
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2022

Smart UV-C Disinfectant Module Smart UV-C Disinfectant Module

Nicole Baldy
The University of Akron, neb45@uakron.edu

Luke Rogers
The University of Akron, ljr47@uakron.edu

Haitham Saleh
The University of Akron, hhs10@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics

and Photonics Commons, and the Systems and Communications Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Baldy, Nicole; Rogers, Luke; and Saleh, Haitham, "Smart UV-C Disinfectant Module" (2022). Williams
Honors College, Honors Research Projects. 1512.
https://ideaexchange.uakron.edu/honors_research_projects/1512

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1512
https://ideaexchange.uakron.edu/honors_research_projects/1512?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1512&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Smart UV Disinfectant

Final Design Report

Design Team 12

Nicole Baldy

Luke Rogers

Haitham Saleh

Faculty Advisor: Dr. Jobeda Khanam

04/12/2022

2

Smart UV Disinfectant

Nicole Baldy Contributions

Nicole’s primary responsibility was the control subsystem – this includes the

microcontroller and its interactions and control of all sensors and actuators. She

designed and implemented the primary state machine which ensured that sensors were

checked and the data processed correctly according to the overall device state. She also

implemented the software interface between the microcontroller and the Grid-EYE

sensor which was used to accurately detect the presence of a human from their body

temperature. Nicole also served a secondary role as an “integrations specialist”; thanks

to her co-op experience in robotics, she provided expertise in planning the subsystems

around integration. For example, user input was first simulated using a button on the

microcontroller, which was later replaced by a signal from the phone application.

3

Smart UV Disinfectant

Luke Rogers Contributions

Luke’s primary responsibility was the user interface subsystem – this includes

the UART communication between the microcontroller and the Bluetooth board, the

Android phone application, and the data sent between the microcontroller and the

subsystem. He designed and implemented the phone application and provided the

software interface to the Bluetooth chip for the microcontroller, which made

integration with the user interface subsystem extremely simple. Luke also served a

secondary role as the “mechanical specialist”; thanks to his experience in mechanical

systems from the Formula Combustion Design Team, Luke planned and provided the

locker support beams and motor mount among other small mechanical needs.

4

Table of Contents

Abstract ... 7

1. Problem Statement... 8

1.1. Need .. 8

1.2. Objective .. 8

1.3. Background .. 9

1.3.1. Existing Designs ... 11

1.4. Marketing Requirements ... 13

2. Engineering Analysis... 13

2.1. Background Research on Circuit Components to Fulfill Requirements 13

2.2. Electrical Circuits ... 17

2.2.1. Electrical Subsystem .. 17

2.2.2. Sanitizing Platform Rotation Device .. 18

2.3. Electronics ... 19

2.3.1. Controls Subsystem ... 19

2.3.2. User Interface Subsystem .. 22

2.4. Signal Processing ... 23

2.4.1. Controls Subsystem ... 24

2.4.2. User Interface Subsystem .. 27

2.4.3. Electrical Subsystem .. 28

2.5. Communications .. 28

2.5.1. Controls Subsystem ... 28

2.5.2. User Interface Subsystem .. 29

2.6. Electromechanics .. 30

2.6.1. Electrical Subsystem .. 30

2.6.2. Controls Subsystem ... 32

2.7. Embedded Systems ... 33

2.8. Controls ... 34

2.8.1. Prevent Human Exposure .. 34

5

2.8.2. How much time to sanitize .. 34

3. Engineering Requirement Specification .. 35

4. Engineering Standards Specifications ... 37

5. Accepted Technical Design ... 38

5.1. Level 0 Design .. 38

5.1.1. Hardware Theory of Operation ... 38

5.2. Level 1 Hardware Design ... 39

5.2.1. Hardware Theory of Operation ... 42

5.3. Level 2 Hardware Design ... 43

5.4. Level 3 Electrical Subsystem .. 46

5.5. Level 3 Control Subsystem .. 48

5.6. Level 1 Software Design .. 50

5.6.1. Level 1 Software Theory of Operation .. 52

5.7. Level 2 Control Software ... 53

5.8. Level 3 Control System Software ... 60

5.8.1. State Machine Framework .. 61

5.8.1. LED and Motor Control .. 70

5.8.2. AMG8833 Grid-Eye Control ... 71

5.8.3. HC-SR04 Ultrasonic Control ... 76

5.8.4. Servo Motor Control .. 77

5.9. Level 2 User Interface .. 78

5.10. Level 3 User Interface .. 82

5.10.1. Android Application ... 83

6. Mechanical Sketch... 92

7. Design Team Information .. 94

8. Parts List .. 95

8.1. Parts List .. 95

8.2. Materials Budget ... 96

9. Project Schedules... 97

10. Conclusion and Recommendations ... 101

11. References ... 101

6

Table of Figures

Figure 1: Circuit setup for simulating I-V curves for different LED models 18

Figure 2: The DC motor that is going to be used (HG37-200-AB-00) .. 19

Figure 3: The Grid-Eye sensor schematic for the AMG8833, a potential Grid-Eye component,

from the AMG88 datasheet (“Infrared Array Sensor”, 4). .. 20

Figure 4: One potential ultrasonic sensor, the HC-SR04 (Ultrasonic Distance Measurement

Model)”.. 21

Figure 5: Image of Solenoid to be used in the lock ... 22

Figure 6: Image of the RN4871 Click board used for the Bluetooth Low Energy transmitter. 23

Figure 7: HC-RR04 Datasheet Signal Diagram ... 25

Figure 8: AMG88 Pixel Map (“Specifications for Infrared Array Sensor”, 5). 26

Figure 9: Door Circuit Schematic - Normally Open Switch .. 27

Figure 10: Sparkfun example of I2C protocol frames, (“I2C”, 5). .. 29

Figure 11: Disc model of the sanitizing Champer base ... 31

Figure 12: DC motor Simulink model (24 V excitation) ... 32

Figure 13: Resultant Speed curve from Simulink simulation .. 32

Figure 14: Mechanical Sketch of Lock System ... 33

Figure 15: Level 0 Block Diagram .. 38

Figure 16: Hardware Level 1 Block Diagram ... 39

Figure 17: Hardware Level 2 Block Diagram ... 43

Figure 18: Schematic of the level 3 electrical subsystem ... 47

Figure 19: Schematic of control system components ... 49

Figure 20: Software Level 1 Diagram ... 50

Figure 21: Microcontroller Level 2 Software Flowchart ... 54

Figure 22: Microcontroller State machine diagram ... 60

Figure 23: State Machine Pseudocode .. 62

Figure 24: State Machine C code header .. 63

Figure 25: State machine C code implementation .. 69

Figure 26: Light and motor pseudocode ... 70

Figure 27: Grid-eye pseudocode ... 71

Figure 28: AMG8833 Library Implementation... 75

Figure 29: Ultrasonic Module Pseudocode ... 76

Figure 30: Servo Lock Pseudocode .. 77

Figure 31: User Interface Level 2 Flowchart... 79

Figure 32:Android application example with the main activity screen on the left and the Bluetooth

activity screen on the right. ... 92

Figure 33: Mechanical Sketch of the System .. 93

Figure 34: Sketch of the Android Application for the User Interface ... 94

Figure 35: Gantt Chart (Part 1) .. 98

Figure 36: Gantt Chart (Part 2) .. 99

Figure 37: Gantt Chart (Part 3). ... 100

https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519898
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519898
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519902
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519903
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519909
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519909
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519910
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519910
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519911
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519911
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519914
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519915
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519915
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519916
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519916
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519917
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519917
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519918
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519919
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519920
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519921
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519922
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519923
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519924
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519925
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519928
https://uazips.sharepoint.com/teams/course4487951-DT12SmartUVDisinfectant/Shared%20Documents/DT12%20Smart%20UV%20Disinfectant/DT12FDR.docx#_Toc100519928

7

Table of Tables

Table 1: Marketing Requirements Table ... 13

Table 2: Engineering Requirements Table .. 36

Table 3: Engineering Specifications Table .. 37

Table 4: Level 0 Functional Requirements Table ... 38

Table 5: Hardware Level 1 Functional Requirements Table ... 40

Table 6: Hardware Level 2 Functional Requirements Table ... 44

Table 7: Software Level 1 Functional Requirements Table .. 51

Table 8: Software (Microcontroller) Level 2 Functional Requirements Table 55

Table 9 : Software (User Interface) Level 2 Functional Requirements Table 79

Table 10: Part List ... 95

Table 11: Materials Budget List .. 96

Abstract

Ultraviolet (UV) light is frequently used to quickly disinfect surfaces, particularly

those which cannot be easily washed. However, the more effective disinfecting

wavelengths are hazardous to eyes and skin, potentially causing severe sunburn and

retinal damage. This paper proposes an enclosed disinfection device which will disinfect

objects such as backpacks, allowing one user to control the device at a time through their

phone. It will fully disinfect objects in 5 minutes or less and provide many safety features

to prevent it from turning on when a person or animal would be exposed to the UV light.

The proposed device will be very easy to use; it can be plugged in to a standard wall

outlet and controlled wirelessly via a phone application.

8

1. Problem Statement

1.1. Need

COVID-19 has made the world much more complicated – especially the use of

public spaces, where many people touch the same surfaces and breathe the same air. The

FDA states that a type of ultraviolet (UV) light, UV-C radiation (wavelength of 190–290

nm), “is a known disinfectant for air, water, and nonporous surfaces.” While the

effectiveness of UV-C against COVID-19 is still under study, it has been proven effective

for other Coronaviruses, such as the SARS-Coronavirus (Kitagawa 299–301). Specifically,

UV-C light is the most effective light of the UV spectrum at killing pathogens, but it can

also be damaging to human eyes and skin due to its high energy. According to the Skin

Cancer Foundation “About 90 percent of nonmelanoma skin cancers are associated with

exposure to ultraviolet (UV) radiation from the sun”. UV-C radiation from germicidal

lamps is similar to sunlight and is therefore can be a health hazard if too much exposure

occurs. There is a need for UV-C disinfectants which can be used to disinfect public areas

but with safety features that prevent unnecessary human exposure to dangerous portions of

the UV spectrum.

 (NB, LR, HS, KL)

1.2. Objective

The objective of this project is to create a device that can disinfect an object by

emitting UV-C while limiting human exposure. The light intensity should be high enough

to sanitize, and it should have safety features which prevent exposure to the LED. This

device will be a touchless device which allows an object to be placed inside and sanitizes

9

the object, while ensuring that there is not a pet or hand exposed to the light. During each

light cycle, the entire surface of the object should be exposed to UV-C light. The device

should also have a user interface which provides remote access to operate the light and

provide notifications if any maintenance on the system is required. (NB, LR, HS)

1.3. Background

Ultraviolet germicidal irradiation (UVGI) is the use of ultraviolet (UV) light to

disinfect air or surfaces. Ultraviolet light is defined as having a wavelength between 10nm

and 380nm; wavelengths of 190 – 290nm are generally referred to as “UV-C” and are most

often used in UVGI systems (Kesavan and Sagripanti). The effectiveness of UV light on

pathogens depends primarily on the light intensity, wavelength, and exposure time. A study

by Kim and Kang used a UV LED (Light Emitting Diode) array, which produced

wavelengths of 200 – 400nm, to eliminate pathogens from the air. It observed a 5-log

reduction (0.001% of the initial amount) of all 3 viruses being tested after 10 minutes of

exposure to the array. Several bacteria and fungi were also tested, with results varying from

a 2.5-log reduction to a 4-log reduction (0.32% - 0.01% of the initial amount). Another

study evaluated the effect of UVGI on multiple surfaces after 10 minutes of exposure. It

found at least a 3.8-log reduction (0.015% of the initial amount) in the two tested antibiotic-

resistant strains of bacteria if exposed to at least 9 mJ/cm2 of UV light (Jelden, Katelyn C.,

et al. 6). These two studies show that UGVI can effectively kill pathogens both in the air

and on surfaces. Due to the current pandemic, many studies are being conducted on UVGI

for its effect on COVID-19, as UVGI is the primary technology for eliminating pathogens

from the air, according to Kesavan and Sagripanti. A study by Buonanno et al. specifically

examines the use of 222-nm light for deactivating COVID-19 and shows that doses of less

10

than 2 mJ/cm2 deactivated 90% of the virus within 8 minutes, and 99.9% within 25 minutes

(“Far-UVC Light” 1). From these results, it can be seen that UVGI technology eliminates

a significant number of pathogens, including COVID-19, from both the air and exposed

surfaces in a relatively short period of time, and makes this a promising technology for use

in disinfecting public areas. (NB)

The drawback to this technology is that UV-C wavelengths are considered

hazardous, according to the Handbook of Occupational Safety and Health. UV-C light can

cause eye and skin damage such as sunburn of the cornea (also known as photokeratis),

cataract formation, or skin pathology (Haes and Galanek). According to the International

Commission on Non-Ionizing Radiation Protection, the exposure limit to UV wavelengths

between 180 and 400nm is 30 J/m2 per 8 hours to the eyes or skin without any UV

protection (174). However, a 2017 study by Buonanno et al. showed no statistical

difference in the amount of skin damage from exposure to 222-nm light from the control

(“Germicidal efficacy and mammalian skin safety” 493). Using this wavelength while

adhering to the exposure limit of 30 J/m2 in a sanitizing device should provide the greatest

amount of safety possible while still acting as an efficient sanitizer. To ensure that a device

emitting UV light adheres to the exposure limit, the smallest effective dose should be used

(as seen previously, this is 2 J/m2) and it should stop emitting light if a person is detected

nearby. (NB)

Currently, there are several types of devices which use UGVI to disinfect rooms.

The simplest application is a UV-C light bulb which can be put any light fixture which

meets the power requirements. This is problematic, however, as there are no protections to

using these bulbs – a person may be exposed to a large amount of UV-C light, especially

11

if they are unaware that the light is not a standard lightbulb or of the hazards of UV-C.

There are also handheld UV wands meant to sterilize a small area, but these have the same

safety hazards as a pure lightbulb if used improperly and need require manual use – a

person must move the light around to cover an area. UVGI is also used in many air

purification systems where air is pumped through a device containing UV light as a

disinfectant, but no light reaches outside of the device. Such devices cannot clean surfaces

and are designed to sterilize only the air pumped through the device. This is useful, but

sterilization of both surfaces and air is ideal in a public environment. There are also

automated applications which are designed to sit in a room or are attached to a mobile

robotic platform to cover an even larger area, in a growing area known as robot-assisted

UV disinfection (McGinn 2). However, these more autonomous applications are very

expensive and primarily marketed to large hospitals. This proposal focuses on a design

with many of the benefits of one of these high-end robotic products – person-sensing

ability, object disinfection, usage data collection, maintenance notifications, and some

movement ability data– but at the cost closer to a consumer-grade UV air purification

system. This allows the device to be used in a variety of high-traffic areas such as public

airports, such that a person could put a bag inside to be sanitized. (NB)

1.3.1. Existing Designs

Several patents and patent applications have a similar design which use UVGI

combined with a sensor system to maximize user safety and disinfection efficiency. One

patent application, “Device for lighting ultraviolet sterilization lamp without detection of

human sensor and by lights-out of lighting device” is a UV light which was meant for a

kitchen or bathroom and detected if a person was nearby. It also measured the humidity in

the room and contained an “odor sensor [sic]” and would activate if humidity was high

12

enough or the “odor sensor [sic]” was activated, but a person was not detected. It would

also sound an alarm before activation and used a controller which a person could use to

activate the light. This application was rejected in 2017 (Nakao). The UV-C light module

being proposed in this paper is similar to Nakao’s patent application in that it has human-

sensing ability and will accept user control, but does not have a complex mold-sensing

ability, as it is more focused on destroying pathogens than suppressing mold. Another

patent application from 2014, “Automatic sterilization device for public toilet”, used a UV

band, heat sensors, infrared sensors, and a “gate detection board” which detects whether

the stall door is open. These sensors allowed the device to detect if a person is within the

stall, which deactivated the light. This application was withdrawn in 2015 (Chen). The

proposed module is very similar to Chen’s patent application, with some improvements.

First, the use of the Grid-Eye sensor discussed previously will provide very accurate data

on whether a person is present nearby. Second, rather than a UV band, the proposed design

will use a 222nm light or similar wavelength which will minimize risk to eyes and skin

while still being an effective disinfectant. There are also approved patents which are very

similar to the proposed device. “Portable light source including white and ultraviolet light

sources” is a patent granted in 2007 which uses UV and white light emitted from pivoting

arm to disinfect a large area and is powered by a rechargeable battery (Hopkins). Rather

than having the UV light source on the end of an arm like Hopkin’s patent, the proposed

module will have static light sources and rotate the platform holding object within the

sanitizer. This allows us to more easily enclose our module to increase safety. With these

modifications, the proposed device will be as safe as possible while also being able to

disinfect an object in a relatively short time. (NB)

13

1.4. Marketing Requirements

The design described in this report should meet a number of marketing

requirements to ensure that it is a functional product, capable of filling the identified

market need. These marketing requirements are as follows:

Table 1: Marketing Requirements Table

1) The device should kill a significant number of pathogens in a short time.

2) The device should be able to sanitize backpacks and similarly sized objects.

3) The device should interface with user’s phones and remain locked until the user is

ready to access their belongings.

4) The device should be ready to use shortly after being plugged in.

5) The device should have numerous safety measures and precautions to prevent

injury to users or animals.

(NB, LR, HS, HSA)

2. Engineering Analysis

There are several aspects of the design which require further analysis to ensure that

the requirements can be achieved; these are explored in more detail below. The device can

be broken down into 3 major subsystems: the user interface, which consists of the android

application and wireless transmitter; the control system, which consists of the

microcontroller and signal connection to the other electronics; and the electrical system,

which shall consist of all electrical components to be used.

2.1. Background Research on Circuit Components to Fulfill Requirements

Additional background has been explored to narrow down components for the

project based on these requirements.

 One requirement for the project to operate safely is a sensor that is able to

detect humans and pets. There are different types of sensors that were considered, but it

14

was concluded that an infrared sensor was appropriate for the project and provided the

accuracy needed to keep users safe. The infrared sensor is widely used in industries for

the purpose of human detection. Humans and pets radiate infrared energy which

correlates to temperature, and that temperature with respect to a reference is sensed and

then is interpreted as a voltage signal by the sensor. From the research paper “Detection

and tracking of a human using the infrared thermopile array sensor — ‘Grid-EYE’,” two

types of infrared sensors were considered. The passive infrared sensor (PIR) was first

considered, however it is only able to detect humans that are in motion. This sensor

would not be appropriate for the project as sensing of a person should not be reliant on

motion. The other type of infrared sensor, Grid-EYE, is a better fit to the project since it

is able to detect humans and pets both in motion and in static positions using an infrared

sensor. The Grid-EYE sensor is also able to detect the direction of motion in a 2-

dimensional coordinate system, though this functionality will likely be unnecessary for

the proposed device. The Grid-EYE sensor covers moderate distances that are appropriate

for the project in mind. According to Shetty et al., “Grid-EYE sensor has field of view of

60 degrees in both horizontal and vertical directions and maximum recommended

distance used for detection is 5 meters” (1490). In a Grid-EYE sensor, thermopile heat

detectors are constructed out of thermocouples in series; an 8 by 8 grid of thermopiles

makes up the Grid-EYE. However, the paper also explores the use of the pyroelectric

sensor, which generates a voltage signal that weakens under a constant temperature

reading and requires refreshing the signal at a certain rate (1490). Therefore, if the

standard Grid-EYE sensor does not function well enough to detect nearby persons, a

custom Grid-EYE can be made out of pyroelectric sensors. (HS)

15

For the project, a motor is necessary to be able to rotate the module to cover a

larger area. There are three types of stepper motors, and the one explored for this project

is the hybrid synchronous motor. This motor operates using a voltage pulse train and can

rotate in the range of 0.9 to 5 degrees per pulse (Fraser). This provides smooth scanning

of the area of interest with a controllable angular speed. The hybrid stepper motor is more

expensive than the other two types of stepper motors (variable reluctance and permanent

magnet) due to a more sophisticated design. The permanent magnet stepper motor has a

much larger step angle which is not what is appropriate for the project. The variable

reluctance motor provides a small or medium step size but is faster than what is needed

(Fraser). However, after a small design change where the object is rotated rather than the

lights, it is clear that the exact angle of the object at any one time is unimportant; instead,

it is the approximate speed of the rotation which allows for a guaranteed disinfection of

every surface. Therefore, DC motors should also be considered as they are better for

speed control; a brushed motor would likely be chosen over a brushless DC motor for

cost and control simplicity. (HS)

Another design requirement for the system is a user interface. This user interface

would have two parts, the connection on the physical device and an Android application

on the user’s device. There are several options for the physical connection such as

Bluetooth Low Energy, LoRaWAN, USB, or the Wi-Fi Direct protocol. According to the

IEEE Network, “the Wi-Fi Direct protocol enables two devices to establish a D2D

(device-to-device) connection without the help of APs (access points)” (Shen 1).

Therefore, this research suggests that the Wi-Fi Direct protocol will be the most useful

for the project because there is one physical device and one user device. This allows the

16

physical device to create its own self-contained Wi-Fi network that would only connect

with the Android application on the user’s device. This also allows the device to be

installed in a location that may not have a reliable network connection. However, there

are some security risks with using the Wi-Fi Direct protocol including eavesdropping,

impersonation, message modification, man-in-the-middle attack, and denial of service

attack (Shen 1-2). These security issues would not be a major concern for this project, as

no personally identifiable information will be transmitted between the devices. An

effective alternative to the Wi-Fi direct protocol would be the Bluetooth Low Energy

(BLE). According to the Bluetooth website, BLE is a Bluetooth signal designed for low

power operation and larger flexibility, such as high accuracy indoor communication,

compared to the Bluetooth Classic. BLE is used in a lot of IoT devices to manage the

network connections between the devices and the users. Since the device is going to use a

one-to-one connection between the user and the device, BLE would allow for an

adaptable and secure connection for the user. (LR)

The second part of the user interface is the Android application on the user’s

device. According to Sikder, in 2019 “Android OS is the dominating smartphone OS with

a 75 percent market share” (Sikder 4). Therefore, the application for the user interface

will be created for Android OS rather than Apple’s iOS or another less-common

operating system. The project would use the Android Studio Integrated Development

Environment (IDE) for the development of the application with Java as the primary

programming language. The Android Studio IDE contains libraries for both the Wi-Fi

Direct protocol and Bluetooth Low Energy which can be used during the development

process. This Android application should include the ability to receive notifications from

17

the physical device such as low battery alerts and system fault alerts. The application

should also store usage statistics about the UV light that was recorded from the physical

device. Finally, the application should have the ability to start an UV light cycles (with

the constraint that a detected person nearby overrides a user input to start a light cycle at

that time) or stop the UV light cycle before the cycle is completed. (LR)

2.2. Electrical Circuits

The electrical circuit components which are necessary for this project are a UV-C

light emitter and a rotation device for the sanitizing chamber platform. These components

are explained in more detail and a type of electrical component chosen in each section

below.

2.2.1. Electrical Subsystem

Both electrical components to be used in this project will fall under the electrical

subsystem.

2.2.1.1. UV-C emitter

After a sufficient amount of research, it was decided to use a UV-C LED strip, the

clean-UV UV-C LED Flex Strip. This also allows quick switching between the UV-C

LEDs (for the final design) and UV-A LEDs (also known as “black light”, these are safe

for human skin and will be used for the prototyping phase.

To simulate the UV-C LED circuit, a model must be designed first. Using

LTSpice, a UV-C LED model is designed and then used to build the LED matrix circuit.

In order to design an LED in LTSpice, the model D() function is taken advantage of by

sweeping LED parameters and observing various I-V characteristic graphs using a DC

18

sweep. After observing the LED with the correct I-V characteristics graph, the LED is

used to build the full matrix circuit. These circuit models are pictured in Figure 1 and

Error! Reference source not found..

Figure 1: Circuit setup for simulating I-V curves for different LED models

(HS)

2.2.2. Sanitizing Platform Rotation Device

In the background research, several types of motors and servos which could rotate

a platform were explored. It was concluded that the system requires a motor that will

rotate the object of interest at least once to get sufficient exposure to UV-C on all sides.

The motor torque should also be high enough to withstand the weight of the items.

Furthermore, no motor control is needed, only binary control will take place. The type of

motor that is going to be used is a DC motor with relatively low speed (maximum 22

rpm) and high enough torque.

19

Figure 2: The DC motor that is going to be used (HG37-200-AB-00)

(HS)

Additionally, a platform was needed to sit upon the top of the motor where the

object could rest while being sanitized. This platform needed to be large enough to fit the

object to be sanitized while also providing a way for the UV-C light to pass through. The

platform was made using a combination of stainless steel and chicken wire with a

setscrew to keep the platform attached to the motor. (LR)

2.3. Electronics

The electronic components in the project include the lifeform sensor, the object

sensor, the unlocking mechanism, and a transmitter for the user interface. The

microcontroller shall be covered in the Embedded Systems section, 2.7.

2.3.1. Controls Subsystem

The controls subsystem requires input from two sensors, a lifeform sensor and an

object sensor, to determine if the sanitation cycle is ready to proceed. It also controls a

door servo motor which will be used to unlock the sanitizing chamber door.

20

2.3.1.1. Lifeform Sensor

To sense the presence of a person or animal within the confined area of the

sanitation chamber, several types of sensors were explored during background research.

The grid-eye infrared sensor stood out as having the ability to sense a grid of temperatures,

and therefore provide enough information to indicate the approximate shape of an object

of a given temperature. Therefore, this sensor will be chosen to isolate objects close to

body temperature.

2.3.1.2. Secondary Door State Sensor

As the device should never run when the door is open and this is a key safety

feature, the ultrasonic sensor will be used as a secondary door state mechanism to ensure

that the gate sensor described in Section 2.4.1.3 is functioning properly. If these two

sensors ever disagree, a fault will be logged to the phone application.

Figure 3: The Grid-Eye sensor schematic for the AMG8833, a potential Grid-Eye component, from the AMG88
datasheet (“Infrared Array Sensor”, 4).

21

This ultrasonic sensor can detect the distance to the nearest object. If pointed at

the door, it is easy to detect if the door is open by determining if the distance detected is

greater than the known distance to the door. Otherwise, the door is likely closed. As this

is a secondary sensor, complete accuracy is not required; this is primarily helpful upon

startup to ensure that the gate sensor is functioning properly.

Figure 4: One potential ultrasonic sensor, the HC-SR04 (Ultrasonic Distance Measurement Model)”.

2.3.1.3. Unlocking Device

 The door of the module, when closed by the user, should automatically lock. It will be

unlocked by a command from the microcontroller. The mechanics of such an unlocking

device shall be discussed in section 2.6.2.1. This device does not need to be particularly

strong, but it should have some degree of precision. Initially, a position-controlled servo

motor had been identified as a good choice for this component due to its relative

simplicity. However, due to the bulk of the motor and rotational motion, a solenoid has

been identified to be a simpler mechanical option to lock the door. This solenoid will be

attached to the bottom of the door frame. It operates on 5V; when powered on it extends

outside of the frame into the inside of the door to lock it.

22

Figure 5: Image of Solenoid to be used in the lock

More information on how to control the solenoid shall be examined in section

2.6.2.1.

2.3.2. User Interface Subsystem

The user interface subsystem requires a Wi-Fi/Bluetooth transmission device in

order to communicate between the user interface and the other subsystems. The user

interface also requires the user to use an android device with an operating system of at

least Android 10.

2.3.2.1. Wi-Fi/Bluetooth Transmitter

The user interface for the project will not be physically connected to the

microcontroller so a wireless method of communication is necessary to send information

between the two subsystems. Both Wi-Fi and Bluetooth have been identified as potential

transmitting schemes. Bluetooth will be considered as the primary wireless transmission

scheme due to multiple factors including implementation complexity and required range,

and Wi-Fi will be considered as the alternate wireless transmission scheme. If issues arise

23

with the implementation of Bluetooth for the user interface, Wi-Fi will replace Bluetooth

as the primary wireless transmission scheme. The wireless transmitter chosen for this

project is an RN4781 Click board capable of using Bluetooth Low Energy (LE) as its

transmission scheme. (LR)

Figure 6: Image of the RN4871 Click board used for the Bluetooth Low Energy transmitter.

2.3.2.2. Android Device

The user interface will be an application developed to run on android operating systems

of Android 10 or newer. In order to access the user interface, the user will need to have

access to an android device with this version of the android operating system. This

decision is based off access to a testing device accessible during the development process

of the user interface application.

2.4. Signal Processing

All three subsystems utilize signal processing; the user interface must reconstruct

the user input command using the wireless transmitter, the controls subsystem must read

the status of the sanitizing chamber via several sensors, and the electrical subsystem must

process motor current to determine if the motor is stuck or not.

24

2.4.1. Controls Subsystem

There are three major signal processing components in the controls subsystem.

First, the analog distance to the nearest object needs to be discretized to determine

whether or not an object is present in the sanitizing chamber; the ultrasonic sensor with

timer-based signal processing will be used to read the approximate distance. Second, to

read the temperature throughout the sanitizing chamber will be achieved using the Grid-

Eye sensor to read and discretize an array of discrete temperatures. These temperatures

will then be transferred unaltered to the microcontroller. Third, the status of the door

needs to be read to determine state. (NB)

2.4.1.1. Ultrasonic Signal Processing

The Ultrasonic sensor shall provide pulses, of which the length of time between is

proportional to the distance sensed. That is, the microcontroller will need to poll the

ultrasonic sensor line at a high enough rate to avoid missing the pulse. The distance to the

sanitizing platform and therefore the neutral (no object) time between pulses can be

calculated; a significant drop in the time between pulses indicate a detection.

For example, the HC-SR04, which is determined to be a reasonable ultrasonic

sensor to start with due to its low cost and ample documentation and examples, will send

out a pulse of the same duration as the returned sonic burst. That is, the pulse duration,

TH, shall be the twice the distance detected, d, divided by the speed of sound, vs.

𝑇𝐻 =
2⋅𝑑

𝑣𝑠
,

(1)

𝑑 =
𝑇𝐻 𝑣𝑠

2
,

(2)

𝑑 ≈
𝑇𝐻 340 𝑚/𝑠

2
.

(3)

25

(NB)

2.4.1.2. Grid-Eye Signal Processing

The Grid-eye shall provide an 8x8 grid of temperatures. A particular Grid-eye

sensor board, AMG883, has been identified as a good starter board due to the fact that it

has a provided breakout board which makes it easier to prototype with and good

documentation.

To use I2C, this board requires a clock signal less than 400 kHz. Most standard

I2C devices use 100 kHz, which is what will be planned to be used. This sensor will have

an I2C address of either 0b1101000 (0x68) or 0b1101001 (0x69) depending on the slave-

select pin. The module comes with the pin pulled up by default for the address of 0x69.

The pixel registers are 0x80 through 0xFF, with each pixel having 2 registers of data.

That is, to read all the grid values of the temperature registers, all 128 registers should be

queried.

Figure 7: HC-RR04 Datasheet Signal Diagram

26

To query in I2C, first send the device address (0x69) and then the register address

to read from and listen for the result. There should be 10 kΩ resistors pulling the I2C

lines high when not in use.

Each of these temperatures is stored in [12, -2] fixed point notation; that is, the

temperature (in decimal) T10 can be calculated using the H and L registers as in (4).

𝑇10 = 𝐻[3](−29) + ∑ 𝐻[𝑖]𝑖𝑙+6

2

𝑖=0

+ ∑ 𝐿[𝑖]2𝑖−2

7

𝑖=0

(4)

(NB)

2.4.1.3. Door Status Signal Processing

The door shall contain contacts which, when closed, bring the value of the a GPIO

pin on the microcontroller to HI. This is referred to as the “gate sensor”. When the door is

open, the pulldown resistor shall bring the pin to a LOW voltage. Therefore, a closed

door should correspond with a HI voltage on this pin.

Figure 8: AMG88 Pixel Map (“Specifications for Infrared Array Sensor”, 5).

27

Figure 9: Door Circuit Schematic - Normally Open Switch

This output also serves as a secondary input to the LED power relay so that even

if the PIC24 board crashes or fails, the power to the LEDs will be cut off when the door

opens.

(NB)

2.4.2. User Interface Subsystem

The user interface subsystem has a more limited approach to signal processing

compared to the controls subsystem. The input and output signals will be coming through

the Bluetooth LE transmitter to be read by either the android device or the

microcontroller. (LR)

2.4.2.1. Wi-Fi/Bluetooth Transmission Signal Processing

The RN4871 Click Bluetooth LE transmitter chip will be acting as the signal

processor for the user interface subsystem. The chip will be placed directly into the

microcontroller in a predefined position. Then the RN4871 Click board will use the

UART protocol to both transmit and receive signals between the android device and the

microcontroller. The chip will receive Bluetooth LE transmissions from the android

device over low-power radio waves on the frequency band of 2400 to 2483.5 MHz. The

28

chip will also send Bluetooth transmissions back to the android device after receiving

communication from the microcontroller. (LR)

2.4.3. Electrical Subsystem

Other than voltage-level switching using relays, there is no signal processing in the

electrical subsystem

(HS)

2.5. Communications

The primary communication needs in this project will be the wireless Bluetooth

communication between the transmitter and the android application. However, there is

also a lot of digital communication needs between sensors and the PIC24FJ128GA010.

2.5.1. Controls Subsystem

The controls subsystem consists of all digital communication between the sensors

and the PIC24 microcontroller. All sensors will either be simple logic/timing based or use

I2C.

2.5.1.1. I2C Sensor communication.

Signals from the grid-eye sensor will be received by I2C communication – that is,

the signals shall be received using 2 pins; SDA and SCL. SDA is the data line while SCL

is the signal line. It supports various communication speeds, with 100kHz being one of

the more common speeds. The protocol requires pull-up resistors such that the “active”

state is low.

Sparkfun has an in-depth tutorial on the use of I2C (“I2C”); it includes figure

Figure 10 which is included below to explain how frames are sent in I2C. Specifically,

the line is pulled low to indicate that a frame will be sent, then the address of the device

29

to receive the frame is sent, and finally the data is sent over the SDA wire.

Figure 10: Sparkfun example of I2C protocol frames, (“I2C”, 5).

The data should then be read from the sensors; in the case of a grid-eye sensor, for

example, this is an 8x8 array of IR data (temperature), and an ultrasonic sensor will

provide a distance (possibly also in a grid depending on the sensor chosen).

(NB)

2.5.1.2. Other Sensor communication.

In the case of the gate (door) sensor and estop, the input is entirely binary (open

or closed, active or inactive), so a single GPIO input pin on the PIC24 will be

appropriate. The ultrasonic sensor will be slightly more complicated, utilizing two pins

and timing analysis as described in section 2.3.1.2.

(NB)

2.5.2. User Interface Subsystem

The user interface subsystem will be responsible for the communication between

the android device and the microcontroller. To communicate between the two devices, a

combination of UART and Bluetooth LE will be used to send and receive data. (LR)

2.5.2.1. Wireless Communication

The user interface will use the UART protocol for part of the wireless

communication, namely the communication between the microcontroller and the RN4871

Click. The setup for I2C between the two devices will be similar to the setup described in

30

section 2.5.1.1 above, however the ESP chip will be considered the slave in the

relationship. In addition to I2C, the ESP-WROOM-32 chip will use Bluetooth to

communicate between the chip and the android device. The android device will use

Bluetooth radio waves to communicate data to the chip which will then use I2C to

communicate the data back to the microcontroller. This process will also work in reverse

with the microcontroller sending data to the chip via I2C and then the chip sending the

data to the android device via Bluetooth. (LR)

2.6. Electromechanics

The electromagnetic needs of this project shall be relatively simple – they consist

of a motor system which will rotate the sanitizing platform and the target object, and a

lock which will keep the door closed and locked when the sanitizing cycle is active.

2.6.1. Electrical Subsystem

The primary electromechanical subsystem in the Electrical Subsystem is the

platform motor, which must rotate the target object.

2.6.1.1. Platform Motor Torque

In order to provide the constant speed needed to sanitize equally, the necessary motor

torque needed to accelerate the sanitizing platform is calculated as follows:

Approximating the platform base as a perfect circular disc with radius R and combined

mass M, the moment of inertia of the disc may be written as:

𝐼 =
1

2
𝑀𝑅2

Given a desirable speed 𝜔0, and a time interval 𝛥𝑡 needed to reach a constant speed, the

angular acceleration may be approximated as:

𝛼 =
∆ɷ

∆𝑡
=

ɷ𝑜

∆𝑡

31

The toque may then be calculated from the standard formula:

𝜏 = 𝐼𝛼

This simplifies to:

𝜏 =
ɷ𝑜𝑀𝑅2

2∆𝑡

Figure 11: Disc model of the sanitizing Champer base

(HS)

2.5.1.2 DC motor simulation

By using Simulink, the DC motor proposed is simulated. Using the datasheet of

the motor, the stall torque and no-load speed given can be used to modify the DC motor

model in Simulink to match our motor. For the simulation setup, a linearly increasing

torque ranging from zero to the stall torque in one second is applied. The resulted speed

curve is then observed. To validate the results, it can be observed that the speed is zero at

one second for the maximum load condition

32

Figure 12: DC motor Simulink model (24 V excitation)

Figure 13: Resultant Speed curve from Simulink simulation

(HS)

2.6.2. Controls Subsystem

The controls subsystem is primarily digital and therefore has few

electromechanical components; however, in the effort of evening work distribution, the

servo door unlocking mechanism shall fall under this subsystem.

33

2.6.2.1. Solenoid Lock

The lock servo shall be used to release a mechanical lock; this lock shall be

engaged upon door close. The gate sensor described in Section 2.4.1.3 will allow the

microcontroller to detect a closed door, and before a cycle starts, the door will be locked.

Commands to this lock solenoid are purely digital, transformed from 3.3V to 5V using a

power relay – “HI” from the microcontroller locks the door, and “LO” unlocks the door.

In the event of a power failure, the door will be unlocked, allowing any items inside to be

removed.

(NB)

2.7. Embedded Systems

A single microcontroller will be used in this project and will be responsible for all

control decisions regarding state of the module. The user interface will not be an

embedded system because it is designed to run on an Android device, which is closer to a

general computer than an embedded system. This microcontroller must be powerful and

precise enough to drive multiple I2C connections, a PWM connection, and have timers

which give timing precision at the microsecond level. There should also be general

Figure 14: Mechanical Sketch of Lock System

34

purpose input and output pins for reading and writing less complex digital information,

such as the status of the Estop or turning on LEDs.

Other considerations when choosing a microcontroller are the complexity of use,

how much troubleshooting hardware is available, and cost. The PIC24FJ128GA010 is

offered through the university on the Explorer16 development board, and therefore would

be the cheapest option with a significant amount of troubleshooting hardware and

documentation. The primary tradeoffs are size and power; since this module shall not be

mobile and will remain plugged into a wall outlet, this tradeoff is expected to be very

favorable for this specific application.

(NB)

2.8. Controls

The control subsystem will orchestrate a state machine based on user and sensor

inputs. The microcontroller It shall ensure that enough time is spent sanitizing the object.

2.8.1. Prevent Human Exposure

Before running the light cycle, the grid-eye sensor should be queried; if several

pixels detect a value close to human body temperature, the LEDs should not be activated,

and a fault should be reported. The door should also be unlocked to release anything

trapped inside.

(NB)

2.8.2. How much time to sanitize

Given that the radiated power of the UV-C LED chosen is 60 mW, an approximation of

the power density on a spherical shell going through the center of the box can be

calculated. The average value of the intensity can be calculated by dividing the radiated

35

power by the amount of steradians in a sphere. Using the fact that the power density is

related to the intensity through the square of the distance from the source, the power

density is obtained. Given the energy density of 10 mJ/cm2 needed to achieve sanitizing,

the time needed is obtained by dividing the energy density by the power density. The

time can then be reduced through using multiple LEDs

𝑈𝑎𝑣 =
𝑃𝑟𝑎𝑑

4𝜋
=

60 𝑚𝑊

4𝜋 𝑠𝑟
= 4.77

𝑚𝑊

𝑠𝑟

𝑷𝑎𝑣 =
𝑈𝑎𝑣

𝑅2
=

4.77
𝑚𝑊
𝑠𝑟

302𝑐𝑚2
= 0.0053

𝑚𝑊

𝑐𝑚2

𝑡 =
𝑬

𝑷𝑎𝑣
=

10.6
𝑚𝐽

𝑐𝑚2

0.0053
𝑚𝑊
𝑐𝑚2

= 2000 𝑠

Using 10 LEDs, the time is reduced to 200 seconds, or 3 minutes and 20 seconds. To

make up for the power density estimation, 5 minutes results in an overestimate ensuring

proper sanitizing.

(HS)

3. Engineering Requirement Specification

 The device should follow a set of engineering requirements and specifications to

ensure that its design will meet the identified marketing requirements.

36

Table 2: Engineering Requirements Table

Market

Req.

Engineering Requirement

Specifications Justification

1

An object placed inside the sanitizing

chamber should be exposed to at least

10mJ/cm
2

 of UV-C light on all

exposed surfaces within 5 minutes.

Light intensity 10mJ/cm
2

 (Heßling et al)

required to kill most coronaviruses. 5

minutes is a reasonable amount of time to

reach this level with 10 LEDs. (Analysis in

section 2.2.1.1).

2 The sanitizing chamber should be

capable of holding a target object

smaller than 18”x14”x8” and 20 lbs.

Limit object size to the size of a personal

item defined by American Airlines with a

weight of 20 lbs., which is 10% (“Stuffed

Backpacks”) of the average American

adult male weight (“FastStats”).

1 The sanitizing chamber should rotate

the target object at least π/30 rad/s.

Need to ensure entire object surface is

exposed to LEDs, so aim for 1 full

rotation/minute to allow for full coverage

of object even when rotation speed is not

exact.

5 The device should be able to detect

the presence of an object within the

sanitizing chamber and differentiate

this from the presence of an animal or

hands by detecting a temperature of

85-105°F of the contents.

To avoid trapping an animal inside or child

inside, the module should detect a range of

temperatures within approximately 10°F of

human body temperature.

3 The design should include a mobile

application which should interface

with the device after scanning a code

containing the device’s specific MAC

address.

Allow the user to control the device

wirelessly from their personal device while

connecting as easily as possible (do not

“search through Bluetooth connections by

hand”)

3 The user interface should allow the

user to start and stop the sanitizing

cycle and unlock the device; it should

contain information about the time

remaining in the sanitizing cycle and

any faults which are active.

The user interface should contain enough

information for the user to effectively use

and control the device.

3 The system should contain an Estop

system which disables the UV-C

LEDs and should be automatically

activated when the sanitizing chamber

door is open.

There should be no light allowed to escape

even if the door is pried open.

37

4 An initialization process should begin

as soon as the microcontroller is

plugged in and take less than 10s to

complete and enter the “ready” or

“fault” state.

The user expects the system to be ready in

a short time after being plugged in – 10s is

a reasonable amount of time for a user to

wait before using the device and allocates

plenty of time for the power system to start

up, and the microcontroller to check all

sensor and component statuses.

4 The device should connect to a 120V

AC wall outlet and draw at most 5A

at any time.

The device should be capable of operating

on a standard wall outlet at a reasonable

current. 5A is often used in fast-chargers

so this is a reasonable maximum voltage

and capable of powering the UV-C LEDs.

2, 3 The device should monitor the

rotation of the platform to determine

if an object has become stuck or is too

heavy and register this as a fault.

As the object will be rotating, there is

some chance that it will fall in such a way

that the motor is jammed; this case should

be detected to prevent the object or module

from being broken.

4. Engineering Standards Specifications

Based on the engineering analysis, several standards have been identified which

the project should follow whenever possible. These are detailed in Table 3.

Table 3: Engineering Specifications Table

 Standard Use

Safety NASI/ISEA Z87.1 UC

(glasses certification)

Safety Glasses with this certification will be

worn when operating any UV-C LED.

Communication I2C Sensor communication with microcontroller.

Bluetooth or IEEE

802.11

Wireless communication from module to

phone application.

Data Formats JSON Potential standard format for data between

module and phone application.

Design Methods Finite state machines Software will employ state machines to

consolidate data and which actions need to be

taken at each time.

Programming

Languages

C Code running on microcontroller.

Java Phone application source code.

Connector

Standards

Through-hole Solder through-hole components to the

developed PCB.

38

5. Accepted Technical Design

5.1. Level 0 Design

 Figure 15 and Table 2 discuss the “level 0” or basic inputs and output of the UV-C

Smart Light System. This system should meet the marketing requirements discussed in

section 1.3.

 Table 4: Level 0 Functional Requirements Table

Module UV-C Smart Light System

Designer Team 12: Nicole, Luke and Haitham

Inputs

Motion and IR sensor: Detection of nearby motion and IR

sources

Power: 120 V AC standard household outlet.

User interface control: Start/Stop commands.

Outputs

UV-C Light: ~222 nm with an intensity of at least 10

mJ/cm2, measured 1 foot away from the module.

Status: Visible Light indicating module status.

Notifications: Usage statistics and Status

Description

Turn the UV-C light on or off based on user interface

commands. The detection of a person or animal in the

sanitizing chamber should overrule a command to turn on,

resulting in the light remaining off.

(NB, LR, HS)

5.1.1. Hardware Theory of Operation

The electronic subsystem shall be focused on providing power to all components

and ensuring that analog outputs such as light intensity or motor torque are sufficient to

UV C Smart Light System
 ser ontrol

Po er

 etec on of ects in n ironment ight

 o ca ons

Figure 15: Level 0 Block Diagram

39

meet the engineering requirements. The control subsystem will contain the digital signals

which control the operation of the motor and LEDs, as well as digital communication

with all sensors. The user interface subsystem contains the communication with the

Bluetooth transmitter and the android user interface.

5.2. Level 1 Hardware Design

Figure 16 shows the level 1 hardware system block diagram; it shows the primary

submodules which will exist within the project, such that each has a unique set of high-

level inputs and outputs. This hardware will be further broken down in section 5.3.

 This block diagram shows the 9 unique subsystems within our project and the designer

for that subsystem, as well as the inputs to and outputs from the module to the environment

Figure 16: Hardware Level 1 Block Diagram

40

and user. These inputs and outputs, as well as more the more detailed subsystem-to-

subsystem interface, are explained in Table 5.

 Table 5: Hardware Level 1 Functional Requirements Table

Module Power Components

Designer Haitham Saleh

Inputs Power: 120 V AC standard household outlet.

Outputs Multiple Regulated Voltages (per other system)

Description
Regulates wall power to provide consistent, regulated DC

voltage to each subsystem.

Module Microcontroller Components

Designer Nicole Baldy

Inputs Sensor Data: Human and Object Detection information.

Estop Status: Current state of the Estop system.

UI Commands: Start/Stop commands from the UI.

Power: DC voltage to power microcontroller.

Outputs System Information: System faults, sanitizing/ready status to the

UI.

Lock Control: Lock and unlock the module door.

Motor Control: Turn off and on sanitizing platform motor.

LED Control: Turn on and off the UV-C and status LEDs.

Sensor Control: Turn off and on the sensors.

Description The microcontroller contains the clock and orchestrates all the

other components; timings and state.

Module Estop Components

Designer Nicole Baldy

Inputs DC Voltage: Voltage for UV-C LEDs is passed through the

Estop system.

Door Status: Estop is triggered if door is open.

Estop Switch: An Estop button available to the user.

Outputs DC Voltage: Pass through or cut off voltage to the UV-C LEDs.

Estop Status: Communicate status back to the microcontroller.

Description The Estop system is entirely hardware-controlled, and when

enabled cuts off all voltage to the UV-C LEDs. The

microcontroller should be able to determine its state.

Module LED Components

Designer Haitham Saleh

Inputs DC Voltage: Voltage passed through Estop for UV-C LEDs.

41

LED Control: Microcontroller commands to set LED status.

Outputs UV-C Light: Sanitizing light inside the chamber.

Visible Light: Status indicators outside of the module.

Description The LED system controls all LEDs within the module, including

the UV-C sanitizing LEDs.

Module Wireless Transmitter Components

Designer Luke Rogers

Inputs DC Voltage: Voltage for powering the Wi-Fi

User Input Data: Wireless data from the Android UI application.

Usage Data: Data from the microcontroller to send to the UI.

Outputs UI Commands: Pass through the UI commands to the

Microcontroller.

Description The wireless system sends and receives data to and from the user

interface application.

Module Android Components

Designer Luke Rogers

Inputs User Input: Direct input through the interface from the user.

Outputs UI Commands: Pass through the UI commands to the Wireless

Transmitter.

Description The Android system provides a user interface to the target user

and accepts commands.

Module Lock Components

Designer Nicole Baldy

Inputs DC Voltage: Voltage for powering the lock.

Lock Control: Commands from the microcontroller to change

lock status.

Outputs Lock State: Door lock is activated or deactivated.

Description The lock system locks and unlocks the module door at the

command of the microcontroller.

Module Platform Motor Components

Designer Haitham Saleh

Inputs DC Voltage: Voltage for powering the motor.

Motor Control: Commands from the microcontroller to activate

and deactivate the motor.

Outputs Object Rotation: Motor rotates object in sanitizing chamber

when activated.

Current Monitoring: Report the status of the motor’s current

consumption.

Description The platform motor system rotates the target object when the

sanitizing cycle is active.

42

Module Detection Components

Designer Nicole Baldy

Inputs Object status: Whether an object is present within the sanitizing

chamber.

Lifeform status: Whether a lifeform is present within the

sanitizing chamber.

DC Voltage: Power for the detection sensors.

Outputs Sensor Data.

Description The sensor system detects objects and lifeforms inside the

sanitizing chamber.

(NB, input from HS)

5.2.1. Hardware Theory of Operation

As noted in section 5.1.1, there are three important subsystems to be integrated

within this project. The electronics subsystem will contain the power, motor, and LED

components and the power and analog connections to the other subsystems; it will also

contain the current sensor ability as part of the motor module. The control subsystem will

contain the detection, lock, microcontroller, and Estop components and their digital

connections to the other subsystems. The UI subsystem will contain the communication

of data to and from the android UI application and the Bluetooth transmitter.

43

5.3. Level 2 Hardware Design

The system electrical components are then broken down further to include

communication protocols and specific off-the shelf parts in Figure 17, the level 2

hardware block diagram of the system. (NB)

 Figure 17: Hardware Level 2 Block Diagram

In this block diagram, I2C is the communication protocol between the

microcontroller and the sensors and wireless transmitter. The only exception is the

ultrasonic sensor, which uses a timing-based communication, such that a pulse duration is

44

proportional to distance. The specific inputs and outputs, and any associated protocols are

explained in Table 6.

 Table 6: Hardware Level 2 Functional Requirements Table

Part AC-DC Adapter

Designer Haitham Saleh

Inputs AC 120 V wall power.

Outputs 24V D.

Description An off-the-shelf wall wart shall be used to adapt AC wall

power to the maximum voltage required by the design.

Part [3x] DC Voltage Regulator

Designer Haitham Saleh.

Inputs DC Voltage (24V, 14V, or 9V DC)

Outputs DC Voltage (14V, 9V, or 5V DC)

Description 3 voltage regulators, each of which will contain a

Commercial Off the Shelf component as well as capacitors

and resistors to properly regulate the voltage. See section 5.4

for more detailed information.

Part Servo

Designer Nicole Baldy

Inputs PWM control (from microcontroller),

5V DC Power.

Outputs Servo angle.

Description A small servo will be used as an unlocking device. The lock

shall engage mechanically upon the door closing; the servo

will release the locking mechanism to unlock the door such

that it springs open.

Part Estop Gate Sensor

Designer Nicole Baldy, Haitham Saleh

Inputs 3.3V DC Power (from microcontroller),

Door state (as switch).

Outputs Digital Signal (0V or 3.3V) indicating status

(Microcontroller GPIO and digital logic).

Description This device will be designed to detect the status of the door

– this will cut power electrically to the LEDs via digital

logic when the door is open as well as report status to the

microcontroller.

Part Estop Button

45

Designer Nicole Baldy, Haitham Saleh

Inputs 3.3V DC Power (From microcontroller),

Estop button state (as switch)

Outputs Digital Signal (0V or 3.3V) indicating status

(Microcontroller GPIO and digital logic).

Description This button will be available for any user to press if the

device would malfunction – this will cut power electrically

to the LEDs via digital logic as well as report status to the

microcontroller.

Part Microcontroller

Designer Nicole Baldy

Inputs DC Power (9V),

GPIO, (Estop Gate Sensor, Estop Button),

I2C (Sensors, Transmitter).

Outputs PWM Commands (Servo),

Digital Signal (0v or 3.3V) to control door and motor.

Description The microcontroller will have digital connections to all

sensors as well as the motor and LED relays.

Part Grid-Eye Sensor

Designer Nicole Baldy

Inputs 3.3V DC Power (From Microcontroller),

I2C commands (From Microcontroller).

Outputs I2C detection data (8x8 temperature array) as I2C register

contents.

Description An 8x8 Pixel IR sensor that stores temperature, and will be

read to determine lifeform presence.

Part Ultrasonic Sensor

Designer Nicole Baldy

Inputs 3.3V DC Power (From Microcontroller),

Digital Pin input (From Microcontroller).

Outputs Digital pin output (timed pulse).

Description An ultrasonic distance sensor which will be used to

determine whether there is an object inside of the sanitizing

chamber or not. See section 5.6 for more information on

how this determination is made.

Part UV-C LED Matrix

Designer Haitham Saleh

Inputs 14V DC Power.

Outputs UV-C light.

46

Description 2 UV-C LEDs connected in series, with 5 of these groups in

parallel. These are the source for sanitizing

Part DC Motor

Designer Haitham Saleh

Inputs DC Power,

Outputs Platform Motor Movement.

Description A simple DC motor that will provide at least 5 revolutions

per operation to sanitize the item of interest equally on all

sides

Part Wireless Transmitter

Designer Luke Rogers

Inputs 5V DC Power,

I2C Commands (from microcontroller).

Outputs I2C Commands (from UI).

Description The Wireless transmitter encodes I2C data from the

microcontroller into wireless (WiFi or Bluetooth) signal,

and wireless signal from the user interface application into

I2C data.

(NB, HS)

5.4. Level 3 Electrical Subsystem

The three major elements of the electrical subsystem are the LED matrix circuit,

the motor, and the high-current voltage regulator. The following schematic shows the

appropriate connections with the various electrical components. The 24 V adapter output

is connected directly across the DC motor. The output of the voltage regular is adjustable

via a resistive network. The LED matrix circuit necessitates a 14 V input, which means

the voltage division circuit consists of the following resistors:

𝑉𝑜𝑢𝑡 = 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∗ (1 +
𝑅2

𝑅1
) + 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚

14 = 1.25 ∗ (1 +
𝑅2

𝑅1
) + 𝑧𝑒𝑟𝑜

𝑅2 = 10 𝑘Ω 𝑅1 = 1𝑘Ω

47

This is assuming the error term is zero (𝐼𝐴𝐷𝐽 ∗ 𝑅2 = 0.) Also, the values of the

resistors produce an output of 13.75 V instead of 14 V. Exact values could’ve been easily

achieved using a potentiometer, but for the sake of simplicity, fixed standard values are

used. Moreover, specific types of capacitors are connected on the input, output, and

adjustments pin of the regulator. The reasoning behind the use of the capacitors is the

improvement of the transient response and reducing the ripple voltage at the output. The

use of the capacitors adds the need to use protective diodes to disallow the capacitors to

discharge into the electronics of the regulator and possibly damage it. Note: the motor is

not present on the schematic due to the symbol not being available on Mouser for the

Eagle schematic.

Figure 18: Schematic of the level 3 electrical subsystem

(HS)

48

5.5. Level 3 Control Subsystem

The control subsystem consists of all sensors (as these are used to determine the

state of the system for making control decisions) as well as all control outputs on the

digital level. This subsystem will not cover the power requirements or mechanical

workings of the module but will focus on the digital connections necessary to enable

digital communication between the PIC24FJ128GA010 microcontroller and all

components of the module.

 A schematic of these components has been designed in Autodesk Eagle to show the

connections between components. This schematic is shown in Figure 19.

49

Of these components, the microcontroller connections to the AMG8833 Grid-Eye

sensor, the door input pin, and the relay to LEDs and motor have been tested; see the

code in Section 5.8.

Note that Figure 19 only includes components which fall under the control

system, with the exception of the ESP Bluetooth Transmitter chip; this transmitter is part

of the user interface subsystem, but the digital I2C communication falls partially under

the controls subsystem due to the shared bus with other sensors.

(NB)

Figure 19: Schematic of control system components

50

5.6. Level 1 Software Design

The level 1 software system is broken down into a single flow-control diagram

shown in Figure 20, with the table of functional inputs/outputs in Table 7. This diagram

contains functions performed by the collaboration between the microcontroller and the

Figure 20: Software Level 1 Diagram

51

user interface without differentiation; these two software systems will be broken down

separately in section 5.6.

 Table 7: Software Level 1 Functional Requirements Table

Function Initialization()

Designer Nicole Baldy

Inputs

Sensor State

Estop State

Wireless Transmitter State

Door State

Lock State

Outputs
Fault Codes

System State

Description
Queries status of electrical subsystems and sensors; sets any

faults and initializes system state.

Function DisplayFault()

Designer Nicole Baldy

Inputs Fault Code(s)

Outputs LED Fault Code

User Interface Fault

Description Given a set of fault codes, DisplayFault parses the fault and sets

all appropriate indicators to show a fault state.

Function Wait()

Designer Nicole Baldy

Inputs Time to wait

Outputs Interrupt set.

Description Pauses code execution until wait time is met.

Function GetDoorStatus()

Designer Nicole Baldy

Inputs Gate Sensor State

Outputs Door Status

Description GetDoorStatus checks the status of the gate sensor (part of the

Estop).

Function OpenDoor()

Designer Nicole Baldy

Inputs N/A

Outputs Motor Command

Door Status

52

Description OpenDoor sends the commands to the lock servo to unlock the

door such that it springs open.

Module IsLifeformDetected()

Designer Nicole Baldy

Inputs Sensor Data

Outputs Detection Status

Description IsLifeformDetected reads the GridEye sensor and determines

whether a lifeform is present.

Function QueryUserCommand()

Designer Nicole Baldy

Inputs Wireless transmitter data

Outputs Command Status

Description QueryUserCommand checks the wireless transmitter for a

pending start command.

Function SetStatusReady()

Designer Nicole Baldy

Inputs N/A

Outputs LED Ready Code

User Interface Ready Status

Description SetStatusReady sets the appropriate indicators to show the ready

status.

Function SetFaultCode

Designer Nicole Baldy

Inputs FaultCode

Outputs UV-C LED off command

Motor Off Command

Sensors Off Command

Unlock command

Calls DisplayFault()

Description SetFaultCode saves a fault code and (code-dependent) pulls the

system into a “safe” state by turning off the UV-C LEDs,

Platform Motor, and unlocking the door.

(NB, input from LR)

5.6.1. Level 1 Software Theory of Operation

The Level 1 Software consists of two subsystems: the control and user interface

subsystems. The control subsystem can be thought of as a state machine, with sensors and

Estop components generating “events” which change the state of the system. The user

53

interface consists of a Java-based android application and its connection to the

microcontroller via a Bluetooth transmitter. In this way, the control subsystem and the

user interface subsystem can be thought of each having a public interface which is

accessible to the other, as information must be passed in both directions. Specifically, the

control subsystem determines what inputs are valid at a given time and relays the current

state to the user interface subsystem; the user interface subsystem displays this status,

waits for a user to provide input via the application, and relays this input to the control

subsystem. (NB)

5.7. Level 2 Control Software

Two different sets of software must be written for this project: the control

software, which is written in C and will be running directly on the microcontroller, and

the user interface software, which will be running on an Android application that will

wirelessly interface with the device.

This section focuses on the controls subsystem. The microcontroller in this project

can be visualized as both a flowchart and a state machine; the flow chart is shown in

Figure 21 and explores how specific components of the software will function together.

The state machine in Figure 22 focuses on the higher-level control flow, showing how the

microcontroller transitions between statuses. The input and output information is located

in Table 8.

54

Figure 21: Microcontroller Level 2 Software Flowchart

55

 Table 8: Software (Microcontroller) Level 2 Functional Requirements Table

Function Initialization()

Designer Nicole Baldy

Inputs N/A.

Outputs Reset all statuses.

Description A short function to reset any outdated status and begin the

querying process.

Function GetUltrSensState()

Designer Nicole Baldy

Inputs N/A.

Outputs Ultrasonic Status.

Description Attempt to read distance from the ultrasonic sensor. If no

response or distance does not make sense (too large/small), this

is a fault.

Function GetIRSensState()

Designer Nicole Baldy

Inputs N/A.

Outputs IR Status.

Description Attempt to read pixels from the ultrasonic sensor. If no response

or result does not make sense (temperatures outside of

reasonable threshold), this is a fault.

Function GetEstopState()

Designer Nicole Baldy

Inputs N/A.

Outputs Gate Sensor State.

Estop Button State.

Description Read both the GPIO status of the Gate Sensor and the Estop

Button.

Function IsFault()

Designer Nicole Baldy

Inputs Existing Fault Codes, Sensor Data, Estop status.

Outputs Fault Status (binary).

Description Determine whether existing fault codes are still active or if any

new faults are detected based on sensor input; if so, then return

true (fault active).

Function Wait()

Designer Nicole Baldy

Inputs Time to wait

Outputs Interrupt set.

56

Description Pauses code execution until wait time is met.

Function UnlockDoor()

Designer Nicole Baldy

Inputs N/A.

Outputs Servo movement.

Description Commands the servo to unlock the door.

Function IsDoorOpen()

Designer Nicole Baldy

Inputs Gate Sensor Data

Outputs Door Status (Boolean).

Description Returns true (open) if gate sensor circuit is detected as open.

Function SetFault()

Designer Nicole Baldy

Inputs IR Sensor Data.

Outputs Lifeform Detection (Boolean).

Description Iterates through the I2C detection grid, determines if the pixel

falls within the lifeform range and thresholds the number/cluster

of potential detections to determine overall detection status.

Function GetUltrSenseData()

Designer Nicole Baldy

Inputs N/A.

Outputs Ultrasonic Sensor Data (Distance).

Description Read distance from the Ultrasonic sensor and save this data.

Function GetIRSenseData()

Designer Nicole Baldy

Inputs N/A.

Outputs IR Sensor Data (8x8 temperature grid).

Description Read temperatures from the IR sensor and save this data.

Function IsObjectDetect()

Designer Nicole Baldy

Inputs Ultrasonic Sensor Data.

Outputs Object Detection (Boolean).

Description Returns true if the detected distance to a surface is less than

(thresholded) the distance to the sanitizing chamber wall.

Function IsLifeformDetect()

Designer Nicole Baldy

Inputs IR Sensor Data.

Outputs Lifeform Detection (Boolean).

57

Description Iterates through the IR detection grid, determines if the pixel

falls within the lifeform range and thresholds the number/cluster

of potential detections to determine overall detection status.

Function QueryUIForCommand()

Designer Nicole Baldy

Inputs Transmitter Data.

Outputs Last Transmitter Command.

Description Updates the last UI command received.

Function GotStartCmd()

Designer Nicole Baldy

Inputs Last Transmitter Command.

Outputs Start Cmd (Boolean).

Description Returns true if the last transmitter command was “Start”.

Function GotStopCmd()

Designer Nicole Baldy

Inputs Last Transmitter Command.

Outputs Stop Cmd (Boolean).

Description Returns true if the last transmitter command was “Stop”.

Function IsEstopActive()

Designer Nicole Baldy

Inputs N/A.

Outputs Estop (Boolean).

Description Returns true if the Estop (both button and door) are queried and

either are found to be activated.

Function SetFault()

Designer Nicole Baldy

Inputs Fault Code

Outputs LED command

Platform Motor Command

Unlock command

Description Saves the Fault code, stops the UV-C LEDs, Platform Motor,

and unlocks the door.

Function SetLEDsOn()

Designer Nicole Baldy

Inputs N/A.

Outputs LED Command.

Description Commands LED GPIO to turn UV-C LEDs on.

Function SetLEDsOff()

Designer Nicole Baldy

58

Inputs N/A.

Outputs LED Command.

Description Commands LED GPIO to turn UV-C LEDs off.

Function SpinPlatformMotor()

Designer Nicole Baldy

Inputs N/A.

Outputs Platform Motor Command.

Description Commands platform motor to begin to spin.

Function StopPlatformMotor()

Designer Nicole Baldy

Inputs N/A.

Outputs Platform Motor Command.

Description Commands Platform motor to stop spinning.

Function IsCycleComplete()

Designer Nicole Baldy

Inputs Time Since Cycle Start.

Minimum Cycle Time.

Outputs Cycle Complete (Boolean).

Description Determines if enough time has passed since the sanitizing cycle

started to end the cycle (5 min).

To make the control flow expected on the microcontroller simpler, it can be

visualized as a high-level state machine. This state machine can be visualized in Figure

22; this state machine can be thought of as a simplified, state-based version of Figure 21,

and thus shall not have its own table of functional components.

59

This state machine and many sensor connections have some level of completed

implementation; all code for this subsystem has been uploaded to GitHub and will

continue to be updated as improvements are made. This is further documented in section

5.8, the Level 3 software. (NB)

https://github.com/nbaldy/SmartUVDisinfectant

60

5.8. Level 3 Control System Software

Pseudocode for the control subsystem can be divided into several levels: the state

machine, which runs at the highest level and uses lower-level modules; the light control

peripherals, which read the status of the estop system and turn the light and motor on and

off; the AMG8833 communication code, which forms a library interface for use of the

grid-eye human-detection sensor; the HC-SR04 communication code, which forms a

library interface for use of the ultrasonic object sensor, and the MG996R communication

code, which controls the PWM connection to the lock servo. Of these libraries, a proof of

concept for the first three systems (state machine, light control, and AMG8833) has

Figure 22: Microcontroller State machine diagram

61

already been achieved and therefore both pseudocode and actual code will be provided.

The other libraries only consist of pseudocode at this time.

5.8.1. State Machine Framework

The state machine framework pseudocode is shown in Figure 23; this is just a

general framework showing the code is expected to function. Figure 24 shows the

existing implementation of this state machine. Code relevant to section 5.8.1 is shown in

dark green, and code relevant to section 5.8.2 is shown in dark purple.

MAIN:
state = InitState
forever
{
 state = processState(state)
 waitForStateTimer()
}

HELPERS:
StopActiveCycle()
{
 turnLEDsOff()
 turnMotorOff()
}

RunningActions
{
 IF(EstopDetected())
 StopActiveCycle()
 GOTO FaultState
}

STATES:
InitState
{
 statusLEDs(INIT)

 IF(IsAMG8833Ready() AND
 IsHCSR04Ready())
 openDoor()
 GOTO WaitForObjState
 IF(InitTimeout())
 GOTO FaultState
}

WaitForObjState
{
 RunningActions()
 statusLEDs(READY_FOR_OBJ)

 IF(IsDoorClosed() AND
 IsWaitTimerDone())
 GOTO VerifyReadyState
 ELSE
 ResetWaitTimer()
}

VerifyReadyState
{
 RunningActions()
 statusLEDs(CHECK_READY)

 IF(IsDoorOpen)
 GOTO WaitForObjState

 IF (IsLifeformDetected())
 GOTO FaultState
 IF (IsObjectDetected() AND
 IsObjTimerDone())
 StartTimeoutTimer()
 GOTO WaitForStartState
 ELSE
 ResetObjTimer()
}

State Machine Pseudocode [Page 1]

62

This pseudocode framework has been turned into actual state machine framework

written in C, which runs on the PIC24FJ128GA010, with all of the peripherals on the

Explorer 16 development board. This state machine code is still in development, but can

be used to walk through the state machine diagram shown in Figure 22.

Figure 23: State Machine Pseudocode

ActiveCycleState
{
 RunningActions()
 statusLEDs(ACTIVE)

 turnLEDsOn()
 turnMotorOn()

 IF(GotCancelCommand() OR
 CycleTimerDone())
 StopActiveCycle()
 StartTimeoutTimer()
 GOTO WaitForReleaseState
}

WaitForReleaseState
{
 RunningActions()
 statusLEDs(STOPPING)

 IF(GotReleaseCommand() OR
 TimeoutTimerExpired())
 openDoor()
 GOTO WaitForObjState
}

FaultState
{
 statusLEDs(FAULT)

 IF(FaultConditionClear())
 GOTO InitState
}

State Machine Pseudocode [Page 2]

typedef enum StateName
{
 STATE_UNKNOWN,
 STATE_INITIALIZATION,
 STATE_WAIT_FOR_OBJECT,
 STATE_VERIFY_CHAMBER_READY,
 STATE_WAIT_FOR_CYCLE_START,
 STATE_ACTIVE_CYCLE,
 STATE_WAIT_FOR_RELEASE,
 STATE_FAULT,
 STATE_RUNNING // Parent State Only
} StateName;

typedef enum FaultName
{
 FAULT_UNKNOWN,
 NO_FAULT,
 FAULT_ESTOP,
 FAULT_DOOR_OPEN
} FaultName

State Machine C Code Header [SmartUVStateMachine.h, Page 1]

63

// 8-character representation of state name for display
typedef struct StateNameStr
{
 char str[17]; // 16 char + nullcharacter
} StateNameStr;
StateNameStr getStateNameStr(enum StateName state_enumeration);

typedef struct State
{
 // Parent state or unknown if None. Parent executes first.
 enum StateName state_name;
 unsigned char display;
 enum FaultName active_fault;
 // TODO(NEB): Store last known sensor status, Estop status, etc here.
} State;

/* Takes current state, does all required actions,
 * and then returns the state to process next cycle.
 * "Public Interface", handles calls to all functions below*/
void processCurrentState(State* current_state);

State InitStateMachine();

// Treat below functions as private.
void Initialization(State* state);
void WaitForObject(State* state);
void VerifyChamberReady(State* state);
void WaitForCycleClart(State* state);
void ActiveCycle(State* state);
void WaitForRelease(State* state);
void Fault(State* state);
// "Parent" States
void Running(State* state);

void SetFault(State* state); // TODO(NEB): Fault Codes, for now just set state.
void printFaultState(FaultName fault_name);

// TODO(NEB): Temporary for state proof.
enum Buttons
{
 BUTTON_READY_FOR_NEXT=0x0001, // S4 moves forward as per "usual use case"
 BUTTON_FAULT = 0x0004, // S6 injects a fault (skip S5)
 BUTTON_CLEAR_FAULT = 0x0008 // S3 clears a fault.
};

State Machine C Code Header [SmartUVStateMachine.h, Page 2]

Figure 24: State Machine C code header

64

// Implementation file for state machine

#include "SmartUVStateMachine.h"
#include "peripherals.h"
#include "AMG88.h" // IR Grid-eye

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LED_PIN PORTGbits.RG14
#define LED_TRIS TRISGbits.TRISG14
#define DOOR_PIN PORTGbits.RG13
#define DOOR_TRIS TRISGbits.TRISG13

// getStateNameStr defined, not relevant to implementation details.

struct State InitStateMachine()
{
 State new_sm;
 new_sm.display = 0x00;
 new_sm.state_name = STATE_UNKNOWN;
 initPortA();
 initButtons(0x000F); // All buttons as inputs: 0xF
 msDelay(100); // Give time to start up
 InitPMP();
 InitLCD();
 I2Cinit(157);

 // Use P97 = RG13 for door input
 DOOR_TRIS = 1;
 // Use P95 = RG14 for LED output
 LED_TRIS = 0;
 LED_PIN = 0;

 new_sm.active_fault = FAULT_UNKNOWN;
 new_sm.state_name = STATE_INITIALIZATION;
 return new_sm;
}

State Machine C Code Implementation [SmartUVStateMachine.c, Page 1]

65

void processCurrentState(State* current_state)
{
 // DISPLAY STATE NAME, Not relevant to implementation

 switch(current_state->state_name)
 {
 case STATE_INITIALIZATION:
 {
 Initialization(current_state);
 break;
 }
 case STATE_WAIT_FOR_OBJECT:
 {
 WaitForObject(current_state);
 break;
 }
 case STATE_VERIFY_CHAMBER_READY:
 {
 VerifyChamberReady(current_state);
 break;
 }
 case STATE_WAIT_FOR_CYCLE_START:
 {
 WaitForCycleClart(current_state);
 break;
 }
 case STATE_ACTIVE_CYCLE:
 {
 ActiveCycle(current_state);
 break;
 }
 case STATE_WAIT_FOR_RELEASE:
 {
 WaitForRelease(current_state);
 break;
 }
 case STATE_FAULT:
 {
 Fault(current_state);
 break;
 }
 case STATE_UNKNOWN:
 default:
 {
 // UNSUPPORTED CHILD STATE
 SetFault(current_state);
 return;
 }
 }
 // Display status port A, not relevant to implementation
}

State Machine C Code Implementation [SmartUVStateMachine.c, Page 2]

66

void Initialization(State* state)
{
 Running(state); // Parent State
 if (getButton(BUTTON_READY_FOR_NEXT))
 {
 // NOTE(NEB): For now, consider "initialized" when button pressed.
 // Event: Init Complete
 state->state_name = STATE_WAIT_FOR_OBJECT;
 // Clear any initialization faults
 state->active_fault = NO_FAULT;
 return;
 }

 // TODO(NEB): Initialize all sensors.
}

void WaitForObject(State* state)
{
 Running(state); // Parent State
 if (1 == DOOR_PIN) // P97 = RG13 should be used for door input
 {
 // Event: Door Closed
 state->state_name = STATE_VERIFY_CHAMBER_READY;
 return;
 }
}

void VerifyChamberReady(State* state)
{
 bReadTempFromGridEYE();
 msDelay(10); // Give time to Read Everything
 Running(state); // Parent State

 short max_pxl = maxPixel(); // 256 * Temp_In_C

 SetCursorAtLine(2);
 char str[16];
 double max_C = (double) max_pxl / (256);
 int num_pxls_body_temp = numPixelsInRange(27*256, 40*256); // between 27 and 40
C for now

 sprintf(str, "%4.2f C; r=%d", max_C, num_pxls_body_temp);

 putsLCD(str);

… <continued next page>

State Machine C Code Implementation [SmartUVStateMachine.c, Page 3]

67

… <continued from previous page>

 if(0 == DOOR_PIN)
 {
 // Door opened verification, wait for closed again
 state->state_name = STATE_WAIT_FOR_OBJECT;
 return;
 }
 if (getButton(BUTTON_READY_FOR_NEXT) || 3 < num_pxls_body_temp) // More than 3
pixels in this range
 {
 // NOTE(NEB): For now, consider "ready" when button pressed.
 // Event: Chamber Ready
 state->state_name = STATE_WAIT_FOR_CYCLE_START;
 return;
 }
}

void WaitForCycleClart(State* state)
{
 Running(state); // Parent State

 if(0 == DOOR_PIN)
 {
 // Door opened during wait for cycle, fault
 state->active_fault = FAULT_DOOR_OPEN;
 SetFault(state);
 return;
 }

 if (getButton(BUTTON_READY_FOR_NEXT))
 {
 // NOTE(NEB): For now, consider "started" when button pressed.
 // Event: Start Cmd Recieved
 state->state_name = STATE_ACTIVE_CYCLE;
 return;
 }
 // TODO(NEB): Wait for start cmd from wireless
}

void ActiveCycle(State* state)
{
 Running(state); // Parent State
 if(0 == DOOR_PIN)
 {
 // Door opened during active cycle, fault
 LED_PIN = 0;
 state->active_fault = FAULT_DOOR_OPEN;
 SetFault(state);
 return;
 }
… <continued next page>

State Machine C Code Implementation [SmartUVStateMachine.c, Page 4]

68

… <continued from previous page>

 if (getButton(BUTTON_READY_FOR_NEXT))
 {
 // NOTE(NEB): For now, consider "stopped" when button pressed.
 // Event: EITHER Stop Cmd Recieved OR Timer Expired
 state->state_name = STATE_WAIT_FOR_RELEASE;
 LED_PIN = 0;
 return;
 }

 LED_PIN = 1;

 // TODO(NEB): Wait for stop cmd from wireless OR timer complete
}

void WaitForRelease(State* state)
{
 // TODO(NEB): Unlock when get command from UI.
 Running(state); // Parent State
 if (0 == DOOR_PIN) // Move to next state when door opens/pull down
 {
 // Event: Unlock Cmd Recieved
 state->state_name = STATE_WAIT_FOR_OBJECT;
 return;
 }

 // TODO(NEB): Wait for unlock cmd
}

void Fault(State* state)
{
 if (getButton(BUTTON_CLEAR_FAULT))
 {
 // NOTE(NEB): For now, consider "fault cleared" when button pressed.
 // Event: Fault Cleared
 state->active_fault = NO_FAULT;
 state->state_name = STATE_INITIALIZATION;
 return;
 }

 printFaultState(state->active_fault);
}

State Machine C Code Implementation [SmartUVStateMachine.c, Page 5]

69

 As can be seen, the state machine code is very large. As it is, this could be

slightly refactored to improve readability, but for the most part should be final-design

control-level code. (NB)

// Checks for faults & other "general" parent state needs
void Running(State* state)
{
 if (getButton(BUTTON_FAULT))
 {
 SetFault(state);
 return;
 }

 printFaultState(state->active_fault);
}

void SetFault(State *state)
{
 state->state_name = STATE_FAULT;
 LED_PIN = 0; // Turn LEDs off
}

// printFaultState not relevant for implementation.

State Machine C Code Implementation [SmartUVStateMachine.c, Page 6]

Figure 25: State machine C code implementation

70

5.8.1. LED and Motor Control

LED and Motor control are both single-level digital inputs. The motor and LED

should simply be binary; no intensity or speed control is required. Therefore, controlling

these modules should be as simple as changing the status of an output pin, which can be

shared as the LED and motor can always be operated together. Similarly, the Estop and

door status should also be digital inputs, and only require a single input pin each to read.

All but the Estop button have already been worked into the state machine, though a small

library should be built to improve their readability. All code which is already working is

in Figure 25 in dark green. However, the pseudocode for this library is important for

improving code readability and is shown in Figure 26.

(NB)

DEFINE ESTOP_INPUT=RG12
// Tested, also controls motor
DEFINE DOOR_INPUT=RG13
DEFINE LIGHT_OUTPUT=RG14

InitializeLedSystem
{
 ConfigureTrisInput(ESTOP_INPUT)
 ConfigureTrisInput(DOOR_INPUT)
 ConfigureTrisOutput(LIGHT_OUTPUT)
}

Bool IsDoorOpen()
{
 Return (true == DOOR_INPUT)
}

Bool IsEstopActive()
{
 Return (true == ESTOP_INPUT)
}

Bool SetLedSystemActive()
{
 LIGHT_OUTPUT = TRUE
}

LED and motor peripherals pseudocode

Figure 26: Light and motor pseudocode

71

5.8.2. AMG8833 Grid-Eye Control

The AMG8833 grid-eye sensor uses I2C and must query a series of registers to

get the temperature data; most code is provided by the AMG8833 datasheet to properly

query the temperature registers (“Application Notes”, 25-28). This code was used to

create a framework for the AMG88 temperature query, but three functions require

implementation. These have both pseudocode, shown in Figure 27 and some

implemented C code.

(NB)

The majority of the provided code comes from the grid-eye datasheet. The altered

and added code is bolded in Figure 28.

// Given a register to query, read the
value of that register
ReadAMG88I2C():
 RestartI2Cbus()
 SendI2CAddress()
 SendWriteToRegisterCommand()
 RestartI2Cbus()
 SendReadRegisterCommand()

 RETURN GetByteFromI2CBus()

Provided code:
readTempFromGridEye()
 ReadAMG88I2C(Thermisters)
 ReadAMG88I2C(Temperatures)
 pixels =
 ParseTemp(Thermisters,Temperatures)

DEFINE PIX_TO_C=@(p)/256

GetNumberOfPixelsInTempRange(degC1,
degC2):
 // Assume C1 < C2
 numInRange = 0
 FOR pixel IN pixels:
 IF degC1 < PIX_TO_C(pixel) < degC2:
 numInRange++
 RETURN numInRange

GetMaxPixelTemp():
 maxPixel = 0
 FOR pixel IN pixels:
 IF maxPixel < pixel:
 maxPixel = pixel
 RETURN PIX_TO_C(maxPixel)

Grid-eye pseudocode

Figure 27: Grid-eye pseudocode

72

#include "AMG88.h"
#include "peripherals.h"
/***
variable value definition
***/

short g_shThsTemp; /* thermistor temperature */
short g_ashRawTemp[SNR_SZ]; /* temperature of 64 pixels */

short g_maxThsTemp;

/***
method
**/

/*--
Read temperature from Grid-EYE.
--*/
bool bReadTempFromGridEYE(void)
{
 uchar aucThsBuf[GRIDEYE_REGSZ_THS];
 uchar aucTmpBuf[GRIDEYE_REGSZ_TMP];
 /* Get thermistor register value. */
 if(FALSE == bAMG_PUB_I2C_Read(GRIDEYE_ADR, GRIDEYE_REG_THS00,
GRIDEYE_REGSZ_THS, aucThsBuf))
 {
 return(FALSE);
 }
 /* Convert thermistor register value. */
 g_shThsTemp = shAMG_PUB_TMP_ConvThermistor(aucThsBuf);
 /* Get temperature register value. */
 if(FALSE == bAMG_PUB_I2C_Read(GRIDEYE_ADR, GRIDEYE_REG_TMP00,
GRIDEYE_REGSZ_TMP, aucTmpBuf))
 {
 return(FALSE);
 }
 /* Convert temperature register value. */
 vAMG_PUB_TMP_ConvTemperature64(aucTmpBuf, g_ashRawTemp);
 return(TRUE);
}

Grid-eye library implementation [Page 1]

73

/*--
Read data form I2C bus.
--*/
bool bAMG_PUB_I2C_Read(uchar ucI2cAddr, uchar ucRegAddr, uchar ucSize, uchar*
ucDstAddr)
{
 /* ucI2cAddr : I2C Address (In the case of the connection with GND of
AD_SELECT PIN) */
 /* ucRegAddr : Source address of Grid-EYE */
 /* ucSize : Data Size */
 /* ucDstAddr : Destination address of MCU */
 /* return : TRUE: success, FALSE: failure */

 uchar *arr_ptr = ucDstAddr;
 int i;
 for(i = 0; i < ucSize; i++)
 {
 // To read a register:
 // 1. Send the write command + register
 I2CStart();
 I2Csendbyte(ucI2cAddr); // Send addr, signify a read
 us_delay(100);
 I2Csendbyte(ucRegAddr + i); // Send the register to read
 us_delay(100);
 I2CStop();

 // 2. Send start command + read command.
 I2CStart();
 us_delay(100);
 I2Csendbyte(ucI2cAddr + 1); // Send addr, signify a read

 //. 3 wait for result.
 us_delay(100);
 char temp = I2Cgetbyte();
 us_delay(100);
 I2CStop();

 *arr_ptr = temp;
 arr_ptr ++;
 }

 return(TRUE);
}

Grid-eye library implementation [Page 2]

74

/*--
Convert thermistor register value.
--*/
short shAMG_PUB_TMP_ConvThermistor(uchar aucRegVal[2])
{
 /* Convert to 16 bit Two's complement */
 /* bit15 : sign bit */
 /* bit14-8 : integral number bits */
 /* bit7-0 : fixed-point numbers bits */
 short shVal = ((short)(aucRegVal[1] & 0x07) << 8) | aucRegVal[0];
 if(0 != (0x08 & aucRegVal[1]))
 {
 shVal *= -1;
 }
 shVal *= 16;
 return(shVal);
}

/*--
Convert temperature register value for 1 pixel.
--*/
short shAMG_PUB_TMP_ConvTemperature(uchar aucRegVal[2])
{
 /* Convert to 16 bit Two's complement */
 /* bit15 : sign bit */
 /* bit14-8 : integral number bits */
 /* bit7-0 : fixed-point numbers bits */
 short shVal = ((short)(aucRegVal[1] & 0x07) << 8) | aucRegVal[0];
 if(0 != (0x08 & aucRegVal[1]))
 {
 shVal -= 2048;
 }
 shVal *= 64;
 return(shVal);
}

/*--
Convert temperature register value for 64 pixel.
--*/
void vAMG_PUB_TMP_ConvTemperature64(uchar* pucRegVal, short* pshVal)
{
 uchar ucCnt;
 for(ucCnt = 0u; ucCnt < SNR_SZ; ucCnt++)
 {
 pshVal[ucCnt] = shAMG_PUB_TMP_ConvTemperature(pucRegVal + (ucCnt * 2u));
 }
}

Grid-eye library implementation [Page 3]

75

/*--
Convert value.
--*/
short shAMG_PUB_CMN_ConvFtoS(float fVal)
{
 return((fVal > 0) ? ((short)((fVal * 256) + 0.5)) : ((short)((fVal * 256) -
0.5)));
}

/*--
Convert value.
--*/
float fAMG_PUB_CMN_ConvStoF(short shVal)
{
 return((float)shVal / 256);
}

int numPixelsInRange(short t1, short t2)
{
 int num_in_range = 0;
 int i;
 for (i = 0; i < SNR_SZ; i++)
 {
 if(t1 <= g_ashRawTemp[i] && g_ashRawTemp[i] < t2)
 num_in_range++;
 }

 return num_in_range;
}

short maxPixel()
{
 int largest_value = -100;
 int i;
 for (i = 0; i < SNR_SZ; i++)
 {
 if(largest_value < g_ashRawTemp[i])
 largest_value = g_ashRawTemp[i];
 }

 return largest_value;
}

Grid-eye library implementation [Page 4]

Figure 28: AMG8833 Library Implementation

76

This library is not expected to change much, except for possibly filtering the

readings. It has been tested for the subsystem demonstrations using the

PIC24FJ128GA010 microcontroller. (NB)

5.8.3. HC-SR04 Ultrasonic Control

The HC-SR04 Ultrasonic Module is queried by a pulse from the microcontroller

in the TRIG pin; it then sends out a set of 8 ultrasonic bursts and pulls up the ECHO pin

for a pulse proportional to the distance from the sensor that the nearest surface was

detected (“Ultrasonic Ranging Module HC - SR04”, 2).

Pseudocode for this module can then be put together as in Figure 29.

Figure 29: Ultrasonic Module Pseudocode

LED and motor peripherals pseudocode

DEFINE TRIGGER=RG0
DEFINE ECHO=RG1
DEFINE EXPECTED_DIST_CM = 46 //~1.5 ft
DEFINE TOLERANCE_CM // Experiment
DEFINE TIMEOUT_US 3500 // About 2 ft

InitializeUltrasonicModule()
{
 ConfigureTrisInput(ECHO)
 ConfigureTrisOutput(TRIGGER)
}

Bool IsUltrasonicSensorReady()
{
 dist = GetUltrasonicDistanceCm();
 return TOLERANCE_CM <=
 abs(dist - EXPECTED_DIST_CM);
}

Bool IsObjectDetected()
{
 Dist = GetUltrasonicDistanceCm();

 return ((dist > TOLERANCE_CM) &&
 (dist <
 EXPECTED_DIST_CM - TOLERANCE_CM));
}

float GetUltrasonicDistanceCm()
{
 TRIGGER=1;
 us_delay(10);
 TRIGGER=0;

 while (!ECHO &&
 !IsTimedOut(TIMEOUT))
 {
 // Missing 5 us=0.1cm
 // insignificant
 us_delay(5);
 }

 Start_timer();
 while (ECHO &&
 !IsTimedOut(TIMEOUT))
 {
 // Missing 5 us=0.1cm
 // insignificant
 us_delay(5);
 }
 Time_elapsed = timer();

 Return timer/58;
}

HC-SR04 pseudocode

77

5.8.4. Servo Motor Control

From section 2.6.2.1, and an informational sheet about the MG996R, pseudocode

can be written for controlling the servo. It will be assumed that the rest position of the

servo when the door is open or locked is 0 degrees, and the servo will move to 45 degrees

to open the lock. These may be changed slightly from experimentation based on lock

mechanics. The PWM period of the MG996R servo is 20ms, with a 5% duty cycle

corresponding to -90 degrees and 10% duty cycle corresponding to +90 degrees; the lock

can move 60 degrees in under 200 ms (“MG996R Metal Gear Servo Motor”, 3). Using

the process defined in section 2.6.2.1, it is found that to put the servo into a neutral

position, a 7.5% duty cycle should be held, and to unlock the door, a duty cycle of 8.75

should be held. At least 0.2 seconds of this should be held to safely ensure the servo

Figure 30: Servo Lock Pseudocode

MG996R pseudocode

DEFINE LOCK_PWM=RG15
DEFINE NEUTRAL_US = 7500;
DEFINE ACTIVE_US = 8750;
DEFINE PERIOD_US = 20000;
DEFINE ITERATIONS= 10

InitializeLock()
{
 ConfigureTrisOutput(LOCK_PWM);
}

ActivateUnlock()
{
 Low_period_us = PERIOD_US - ACTIVE_US;
 For (ITERATIONS)
 {

 LOCK_PWM = 1;
 us_delay(ACTIVE_US);
 LOCK_PWM = 0;
 us_delay(Low_period_us);
}

}

ReleaseLock()
{
 Low_period_us = PERIOD_US - NEUTRAL_US;
 For (ITERATIONS)
 {

 LOCK_PWM = 1;
 us_delay(NEUTRAL_US);
 LOCK_PWM = 0;
 us_delay(Low_period_us);
}

}

78

makes it to the goal position. This is 10 iterations of the PWM period. This can be used to

write the pseudocode in Figure 30.

5.9. Level 2 User Interface

The user interface in this project can be visualized as a flowchart. The flow chart

is shown in Figure 31 and explores how specific components of the software will

function together. The input and output information is located in Table 9.

79

Is system
ready?

StartUVCycle()

ReceiveSystemStatus()

Wait

Is cycle
done?

Disconnect
Module

DisplayStatistics()

Was stop
button

pressed?

Did error
occur?

SendUnlockRequest()

Yes

No

Yes

DisplayError()

No

Yes

No

Open Android App

OpenQRCodeScanner()

ScanQRCode()

SendConnectionRequest()

WiFi
Transmitter

`

ReceiveConnectionRequest()

Is system
connected?

GetSystemStatus()

Yes

No

No

ShowStartButton()

Yes

GetSystemStatus()

ReceiveSystemStatus()

Figure 31: User Interface Level 2 Flowchart

Table 9 : Software (User Interface) Level 2 Functional Requirements Table

Function Open Android Application

Designer Luke Rogers

Inputs N/A

Outputs N/A

Description The user opens the Android application on their device.

Function OpenQRCodeScanner()

Designer Luke Rogers

80

Inputs N/A

Outputs Opens the camera

Description Opens the Android device camera for the user to scan the QR

code on the side of the module.

Function ScanQRCode()

Designer Luke Rogers

Inputs Image from the camera

Outputs Connection signal to the module

Description Scans the QR code on the camera view and connects to the

module.

Function SendConnectionRequest()

Designer Luke Rogers

Inputs QR code information

Outputs Connection request

Description Sends a connection request with information from the QR code

sent to the module via a Wi-Fi transmission.

Function ReceiveConnectionRequest()

Designer Luke Rogers

Inputs Connection status

Outputs Connection status

Description The connection status is received from the module via a Wi-Fi

transmission.

Function Is system connected?

Designer Luke Rogers

Inputs Connection status

Outputs Binary signal

Description Checks if the Android application is connected to the module:

Yes – Moves to GetSystemStatus().

No – Returns to SendConnectionStatus().

Function GetSystemStatus()

Designer Luke Rogers

Inputs Binary signal

Outputs System status request

Description Sends a system status request to the module via Wi-Fi

transmission.

Function ReceiveSystemStatus()

Designer Luke Rogers

Inputs System status

Outputs System status

81

Description The system status is received from the module via Wi-Fi

transmission.

Function Is system ready?

Designer Luke Rogers

Inputs System status

Outputs Binary signal

Description Checks if the system status is ready:

Yes – Moves to ShowStartButton().

No – Returns to GetSystemStatus()

Function ShowStartButton()

Designer Luke Rogers

Inputs Binary signal

Outputs Boolean signal

Description Sets the visibility for the Start button to True.

Function StartUVCycle()

Designer Luke Rogers

Inputs User input (button)

Outputs Start signal

Description Sends a start signal to start the UV cycle to the module via Wi-Fi

transmission.

Function Wait

Designer Luke Rogers

Inputs Cycle status

Outputs Cycle status

Description Wait block until GetSystemStatus() is run during the UV cycle.

Function Is cycle done?

Designer Luke Rogers

Inputs Cycle status

Outputs Binary signal

Description Checks if the received cycle status is finished from the

ReceiveSystemStatus():

Yes – Moves to SendUnlockRequest()

No – Moves to next binary check

Function Was stop button pressed?

Designer Luke Rogers

Inputs Cycle status, User input (button)

Outputs Binary signal

Description Checks if the cycle was stopped by the user

Yes – Moves to SendUnlockRequest()

82

No – Moves to next binary check

Function Did error occur?

Designer Luke Rogers

Inputs Cycle status

Outputs Binary signal

Description Checks to see if an error occurred during the cycle:

Yes – Moves to DisplayError()

No – Returns to Wait

Function SendUnlockRequest()

Designer Luke Rogers

Inputs Cycle status

Outputs Unlock request

Description Sends an unlock request to the module via Wi-Fi transmission.

Function DisplayStatistics()

Designer Luke Rogers

Inputs N/A

Outputs Cycle statistics

Description Displays the UV cycle statistics on the application

Function DisplayError()

Designer Luke Rogers

Inputs Cycle status, Error state

Outputs Error state

Description Displays the error state that occurred during the cycle.

Function Disconnect Module

Designer Luke Rogers

Inputs N/A

Outputs N/A

Description Disconnects the Android application from the module.

5.10. Level 3 User Interface

The pseudocode for the user interface can be divided into several levels: the

android application, which interfaces with the user directly, and the ESP-WROOM-32

communication code, which interfaces with the microcontroller. The android application

will have actual code written for the preliminary stage of the application while the ESP

chip does not have code at this time.

83

5.10.1. Android Application

The code for the android application is written using Java and the Android Studio

Integrated Development Environment (IDE). The code for the application is stored on

GitHub in order to have backups and version control. This initial version of the

application finds the MAC addresses of the already connected Bluetooth devices to the

android device. Then, the MAC address for the ESP-WROOM-32 chip is selected and

using that MAC address a message is sent to the ESP chip. There are two activities to this

section, the main activity and the Bluetooth activity. The code for both activities is shown

below in the MainActivity.java code and the BluetoothActivity.java code blocks. See

Figure 32 for both the main activity screen and the Bluetooth activity screen.

https://github.com/ljr47/SDP_App

84

Android Application Main Activity [MainActivity.java, Page 1]

)

package com.example.sdp_app;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button btn = findViewById(R.id.button_send);

 btn.setOnClickListener(v -> {

 EditText txt = findViewById(R.id.bluetooth_message);

 String btMessage = txt.getText().toString() + "\n";

 if(((ApplicationEx)getApplication()).writeBt(btMessage.getBytes(StandardCharsets.UTF_8))){

 Toast.makeText(getApplicationContext(), "Message sent.", Toast.LENGTH_SHORT).show();

 txt.setText("");

 }

 });

 }

 @Override

 protected void onResume() {

 super.onResume();

 final ApplicationEx globalVar = (ApplicationEx) getApplicationContext();

 TextView deviceName = findViewById(R.id.device_name);

 TextView deviceMAC = findViewById(R.id.device_mac);

 deviceName.setText(globalVar.getBtDeviceName());

 deviceMAC.setText(globalVar.getBtDeviceMACAddress());

 }

85

Android Application Main Activity [MainActivity.java, Page 2]

 public void openBluetooth(View view) {

 Intent intent = new Intent(MainActivity.this, BluetoothActivity.class);

 startActivity(intent);

 }

}

 Android Application Bluetooth Activity [BluetoothActivity.java, Page 1]

 public class BluetoothActivity extends AppCompatActivity {

 private ListView lstView1, lstView2;

 private ArrayAdapter<String> arrayAdapter1, arrayAdapter2;

 private BluetoothAdapter btAdapter = BluetoothAdapter.getDefaultAdapter();

 private boolean isFindAvailabledClicked = false;

 private int REQUEST_ENABLE_BT = 1; // used to identify adding bluetooth names

 private BluetoothSocket mBTSocket = null;

 private Set<BluetoothDevice> mPairedDevices;

 private ArrayAdapter<String> mBTArrayAdapter;

 private ListView mAvailableDevicesListView;

 private BluetoothDevice deviceToPair;

 private Handler mHandler; // Our main handler that will receive callback notifications

 // #defines for identifying shared types between calling functions

 private final static int MESSAGE_READ = 2; // used in bluetooth handler to identify

message update

 private final static int CONNECTING_STATUS = 3; // used in bluetooth handler to identify

message status

86

Android Application Bluetooth Activity [BluetoothActivity.java, Page 2]

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_bluetooth);

 final ApplicationEx globalVar = (ApplicationEx) getApplicationContext()

 TextView textView2 = (TextView) findViewById(R.id.textView2);

 TextView pairedDevices = (TextView) findViewById(R.id.paired_devices);

 Button btnFindPaired = (Button) findViewById(R.id.button_find_paired);

 Button btnFindAvailable = (Button) findViewById(R.id.button_find_available);

 lstView1 = (ListView) findViewById(R.id.pairedDeviceList);

 textView2.setVisibility(View.GONE);

 checkPermission();

 mBTArrayAdapter = new

ArrayAdapter<String>(this,android.R.layout.simple_list_item_1);

 mAvailableDevicesListView = (ListView) findViewById(R.id.availableDeviceList);

 mAvailableDevicesListView.setAdapter(mBTArrayAdapter); // assign model to view

 btnFindPaired.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 if (btAdapter == null) {

 btnFindPaired.setEnabled(false);

 textView2.setVisibility(View.VISIBLE);

 }

87

 Android Application Bluetooth Activity [BluetoothActivity.java, Page 3]

 else {

 btnFindPaired.setEnabled(true);

 pairedDevices.setVisibility(View.VISIBLE);

 if (!btAdapter.isEnabled()) {

 Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

 }

 // Get paired devices.

 Set<BluetoothDevice> pairedDevices = btAdapter.getBondedDevices();

 ArrayList list = new ArrayList();

 if (pairedDevices.size() > 0) {

 // There are paired devices. Get the name and address of each paired device.

 for (BluetoothDevice device : pairedDevices) {

 String deviceName = device.getName();

 String deviceMACAddress = device.getAddress(); // MAC address

 list.add("Name: " + deviceName + "\nMAC Address: " + deviceMACAddress);

 arrayAdapter1 = new ArrayAdapter(BluetoothActivity.this,

android.R.layout.simple_list_item_1, list) {

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 View view = super.getView(position, convertView, parent);

 TextView tv = (TextView) view.findViewById(android.R.id.text1);

88

Android Application Bluetooth Activity [BluetoothActivity.java, Page 4]

 tv.setTextColor(Color.WHITE);

 return view;

 }

 };

 lstView1.setAdapter(arrayAdapter1);

 }

 }

 else {

 list.add("There are no paired devices.");

 arrayAdapter1 = new ArrayAdapter(BluetoothActivity.this,

android.R.layout.simple_list_item_1, list) {

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 View view = super.getView(position, convertView, parent);

 TextView tv = (TextView) view.findViewById(android.R.id.text1);

 tv.setTextColor(Color.WHITE);

 return view;

 }

 };

 lstView1.setAdapter(arrayAdapter1);

 }

 }

 }

 });

89

Android Application Bluetooth Activity [BluetoothActivity.java, Page 5]

btnFindAvailable.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 isFindAvailabledClicked = true;

 mBTArrayAdapter.clear(); // clear items

 btAdapter.startDiscovery();

 // Create a BroadcastReceiver for ACTION_FOUND.

 final BroadcastReceiver receiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 ArrayList list2 = new ArrayList();

 if (BluetoothDevice.ACTION_FOUND.equals(action)) {

 // Discovery has found a device. Get the BluetoothDevice

 // object and its info from the Intent.

 BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 // add the name to the list

 mBTArrayAdapter.add(device.getName() + "\n" + device.getAddress());

 mBTArrayAdapter.notifyDataSetChanged();

 }

 }

 };

 // Register for broadcasts when a device is discovered.

 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);

 registerReceiver(receiver, filter);

 }

 });

 lstView1.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

90

Android Application Bluetooth Activity [BluetoothActivity.java, Page 6]

 lstView1.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 String[] btDevice = ((String) ((TextView) view).getText()).split(": |\n");

 String btName = btDevice[1];

 String btMAC = btDevice[3];

 globalVar.setBtDeviceName(btName);

 globalVar.setBtDeviceMACAddress(btMAC);

 }

 });

 }

 public void checkPermission() {

 if (Build.VERSION.SDK_INT >= 23) {

 if (checkSelfPermission(android.Manifest.permission.ACCESS_FINE_LOCATION) ==

PackageManager.PERMISSION_GRANTED &&

checkSelfPermission(android.Manifest.permission.ACCESS_COARSE_LOCATION) ==

PackageManager.PERMISSION_GRANTED) {

 } else {

 ActivityCompat.requestPermissions(this, new String[]{

 android.Manifest.permission.ACCESS_FINE_LOCATION,

 android.Manifest.permission.ACCESS_COARSE_LOCATION,}, 1);

 }

 }

 }

91

Android Application Bluetooth Activity [BluetoothActivity.java, Page 7]

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == 1 && grantResults[0] == PackageManager.PERMISSION_GRANTED &&

grantResults[1] == PackageManager.PERMISSION_GRANTED) {

 } else {

 checkPermission();

 }

 }

 private void pairDevice(BluetoothDevice device) {

 try {

 Method method = device.getClass().getMethod("createBond", (Class[]) null);

 method.invoke(device, (Object[]) null);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

92

Figure 32:Android application example with the main activity screen on the left and the Bluetooth activity screen on

the right.

6. Mechanical Sketch

Figure 33 shows a mechanical view of the system – it includes the UV-C LEDs, the

IR sensor (for person detection), the rotating platform motor, status LEDs, and gate sensor.

The device will be approximately 2’ x 2’ x 2’ and UV-C LEDs will light the back, top, and

bottom of the sanitizing chamber in a single line on one side of the module. This way,

when the platform motor rotates, the entire object will be exposed to UV-C light. Figure

34 shows a sketch of the Android application for the user interface. The user interface has

buttons for starting and stopping the UV-C light cycle. In addition, the user interface shows

93

how much time is remaining on the current cycle. Finally, the user interface shows various

statistics about the light cycles and any faults that occurred during the cycle.

 (NB, with input from LR, HS, HSA)

It can be seen in the mechanical sketch that the LEDs line a single side of the

wall, ceiling, and bottom of the sanitizing chamber. As discussed in section 2.2.1.1, 10

LEDs with 5 parallel sets of 2 series LEDs shall be used. Therefore, each of the 4 visible LED

symbols in the diagram represent 2 actual LEDs in parallel; not in the diagram due to the angle

are the 2 LEDs on the ceiling. The grid-eye sensor shall be positioned in the middle of the back

wall of the chamber so that it can detect a human even when the door is open and will not pick up

as many LEDs if they are close to human body temperature. The Estop button should be on the

top or front of the module such that it can be easily reached in the case of a malfunction.

The user interface should contain the options to connect to the module, display usage

information, and either start or stop the cycle depending on the current state of the system.

Figure 33: Mechanical Sketch of the System

94

Start Cycle End Cycle

Time Remaining: 03:24.12

Show Errors:

Show Statistics:

• Items Sanitized: 57
• Total Time Elapsed: 00:04:45

89%

Figure 34: Sketch of the Android Application for the User Interface

(LR, with input from NB, HS)

7. Design Team Information

The Design Team which will be responsible for finalizing the design and implementing the

project consists of three students:

Current Members of Design Team 12:

Nicole Baldy, Computer Engineering.

 Subsystem responsibilities: Control system.

Luke Rogers, Computer Engineering.

 Subsystem responsibilities: User Interface.

Haitham Saleh, Electrical Engineering

 Subsystem responsibilities: Electrical system.

Previous Members of Design Team 12:

95

Kyle Law, Electrical Engineering

Hailey Saint-Amand, Electrical Engineering

8. Parts List

8.1. Parts List

All schematic components from hardware sections 5.4 and 5.5 have had part

numbers decided upon. Some mechanical components will be decided on in the next

week (such as sheet plywood for the module walls). These were still added to the parts

list as expected parts. The parts ordered in the first part request for prototyping but will

not be used in the final design have been greyed out in Table 10.

Table 10: Part List

Qty. Refdes Part Num. Description

1 U2 ESP32 WiFi/Bluetooth + development board for initial prototyping

1 U3 SEN-14607 IR Grid-eye I2C Sensor w/ development board

4 U4-U7 HC-SR04 Parallax Ping Ultrasonic Sensor

20 LED1-20 WP7113ID WP7113ID

1 M1 HG37-300-AB-00 High-torque (>3Nm) low-speed motor

1 M2 FXX-3037-TOP Servo Motor (position control, non-continuous)

10 R1-R10 AC05AT0003009JAC00 30 olm Resistor

2 P1, P2 PDB181-A425K-203B Linear Turn Potentiometer

2 H1, H2 TBD Strip Metal

1 H3 TBD Spring

1 H4 TBD Washer for motor

4 H5-H8 TBD Plywood for box

24 H9-H32 TBD Square brackets for box

1 H33 TBD Chicken Wire for sanitizing platform

1 Reg 4 TBD 9 V Regulator

4 REL1 833H-1A-S-5VDC 3.3V Relay

1 M1 HG37-200-AB-00 Higher Torque Motor

4
D1, D2, D3,
D4 1N4002RLG Rectifier Diodes

2 R11, R12 CBT50J100R Carbon Composition 100 ohm resistor

2 REG1, REG2 LM350AT/NOPB 3 Amp adjustable Regulator

1 C1 T110A105K035AT Tantalum Capacitors 1uF

1 C2 S104Z93Z5VL83L0R Ceramic Disc Capacitors 0.1uF

1 C3 ESY106M035AB2AA Aluminum Electrolytic Capacitors 10uF

1 R13 CBT25J1K0 Carbon Composition Resistors 1 KOhms

96

20 LED21-31
GD PSLR31.13-1U3U-
25-1-150-R18 High Power LEDs - Single Color Blue

1 REG 3 UA78M05CKCSE3 5 V regulator

Error! Not a valid link.

8.2. Materials Budget

Many schematic components from hardware sections 5.4 and 5.5 have been

ordered; however, some mechanical components will be decided on in the next week

(such as sheet plywood for the module walls). These have been given approximate

budgets based on a preliminary search of the McMaster Carr catalog. However, the actual

amounts are expected to change slightly. Parts which have already been bought in the

first part request but will not be used in the final design have been greyed out in Table 11.

Table 11: Materials Budget List

Qty. Part Num. Description Cost Cost

1 ESP32
WiFi/Bluetooth + development board for
initial prototyping $9.00 $9.00

1 SEN-14607
IR Grid-eye I2C Sensor w/ development
board 43.75 43.75

4 HC-SR04 Parallax Ping Ultrasonic Sensor 5.95 23.80

20 WP7113ID WP7113ID 0.28 5.54

1 HG37-300-AB-00 High-torque (>3Nm) low-speed motor 23.99 23.99

1 FXX-3037-TOP
Servo Motor (position control, non-
continuous) 12.50 12.50

10 AC05AT0003009JAC00 30 olm Resistor 0.54 5.40

2 PDB181-A425K-203B Linear Turn Potentiometer 0.52 1.04

2 TBD Strip Metal 20.00 40.00

1 TBD Spring 5.00 5.00

1 TBD Washer for motor 5.00 5.00

4 TBD Plywood for box 14.00 56.00

24 TBD Square brackets for box 0.93 22.32

1 TBD Chicken Wire for sanitizing platform 16.45 16.45

1 TBD 9 V Regulator 4.00 4.00

4 833H-1A-S-5VDC 3.3V Relay 1.31 5.24

1 HG37-200-AB-00 Higher Torque Motor 24.99 24.99

4 1N4002RLG Rectifier Diodes 0.32 1.28

2 CBT50J100R Carbon Composition 100 ohm resistor 0.71 1.42

2 LM350AT/NOPB 3 Amp adjustable Regulator 3.62 7.24

1 T110A105K035AT Tantalum Capacitors 1uF 3.90 3.90

1 S104Z93Z5VL83L0R Ceramic Disc Capacitors 0.1uF 1.74 1.74

97

1 ESY106M035AB2AA Aluminum Electrolytic Capacitors 10uF 0.22 0.22

1 CBT25J1K0 Carbon Composition Resistors 1 KOhms 0.71 0.71

20 GD PSLR31.13-1U3U-25-1-150-R18 High Power LEDs - Single Color Blue 0.53 10.60

1 UA78M05CKCSE3 5 V regulator 3.65 3.65

 Total $334.78

9. Project Schedules

A Gantt Chart for the creation of the report and project implementation has been

created and is pictured below in Figure 35, Figure 36, and Figure 37. Note that this

covers both the Fall 2021 and Spring 2022 semesters.

98

Figure 35: Gantt Chart (Part 1)

99

Figure 36: Gantt Chart (Part 2)

100

Figure 37: Gantt Chart (Part 3).

The majority of the implementation semester will be focused on combining

subsystems and cleaning them up into PCBs which are located inside of the box, such

that the electrical housing is more professional.

101

10. Conclusion and Recommendations

 This project shall be capable of disinfecting objects following the marketing and

engineering requirements in sections 1.4 and 3, respectively. This project shall consist of

3 subsystems: the control subsystem, which determines the current state of the system;

the electronics subsystem, which is primarily concerned with powering the system and

analog outputs; and the user interface subsystem, which is primarily concerned with

getting inputs from the user on their personal android device. (NB)

11. References

“Application Notes.” Robot-Electronics.co.uk, Panasonic, www.robot-

 electronics.co.uk/files/grideyeappnote.pdf.

“Bluetooth Technology Overview.” Bluetooth® Technology Website,

https://www.bluetooth.com/learn-about-bluetooth/tech-overview/.

Boston Electronics. 265nm UVC LED, WS3535C48LF-265 datasheet,

www.boselec.com/wp-

content/uploads/Linear/Violumas/ViolumasLiterature/265nm-UVLED-Catalog-

BEC-1.pdf.

Buonanno, Manuela, et al. “Far-UVC Light (222 Nm) Efficiently and Safely Inactivates

Airborne Human Coronaviruses.” Scientific Reports, vol. 10, no. 1, June 2020, pp.

1–8. EBSCOhost, doi:10.1038/s41598-020-67211-2.

Buonanno, Manuela, et al. “Germicidal Efficacy and Mammalian Skin Safety of 222-Nm

UV Light.” Radiation Research, vol. 187, no. 4, 2017, pp. 493–501.,

doi:10.1667/rr0010cc.1.

102

“Carry-on Bags − Travel Information − American Airlines.” www.aa.com, American

Airlines, www.aa.com/i18n/travel-info/baggage/carry-on-baggage.jsp.

Center for Devices and Radiological Health. “UV Lights and Lamps: Ultraviolet-C

Radiation, Disinfection, and Coronavirus.” U.S. Food and Drug Administration, 1

Feb. 2021, www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-

devices/uv-lights-and-lamps-ultraviolet-c-radiation-disinfection-and-coronavirus.

Chen, Linmei. 陈林美.一种公共厕所自动消毒装置 [Automatic sterilization device for

public toilet]. 5 May 2014. Google Patents,

www.patents.google.com/patent/CN103977445A. Also accessed from

worldwide.espacenet.com/patent/search?q=pn%3DCN103977445A

“Energy Efficiency of LEDs.” Energy.gov, U.S. Department of Energy,

www1.eere.energy.gov/buildings/publications/pdfs/ssl/led_energy_efficiency.pdf.

“ESP32-¬WROOM¬-32 Datasheet.” Mouser.com, Espressif Systems, 2020,

www.mouser.com/datasheet/2/891/esp32_wroom_32_datasheet_en-1510934.pdf.

“Event Planning Services, Meeting Rooms 318, 321, & 322.” The University of Akron

Jean Hower Student Union, The University of Akron,

www.uakron.edu/studentunion/event-services/room-318321322.dot.

“FastStats - Body Measurements.” Centers for Disease Control and Prevention, 14 Jan.

2021, www.cdc.gov/nchs/fastats/body-measurements.html.

Fraser, Charles J. “2 - Electrical and Electronics Principles.” Mechanical Engineer's

Reference Book, edited by Edward H Smith, 12th ed., Butterworth-Heinemann,

1994, pp. 2–1-2–57.

103

Heßling, Martin et al. “Ultraviolet irradiation doses for coronavirus inactivation - review

and analysis of coronavirus photoinactivation studies.” GMS hygiene and

infection control vol. 15 Doc08. 14 May. 2020, doi:10.3205/dgkh000343.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273323/

Haes, Donald, and Mitchell Galanek. “Chapter 11 Radiation: Nonionizing and Ionizing

Sources.” Handbook of Occupational Safety and Health, by S. Mansdorf, 3rd ed.,

John Wiley, 2019. ORielly, learning.oreilly.com/library/view/handbook-of-

occupational/9781118947265/c11.xhtml.

Hopkins, Timothy Nevin. Portable Light Source Including White and Ultraviolet Light

Sources. 24 Jul. 2007. U.S. Patent 7246920B1. Google Patents,

patents.google.com/patent/US7246920.

“I2C - Learn.sparkfun.com.” Sparkfun.com, 2018, learn.sparkfun.com/tutorials/i2c/all.

“Infrared Array Sensor Grid-Eye (AMG88).” Mouser.com, Panasonic, 2 Apr. 2017,

www.mouser.com/datasheet/2/813/Grid_EYE_Datasheet-2490109.pdf.

International Commission on Non-Ionizing Radiation Protection. “ICNIRP Guidelines on

Limits of Exposure to Ultraviolet Radiation of Wavelengths between 180 nm and

400 nm (Incoherent Optical Radiation).” Health Physics, vol. 87, no. 2, Aug.

2004, pp. 171–186.,

www.icnirp.org/cms/upload/publications/ICNIRPUV2004.pdf.

Jelden, Katelyn C., et al. “Comparison of Hospital Room Surface Disinfection Using a

Novel Ultraviolet Germicidal Irradiation (UVGI) Generator.” Journal of

Occupational & Environmental Hygiene, vol. 13, no. 9, Sept. 2016, pp. 690–698.

EBSCOhost, doi:10.1080/15459624.2016.1166369.

104

Kesavan, Jana S, and Jose L Sagripanti. “Chapter 17: Disinfection of Airborne

Organisms by Ultraviolet-C Radiation and Sunlight.” Aerosol Science:

Technology and Applications, by Mihalis Lazaridis and Ian Colbeck, John Wiley,

2014. ORielly, learning.oreilly.com/library/view/handbook-of-

occupational/9781118947265/c11.xhtml.

Kim, Do-Kyun, and Dong-Hyun Kang. “UVC LED Irradiation Effectively Inactivates

Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection

System.” Applied and Environmental Microbiology, vol. 84, no. 17, 2018,

doi:10.1128/aem.00944-18.

Kitagawa, Hiroki, et al. “Effectiveness of 222-Nm Ultraviolet Light on Disinfecting

SARS-CoV-2 Surface Contamination.” American Journal of Infection Control,

vol. 49, no. 3, 2021, pp. 299–301. Crossref, doi:10.1016/j.ajic.2020.08.022.

McGinn, Conor et al. “Exploring the Applicability of Robot-Assisted UV Disinfection in

Radiology.” Frontiers in robotics and AI vol. 7 590306. 6 Jan. 2021,

doi:10.3389/frobt.2020.590306

“MG996R Metal Gear Servo Motor.” Handsontec.com, Handson Tech,

handsontec.com/dataspecs/motor_fan/MG996R.pdf.

Nakao, Takashi et al. 風呂場や調理室、トイレ室等の衛生を保ち、ま [Device for

lighting ultraviolet sterilization lamp without detection of human sensor and by

lights-out of lighting device]. 30 Jul. 2015. Google Patents,

patents.google.com/patent/JP2017029293A/en. Also accessed from

worldwide.espacenet.com/patent/search?q=pn%3DJP2017029293A.

105

“Servo Diagram.” ArcBotics: Learning with Robots, ArcBotics, static.arcbotics.com/wp-

content/uploads/2014/01/Servo-Diagram.jpeg.

Shen, Wenlong, et al. “Secure Device-to-Device Communications over WiFi Direct.”

IEEE Network, vol. 30, no. 5, Sept. 2016, pp. 4–9. EBSCOhost,

doi:10.1109/MNET.2016.7579020.

Shetty, Akshaya D., et al. “Detection and Tracking of a Human Using the Infrared

Thermopile Array Sensor — ‘Grid-EYE.’” 2017 International Conference on

Intelligent Computing, Instrumentation and Control Technologies (ICICICT),

2017, doi:10.1109/icicict1.2017.8342790.

Sikder, Ratul, et al. “A Survey on Android Security: Development and Deployment

Hindrance and Best Practices.” Telkomnika, vol. 18, no. 1, Feb. 2020, pp. 485–

499. EBSCOhost, doi:10.12928/TELKOMNIKA.v18i1.13288.

The Skin Cancer Foundation. “Skin Cancer Facts & Statistics.” The Skin Cancer

Foundation, 21 Jan. 2021, www.skincancer.org/skin-cancer-information/skin-

cancer-facts.

“Specifications for Infrared Array Sensor .” Adafruit.com, Panasonic, 2 Dec. 2002, cdn-

learn.adafruit.com/assets/assets/000/043/261/original/Grid-

EYE_SPECIFICATIONS%28Reference%29.pdf?1498680225.

Stijn, Derammelaere, et al. “A Quantitative Comparison between BLDC, PMSM,

Brushed DC and Stepping Motor Technologies.” International Conference on

Electrical Machines and Systems (ICEMS), vol. 19, 2016, pp. 1–5,

biblio.ugent.be/publication/8544760/file/8544762.pdf.

106

“Stuffed Backpacks: How Much Weight Is Too Much.” Independent School

Management, 2 Oct. 2012, isminc.com/advisory/publications/the-source/stuffed-

backpacks-how-much-weight-is-too-much.

“Ultrasonic Distance Measurement Module.” Freesvg.org, Free SVG, 10 Sept. 2019,

freesvg.org/ultrasonic-distance-measurement-module.

“Ultrasonic Ranging Module HC - SR04.” Sparkfun.com, Elecfreaks,

cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf.

“Understanding Bluetooth Range.” Bluetooth® Technology Website,

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/range/.

 (NB, LR, HS, KL)

	Smart UV-C Disinfectant Module
	Recommended Citation

	tmp.1650675295.pdf.PzzFB

