
Hollins University Hollins University

Hollins Digital Commons Hollins Digital Commons

Undergraduate Honors Theses Honors Theses

2022

Insurance Meets Sentiment: An Empirical Study of Attitudes Insurance Meets Sentiment: An Empirical Study of Attitudes

Toward Life, Health, and P&C Insurances Toward Life, Health, and P&C Insurances

Akshi Agarwal
Hollins University

Follow this and additional works at: https://digitalcommons.hollins.edu/ughonors

Recommended Citation Recommended Citation
Agarwal, Akshi, "Insurance Meets Sentiment: An Empirical Study of Attitudes Toward Life, Health, and
P&C Insurances" (2022). Undergraduate Honors Theses, Hollins University. 44.
https://digitalcommons.hollins.edu/ughonors/44

This Thesis is brought to you for free and open access by the Honors Theses at Hollins Digital Commons. It has
been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Hollins Digital
Commons. For more information, please contact lvilelle@hollins.edu, millerjc@hollins.edu.

https://digitalcommons.hollins.edu/
https://digitalcommons.hollins.edu/ughonors
https://digitalcommons.hollins.edu/honorstheses
https://digitalcommons.hollins.edu/ughonors?utm_source=digitalcommons.hollins.edu%2Fughonors%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hollins.edu/ughonors/44?utm_source=digitalcommons.hollins.edu%2Fughonors%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lvilelle@hollins.edu,%20millerjc@hollins.edu

INSURANCE MEETS SENTIMENT: AN EMPIRICAL STUDY OF ATTITUDES TOWARD
LIFE, HEALTH, AND P&C INSURANCES

Akshita Agarwal
Under the direction of Dr. Julie Clark

An honors thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science
in Mathematics

at
Hollins University
Roanoke, Virginia

May 2022

Director of the Thesis:
Professor Julie M. Clark

ABSTRACT

Sentiment Analysis, an up-and-coming subfield of Natural
Language Processing (NLP), contains previously untapped
potential that can be utilized to drive better business deci-
sion making. In this paper, we employ state-of-the-art sen-
timent analysis tools to compare the performances of tradi-
tional classification algorithms – namely Support Vector Ma-
chines (SVMs), bagging, boosting, random forest, and deci-
sion tree classifiers – on insurance-related textual data. We
successfully demonstrate that algorithms such as bagging and
boosting, which were constructed to enhance the performance
of simpler algorithms such as decision tree classifiers, offer
only marginal improvements in terms of classification accu-
racy and certain performance metrics for our data. However,
the improved accuracy comes as the cost of slightly higher
runtimes. Insurance companies could apply these findings to
choose suitable algorithms and gain a more nuanced under-
standing of the needs of their insureds.

Index Terms— Sentiment Analysis, Textual Analysis,
Machine Learning, Natural Language Processing (NLP),
Opinion Mining (OM)

1. INTRODUCTION

In 2007, a 17-year-old LA-based girl passed away when
her health insurer, Cigna, one of the largest carriers in the
world, reversed its decision to cover the liver transplant the
girl needed [1]. In many cases, the insureds depend on their
carriers to offset their financial burdens when they are in
their most vulnerable state. The insurance companies, on
the other hand, must balance the need to profitably provide
their services while simultaneously manage the collective
risk of meeting the financial needs of their insured. Often,
the specifics of the insurance policies determine the extent
to which a potentially life-saving treatment is accessible to
an insured. Cigna’s failure to properly assess this patient’s
case resulted in the loss of a young life and was arguably
instrumental in shaping the public’s attitudes towards health
insurance carriers.

Economists coined the term asymmetric information to
explain the uneven concentration of information between the
buyer and the seller about the product being exchanged. In-
surance markets are prime examples of markets whose play-
ers operate with asymmetric information: compared to their
insurers, the insureds generally do not possess a thorough un-
derstanding of the potentially life-saving insurance products
they purchase. Consequently, due to the unbalanced nature of
the product and the exchange, the topic of insurance is fiercely
debated in many countries, including the United States. In
this paper, we aim to study attitudes toward life, health, and
P&C insurances using tools from the field of sentiment analy-
sis. As its name suggests, the problems in this field deal with
measuring and predicting sentiments expressed through tex-

tual, auditory, or visual means. Sentiment-bearing data, such
as tweets pertaining to the topic of insurance, when exploited
correctly, can allow insurers to better understand the impli-
cations of the insurance products they design, which in turn
might enable them to better meet the needs of their insureds.
In this paper, we apply several machine learning classification
algorithms to life, health, and P&C insurance-related tweets
from around the world. Doing so will allow us to identify
the algorithms that might be superior to others in predicting
and explaining the sentiments expressed in insurance-related
tweets.

We begin this thesis with a description of the two main
methods of classifying sentiments (lexicon-based and ma-
chine learning approaches) in Section 2. In Sections 2.2.1-
2.2.6, we provide a thorough survey of the machine learning
algorithms whose comparative performance is of interest to
us. We then outline the specifics of the design of our em-
pirical study in Section 3. We conclude our paper with a
discussion of the results in Section 4.

2. AN OVERVIEW OF LEXICON-BASED AND
SELECT MACHINE LEARNING APPROACHES

Textual sentiment quantification uses tools from the broad
field of Natural Language Processing (NLP) to quantify the
sentiment of a given text. We discuss the lexicon-based and
machine learning approaches as the two main methods of
quantitatively estimating sentiments. These approaches are
applied to the chosen data (textual) unit, which is usually a
document, a paragraph, or a sentence. These approaches treat
the random variable capturing sentiments as the response
variable that needs to be predicted based on sentiment po-
larity of the data unit under study. This random variable is
almost invariably a categorical variable with two or more
classes. Since the problem of sentiment analysis deals with
a categorical (rather than a quantitative) response variable,
strictly speaking, it is a classification (rather than a regres-
sion) problem. All classification approaches, including that
of sentiment analysis and prediction, aim to minimize the test
error rate:

Avg(I(y0 ̸= ŷ0)), (1)

where (x0, y0) is a observation in the test set, I is the indicator
function, and ŷ0 is response value predicted using the input
x0. Analogously, regression problems aim to minimize the
expected test mean squared error (MSE):

E
(
y0 − f̂(x0)

)2

=Var
(
f̂(x0)

)
+Bias

(
f̂(x0)

)2

+Var (ε) , (2)

where ε is the irreducible error whose presence indicates that
any given statistical model f̂(·) cannot explain the variations
and trends in the test set perfectly. Although the test error rate

for classification problems, as defined in (1), does not have the
decomposition specified in (2), the ideas expressed in (2) nev-
ertheless apply. To be explicit, the researcher needs to find a
learning method f̂(·) that simultaneously minimizes the vari-
ance and the bias associated with f̂(·) in order to minimize
the test error rate.

2.1. Lexicon-Based Approaches1

In this section, we discuss lexicon-based methods which lie at
the core of the classification we will perform to assign an ini-
tial sentiment score to our textual data (for the purpose of as-
sembling a training set). Turney (2002) defines lexicon-based
sentiment analysis as “calculating sentiment for a document
from the sentiment of words or phrases in the document.” Nat-
urally, researchers employing lexicon-based methods need a
collection of tuples containing important unigrams (e.g., in-
surance) or n-grams (e.g., unfair health insurance, a 3-gram)
and their corresponding sentiment scores for their analysis.
Such a collection of tuples is known as a sentiment lexicon,
which is matched with the text under consideration to deci-
pher its sentiment.

Unsurprisingly, the task of assembling a suitable lexicon
is complex. For instance, the researcher needs to decide
upon an appropriate size for the lexicon. If one likens a
lexicon to a training set, and the text under study to a test
set, then a lexicon that is too small will likely underperform
on the test data, and similarly, a lexicon that is too large
will likely overfit the test set. Additionally, lexicons can be
either general or domain-specific. General lexicons draw
words from everyday language while domain-specific lexi-
cons further contain words specific to the domain they are
targeting. Examples of finance-specific lexicons include the
Henry lexicon (Henry, 2008), which contains words such as
“risk” and “penalty”, and the Loughran and McDonald lexi-
con (Loughran and McDonald, 2011), which contains words
including “cyberattack” and “refinancing”. Political words
such as “conservative”, “coalition”, and “greens” are con-
tained in The Lexicoder Sentiment Dictionary (Young and
Soroka, 2012), a politics-specific lexicon.

Liu (2005) sees three pure (non-hybrid) ways of generat-
ing lexicons: manually, dictionary-based, and corpus-based.
To assemble a lexicon manually, the researcher defines a
sentiment score scheme and then employs human annotators
to assign a sentiment score to select words according to the
scheme. Some well-known examples of manually-assembled
lexicons include the Stone et al. General Inquirer (1963) and
the Bradley and Lang ANEW words list (1999). The latter is
a collection of about 1034 words [2]. Unlike the dictionary-
based and corpus-based approaches, the researcher is not
required to automate any aspects of the manual approach.

1SentiStrength, the software we used to assign an initial, benchmark senti-
ment score to our textual data utilizes lexicon-based approaches. For details,
refer to Section 3.2.

Moreover, researchers have traditionally utilized manual ap-
proaches to obtain general (rather than domain-specific) lexi-
cons. However, due to its cost-intensive and time-consuming
nature, the manual approach can be inaccessible to some
researchers.

Dictionary-based approaches can be considered a cost-
effective extension of manual approaches. The researcher us-
ing this approach starts with a list of seed sentiment words
whose polarity (the degree to which it expresses, for instance,
positive, negative, and/or neutral sentiments) has been deter-
mined using manual approaches. The researcher then expands
this list by using synonyms and antonyms coming from a large
base dictionary, such as the WordNet database (Miller, 1995).

Corpus-based methods allow the researcher to obtain
domain-specific lexicons by adapting an existing general lex-
icon to the targeted domain. To achieve this, the researcher
exploits a priori syntactic patterns to include new words in the
lexicon. Typically, the researcher relies on linguistic notions
such as sentiment consistency (for example, adjectives with a
similar sentiment orientation are believed to occur in groups)
and sentiment coherency (for instance, the same sentiment
orientation tends to be expressed in consecutive sentences
and adversarial expressions such as “but” and “however” are
used to signal changes in sentiment orientations) to compile
a suitable domain-specific lexicon.

2.2. Machine Learning Approaches 2

While using machine learning algorithms to perform senti-
ment analysis, the researcher first obtains (or, in some cases,
constructs) an annotated dataset of text with corresponding
sentiment values, such as a sentiment lexicon. Machine learn-
ing approaches differ from lexicon-based approaches in that
they use sophisticated statistical techniques, such as regres-
sion methods, to assign sentiment scores to the text under con-
sideration using the lexicon. In most cases, the random vari-
able containing the sentiment scores are ordinal and can be ei-
ther dichotomous or non-dichotomous, depending on whether
the variable makes a distinction between positive and negative
sentiments or positive, negative, and other chosen sentiments.
Most non-dichotomous variables take on integer values be-
tween −1 and 1 (inclusive) to denote positive, negative, and
neutral sentiments. Machine learning algorithms can then be
deployed on this preprocessed dataset to identify the most im-
portant textual characteristics (i.e., words, n-grams, phrases,
counts, etc.) in measuring sentiment.

Machine learning can be branched into supervised and un-
supervised learning. Let

XT = [X1, . . . ,Xp]
T (3)

denote the set of independent variables under consideration,
where Xj = xj,1, xj,2, . . . , xj,n, 1 ≤ j ≤ p for p predic-

2We compare the performance of machine learning approaches in the em-
pirical analysis section of this paper.

tors and n observations. Similarly, let Y denote the response
variable, where Y = y1, . . . , yn. Supervised machine learn-
ing algorithms aim to delineate the relationship between XT

and the supervising response variable Y, with the response
variable guiding the algorithm throughout the analysis. Su-
pervised machine learning models can be used to fulfill two,
often competing, purposes: to accurately predict Y using a
model based on XT , or to infer the relationship between Y and
XT . Examples of supervised machine learning algorithms
include multiple linear regression, maximum entropy classi-
fier, bootstrap aggregation (often referred to as “bagging”),
and boosting. Any of these algorithms can be used if pre-
diction is the goal, although more flexible methods such as
thin plate regression splines, which model the dataset more
closely without being restricted by a specific model f(X), are
preferred. On the other hand, less flexible approaches such
as linear regression, which allow for easy interpretation, are
favored when inference is the overall goal of the analysis.

Researchers studying sentiment analysis have used cre-
ative ways to initially assign sentiment scores to the obser-
vations in the training set. Those studying sentiments in
reviews posted on websites that offer users the option to pro-
vide a star-based rating with their text-based reviews, such
as Amazon, utilize the star ratings as a basis for the initial
sentiment scores. Researchers also utilize emotion icons
(emoticons) to decipher the sentiments of the reviews left
on feedback-collecting websites that collect reviews without
offering reviewers the option to provide a star-based rating
along with their textual review [3]. Often, researchers en-
list human volunteers, along with the automated techniques
described above, to assign an initial sentiment score to the
reviews, ensuring the accuracy of the initial sentiment scores
and accounting for the nuances of human language.

Contrastingly, unsupervised learning algorithms do not
aim to predict Y based on XT or infer conclusions about
the relationship between Y and XT . Unsupervised machine
learning refers to the peculiar situation where analysis is
performed solely on XT , and Y is either disregarded or ab-
sent. These algorithms can be used to study the relationship
between the observations 1, . . . , n, or that between the predic-
tors X1, . . . ,Xn. For example, an analyst at a health insurance
company with access to data on demographic characteristics
such as age, income level, etc. on a group of prospective in-
sureds can employ clustering analysis (a type of unsupervised
analysis) to classify them into various non-overlapping and
exhaustive groups based on their characteristics. In doing
so, the analyst must ensure that the members of each group
possess characteristics that are similar to that of the other
members of their group but dissimilar from the characteris-
tics of those in other groups. In this case, the needs of the
members of these subgroups might be better managed by of-
fering the subgroups specific policies tailored to their needs,
instead of using a blanket policy for all. Principal Compo-
nent Analysis (PCA) is another type of unsupervised machine

learning technique which aims to find low-dimensional rep-
resentations of the predictor space, giving a clearer picture
of the predictors when some are correlated. Since sentiment
analysis is inherently a supervised problem, we did not utilize
unsupervised methods in our study.

2.2.1. Maximum Entropy Classifier

Statisticians hold that, on average, (1) is minimized by the
Naive Bayes algorithm, which assigns each test observation
to its most likely class, given the predictor values associated
with it. However, the predictive accuracy of the Naive Bayes
algorithm dwindles when the predictors are not mutually in-
dependent. Although this approach can take more time to
train, the Maximum Entropy (ME) Classifier can be used to
reliably classify dependent predictors. This classifier is based
on the idea that we should “model all that is known and as-
sume nothing about that which is unknown” [4].

ME is a type of probabilistic classifier. Classification
problems aim to identify certain features of the (test) obser-
vations to classify them into one of the predefined classes.
For instance, an analyst at a life insurance company might
classify a potential client as high-risk or low-risk, depending
on whether the client smokes regularly. If the analyst were to
use a probabilistic classifier in their modeling, the classifier
would not only classify the client as high- or low-risk, but it
would also give the analyst the probability of the client being
in the high- and low-risk classes. To be precise, ME extracts
certain features of the test observation, obtains a linear com-
bination of the features and their corresponding weights, and
uses the sum as an exponent in the modeling process.

Suppose we are trying to classify a test observation with
input vector x into one of the C classes c1, . . . , cC . For each
of the N observations in the training set, i = 1, . . . , N , let
fi(c, x) denote an indicator function dependent on x and the
response class c:

fi(c, x) =

{
1 some criterion based on c and x
0 otherwise.

(4)

Further assume that wci denotes the corresponding weights.
(The weights are determined by the researcher using cross
validation.) The ME classifier uses (5) to compute the prob-
ability of y belonging to class c, given the predictor vector
x:

Pr(c | x) =
exp

(∑N
i=1 wcifi(c, x)

)
∑

c′∈C exp
(∑N

i=1 wc′ifi(c′, x)
) . (5)

The classifier classifies the test observation in the most proba-
ble response class. Note that the denominator in (5) is known
as the normalization factor because its primary purpose is to
transform the exponential into a true probability with a value
that lies non-strictly between 0 and 1.

2.2.2. Support Vector Machine

Support Vector Machine (SVM) algorithms construct a lin-
ear separator in a hyperplane that separates the input data into
different classes such that the smallest distance between the
different classes is maximized. Consider the diagram in Fig.
1 which shows the SVM algorithm in R2. To separate the
data points (in the training set) into two distinct classes, which
are demarcated by the ⃝ and × symbols, the algorithm first
draws a decision boundary (dotted line). It then draws par-
allel margins around the decision boundary (solid lines) such
that the width of the margins is maximized, and no points
from either class lie within the area enclosed by the margins.
SVMs thus attempts to solve an optimization problem by si-

Fig. 1. A 2D representation of the SVM algorithm [5]

multaneously minimizing the training error and maximizing
the margins between the classes.

Specifically, let X, W, b denote the predictor vector, the
weight vector, and bias respectively. Then, SVM maximizes

1
||W|| , subject to the constraint that

yi(xiwi + b) ≥ 1 for all 1 ≤ i ≤ n. (6)

SVM algorithms perform particularly well when applied to a
sparse data set with a large number of predictors. SVM algo-
rithms are therefore highly suitable for sentiment-bearing data
sets which are comprised of a large number of features (n-
grams), and whose document vectors contain a small number
of non-zero entries. However, SVM algorithms learn slowly
and are computationally expensive.

2.2.3. Decision Tree Classifiers

Decision trees (refer to Fig. 2) offer another way to classify
observations. Decision trees are known as regression and
classification trees when operating on a quantitative and qual-
itative Y, respectively. Because sentiment analysis has a qual-
itative Y, we will discuss classification trees in this section.

Fig. 2. A decision tree based on the qualitative predictors
Thal, ChestPain, and quantitative predictors Ca, and MaxHR.
This tree has six terminal nodes, three of which corresponding
to yes prediction.

Many algorithms exist to grow classification trees, with the
recursive binary splitting algorithm being the most prominent.
Given a predictor Xj ∈ XT and a cutoff hyperplane s ∈ Rp,
the recursive binary splitting algorithm defines p-dimensional
regions

R1(j, s) = {X |Xj < s} and R2(j, s) = {X |Xj ≥ s}, (7)

and seeks to find j and s that minimize the overall classifica-
tion error rate. The classification error rate for region Ri is
defined as ERi = 1 − max

k
(p̂Rik), where p̂Rik is the pro-

portion of training observations in region Ri that are from the
kth class. The overall classification error rate, E, for a classi-
fication tree with p subregions, Ri, . . . , Rp, is defined as the
weighted average of the proportion of misclassified observa-
tions in each Ri:

E =
1

n

p∑
i=1

nRi · ERi . (8)

The classification error rate, E, can be considered an ana-
log of the residual sum of squares (RSS) that the ordinary
least squares (OLS) methodology minimizes. Once R1(j, s)
and R2(j, s) are obtained, the algorithm works to individually
split R1(j, s) and R2(j, s), resulting in four distinct regions at
the conclusion of the second iteration of the algorithm. The
algorithm continues splitting the predictor space until a pre-
specified threshold (e.g., each Ri containing a certain min-
imum number of observations) is met. It then analyzes the
response classes associated with the observations in each re-
sultant Ri. It stipulates that the final response class predicted
for each Ri be the same as that associated with the majority

of the observations in that Ri. Said differently, if class k is the
most commonly occurring response class in R0 and X0 ∈ R0

for some predictor vector X0 in the test set, then the algorithm
will conclude that f̂(X0) = k.

Although the Ri defined by the algorithm can take on any
form, as long as all the resulting half-planes are mutually ex-
clusive and exhaust the entire predictor space, equations (7)
and (8) will always lead to rectangular half-planes, and doing
so is standard. This short-sighted and greedy algorithm is not
guaranteed to minimize the residuals in the entire predictor
space, since subsequent splits in the predictor space depend
on the previous splits, but it is considered sufficiently accu-
rate for the purpose of growing decision trees.

2.2.4. Bagging

Decision trees are considered easy-to-understand machine
learning tools that often suffer from low prediction accuracy
(for instance, refer to [6]). Decision trees are seldom used
for sentiment classification problems as an independent en-
semble technique because they often give inconsistent results
when applied to high-dimensional data [7]. The poor pre-
dictive performance of decision trees can be attributed to the
trees having a high variance (refer to (2)). A decision tree
ensemble, obtained by repeatedly applying the tree-building
algorithm on various subsets of the training set, is said to
have high variance if the prediction for a given Xj,0 differs
significantly from one tree to another. Certain techniques can
be used to reduce the variance of decision trees, which, in
turn, leads to more accurate tree-based predictions. Bootstrap
aggregation, or bagging, is one such simple yet powerful
statistical technique. As its name suggests, bagging is based
on the fundamental statistical idea that the variance of the
average of a set of quantities is less than the variance of the
individual quantities. The bagging maneuver first obtains
several bootstrapped subsets of the training set. It then con-
structs D ∈ Z+ deep decision trees, f1, . . . , fD, using each
subset, resulting in an ensemble of trees with low bias. It
then takes a majority vote of all the predictions produced
by the bootstrapped trees for Xj,0 to obtain the final bagged
prediction for Xj,0. More precisely, for a given input Xj,0, let

S = {f1(Xj,0), . . . , fD(Xj,0)} . (9)

Then, for the input Xj,0, the bagging procedure predicts the
response yi satisfying

fbagging(Xj,0) = argmax
yi

{∑
s∈Y

1{s= yi}

}
, (10)

where fbagging(·) denotes the final prediction obtained using
the bagging procedure.

2.2.5. Random Forest

If a set of predictors contains a particularly effective predic-
tor, then a large number of decision trees constructed during
the bagging procedure will be similar, because they will split
the predictor space based on this predictor early on in the al-
gorithm. This can be problematic since averaging highly cor-
related values leads to a smaller reduction in variance than
does averaging uncorrelated values. The random forest pro-
cedure offers a remedy to this problem. During the construc-
tion of each bootstrapped tree in the random forest procedure,
at each split, a fresh set of m ∈ Z+ predictors is chosen out
of the p possible predictors where m =

√
p. The decision

trees are only allowed to split on one of these m predictors,
which results in an ensemble of decorrelated and dissimilar
trees. Therefore, the random forest technique offers an im-
provement over the bagging procedure.

2.2.6. Boosting3

Boosting is a slow-learning ensemble method that can be ap-
plied to many statistical procedures, including decision trees.
Similar to bagging, the researcher begins by drawing multi-
ple bootstrapped training sets from the training set. However,
unlike bagging, the trees in boosting are grown sequentially,
meaning that the tree being grown at any given point in the al-
gorithm takes into account the information already explained
by the trees that have been grown before it. Several types of
boosting procedures can be used in the classification setting,
but gradient boosting is arguably the most dominant. In this
section, we will discuss how gradient boosting can be applied
to classification trees with a binary response variable.

Let p denote the true probability of success and p̂ denote
the estimated value of p. Note that

p̂ =
exp(log(ôdds))

1 + exp(log(ôdds))
, (11)

where ôdds are determined using the training set. The algo-
rithm begins by assigning an initial value, p̂, to all the obser-
vations in the training set. If p̂ is at least as big as the prespec-
ified threshold value (e.g., 0.5), then the model predicts y = 1
for all i, and y = 0 otherwise. Next, the algorithm computes
the residuals for each observation using the formula yi − p̂
where yi ∈ {0, 1}. Notice that each component of the vec-
tor containing the residuals will have two unique values. The
residuals represent the information about the response vari-
able that the initial assignment of y = p̂ failed to capture.
So, the next step in the process targets these residuals. The
algorithm builds a classification tree to predict the residuals
(instead of y) using Xj . Usually, the recursive binary split-
ting algorithm is run either once or twice to construct the tree

3Unlike the previous sections, this section assumes that the response Y is
dichotomous.

at this stage, resulting in a short tree. If the number of ob-
servations is larger than the number of terminal nodes of the
tree, then at least one terminal node will contain more than
one residual value. However, each terminal node of a classifi-
cation tree should lead to a unique prediction value, so the al-
gorithm computes the final prediction for each terminal node
using ∑n

i=1 e
(1)
i∑n

i=1 p̂
(1)

(
1− p̂(1)

) , (12)

where e
(1)
i and p̂(1) denote the residual and predicted proba-

bility for the ith observation calculated at the first (initial) it-
eration of the boosting algorithm respectively. The algorithm
then uses the modified tree thus created to obtain a fresh set
of predicted residuals for each observation in the training set.
The algorithm then multiplies these predicted residuals with
the learning rate of the algorithm, a preselected parameter that
governs how slowly the boosting algorithm learns, and it adds
the product to p̂(1). Since the resulting term will be of the
form log(odds), the algorithm uses these terms and (11) to
obtain p̂(2). The p̂(2) values are used to obtain an updated set
of residuals, which is then used to construct an updated deci-
sion tree, using the method described above. The algorithm
continues until the prespecified stopping criterion, such as the
residuals converging to zero, is met. Suppose the algorithm
stops after k ∈ Z+ iterations. The algorithm will compute a
final value for log(odds) for each observation i using

p̂(1) + λ

k∑
j=2

e
(j)
i , (13)

where λ denotes the learning rate (a tuning parameter) of the
algorithm specified by the researcher. Typical values of λ in-
clude 0.01 and 0.001. The algorithm uses (11) to obtain the
final predicted probability of success for each observation,
which is then used to determine the final predicted value of
the response variable using the same criterion we used to ob-
tain the predicted response values using p̂.

For some data sets, boosting has been shown to outper-
form random forest models [6]. However, since boosting
learns slowly, the algorithm is time-intensive. It is also prone
to overfitting, especially if λ or k are too large. Researchers
often use cross-validation methods to select a suitable value
for λ.

3. PROCEDURE

3.1. Preprocessing

3.1.1. Data Collection Procedure

We use recent tweets about health, life, and property and
casualty (P&C) insurances catalysts to evaluate the perfor-
mances of the SMV, decision tree classifier, bagging, random

forest, and boosting algorithms. The Python code we used
to scrape recent insurance-related tweets is presented in the
Appendix (Section 8.1). To compile the dataset for health
insurance-related tweets, our call to the Python function
specified in Section 8.1 was programmed to harvest 2500
tweets generated between January 1, 2018 and March 1, 2022
containing the hashtag #healthinsurance. Note that the
hashtags we used in our program are case-insensitive: a
function call using the parameter #healthinsurance gath-
ers tweets containing, for instance, #Healthinsurance,
#healthInsurance, #HealthInsurance, among others.
The program resulted in a dataset of 1393 tweets, suggesting
that only 1393 tweets containing #healthinsurance (and
its variants) were tweeted during our specified timeframe.
This finding was rather surprising, as sentiments regarding
health insurance tend to run high in countries lacking a pub-
licly funded healthcare system, such as the US, although
our sample of tweets was not limited to those produced by
US-based users. Similar calls to the Python program in Sec-
tion 8.1 with the appropriate hashtags resulted in a dataset
of 1370 life insurance-related tweets. Since P&C insurance
is an umbrella term used for refer to various insurance prod-
ucts, most popular among which are auto and homeowners
insurances, we used various hashtags (#autoinsurance,
#condoinsurance, #homeownersinsurance,
#liabilityinsurance, #petinsurance,
#rentersinsurance, and #travelersinsurance) along
with their variants to compile our dataset of P&C insurance-
related tweets with 855 tweets.

3.1.2. Text Wrangling Procedure

In order to run our classification algorithm, we wrangled our
scraped tweets into a usable format. Most classification soft-
ware and programs require a document-term matrix as in-
put. A document-term matrix is a matrix whose columns are
spanned by the tokens or n-grams in the tweets it is analyzing,
and whose rows are spanned by the individual pieces of tex-
tual data (here: tweets) under study. The matrix also contains
the term frequency-inverse document frequency for each to-
ken of each tweet which signifies the importance of the token
in the corpus of documents. Thus, it is easy to see that the
number of observations (tweets) can quickly exceed the num-
ber of columns (tokens), making textual analysis a very high-
dimensional classification problem. This can be problematic
since, in the absence of appropriate textual wrangling proce-
dures aimed at reducing the “noise” in the dataset, applying
classification algorithms to high-dimensional data can force
them to model the “noise” in the dataset, which would un-
desirably inflate the variance of each algorithm (refer to (2)).
Along with dimension reduction, preprocessing also aims to
obtain tokens that can be easily mapped to the n-grams in
sentiment lexicons.

We illustrate the working of our preprocessing Python

program (see Section 8.2) using the following hypothetical
tweet:

Thank you, #Anthem, for quickly processing the
claim I filed for my son’s antidepressants :)!

#healthinsurance #BCBS #mentalhealth

The algorithm specified in Section 8.2 first turns any up-
percase characters into lowercase, and then removes punctu-
ation and emoticons. Next, it removes the stop words, very
frequently occurring n-grams (usually, 1-grams), it believes
bear little sentiment-related information. Some examples of
stop words in our hypothetical tweet include “the”, “for”,
and “my”. Finally, the algorithm transforms the words into
their root form; for instance, the words “quickly” and “pro-
cessing” will be transformed into their respective root forms
“quick” and “process”. This important process allows soft-
ware used to assign an initial sentiment score to textual data
(discussed below) to more easily map the n-grams in the tex-
tual data under study to those in the sentiment lexicon. There
are two competing procedures in the world of natural lan-
guage processing that can be used to transform words into
their root form: lemmatization and stemming. Stemming sep-
arates what it believes is the stem of a certain word from some
any commonly used prefixes and suffixes the word may con-
tain and retains the stem as the output. Occasionally, stem-
ming can lead to nonsensical resultants; for instance, stem-
ming will transform “studying” to “study” by removing the
suffix “ing”, but it will transform “studies” to “studi” by re-
moving the suffix “es”. Lemmatization, on the other hand,
outputs the lemma of a word. It takes the context surround-
ing the word into consideration during the transformation pro-
cess. For example, most lemmatization algorithms transform
“studies” to “study” because are able to recognize that the
former is the third person, singular, present tense of the lat-
ter. Since meaningless stems are unlikely to be recognized by
the sentiment lexicons we used to assign an initial sentiment
score to the tweets (discussed in Section 3.2), the algorithm
in Section 8.2 uses lemmatization. The algorithm will convert
our hypothetical tweet to the following text, possibly with mi-
nor variations, to be passed on to the next step in the process:

thank you quick process claim antidepressant
healthinsurance mentalhealth

These preprocessing steps winnow sentiment-bearing infor-
mation from the noise and convert the raw tweets into a for-
mat that will lead the machine learning algorithms to perform
optimally.

3.2. Processing

We used the software SentiStrength [8], which is considered
by [9] to be “the most popular stand-alone sentiment analysis
tool,” to provide an initial sentiment score to our preprocessed
tweets. SentiStrength has been tested, critiqued, and utilized

by many researchers in the field of sentiment analysis; for a
non-exhaustive list, see [8]. Research from psychology in-
dicates that humans process positive and negative emotions
in parallel [10]. Hence, the sentiments in sentiment-bearing
human writing can rarely be classified as solely positive or
negative. SentiStrength utilizes this insight to distinguish it-
self from other sentiment classifying tools. To be explicit,
SentiStrength extracts the preprocessed words in the tweets,
utilizes sentiment lexicons to assign each word a positive and
negative sentiment score, and then assigns a final positive and
negative sentiment score to each tweet based on how posi-
tive, neutral, or negative it deemed the individual words of
the tweet to be. The positive (negative) ratings range from 0
to 5 (−5), where 0 signifies a neutral tweet and 5 (−5) signi-
fies an extremely positive (negative) tweet.

Afterward, we used the R package RTextTools to apply
the machine learning algorithms specified in Section 2.2 on
our preprocessed and newly labeled tweets. We chose RText-
Tools over other R packages with similar capabilities because
it is a “one-stop shop for conducting supervised learning with
textual data” [11]. RTextTools converted textual data into a
document-term matrix with the user-specified level of spar-
sity using a single command, foregoing the need to use ad-
ditional software to tokenize the data. It then randomly bi-
furcated the datasets into training and test sets, trained each
ML algorithm on the document-term matrix associated with
the training set, and finally applied the trained algorithm on
the document-term matrix associated with the test set to allow
the user to evaluate and compare the performances of the ML
algorithms.

4. RESULTS

We contrast the ML algorithms specified in Section 2.2 on
three grounds: accuracy, performance, and time efficiency.
We used mean 5-fold cross-validation scores to quantify how
accurately the algorithms classify the observations in the test
set. Additionally, we utilized precision, recall, and F-scores
(also known as F1 scores) to quantify the performance of the
algorithms. Runtime analysis helped us in measuring the time
efficiency of the algorithms. Running each of our ML algo-
rothms on three different datasets (one for each of life, health,
and P&C insurance) allowed us to reach more comprehensive
conclusions about the algorithms on all three grounds. We
omit the Maximum Entropy algorithm from our analysis as
it is no longer supported by RTextTools. The R program we
utilized for the evaluation process is presented in Section 8.3
in the Appendix.

4.1. Accuracy Analysis

To perform 5-fold cross validation on a given dataset, the al-
gorithm randomly divides the dataset into five non-overlapping
and exhaustive subsets (also known as “folds”) of compara-

ble sizes. For the first iteration, the algorithm trains on four
subsets and uses the remaining subset as the test set. It uses
this remaining subset to compute the number of misclassified
observations. The process repeats four more times, allowing
each subset to act as the test set exactly once. The total num-
ber of misclassified observations obtained from all the five
iterations of the algorithm are then added and divided by the
total number of observations to obtain the final mean estimate
of the 5-fold cross validation error rate. The R program pre-
sented in Section 8.3 finds the average number of correctly
classified observations across the 5 folds for each dataset and
algorithm under study.

The mean 5-fold cross validation measurements for each
of the five algorithm under consideration are presented in Ta-
bles 1 and 2, and visualized in Figure 3. Note that the mean
5-fold cross validation scores range from 0.490 to 0.743 when
considering positive sentiment classifications. This suggests
that approximately 49% to 74% of the observations were cor-
rectly classified by the algorithms across the three datasets.
For all algorithms, except boosting, the worst performance
was on the dataset with life insurance tweets. On average,
boosting is able to classify the observations with an initial
positive sentiment classification most accurately, followed by
the decision tree classifier, bagging, random forest, and finally
SVM.

Mean
Accuracy

Algorithm Health Life P&C
SVM 0.654 0.490 0.661

Bagging 0.657 0.491 0.662
Boosting 0.666 0.708 0.743

Random Forest 0.659 0.484 0.665
Decision Tree Classifier 0.657 0.489 0.669

Table 1. Mean Accuracy Measurements for Positive Senti-
ment Classification with 5-fold CV

Mean
Accuracy

Algorithm Health Life P&C
SVM 0.668 0.583 0.658

Bagging 0.668 0.582 0.657
Boosting 0.701 0.801 0.698

Random Forest 0.669 0.584 0.660
Decision Tree Classifier 0.664 0.584 0.660

Table 2. Mean Accuracy Measurements for Negative Senti-
ment Classification with 5-fold CV

The mean 5-fold cross validation scores range from 0.582
to 0.801 when considering negative sentiment classifications,
suggesting that approximately 58% to 80% of the observa-
tions were correctly classified by the algorithms across the

Fig. 3. Grouped Bar Chart of Mean Accuracy Measurements
with 5-fold CV by Algorithm and Insurance Type

three datasets in this setting. Notice that, overall, the algo-
rithms were able to classify the observations with negative
sentiment classification more accurately than those with posi-
tive sentiment classifications. Once again, all algorithms, ex-
cept boosting, perform worse on the dataset with life insur-
ance tweets. Moreover, on average, boosting is again able
to classify the observations most accurately. The remaining
methods are ranked as follows in terms of accuracy: random
forest, SVM, decision tree classifier, and bagging. Therefore,
boosting appears as a clear winner in this category.

4.2. Performance Analysis

True Y = 1 True Y ̸= 1

Algorithm Y = 1 5 11
Algorithm Y ̸= 1 7 670

Table 3. An Illustration of a Confusion Matrix for Y = 1 in
a Multi-Class Classification Setting

True Y = 2 True Y ̸= 2

Algorithm Y = 2 60 44
Algorithm Y ̸= 2 55 212

Table 4. An Illustration of a Confusion Matrix for Y = 2 in
a Multi-Class Classification Setting

True Y = 3 True Y ̸= 3

Algorithm Y = 3 20 33
Algorithm Y ̸= 3 51 83

Table 5. An Illustration of a Confusion Matrix for Y = 3 in
a Multi-Class Classification Setting

True Y = 4 True Y ̸= 4

Algorithm Y = 4 60 55
Algorithm Y ̸= 4 77 111

Table 6. An Illustration of a Confusion Matrix for Y = 4 in
a Multi-Class Classification Setting

The R package RTextTools allows the researcher to evalu-
ate the performance of the ML algorithms by contrasting their
precision, recall, and F-scores, all of which are standard ac-
curacy metrics in the field of text (opinion) mining. Precision
and recall metrics originated as methods used to evaluate the
accuracy of algorithms using confusion matrices. For a partic-
ular class and a classification algorithm, the algorithm decides
whether an observation gets classified in the class. Since we
are dealing with supervised data, we can, in turn, benchmark
this classification against the gold standard of human classi-
fication. (SentiStrength has been proven to possess human
level accuracy for sentiment classifications [8].)

Precision measurements answer the question of how much
a researcher can trust an algorithm when it indicates that an
observation belongs to a certain class [12]. Naturally, the pre-
cision measurement for an algorithm is defined as the ratio
of the number of observations the algorithm correctly assigns
to a given class to the total number of observations the algo-
rithm assigned to that class, irrespective of whether the clas-
sification was correct. Note that the number of observations
an algorithm assigns to a particular class is not necessarily
the same as the true size of that class. RTextTools adopts a
one-versus-rest approach when constructing confusion matri-
ces (behind the scene) to compute precision (and recall) for
a multi-class classification problem, like the one that is the
subject of our study [13]. To illustrate, assume momentar-
ily that the response variable Y denotes the positive rating of
the tweets. Recall that Y ∈ {1, 2, 3, 4}, depending on the
extent to which the algorithms deem the tweets to be pos-
itive. Assume the confusion matrices for each of the four
classes in Tables 3-6. The elements of Tables 3-6 are added
component-wise to obtain a final pooled confusion matrix.
We present the pooled confusion matrix for this example in
Table 7. The precision measurement for this example is given
by 145/(145 + 143) ≈ 0.503. Notice that a high precision
value suggests that the number of observations being incor-
rectly classified into a given class is low [12].

The concept of the recall metric is deceivingly similar to
that of the precision metric. Recall measurements answer the

True Yes True No
Algorithm Yes 145 143
Algorithm No 190 1076

Table 7. An Illustration of a Pooled Confusion Matrix in a
Multi-Class Classification Setting

question of how much a researcher can trust a given classifier
to find all the members of a given class [12]. Mathematically,
recall measurements are defined as the ratio of the number of
observations the algorithm correctly assigns to a given class
to the true size of that class. (True class size is determined
by SentiStrength.) To illustrate, note that the recall measure-
ment corresponding to Table 7 is 145/(145 + 190) ≈ 0.433.
A high recall value suggests that the number of observations
belonging to a given class, but being classified into a different
class, is low [12].

Precision and recall measurements are governed by a
trade-off: higher precision values correspond to lower recall
values, and vice versa. Whether a researcher prefers higher
precision values (at the cost of lower recall values) or higher
recall values (at the cost of lower precision values) depends
on the goal of the research. For instance, a researcher attempt-
ing to predict the likelihood of a certain medical condition
would prefer the algorithms that result in higher recall and
lower precision measurements. In this case, the researcher’s
algorithms would raise a significant number of false alarms,
but would not miss anyone who is likely to (truly) have the
condition, which is the more desirable case in this scenario.
Contrastingly, social media algorithms predicting the content
a user is likely to engage with based on the user’s past activity
tend to favor higher precision values at the expense of lower
recall values. Here, the social media algorithm is likely to
present to the user a large number of content pieces similar
to those the user engaged with in the past along with a small
number of content pieces the user has not yet engaged with.
The assumption is that by presenting the content the user is
known to have an interest in, the social media website will
likely increase the amount of time the user spends surfing the
website.

Statisticians and data scientists broadly define F-scores as
a metric balancing precision and recall measurements. Al-
though the descriptions of F-scores can vary from one scholar
to the other, in this paper, we define F-scores as the weighted
average of precision and recall measurements:

F-score =

(
β2 + 1

)
× precision × recall

β2 × (precision + recall)
, (14)

where β ∈ R is the tuning parameter determined by the
researcher [14]. The F-score is evenly balanced when β = 1
[14]. It favours precision when β > 1, and recall otherwise
[14]. The specification in (14) is consistent with how this
metric is computed by the package RTextTools [11].

We present the precision, recall, and F-scores we obtained
for each of our three datasets in Table 8 in this section and
Table 11 in Section 8.4 in the Appendix. These results are
visualized in Figures 6 and 7 in Section 8.4 in the Appendix
and Figure 4 in this section. Notice that the precision mea-
surements range from 16% to 19.4% for positive sentiment
classifications, whereas they range from 15.3% to 33.6% for
negative sentiment classifications. Additionally, the recall
measurements range from 20% to 25% for both positive and
negative sentiment classifications. Although these precision
and recall measurements do not fall in the desirable range of
60% to 85%, each of the recall measurements is compara-
tively higher than the corresponding precision measurement
for their respective sentiment classifications. This implies that
the algorithms have set a low threshold for classifying the ob-
servations into the target response classes. Said differently,
all five algorithms are likely to be able to locate the cases of a
given class, however a sizeable number of observations clas-
sified into a given response class are incorrectly classified.
The F-scores for positive sentiment classifications range from
12.8% to 20%, whereas those for negative sentiment classi-
fications range from 16.2% to 19.5%. In general, F-scores
range from 0% to 100% and higher F-Scores indicate that
precision and recall measurements are highly dissimilar from
one another. Researchers generally prefer higher F-scores
because this indicates that the algorithm has produced a large
number of false positives (negatives) and a small number
of false negatives (positives). This might be favorable, de-
pending on the goal of the research, as described previously.
Since our recall and corresponding precision measurements
are highly similar to each other, our F-scores are low. This
implies that the number of false positives and false negatives
produced by all our algorithms are similar.

4.3. Runtime Analysis

Certain complex ML algorithms entail high processing times,
making them challenging to implement on larger datasets.
The runtimes for each of our ML algorithms are presented
in Tables 9-10, and are visualized in Figure 5.

For all three datasets, the SVM algorithm has the highest run-
time, followed by bagging, boosting, random forest, and deci-
sion tree classifiers, irrespective of the initial response classi-
fication. All algorithms take under one-and-a-half minutes to
run on our datasets (of relatively small size). Bagging, which
is theoretically assumed to offer an improvement over deci-
sion tree classifiers, did not lead to significantly better CV,
precision, recall, and F-scores when applied to the datasets at
hand. Moreover, the runtime of bagging (the algorithm with
the highest runtime) was 1.25 to 1.42 times that of the de-
cision tree algorithm (the algorithm with the lowest runtime)
across all datasets and sentiment classifications. Therefore,
since relatively more complex methods such as bagging and

Precision
Measurements

Algorithm Health Life P&C
SVM 0.160 0.194 0.168

Bagging 0.160 0.162 0.168
Boosting 0.160 0.194 0.168

Random Forest 0.160 0.094 0.168
Decision Tree Classifier 0.160 0.094 0.168

Recall
Measurements

SVM 0.250 0.204 0.250
Bagging 0.250 0.202 0.250
Boosting 0.250 0.204 0.250

Random Forest 0.250 0.200 0.250
Decision Tree Classifier 0.250 0.200 0.250

F-Scores
SVM 0.195 0.148 0.200

Bagging 0.195 0.180 0.200
Boosting 0.195 0.148 0.200

Random Forest 0.195 0.128 0.200
Decision Tree Classifier 0.195 0.128 0.200

Table 8. Precision, Recall, and F-scores for Positive Senti-
ment Classification

Runtime
(in seconds)

Algorithm Health Life P&C
SVM 0.817 0.854 0.739

Bagging 0.724 0.749 0.654
Boosting 0.671 0.666 0.637

Random Forest 0.660 0.653 0.592
Decision Tree Classifier 0.613 0.600 0.578

Table 9. Runtimes for Positive Sentiment Classification

SVM were found to have slightly higher runtimes than the
simpler methods, the researcher might not prefer to utilize
them, depending on the objective of the study.

5. CONCLUSION

The goal of this study was to compare the predictive pow-
ers of the SVM, bagging, boosting, random forests, and deci-
sion tree algorithms using datasets containing tweets related
to health, life, and P&C insurances as catalysts. We utilized
SentiStrength, a software reportedly capable of classifying
textual data with human-level accuracy, to determine each
tweet’s level of positivity and negativity. We then used the
machine learning algorithms to repeat the classification pro-
cess and benchmarked their performances against that of Sen-
tiStrength. Our results revealed that boosting was able to clas-
sify the tweets in their (true) sentiment categories most accu-

Fig. 4. Grouped Bar Chart of F-Scores for Negative Senti-
ment Classification by Algorithm and Insurance Type

Runtime
(in seconds)

Algorithm Health Life P&C
SVM 0.799 0.859 0.705

Bagging 0.733 0.738 0.661
Boosting 0.692 0.695 0.627

Random Forest 0.666 0.653 0.591
Decision Tree Classifier 0.614 0.601 0.562

Table 10. Runtimes for Negative Sentiment Classification

rately. Boosting, however, entailed a slightly higher runtime
than random forest and decision tree algorithms. The SVM
and bagging algorithms possessed the highest runtimes of all
the algorithms we considered; however, they did not yield any
significant improvements in performance or accuracy for this
cost. Therefore, the algorithm a researcher should favor in an-
alyzing sentiment-bearing, insurance-related textual data de-
pends on the goal of their research. Algorithms such as SVM,
bagging, and boosting are shown to possess slightly higher
accuracy and predictive powers at the expense of higher run-
times. Conversely, algorithms such as random forests and de-
cision tree classifiers are comparatively more time efficient,
but display slightly lower accuracy and predictive powers.

One way of furthering this research is to repeat the study
after gathering more textual data. Non-textual data, such as
auditory and visual sentiment-bearing data, can also be gath-
ered and analyzed if the researcher is willing to employ addi-
tional software capable of preprocessing non-textual data. Fi-

Fig. 5. Grouped Bar Chart of Runtimes by Algorithm and
Insurance Type

nally, several state-of-the-art, hybrid approaches (for instance,
refer to [3]) have emerged in the budding field of sentiment
analysis that claim to be able to more accurately predict senti-
ments. Interested researchers can compare the performances
of these techniques on insurance-related data with the per-
formances of the algorithms discussed in this paper. This
might allow analysts and researchers, such as those affiliated
with companies capable of making life-saving decisions, to
discover algorithms that better address the needs of their in-
sureds.

6. ACKNOWLEDGEMENTS

I am indebted to the unwavering support and invaluable feed-
back that Dr. Julie M. Clark provided throughout this project.
I would also like to express my sincere gratitude to Dr. Gi-
arcarlo Schrementi for providing expert guidance with the
Python-intensive aspects of the thesis.

7. REFERENCES

[1] Editorial Team, “Girl dies due to cigna’s decision not to
pay for liver transplant,” Dec 2007.

[2] Margaret M. Bradley and Peter J. Lang, “Instruction
manual and affective ratings - university of vermont,”
1999.

[3] Matt Taddy, “Measuring political sentiment on twitter:
Factor optimal design for multinomial inverse regres-
sion,” Technometrics, vol. 55, no. 4, pp. 415–425, Nov
2013.

[4] Edward Loper, “The maximum entropy classifier,” May
2002.

[5] Corinna Cortes and Vladimir Vapnik, “Support-vector
networks,” Machine Learning, vol. 20, no. 3, pp.
273–297, 1995.

[6] Gareth James, Daniela Witten, Trevor Hastie, and
Robert Tibshirani, An Introduction to Statistical Learn-
ing: with Applications in R, Springer, 2013.

[7] Sida Wang and Christopher D. Manning, “Baselines and
bigrams: Simple, good sentiment and topic classifica-
tion,” 2018.

[8] Zhun Hung, “Sentistrength,” Dec 2009.

[9] Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas, “Sentiment strength detec-
tion in short informal text,” Journal of the American So-
ciety for Information Science and Technology, vol. 61,
no. 12, pp. 2544–2558, 2010.

[10] Raul Berrios, Peter Totterdell, and Stephen Kellett,
“Eliciting mixed emotions: A meta-analysis comparing
models, types, and measures,” Frontiers in Psychology,
vol. 6, 2015.

[11] P. Jurka, Timothy, Loren Collingwood, E. Boydstun,
Amber, Emiliano Grossman, and van Atteveldt, Wouter,
“Rtexttools: A supervised learning package for text
classification,” The R Journal, vol. 5, no. 1, pp. 6, 2013.

[12] Juan Orozco Villalobos, “Precision vs recall,” Jan 2020.

[13] Mehul Gupta, “Calculating precision & recall for multi-
class classification,” Apr 2020.

[14] Marina Sokolova, Nathalie Japkowicz, and Stan Sz-
pakowicz, “Beyond accuracy, f-score and roc: A family
of discriminant measures for performance evaluation,”
Lecture Notes in Computer Science, p. 1015–1021,
2006.

[15] Monika Kabir, Mir Md. Kabir, Shuxiang Xu, and Bo-
drunnessa Badhon, “An empirical research on sentiment
analysis using machine learning approaches,” Interna-
tional Journal of Computers and Applications, p. 1–9,
2019.

[16] Dan Jurafsky and James H. Martin, Speech and lan-
guage processing: An introduction to natural lan-
guage processing, computational linguistics, and speech
recognition, Pearson Prentice Hall, 2009.

[17] Udacity, “Support vector machine - georgia tech -
youtube,” Feb 2013.

[18] Zixuan Zhang, “Support vector machine explained,”
Aug 2019.

[19] Aratrika Pal, “Gradient boosting trees for classification:
A beginner’s guide,” 2022.

[20] Kamil Slowikowski, “Remove all traces of emoji from
a text file.,” 2018.

[21] Alessia D’Andrea, Fernando Ferri, Patrizia Grifoni, and
Tiziana Guzzo, “Approaches, tools and applications
for sentiment analysis implementation,” International
Journal of Computer Applications, vol. 125, no. 3, pp.
26–33, 2015.

[22] Griffin Leow, “Scraping tweets with tweepy python,”
Oct 2020.

[23] Muriel Kosaka, “Cleaning & preprocessing text data for
sentiment analysis,” Nov 2020.

8. APPENDIX

8.1. Wed Scraping Code

Presented below is the Python program that was used to
scrape the tweets that were used in this study. The code was
adapted from [22].

def scraptweets(search_words, date_since,
numTweets, numRuns):

Define a for-loop to generate tweets
at regular intervals

Define a pandas dataframe to store the date:
db_tweets = pd.DataFrame(columns = [
’username’, ’acctdesc’, ’location’,
’following’,’followers’, ’totaltweets’,
’usercreatedts’, ’tweetcreatedts’,
’retweetcount’, ’text’, ’hashtags’]

)
program_start = time.time()
for i in range(0, numRuns):

We will time how long it takes to
scrape tweets for each run:
start_run = time.time()

Collect tweets using the Cursor object
Each item in the iterator has various
attributes that you can access to get
information about each tweet
tweets = tweepy.Cursor(api.search,
q=search_words, lang="en",
since=date_since,
tweet_mode=’extended’).items(numTweets)

Store these tweets into a python list
tweet_list = [tweet for tweet in tweets]
print(len(tweet_list))

Begin scraping the tweets individually:
noTweets = 0
for tweet in tweet_list:
Pull the values

username = tweet.user.screen_name
acctdesc = tweet.user.description
location = tweet.user.location
following = tweet.user.friends_count
followers = tweet.user.followers_count
totaltweets =
tweet.user.statuses_count
usercreatedts = tweet.user.created_at
tweetcreatedts = tweet.created_at
retweetcount = tweet.retweet_count
hashtags = tweet.entities[’hashtags’]
try:

text =
tweet.retweeted_status.full_text

except AttributeError:
Not a Retweet

text = tweet.full_text

Add the 11 variables to the
empty list - ith_tweet:
ith_tweet = [username, acctdesc,
location, following, followers,
totaltweets, usercreatedts,

tweetcreatedts, retweetcount,
text, hashtags]

Append to dataframe - db_tweets
db_tweets.loc[len(db_tweets)] =
ith_tweet

increase counter - noTweets
noTweets += 1

Run ended:
end_run = time.time()
duration_run =
round((end_run-start_run)/60, 2)

print(’no. of tweets scraped for run {}
is {}’.format(i + 1, noTweets))
print(’time take for {} run to complete
is {} mins’.format(i+1, duration_run))

time.sleep(920) #15 minute sleep time

Once all runs have completed, save them to
a single csv file:
from datetime import datetime

Obtain timestamp in a readable format
to_csv_timestamp =
datetime.today().strftime(’%Y%m%d_%H%M%S’)

Define working path and filename
path = os.getcwd()
filename = path + to_csv_timestamp
+ ’tweets.csv’

Store dataframe in csv with creation
date timestamp
db_tweets.to_csv(filename, index = False)

program_end = time.time()
print(’Scraping has completed!’)
print(’Total time taken to scrap is
{} minutes.’.format(round(program_end -
program_start)/60, 2))

Calling the function
scraptweets(’#insertyourhashtag
-filter:retweets’, ’insert_date_since’,
insert_numTweets, insert_numRuns)

8.2. Preprocessing Code

Presented below is the Python program that was used to pre-
process the raw P&C insurance-related tweets. A similar pro-
cedure was used to preprocess raw life insurance-related and
health insurance-related tweets. The code was adapted from
[23]

nlp = spacy.load(’en’,
disable=[’parser’, ’ner’])

lowercase all reviews
PandC_df[’new_reviews’] =
PandC_df[’text’].apply(

lambda x: " ".join(x.lower() for
x in x.split())

)

remove punctuation
PandC_df[’new_reviews’]
= PandC_df[’new_reviews’].str.replace(
’[ˆ\w\s]’,’’)

remove emojis
def remove_emoji(text):

emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF"
symbols and pictographs
u"\U0001F680-\U0001F6FF"
transport and map symbols
u"\U0001F1E0-\U0001F1FF" # flags
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"

"]+", flags=re.UNICODE)
return emoji_pattern.sub(r’’, text)

PandC_df[’new_reviews’] =
PandC_df[’new_reviews’].apply(

lambda x: remove_emoji(x)
)

removing stop words
stop = stopwords.words(’english’)
PandC_df[’new_reviews’] =
PandC_df[’new_reviews’].apply(

lambda x: " ".join(x for
x in x.split() if x not in stop)
)

Lemmatization removes the grammar tense and
transforms each word into its original form.

def space(comment):
doc = nlp(comment)
return " ".join([token.lemma_

for token in doc])
PandC_df[’new_reviews’] =
PandC_df[’new_reviews’].apply(space)

display the processed dataset
PandC_df.head()

8.3. Classification Code

Presented below is the R program that was used to classify
and evaluate health insurance-related tweets based on their
positive sentiment rating. A similar procedure was used to
classify and evaluate health insurance-related tweets based
on their negative sentiment rating as well as life insurance-
related and PC insurance-related tweets based on their respec-
tive positive and negative sentiment ratings. The code was
adapted from [11].

library(RTextTools)
Load the dataset
data_health <- read.csv(file_path,

header=TRUE)

Create a document-term matrix
doc_matrix <- create_matrix(

data_health$new_reviews,
language="english",
removeNumbers=FALSE,
stemWords=FALSE,
removeSparseTerms=.5)

Create a container
container <- create_container(doc_matrix,

data_health$Positive,
trainSize=1:1000,
testSize=1001:nrow(
data_health),virgin=FALSE)

Train the models
SVM <- train_model(container,"SVM")
BOOSTING <- train_model(container,"BOOSTING")
BAGGING <- train_model(container,"BAGGING")
RF <- train_model(container,"RF")
TREE <- train_model(container,"TREE")

Classify the models
SVM_CLASSIFY <- classify_model(container, SVM)
BOOSTING_CLASSIFY <- classify_model(container,

BOOSTING)
RF_CLASSIFY <- classify_model(container,

RF)
BAGGING_CLASSIFY <- classify_model(container,

BAGGING)
TREE_CLASSIFY <- classify_model(container,

TREE)

Generate precision, recall, and F-scores
analytics <- create_analytics(container,

cbind(SVM_CLASSIFY,
BOOSTING_CLASSIFY,
BAGGING_CLASSIFY,
RF_CLASSIFY,
TREE_CLASSIFY))

summary(analytics)

Cross Validation
SVM <- cross_validate(container, 5, "SVM")
A similar approach was used for
the other algorithms

Runtime Analysis for SVM
start.time <- Sys.time()
SVM <- train_model(container,"SVM")
SVM_CLASSIFY <- classify_model(container, SVM)
analytics <- create_analytics(container,

cbind(SVM_CLASSIFY))
end.time <- Sys.time()
end.time - start.time

8.4. Additional Accuracy Analysis Results

Fig. 6. Grouped Bar Chart of Precision Measurements by
Algorithm and Insurance Type

Fig. 7. Grouped Bar Chart of Recall Measurements by Algo-
rithm and Insurance Type

Precision
Measurements

Algorithm Health Life P&C
SVM 0.336 0.153 0.160

Bagging 0.270 0.153 0.160
Boosting 0.336 0.153 0.160

Random Forest 0.336 0.153 0.160
Decision Tree Classifier 0.136 0.153 0.160

Recall
Measurements

SVM 0.204 0.250 0.250
Bagging 0.204 0.250 0.250
Boosting 0.204 0.250 0.250

Random Forest 0.204 0.250 0.250
Decision Tree Classifier 0.200 0.250 0.250

F-Scores
SVM 0.170 0.190 0.195

Bagging 0.170 0.190 0.195
Boosting 0.170 0.190 0.195

Random Forest 0.170 0.190 0.195
Decision Tree Classifier 0.162 0.190 0.195

Table 11. Precision, Recall, and F-scores for Negative Senti-
ment Classification

	Insurance Meets Sentiment: An Empirical Study of Attitudes Toward Life, Health, and P&C Insurances
	Recommended Citation

	tmp.1652799785.pdf.Yhx26

