table 4 

Concept 3 is a center mounted Heely design. This design, much like concept 1, is a one wheeled design 

that would require balancing. Contrary to the first design though, it puts the rider’s weight more 

towards the center of the shoe. This is theorized to help balancing and is like the Segway Ninebot Drift 

(Segway, n.d.) and Voyager Space Shoes (Voyager, n.d.). The advantages and disadvantages for this 

design are stated in Table 5. 

Concept 3: Center Mounted Heely 

Advantages Disadvantages 

Compact Awkward component placement 

Already evaluated form factor Limits battery size 

Easier balancing N/A 
Table 5 

Concept 4 is a rollerblade design. It is the first design to depart from the general idea of electrifying 

Heelys. It focuses around modifying a standard pair of rollerblades to provide driving power to the 

wheels. However, because of the many wheels taking up space, we theorized that external electronics 

would need to be connected. The advantages and disadvantages for this design are stated in Table 6. 
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Concept 4: Rollerblade 

Advantages Disadvantages 

Already evaluated form factor External electronic components 

Easier balancing Cannot walk normally 

N/A Look awkward 
Table 6 

Concept 5 is a removable design. This design is like that of the Razor Turbo Jetts (Razor, n.d.). Its 

removability presents design opportunities that are not available for other concepts. However, it 

ventures away from the core idea of Zip Shoes being a streamlined part of your day. The advantages and 

disadvantages for this design are stated in Table 7. 

Concept 5: Removeable 

Advantages Disadvantages 

Allows for the most freedom in design Not a streamlined part of your day 

Easier balancing Cannot walk normally 

N/A Look awkward 
Table 7 

Concept 6 is a not self-contained design. It is based off concept 1, however it takes key electronic 

components and puts them in a separate wearable device. In theory this externalization of components 

could be applied to any of the concepts thus far. However, like concept 5, it goes against the core idea of 

Zip shoes being as streamlined into your day as possible. This is because it requires an extra step to strap 

these external components to one’s body. The advantages and disadvantages for this design are stated 

in Table 8. 

Concept 6: Not Self Contained 

Advantages Disadvantages 

Allows for the most freedom in design Not a streamlined part of your day 

Easier balancing Cannot walk normally 

N/A Look awkward 
Table 8 

Having created all six of these concepts, and analyzing their advantages and disadvantages, the decision 

was made to go with concept 1, the Heely concept. This is for a variety of reasons, most pertinently by 

comparing the advantages and disadvantages against a weighted decision matrix which is a part of the 

house of quality shown in Figure 8. The designs that best aligned with this weighted decision matrix 

were concepts 1 and 3, the Heely and center mounted Heely designs. Of these two designs, the Heely 

design presented itself as a less complex option, because components would not need to straddle a 

wheel. As such this design was our final selection. 
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Figure 8 

2.1.1 Product Use Safety Considerations 

Having selected the Heely design for Zip Shoes, the first use consideration made was that of safety. In 

selecting a design that inherently requires the user to balance, which could lead to falling, safety was of 

the utmost consideration. As such research was done into seeing what safety considerations were made 

for normal non-powered Heelys. The following is a direct quotation from the Heelys brand on their safe 

use. 

 EQUIPMENT CHECK & SAFETY TIPS 

• Read through this equipment check list every time before you start rolling with your Heelys. 

Thoroughly read and understand the manufacturers’ warnings on all protective gear before 

using. Be aware of single-use protective gear and helmets. 
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• Make sure all your protective safety equipment is not cracked, broken, or damaged in way. If 

you have any single-use gear (particularly a helmet) that gets damaged impact, make sure 

you replace it immediately. 

• Only use a helmet that fits you properly and keep it fastened. Never wear the strap too loose 

around your chin in order to prevent it from shifting or falling off. 

• Make sure the wheels are not obstructed. This could include rocks, paper, or any other 

objects that could be lodged in the wheelbase. 

• Check the laces to make sure they are not worn out nor have tears. Always keep your laces 

tied while skating for a smooth ride. 

• Make sure the wheels are not worn down, have dents or cracks. If you notice any of these 

problems or any other damages, be sure to replace the wheels before you skate. You can find 

replacement wheels on our website. 

• Once you have all your protective gear and Heelys on, practice braking to make sure you can 

stop at any time necessary. If you need to stop or slow down quickly, practice transitioning 

from skating to walking or stopping by simply putting your toes down. 

• After you’ve followed all these guidelines, you’re ready to go out and skate! Just remember 

these safety tips and don’t forget to go through the whole checklist every time before you 

put on your Heelys. Always be courteous and skate safely! 

Please remember that although using your Heelys skate shoes is extremely enjoyable, there is a 

learning curve. Skating with Heelys is a sport, and the key is to learn how to heel safely and 

properly. 

While using protective gear cannot guarantee your safety, it could greatly reduce your chances 

of injury. We therefore always recommend wearing full protective gear when using your Heelys 

skate shoes including: helmet, wrist guards, knee pads, and elbow pads. 

Be sure to avoid cracks and skate only on smooth, stable, dry surfaces. 

DO NOT SKATE OVER ROCKS, SAND, OR WATER (Heelys, n.d.) 

To ensure the safe use of Zip Shoes, these safety instructions would be adopted for any finalized version 

of the product. Furthermore, additional instruction would be adopted regarding keeping away from any 

powered apparatus of the Zip Shoes while they are running. Thus, ensuring the user of Zip Shoes 

understands the inherent risk in their use and makes attempts to alleviate the possibility of injury. 
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2.2 Embodiment Design 
“Embodiment Design examines the functions of the product and leads to the division of the product into 

various subsystems.” (Budynas & Nisbett, 2020) As such during the embodiment design process the 

generalized design, derived in concept development phase, was further broken down. This break down 

will be explored through the lens of a function diagram, sketch, and house of quality. Specifically 

focusing on subsystem selection and variable correlation. 

2.2.1 Subsystem Selection 

Having selected the concept for Zip Shoes, the next step was dividing the project into smaller easier to 

manage pieces. This was achieved by segmenting the concept, which is one large system, into a variety 

of subsystems. This was done by producing a function diagram, shown in Figure 9. 

 

Figure 9 

This function structure diagram helps lay out the necessary components needed to covert a human 

input into usable torque. Thus, it helps segment the whole system into subsystems. In this case the 

subsystems are a remote, receiver, electronic speed controller, motor, wheel, and battery. These 

subsystems were then sketched out on a scale layout of the shoes sole in Figure 10. This helped 

determine their orientation as they would fit in the shoe. It should be noted that you can see there is a 

gearbox included in this sketch. However, it was deemed unnecessary and omitted in later designs. 
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Figure 10 

2.2.2 Variable Correlation 

Variable correlation is the name given to the decision process used in relating subsystem specifications 

to both customer requirements and other subsystem specifications. This was performed using the house 

of quality. The comparison of customer requirements is shown in Figure 11. 
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Figure 11 

In this diagram the customer requirements are given on the left and the specifications that effect 

different subsystems are shown on the top. Then a symbol is given where the two categories intersect, 

specifying the type of correlation between the two. The solid circle (●) shows a strong correlation, the 

hollow circle (○) shows a moderate correlation, the hollow triangle (▽) shows a weak correlation, and 

the lack of a symbol shows no correlation. For example, there is a strong correlation between the ability 

of Zip Shoes to support adults and the motor max torque. Furthermore, the comparison of subsystem 

specifications to each other is shown in Figure 12. 
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Figure 12 

In this diagram the specifications that affect different subsystems are given along the bottom. Then a 

matrix correlating them sits atop them. For this diagram, the correlation between different 

specifications is given using a different nomenclature. A positive correlation is shown using a plus sign 

(+), a negative correlation is shown using a highlighted minus sign (-), and the lack of a correlation is 

shown by the lack of a symbol. For a positive correlation, the improvement of one of the specifications 

will also improve the other specification. For a negative correlation, the improvement of one 

specification will have a detrimental effect on another specification. For example, increasing the motor 

kV rating will also increase the motor max speed. However, increasing the motor kV rating will also 

increase the motor size, which is not a desired outcome. 

2.3 Detail Design 
“Detail Design is the phase where the design is brought to the state of a complete engineering 

description of a tested and producible product.” (Budynas & Nisbett, 2020) Throughout this next section 

it will be described how this was accomplished for Zip Shoes. Specifically, there will be a focus on each 

individual component. Describing the design process for either custom or procured components. The 

components that were custom manufactured were the chassis and drive axle. While the components 

that were procured were the gear, chain, electric motor, electronic speed controller, battery, receiver, 

remote control, adapter, and Heely shoes. 
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2.3.1 Chassis 

Of the two custom manufactured components for this project, the chassis is by far the more complex 

one. It is designed to hold up the entire weight of a user while also housing every electronic component 

and being as compact as possible. Furthermore, as this chassis needed to be rapidly manufactured for a 

prototype, the chassis needed to be 3D printed out of PLA plastic. As such, it went through many 

evolutions of its design, being reprinted along the way. However, this paper will focus primarily on three 

designs, the first design, a revised design, and the final design. 

The first design, pictured in Figure 13 is the first true attempts at making a chassis. It follows the general 

layout previously picture in Figure 10 which was derived in the embodiment design process. It features 

form fitting slots for each electrical component with small plastic tabs to hold them in place. 

 

Figure 13 

The second design picture in Figure 14, known as the revised design, makes four significant changes 

from the previous one. First and foremost, it replaces the form fitting electrical component slots with 

larger open cavities. This helps to accommodate the amount of wiring needed to connect components. 

Second, it changes the tolerances for snap in components. For the first design the mistake was made of 

making slots the same size as the components that would fill them, not leaving enough space. This was a 

fatal flaw that prevented most components from fitting. Thus, for this new design, 5/100th of an inch 

spacing was added to most slots. Third, this design shrinks the whole chassis outline. In the first design 

not enough space was given to allow the entire chassis to fit inside the sole of the shoe, thus this was 

fixed for this design. Fourth and finally, dust guards were added next to where the bearings would snap 

in to hold the wheel. This was a consideration made to help increase the products durability. 
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Figure 14 

The final design is pictured in Figure 15, with the actual completed parts pictures in Figure 16. It is very 

similar to the previous design and only had three minor changes. Visually they are near identical, but the 

changes made were critical none the less. First, this design features further refinement to the 

tolerancing for individual components. It widens some gaps while narrowing others. Second, this design 

adds material to better hold the bearing for the motor in place. Third and finally, this design widens the 

gap where the chain drive runs to prevent the chain from rubbing against the chassis. 

 

Figure 15 
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Figure 16 

Overall, as the design progressed, many changes were made. However, despite these changes, the 

chassis still maintained its general form and function. Furthermore, it will be discussed later on in the 

“Final Testing and Refinement” section of this report how this chassis is able to handle the weight of a 

user. 

2.3.2 Drive Axle 

Like the chassis, the drive axle was a custom manufactured component. However, that is where the 

similarities end. Contrary to the chassis, the drive axle only had to go through a single design iteration. 

This is because its simplicity allowed for it to be designed correctly the first time. This design is pictured 

in Figure 17. 

This design features a cylinder made of 1144 carbon steel with changing diameters along its length. This 

is because it is designed to fit multiple components with different interior diameters around it. The 

largest diameter section of the cylinder is designed for the wheel to fit. The second largest diameter 

section is designed for a gear to fit. Finally, the third largest diameter sections are designed for bearings 

to fit on each end of the shaft. 
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Figure 17 

Furthermore, unlike the chassis, this part needed to be manufactured by hand. This required the use of 

a lathe to machine a base piece of material to the specified dimensions. As such, a formal drawing of the 

part had to be created, pictured in Figure 18. This allowed the machinist to make the part accurately by 

hand. 

 

Figure 18 

Finally, like the chassis, the discussion on this components abilities to withstand the forces of someone 

riding atop it are discussed later in the “Final Testing and Refinement” section of this report. 
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2.3.3 Gear and Chain 

The Gear and chain setup for Zip shoes is used to transfer power from the motor to the wheel. The gears 

and chain are both procured components. The whole system consists of a drive gear, a driven gear, and 

a chain. 

The drive gear chosen for Zip Shoes is an 8-tooth press fit sprocket with a 0.1227 in pitch and a 0.125 in 

bore. This gear was chosen because it has a low tooth count, which when paired with a high tooth count 

driven gear, will help amplify the torque produced by the motor. This gear is also compatible with the 

motor shaft through an interference fit, which requires it to be pressed onto the motor shaft. This gear 

is shown in Figure 19. 

The driven gear chosen for Zip Shoes is a 36-tooth press fit sprocket with a 0.1227 in pitch and a 0.375 in 

bore. This gear was chosen since it had the highest number of teeth for a gear of its type while also 

being smaller than the drive wheel itself. This helps amplify the torque produced by the motor. This gear 

is shown in Figure 20. 

The chain chosen for Zip Shoes is a 1 X 0.1227 in pitch plastic chain. This chain was chosen due to its 

compatibility with the gears and because its tensile strength was high enough to transmit the power 

necessary. The tensile strength of the chain is 14 pounds force, from the manufacturer. This chain is 

shown in Figure 21. 

 

Figure 19 
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Figure 20 

 

Figure 21 

  



20 
 

2.3.3.1 Chain and Gear Calculations 

 

2.3.4 Electric Motor 

The motor is one of the procured components in Zip Shoes. The motor used is a Flash Hobby D2830 

850Kv motor. The decision to go with this motor came down a couple of factors. The first factor is its 

850 Kv rating. A motor’s Kv rating is the ratio of the motor’s RPM to the voltage applied to the motor. 

For example, the Flash Hobby D2830 used in Zip Shoes will spin at a rate of 850 RPM with no load 

attached when it is supplied one volt of power. Similarly, it will spin at a rate of 1700 RPM when two 

volts of power are supplied to the motor. Such that this motor will spin at a rate of 6290 RPM with no 

load attached when the 7.4 volts from the battery is applied to the motor. This low Kv rating implies that 

the motor will provide more torque than other motors in this family. For example, the 1000Kv and the 

1300Kv versions of this motor will spin faster with the same applied voltage, however the 850Kv motor 

will provide more torque due to its lower rotational speed. (Minipro, n.d.) 

The second factor that contributed to this motor selection is size. The Flash Hobby D2830 850Kv motor 

has a diameter of 1.1 in and an overall length of 1.77 in. Size is a factor due to the space limitations of 

the sole of the shoe. This motor fits in the space provided which further qualified it for Zip Shoes.  

The third factor that contributed to this motor selection is its power output. This motor has a maximum 

power output of 187W. As shown in latter calculations, the amount of power needed to overcome 

aerodynamic drag is 10.583W. Since there is a motor in each shoe, the maximum power output for a 

pair of shoes using this motor is 374W. Since this is greater than the minimum 10.583W needed, the 

Flash Hobby D2830 850Kv motor was chosen for Zip Shoes. (Amazon, n.d.) This motor is shown in Figure 

22. 

퐹=휏/푙 (1) 

퐹=
0.209 푙푏푓푡

0.0154푓푡
=13.57푙푏 

 

 

(1) 

퐺푒푎푟 푅푎푡푖표= 
# 표푓 푡푒푒푡ℎ 표푛 푑푟푖푣푒푛 푔푒푎푟

# 표푓 푡푒푒푡ℎ 표푛 푑푟푖푣푒 푔푒푎푟
 

(2) 

4.5= 
36

8
 

(2) 

푡표푟푞푢푒 푎푡 푤ℎ푒푒푙=푡표푟푞푢푒 푎푡 푚표푡표푟 푥 푔푒푎푟 푟푎푡푖표 (3) 

0.943 푙푏푓푡=0.209 푙푏푓푡 푥 4.5 

 

(3) 
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Figure 22 

2.3.4.1 Electric Motor Calculations 

 

Variable Value 

푽풎풂풙 6mph = 2.682 m/s 

흆 1.225 kg/m^3 

풄푫 1.3 (engineering toolbox)  

푨 0.686 m^2 

푭풅풓풊풗풆 121.88N=27.14lbf 

풉푪푮 41 in = 1.041 m 

푭품 225lbf 

풅풓풆풂풓 풘풉풆풆풍 6 in = 0.152 m 

m 225 lbm = 102.058 kg 

r (wheel radius) 0.8 in =0.020m 

풂품 9.81 m/s^2 

푷풎풐풕풐풓 10.583W 

(The Engineering Toolbox, n.d.) 
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Maximum Acceleration 

 

 

Torque Required to Achieve Maximum Acceleration 

푃 =
푉 휌푐퐴

2
 

(4) 

푃 =
2.682

푚
푠
∗1.225

푘푔
푚
∗1.3∗0.686푚

2
=10.538 푊 

 

(4) 

Σ푀=0 (5) 

(퐹 ∗ℎ )−(퐹∗푑  )=0 (6) 

(퐹 ∗ℎ )=(퐹∗푑  ) (7) 

퐹

퐹
=
푑  

ℎ
 

(8) 

푚∗푎

푚∗푎
=
푑  

ℎ
 

(9) 

푎

푎
=
푑  

ℎ
 

(10) 

푎 =
푎∗푑  

ℎ
 

(11) 

푎 =
9.81

푚
푠
∗0.152푚

1.041푚
=1.432

푚

푠
 

 

(12) 

퐹 =푚∗푎  (13) 

퐹 =102.058푘푔∗1.432
푚

푠
=146.147푁 (13) 

푇 =퐹∗ 푟 (14) 
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Torque Produced by the Motor 

 

Theoretical Acceleration of Zip Shoes with a 225lb Rider 

 

Theoretical Top Speed 

  

푇 =146.147푁∗0.020푚=2.923 푁푚 (14) 

푃 =휏∗휔 

 

(15) 

휏=
푃

휔
=

187푊

850
푟푝푚
푉
∗7.4푉∗

2휋
60

=0.284푁푚 
(16) 

퐹=푚푎 (17) 

퐹

푚
=푎 

(18) 

27.14푙푏푓

225푙푏푚
=0.121푓푡/푠 

(19) 

푀표푡표푟 푆푝푒푒푑 (푅푃푀)=푀표푡표푟 퐾푣 푅푎푡푖푛푔 푥 푉표푙푡푎푔푒 퐴푝푝푙푖푒푑(푉) (20) 

6290 푅푃푀=850 퐾푣 푥 7.4푉 (20) 

푊ℎ푒푒푙 푆푝푒푒푑 (푅푃푀)=
푀표푡표푟 푆푝푒푒푑 (푅푃푀)

퐺푒푎푟 푅푎푡푖표
 

(21) 

1397.77 푅푃푀=
6290 푅푃푀

4.5
  

(21) 

퐺푟표푢푛푑 푆푝푒푒푑=휔 푥 60
푚푖푛

ℎ푟
 푥 푊ℎ푒푒푙 퐶푖푟푐푢푚푓푒푟푒푛푐푒 (푖푛) 푥 

1

63360
  

(22) 

6.66 푀푃퐻=휔 푥 60
푚푖푛

ℎ푟
 푥 5.03푖푛 푥 

1

63360
  

(22) 
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2.3.5 Electronic Speed Control 

The electronic speed controller (ESC) is another procured component for Zip Shoes. It is an RC Electric 

Parts 30A ESC. The ESC controls the speed of the motor by varying the voltage applied to the motor. This 

effect of voltage on the motor is discussed above. This ESC was chosen due to its size, power rating, and 

compatibility with other components. 

The size of this ESC was one of the main factors in its selection. The ESC is 2.09 in long by 0.98 in wide by 

0.43 in thick. These measurements do not include the wires coming from both ends of the ESC. As stated 

previously, size is a major consideration for every procured component in Zip Shoes. This is due to the 

limited space inside the sole of the shoe.  

The second factor that contributed to this ESC selection is the power rating of 30 amps. This rating is 

high enough for the Flash Hobby D2830 850Kv motor to achieve its maximum power output of 187W. 

The motor needs a current of 28.07 amps to produce 187W, this is with an assumed efficiency of 90 

percent. Furthermore, Flash Hobby also suggested a 30-amp ESC be paired with the motor.  

The third factor that contributed to the selection of this ESC, was its compatibility with other 

components. As seen previously, the manufacturer of the motor recommended a 30-amp ESC be paired 

with the motor. Furthermore, this ESC has connections compatible with both the motor and receiver 

that were selected. Unfortunately, it was not compatible with the selected battery connection, such that 

adapters needed to be purchased. (Amazon, n.d.) This ESC is shown in Figure 23. 

 

Figure 23 
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2.3.6 Battery 

The battery is another procured component for Zip Shoes. It is a Zeee 8000mAh 7.4V 2s lithium polymer 

battery (LIPO). This battery was chosen due to its physical size, battery capacity, and compatibility with 

other procured components.  

The physical size of the battery is 5.43 in long by 1.85 in wide by 0.98 in tall. The battery has a weight of 

11.3 ounces. Weight is a larger factor with the battery than it is with the other components, since the 

battery is the heaviest procured component. This battery fits in the sole of the shoe and its weight was 

acceptable due to its positive impact on run time.  

The second factor that contributed to the selection of this battery was its battery capacity. The battery 

capacity is listed as 8000mAh. Thus, this battery can provide eight amps of power for an hour before it is 

depleted. This battery is one of the largest capacity two cell batteries on the market currently. It also is 

very cost competitive for its capacity rating. 

The third factor that contributed to the selection of this battery is compatibility with the other 

components in the system. Regarding this, the primary compatibility factor is battery voltage. The 

voltage of this battery is 7.4 volts. This is compatible with the motor and the ESC. The ESC is rated for up 

to a three cell LIPO battery with an 11.1-volt rating, so these batteries 7.4V rating is within the 

specifications of the ESC. (Amazon, n.d.)This battery is shown in Figure 24. 

 

Figure 24 
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2.3.6.1 Run Time Calculations 

Assumptions: the entire battery capacity is used between charges, both motor and ESC are 90 

percent efficient, and the rider is using ¾ throttle for the duration of the ride. 

2.3.7 Receiver 

The receiver used for Zip Shoes is a Traxxas 6519 TQ 2.4GHz three channel micro receiver. The receiver 

takes power from the battery and turns the radio signal from the remote into an electrical signal that 

the ESC can use. The receiver tells the ESC how much power to send to the motor from the battery. 

There are two contributing factors that led to the choice of the receiver, its size, and its compatibility.  

As discussed before, size is a major concern for Zip Shoes. The receiver is 1.5 in long by 1.02 in wide by 

0.581 in tall. The size of the receiver allows it to fit in the chassis better than some larger 4 channel 

receivers. (Amazon, n.d.) 

Furthermore, the receiver uses a JST 3 pin connector. That is the same connector that the ESC uses to 

connect to the receiver. Also, this receiver is compatible with the selected remote, a Traxxas TQ 2.4GHz 

three channel transmitter, which will be discussed later. This receiver is shown in Figure 25. 

 

Figure 25 

푅푢푛 푇푖푚푒 (퐻푟)= 
퐵푎푡푡푒푟푦 퐶푎푝푎푐푖푡푦 (푊ℎ푟) 

푀표푡표푟 푃표푤푒푟 (푊) 푋 0.75
 

(23) 

0.341 퐻푟= 
59.2 푊ℎ푟

230.86푊 푋 0.75 
 

(23) 

푀표푡표푟 푃표푤푒푟 (푊)=
푅푎푡푒푑 푀표푡표푟 푃표푤푒푟(푊)

η푚표푡표푟 푥 η퐸푆퐶
 

(24) 

230.86푊=
187푊

0.9 X 0.9
 

(24) 
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2.3.8 Remote Control 

The remote control, also known as the transmitter, is a Traxxas TQ 2.4GHz three channel transmitter. 

The remote takes the human input and transforms it into a radio signal for the receiver to receive and 

interpret. This radio was chosen because of its compatibility with the receiver. Since the radio is not in 

the shoe, size is not a factor.  (Amazon, n.d.) This remote control is shown in Figure 26. 

 

Figure 26 

2.3.9 Adapters 

The ESC and battery selected for Zip shoes are compatible but have different electrical connection types. 

This is because the battery is designed for use in RC cars, while the ESC is designed for use in 

quadcopters. For the production ready model, the ESC and the battery would be compatible, however, 

for this prototype they are not. The main factors that went into the choice of an adapter were size and 

compatibility. The adapter has a female XT60 connector and a male Deans connector. The XT60 

connector is for the ESC and the Deans connector is for the battery. Furthermore, the adapter is 1.58 in 

long by 0.67 in wide by 0.24 in tall making it rather compact. The adapter’s compact size allowed it to fit 

into the chassis with the rest of the components. This adapter is shown in Figure 27. (Amazon, n.d.) 
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Figure 27 

2.3.10 Heelys Shoes 

For the base footwear, Zip Shoes uses Heelys GR8 Pro 20 in men’s size 11. The GR8 Pro 20, like many 

other Heelys, is a shoe with a removable wheel in its heel. This shoe was chosen based on a variety of 

different factors. These factors are product availability, cost, engineering considerations, large sole 

space, and color.  

The first factor that contributed to the choice of the GR8 Pro 20 was product availability. Put simply, 

these shoes were in stock when procurement was taking place. This allowed for a speedy procurement 

to advance development of the prototype. The need for this availability was exacerbated by the general 

supply chain shortages related to the coronavirus pandemic. Thus, being able to procure a set of shoes 

for use quickly was of the utmost importance. 

The second factor that led to the choice of the base footwear was cost. This pair of shoes was cost 

effective as compared to other shoes and even other pairs of Heelys. They were $55.00 when they were 

purchased. (Amazon, n.d.)That is less than many name brand tennis shoes, plus they have the bonus of 

already coming with a wheel and bearings that can be reused. 

The third factor that led to the base footwear decision was their engineering considerations. Pertinently, 

Heelys are built to have a wheel installed. This was the most important factor that led to the base 

footwear decision. This is because they came with a wheel, bearings, and they could hold the weight of a 



29 
 

person using the wheel while standing on one foot. In fact, for the prototype we used the wheel and 

bearings that cane with the Heelys GR8 Pro 20. This saved time and money since a wheel and bearings 

did not have to be purchased to finish the prototype. Furthermore, because they were already designed 

to be ridden, they were able to be reverse engineered. This helped for sizing and designation of wheel 

location in the final design. 

The fourth factor that led to the decision to use the Heelys GR8 Pro 20 was its large sole space. The 

original assumption was that the sole was hollow and only reinforced on the edges where there was 

white rubber present, see Figure 28 for visualization of the shoe. This would allow the chassis and the 

other components to fit inside the sole of the shoe without being obtrusive to the end user of Zip Shoes. 

This assumption turned out to be partly false when the sole was removed from the shoe. There ended 

up being more reinforcement within the sole area than anticipated, however a majority of this was able 

to be removed. Thus, the only major impact on the final shoe design was the addition of height to the 

shoes sole overall. 

The last factor that led to the base footwear decision was color. This was not a major factor in the 

decision, but the Heely GR8 Pro 20 was available in blue. This is one of the colors of the University of 

Akron. Such that it held sentimental value to select such a color. 

 

Figure 28 
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3. Final Testing and Refinement 
“Final testing and refinement are concerned with making and testing many preproduction versions of 

the product.” (Budynas & Nisbett, 2020) Like many products, Zip Shoes underwent this process. 

However, they also underwent the additional step of simulated testing of individual components, which 

is included in this section as well. 

3.1 Simulation 
For the custom designed parts of Zip Shoes, more than just real-world testing needed to be performed. 

It needed to be mathematically verified, before the first prototype was created, that the shoes would be 

able to perform under load. This was to prevent the unnecessary risk of injury and allow specification of 

a factor of safety. As such the two custom components for Zip Shoes, the chassis and drive axle, both 

underwent a finite element analysis or FEA. As part of this analysis the deformation, stress, and factor of 

safety were analyzed. 

3.1.1 Chassis Simulation 

For the chassis’ FEA three main assumptions were needed. First it was assumed that the user of the 

shoes would need to, at times, place their entire load on a single shoe. Second it was assumed that the 

weight of the user could be evenly distributed over the top of the chassis. Third, and finally, it was 

assumed that the contact patch where the toe of the shoe touches the ground does not go beyond the 

start of the battery compartment. Having made these assumptions, an FEA analysis was performed for 

the chassis both while walking or riding, with the entire load on a single chassis. The end results were 

satisfactory and are as follows in Table 9 and Table 10. It should also be noted that all deformations are 

visually exaggerated. 

Chassis Walking FEA Results Image Reference 

Deformation 3.55*10^-4 m Figure 29 

Stress 1.62*10^8 Pa Figure 30 

Factor of Safety 1.54 Figure 31 
Table 9 

 

Figure 29 
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Figure 30 

 

Figure 31 

Chassis Rolling FEA Results Image Reference 

Deformation 1.62*10^-5 m Figure 32 

Stress 2.49*10^7 Pa Figure 33 

Factor of Safety 9.46 Figure 34 
Table 10 
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Figure 32 

 

Figure 33 

 

Figure 34 

3.1.2 Drive Axle Simulation 

For the drive axles FEA only one assumption was needed that wasn’t already encompassed with the 

chassis’ assumptions. This assumption was that the torque being applied to the drive axle was minimal 
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enough to be omitted from its analysis. Such that this analysis was only for the drive axle under vertical 

load. Furthermore, it should be noted this is in a single-footed driving stance, in which the entire weight 

of the rider is on a single axle. The results for this analysis were satisfactory and are shown below in 

Table 11. It should also be noted that all deformations are visually exaggerated. 

Drive Shaft FEA Results Image Reference 

Deformation 2.91*10^-6 m Figure 35 

Stress 3.44*10^7 Pa Figure 36 

Factor of Safety >15 Figure 37 
Table 11 

 

Figure 35 

 

Figure 36 
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Figure 37 

3.2 Real World Testing 
Having successfully performed FEA for custom components for Zip Shoes, it was time to perform real 

world tests. These tests would be used to determine if the shoes met the criteria laid out for them 

within the metrics of success. Unfortunately, it should be noted that during real world testing the shoes 

were unable to successfully function to perform necessary tests to verify top speed and run time. This is 

discussed further in the “Testing Failures” subsection of this report. Despite this, however, some testing 

could be performed. Particularly, the weight rating, size, added weight, charge time, and comfort were 

all tested. 

For the weight rating, the shoes were worn by an individual of the max weight capacity. They were then 

walked around in and used as they would be by an end consumer. As anticipated from the FEA analysis, 

the chassis and drive axel both withstood this test. 

For the size, no special test was needed. The chassis was able to fit fully assembled into the sole of the 

shoe. Thus, this metric of success was met. 

For the added weight, we were able to take the weights of each individual component and add them 

together to form a final added weight. The motor weighed 1.83 oz (Amazon, n.d.), the ESC weighed 1.44 

oz (Amazon, n.d.), the receiver weighed 0.352 oz (Amazon, n.d.), the battery weighed 11.3 oz (Amazon, 

n.d.), the drive shaft weighed 3.23 oz (AmesWeb, n.d.) and the chassis weighed 14.2 oz as calculated in 

the “Production Ramp Up” section of this report. Furthermore, we considered the weight of the gears 

and chain along with the removed material from the shoes negligible. This gave us a total added weight 

of 2.02 lbs, which is less than our metric of 3lbs, so this result is considered a success. 

For the charge time, two batteries for the shoes were depleted completely. Then, these batteries were 

charged to full power and timed. This yielded an average result of 1:30:49, within 1 minute of the 

desired charge time of 1:30:00. Because of this extremely close result, and the general flexibleness of 

the metrics of success, this result was considered a success. 



35 
 

For the metric of comfort, it was difficult to empirically test, as the experience of comfort varies person 

to person. Such that, to test this, three individuals were observed walking around in the shoes. They 

were able to walk semi-normally, but not completely normally. Thus, this metric for success was not 

achieved. 

Overall, despite limits in testing capabilities, five of the seven metrics of success that warranted real 

world testing were able to be tested. Of these five, four were successful. Thus, leaving room for 

improvement while also being an overall desirable result. 

3.2.1 Testing Failures 

The gears purchased for the shoe used a pressure fit to adhere to the drive shaft and wheel. This was 

achieved by them being designed with an interference fit for the select diameters. Unfortunately, this fit 

did not provide enough strength to properly adhere the gearing to the motors drive shaft. Such that 

when attempting to use the shoes, the gearing slipped on the shaft and was unable to provide enough 

usable torque to propel the user forward. This regrettably resulted in the inability to test the shoes top 

speed and run time performance metrics. However, this issue could be solved a variety of ways. The 

gear could be glued to the drive shaft, the connection could have a keyway added, or the connection 

could have a set screw added. All three of these options would provide an adequate means to solve this 

key issue. 

Furthermore, because of this initial failure and a lack of time to remanufacture the design with one of 

the given solutions, it is not currently apparent whether other failure modes exist for Zip Shoes. Thus, 

future testing is required. 
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4. Production Ramp Up 
“Production Ramp-up is when the manufacturing operations begins to make and assemble the product 

using the intended production system.” (Budynas & Nisbett, 2020) As such this section will focus on 

what considerations need to be made for a future production ramp up. Furthermore, it should be noted, 

a key area of consideration in this section is costs. This is because of the immense impact it has on 

future production. 

4.1 Parts Costs 
As mentioned previously, Zip Shoes are made from a combination of custom and procured components. 

Some changes to components would be made before Zip Shoes are produced, which will impact cost. 

Thus, cost considerations for both the prototype and a production model are discussed here. This is 

regarding both the procured and custom components. First the retail cost of the procured components 

will be listed for the prototype. Those include the cost for the remote, base footwear, receiver, ESC, 

battery, motor, chain, pinion gear, spur gear, tax, shipping, and handling where applicable. 

Next the cost associated with the custom designed components will be discussed. Those costs are 

associated with the bar stock, PLA for the chassis prototypes, and labor from producing the drive axle 

and chassis.  

When making considerations for bulk purchasing, the company Alibaba’s prices were referenced. Some 

assumptions had to be made since a comparable product could not always be found in bulk on Alibaba. 

For parts without a comparable product from Alibaba, it is assumed the bulk purchase price is 50 

percent of the retail price. This 50 percent of retail cost assumption was made on the base footwear, 

remote, receiver, chain, pinion gear, and spur gear. Sales tax, 6.75 percent in Ohio, has been added into 

the “Actual Cost” column as well. 

4.1.1 Prototype 

The cost of the procured parts is much higher on the prototype since components were purchased at 

retail price instead of at their bulk purchase price. This can be seen in Table 12. Furthermore, it should 

be noted that the chassis cost was calculated by multiplying the chassis weight by a weight correlated 

cost. For this case the chassis uses 14.2 ounces of PLA per shoe, at a cost of $8.80 per chassis when using 

PLA filament (Matweb, n.d.). Overall, the prototype parts costs $584.99. 

 

4.1.2 Production 

When moving from a prototype to a production model, some of the procured components would be 

eliminated from the design. The adapters would be removed since the wiring would be redesigned to 

remove the unnecessarily long wires on the components. The battery would have contacts instead of a 

plug and wires. The chassis manufacturing process would be changed to injection molding instead of 3D 

printing. The drive axle would be redesigned since it is excessively strong, with a factor of safety greater 

than 15. A different remote system would be used such that one remote could control both shoes. Such 

that the production cost would be much lower than the prototype cost since bulk pricing would be used, 



37 
 

excess wiring and adapters removed, and more cost-effective manufacturing processes would be 

implemented. These changes would bring the production cost down to only $183.96 for the parts to put 

together a pair of Zip Shoes as shown in Table 12. 

 

Parts Costs 

Part Manufacturer Retail Cost ($) Bulk Purchase 
Cost ($) 

Actual Cost ($) 

Base Footwear Heelys $55.00 $27.50 $58.71 

Remote Traxxas $59.95 $29.98 $65.00 

Receiver Traxxas $29.95 $14.98 $64.06 

ESC RC Electric Parts $16.99 $9.70 $36.27 

Battery Zeeee $30.79 $19.00 $197.21 

Motor Flash Hobby $16.99 $8.80 $36.27 

Chain ServoCity $14.99/ft $7.50/ft $32.00 

Pinion Gear ServoCity $1.99 $1.00 $4.25 

Spur Gear ServoCity $3.89 $1.95 $8.31 

Bar Stock  $11.99/ft $1.00/ft $12.80 

Bearings PGN $0.98 $0.03 $10.66 

Adapters Fly RC $23.14 NA $24.70 

PLA Amazon Basics $0.61/oz $0.00043/oz $8.66 

Shipping and 
Handling 

NA NA NA $26.09 

Total   $183.96 $584.99 
Table 12 (Alibaba, n.d.) (Amazon, n.d.) (McMaster Carr, n.d.) (Matweb, n.d.) 

4.2 Labor Costs 
There is labor cost involved in both design and production. These affect both the prototype and 

production model, as detailed in these next sections. 

4.2.1 Prototype 

For the prototype most of the labor cost is associated with the design of the prototype. In calculating 

labor cost, it is assumed that an entry level mechanical engineer would be making $65,000 a year, which 

is $31.25 an hour. The hourly mean wage in Ohio for machinist is $21.42 an hour  (U.S. Bureau of Labor 

Statistics, 2021). These values will be used to calculate the total labor cost for prototype development. 

On average each engineer spent 6 hours per week, for 30 weeks, designing the prototype, with two 

engineers working on the design. Resulting in a total of 360 engineering man hours. The machinist spent 

eight hours manufacturing the chassis prototypes and the drive axles for the prototype. Thus, the total 

machinist man hours are eight. These values are compiled, with a final cost estimate shown in Table 13. 

  



38 
 

Prototype Labor Costs 

Labor Type Cost Per Hour Hours Spent Total Cost 

Engineering $31.25 360 $11,250 

Machining $21.42 8 $171.36 

Total NA NA $11,421.36 
Table 13 (U.S. Bureau of Labor Statistics, 2021) 

4.2.2 Production 

The labor costs for production are much lower than they are for prototyping. For example, the average 

wage in China for production is $6.50 per hour, while it is $4.82 per hour in Mexico, and $2.99 per hour 

in Vietnam. (Statista, 2021)Those are much lower than the average manufacturing wage in America, 

which is $24.68 per hour. (Trading Economics, n.d.)For this reason, it is assumed Zip Shoes in Vietnam to 

take advantage of the $2.99 per hour average wage there. Since Zip Shoes are designed to be assembled 

using snap in components, instead of screws, nuts, and bolts, it is estimated that each pair of Zip Shoes 

will need 15 minutes of assembly time. Using $2.99 per hour in Vietnam, each pair of Zip Shoes will have 

an assembly labor cost of $0.75. This is much more cost effective than assembling Zip Shoes in America, 

if they were assembled in America each pair would have a labor cost of $6.17.  

4.3 Total Costs 
Encapsulated in this section is a discussion on the total cost of both the Prototype and Production model 

of Zip Shoes. 

4.3.1 Prototype 

The total prototype costs include the labor cost of the engineers, $11,250, the labor cost of the 

machinist, $171.36, and the parts costs from the prototype, $584.99. Which yields, a total prototype 

cost of $12,006.35. This prototype cost will be amortized into the cost of each pair of Zip Shoes 

produced.  

4.3.2 Production 

There are many components that go into making a pair of Zip Shoes. When all the components and the 

labor to assemble a pair of Zip Shoes is included, the total cost per pair of shoes is $184.71. This could be 

higher than the actual cost due to the assumptions made with bulk pricing of some of the components. 

Since the total cost per pair of Zip Shoes is $184.71, not including overhead costs and shipping costs, the 

retail price of a pair of Zip Shoes will be $300. That would leave a gross profit of $115.29 per pair of Zip 

Shoes. Even though a retail price of $200 was not possible due to material and assembly costs, Zip Shoes 

are still cost competitive at $300 per pair because they include a pair of shoes. The Razor Turbo Jetts, 

Segway Ninebot Drift W1, and Voyager Space Shoes that were the baseline for this metric do not. Even 

considering this, Zip Shoes are still cheaper than the Segway Ninebot Drift W1, which are priced at 

$469.99. (Amazon, n.d.) Furthermore, it should be noted that Zip Shoes offer a much more compact 

form of transportation than all three of the closest competitors. Such that buyers may be willing to pay a 

premium for that convenience.  
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4.4 Codes and Standards 
Throughout this project the goal was to continually be looking ahead. As such, codes and standards that 

would be needed in the final production of the project were considered. Several codes and standards 

were investigated, with one primary set of standards standing out. This set of standards is that of the 

American National Standards Institute (ANSI) and Society of the Plastics Industry (SPI) standards towards 

horizontal injection molding, B151.1. These standards encompass safety requirements, care, and use of 

horizontal injection molding machines. (U.S. Department of Labor, n.d.) They are even cited by the 

Occupational Safety and Health Administration (OSHA) as standards by which one should abide. (U.S. 

Department of Labor, n.d.) These standards would need to be referenced in the manufacturing of the 

Zip Shoe chassis in mass, as they are designed to be an injection molded plastic part.  
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5. Conclusion 
In conclusion, as previously stated, Zip Shoes are designed to be self-propelled footwear on wheels, 

based off the brand Heelys. They operate using two small electric drivetrains, each supported in a plastic 

chassis. These drive trains provide power to two heel mounted wheels, each sitting on a custom drive 

shaft. This is done so that the end user can be propelled forward. 

This basic design is at the center of this entire project, and as such it is what shall be analyzed within the 

final section of this report. Specifically, there will be a focus on the accomplishments of this design, 

uncertainties of this design, ethical considerations of this design, and the future work that needs to be 

done to this design. 

5.1 Accomplishments 
Although Zip Shoes did not work as intended, that is not to say there weren’t any accomplishments 

made in their testing. Primarily, when looking back to the original metrics of success, there are many 

that were accomplished during physical testing. These include the weight rating, size, added weight, and 

charge time. 

Furthermore, two more of our metrics for success were mathematically verified but unfortunately 

unable to be tested in the real world. These included the top speed and run time. In fact, only two 

metrics were not able to truly be achieved. These included cost and comfort. Although this is 

unfortunate, these metrics were still close to their desired results. Such that overall, there was more 

success than failure in the creation of Zip Shoes. 

Finally, it should be noted that more information on the specific numerical values of these metrics is 

available in the appendix of this document. 

5.2 Uncertainties 
As referenced prior, during the creation of Zip Shoes there was one key issue. This issue, the slipping of a 

gear on the motors drive shaft, prevented full intensive real-world testing of Zip Shoes. This has led to 

several uncertainties. Primarily that the top speed and run time were unable to be verified. Also, 

because the shoes were unable to be truly ridden under these conditions, other failure methods 

couldn’t be observed. Thus, the top speed, run time, and other failure methods remain uncertain. 

5.3 Ethical considerations 
Throughout the creation of Zip Shoes there were many ethical considerations. However, if it could be 

simplified, then they could be grouped into two categories. These categories are safety in manufacturing 

and safety in end use. For safety in manufacturing, it was noted in the “Codes and Standards” section of 

this report that ANSI/SPI standard B151.1 would be used for the manufacturing of the shoe’s chassis. For 

safety in end use, it was noted in the “Product use safety considerations” section of this report that an 

in-depth user safety guide would be created. Finally, it should be noted that ethics are always adapting 

and changing. Such that if there is any way safety can be improved for Zip Shoes in the future, action will 

be taken such that it will be. 
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5.4 Future work 
Zip Shoes, although in a completed prototype phase, still have a long way to go. If it is decided that they 

are to be manufactured, there is still much work to be done. This section intends to describe the next 

steps that would be taken regarding the future of Zip Shoes. It describes this through discussion on the 

physical refinements and business steps needed. 

First and foremost, Zip Shoes design would be physically refined. The problem previously mentioned of 

gear slippage would be the first thing fixed. Next, considerations for final materials would be made. 

Some materials, like the steel used for the drive shaft, are far too strong for the task they need to 

perform. While other materials, like the plastic gearing, may need to be strengthened. Additional chassis 

materials would need to be researched as well. A flexible chassis would be ideal since it would more 

accurately reflect a shoe sole that way. Finally, the snap in system for the wheel would be lowered into 

the shoe allowing for more comfort. 

Secondly, Zip shoes would need discussion on the business aspects of the product. This would include 

things such as branding, licensing, and preparations for manufacturing. Being that Zip shoes still only 

exist as a prototype; these steps would be far larger than those needed for physical refinement. 

Overall, despite the work that has been done, there is still plenty to be done. Although it is not yet 

decided what the future of Zip Shoes will be, one can still hope to imagine what they can become. 
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Appendix  Metrics of Success and Verifications Table 
 

 Metric of Success Achieved Value Report 
Location 

Pass / 
Fail 

Notes 

Top Speed 6 mph 6.66 mph 2.3.4.1 Pass Only 
mathematically 

verified 

Run Time 20 min 20.52 min 2.3.6.1 Pass Only 
mathematically 

verified 

Cost $200.00 $300.00 4.3.2 Fail  

Weight Rating 225 lbs. 225 lbs. 3.1.1 Pass Achieved value 
doesn’t include 

safety factor 

Size Fit within footprint Fit within footprint 2.3.1 Pass  

Added Weight 3 lbs. per unit 2.02 3.2 Pass  

Charge Time 1:30:00 1:30:49 3.2 Pass  

Comfort Walk normally Walk semi-normally 3.2 Fail  
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