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PREFACE

This report describes research completed for the contract (ENV-829 UK(H))
between the Commission of the European Communities (CEC) and the Natural
Environment Research Council (NERC), entitled 'Predicting the Effects of Acid
Rain on Water Quality'. The research has been carried out at tﬁe Institute of

Hydrology (TE), a component body cf NERC.
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SUMMARY AND CONCLUSICNS

1. INTRODUCTION

In recent years significant changes in stream acidity have been abserved in
Scandinavian and British catchments and these changes have been attributed to
acid deposition., Research has been conducted on a wide range of processes
affecting stream acidity and there is now a need to study the integrated process
behaviour at the catchment scale. Studies at the Institute of Hydrology and
elsewhere have shown that mathematical models of catchment hydrology can be
developed given a suitable data base. Hydrological models are an essential
requirement of any water quality study since it is necessary to provide
information on water movement and the associated residence times before chemical

process equations can be applied to predict water quality.
Fundamental to any catchment modelling study is the need for adequate data on
hydrelogical and chemical variables together with information on soil

characteristics and soil-water interactions.

2. EXPERIMENTAL STUDIES

As part of the CEC - NERC contract the Institute of Hfdrology has established a
catchment study in the Cairngorm region of Scotland in collaboration with DAFS
{Department of Agriculture and Fisheries for Scotland) and the Macaulay
Institute. IH has been responsible for providing stream gauging, rainfall
stations, a weather station, snow surveys, sampling and continuous water quality
monitoring. IH has also been responsible for the subsequent data management,
analysis and interpretation. DAFS has been responsible for all chemical and
biocleogical analysis, with the_exception of snowmelt chemistry, which would be
undertaker by TH. The Macaulay Institute have been responsible for soil-surveys
and soil-water chemistry. Details of the initial survey work on this catchment

are given in Appendix 1.




In addition to the Cairngorm catchment study, the Institute of Hydrology has
been associated with several major catchment studies including the Loch Dee
project (South West Scetland), the Llyn Brianne project (South Wales - see
Appendix 2) and the Plynlimon Catchment gtudy (Mid-Wales). &ll of these have
provided valuable information on different catchment geclogy and soils,
different land uses (particularly forestry) and different management practices,
with specific application to the control of acidity in upland catchments.
Additional studies on pE measurement have shown the difficulties involved in
obtaining reliable data for modelling purposes (see Appendix 3}. Thus a wide
range of process information is available with which to develop hydrclogical and
chemical models and assess the effects of long term and short term management

changes.

3. MODELLING STUDIES

3.1 Objectives
The hydrological and chemical data collected from the catchment studies forms
the basis of a comprehensive modeliing research programme by IH. The objectives

of this aspect of the study are as follows:

{i) to provide a comprehensive framework with which to assess the
sensitivity of hydrological and chemical processes controlling

catchment acidity;
{ii) to assist in the planning of field and laboratory experiments;
{(iii) to aid in the interpretation and analysis of field data;

(iv) *to investigate the short-term dynamic response or catchment behaviour

and assess the impact of 'acid shocks' on the aquatic environment;

{v)] to assess the long-term acidification problem and the possibilities of

remedial management action.




3.2 Modelling strategy and application

A modular approach to modelling has been adopted at IH in which the most
appropriate hydrological and chemical models are applied to any particular
catchment. With the wide variety of catchment land use, geology, hydrology and
chemistry a single universal model is unlikely to be applicable. Rather a

spectrum of models will be required for application to different catchments.

Hydrological and chemical models have been applied to catchment data and
modified as necessary to incorporate relevant processes. These processes have
been reviewed and sensitivity analyses performed to assess parameter

uncertainty and help refine field and laboratory experiments.

The models have been used to assess both short term and long term changes in
stream acidity. For example long term records of past acidity can be
reconstructed by paleo-ecological studies and the models can be tested against
these observed changes given information on acid derosition levels. Such long
term simulations have been used to assess the effects of future acid deposition
scenarios and preliminary results are presented in sections 1 and 2 of the
report. The model has also been employed to investigate the effects of conifer

afforestation and deforestation (see Section 2).



Short term on dynamic responses of catchments are particularly important for
predicting the effect on fisheries or water resources. The models provide
valuable information on dynamic changes cccurring in catchments and a range of
time series analyses and hydrochemical models have been applied to catchment
datea collected during storm and snowmelt events (see Section 3, 4 and 5, and

Appendix 2). .

CONCLUSIONS

There have been a number of major conclusions from the study.

1. The acidification problem can be divided into two time scales in terms of

catchment response.

Firstly, there is the short term response to storm events in snowmelt events in
which pH falls rapidly over a few hours and high peak concentrations of
aluminium occur. These 'shock' pulse affect stream bhiota and cause immediate

damage.

Secondly, there is a very long term response which can take several years or
decades when a catchment is responding to many vears df atmospheric pollutant
deposition. These long term responses are controlled by the buffering capacity
of the catchment which is a function of several factors such as soil chemistry,
s0il depth, underlying geology, depositicn rates, land use etc. Thus it is
important to understand interactions occurring in catchments in order to predict

how each catchment will respond.

It is important to realise that the short term response is largely dependent on
the long term acidification state of the catchment so that those catchments with
the least buffering capacity will generally exhihit the worst short term

chemical response.




2. Models can be developed for predicting both short term and long term
behaviour of catchments and can be used to provide management information on

land use change and/or the effects of different emission strategies.

3. A primary factor controlling acidificaticn is the hydrolegy in a catchment.
Quite often surface waters are very acidic and base flow waters are well
buffered so that the degree of mixing of these two principle types of water will
contral the final stream quality. The degree of mixing is determined by the
hydrological pathways and a change to the hydrolegy of a catchment (eg. by

afforestation) will have a major effect on the mixing process and hence acidity.

4. The effects of sea-salt on catchment acidity can be significant, but the
effects of atmospherié pollutant deposition superimposed on the sea-salt effect

can be far greater and cause a catchment to become very acidic.

5. The effects of conifer afforestation can be severe through two principal
mechanisms. Firstly, a significant change in the hydrology occurs causing
highly acidic surface waters to drain off rapidly. Secondly, there is an
additional input of acidity to the catchment via the scavenging of dry particles
and mist or 'occult' depositions. These can increase.the acid locading to the
system by up to B0 or 90 percent, thereby enhancing the rate of weathering and

speeding up the acidification process.

6, Liming can be used to mitigate the acidification process but it is generally
considered a short term effect in lakes or streams with high turnover (ie. low
residence times) and would need to be repeated on a regular (annual) basis.
Liming of land has a longer term effect but it is not necessarily practical to

lime remote regions or upland catchments.

7. The models suggest that emission reductions of the order of 50 percent from

present day levels have a significant effect on acidification, although the




effects will be long term. There appears to be a significant store of sulphate
in many acidified catchments and this store could take years to deplete. On the
other hand sensitive upland catchments may respond rapidly to these emission

reductions.

8. The models need to be applied in a regional context to assess thoroughly the

effects of emission reductions.




Section 1

A model of long term changes in catchment acidification
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ABSTRACT

Coshy, B.J., Whitehead, P.G. and Neale, R., 1986. A preliminary model of long-term
changes in stream acidity in southwestern Scotland. J. Hydrol., 84: 3831—401,

A modelling study has been undertaken to investigate long-term changes in stream
acidity in Dargall Lane, a sub-catchment of Loch Dee, in Galioway, southwestern
Scotland. The madel, which includes sea salt effects, is based on the assumption that
surface water chemistry is determined by reactions taking place in the soils and rocks
within a eatchment. Stream chemistry data are used to calibrate the model and the model
reproduces the declining pH levels of recent years as indicated by paleoecological analysis.
Stream acidity trends are investigated assuming two scenarios for future deposition.
Assuming deposition rates are maintained in the future at 1984 levels, the model indicates
that stream pH is likely to continue o decline below presenily measured values. A 50%
reduction in deposition rates would likely result in an increase in the pH of the stream,
although the pH will not return to estimated preacidification levels,

INTRODUCTION

There is both empirical and theoretical evidence that surface waters are
acidified by atmospheric deposition of sulphur (Beamish and Harvey, 1972;
Jjessing et al., 1976; Schofield, 1976; Wright, 1976; Thompson et al., 1980;
JAS, 1984). Although the “sensitivity” of regions to potential damage by
acidic deposition can be defined on a relative scale (Galloway and Cowling,
1978; Hendry et al., 1980} a generally acceptable approach to the difficult
problem of forecasting water quality changes under different scenarios of
atmospheric deposition has not been identified. At present there are two
basic methods for projecting future water chemistry for sensitive areas. The
first is an empirical approach whereby extrapolations from present con-
ditions are made using conceptual and statistical relationships among rain-
fall chemistry, soil chemical processes and surface water qualily (e.g.,
Henriksen, 1979, 1980; Church and Galloway, 1984). The second method
utilizes mechanistic, process-oriented numerical models of hydrology and

0022-1694/86/503.50 © 1986 Elsevier Science Publishers B.V.
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geochemistry to make the quantitative linkage between deposition and water
quality (e.g., Christophersen et al., 1982; Schnoor et al., 1983: Goldstein et
al., 1984; Cosby et al., 1985a, b; Rustad et al., 1986). A critical guestion in
any attempt to project future water quality for a catchment is how quickly
and to what extent the physical/chemical characteristics of the catchment
control water quality response to changes in atmospheric deposition. This
question is best addressed through the second method, the use of process-
based dynamic simulation models of long-term catchment responses.

Recent research has increasingly focused attention on certain chemical
processes in the soils of catchments as likely keys to the responses of surface
water quality to acidic deposition (NAS, 1984). These processes include: (1)
anion retention by soils; (2) cation exchange by soils; (3) solubility and
mobilization of aluminium; (4) weathering of minerals as a source of base
cations (Ca**, Mg?*, Na*, K*); and (5} dissociation of carbonic acid (resulting
from elevated partial pressure of CO; in soils) with subsequent exchange of
the hydrogen ions for base cations.

The interactions of these processes are non-linear and the catchment scale
water quality effects they produce in response to acidic deposition can occur
over several years (or decades) in natural systems. Direct observations of the
catchment scale effects will, in most cases, require the acquisition of lengthy
and costly time series of water quality measurements. Manipulating whole
systems to observe catchment scale effects will be even more difficult and
expensive. In the meantime, we are faced with the problem of understanding
the implications (for forecasting long-term whole catchment responses) of
what has been learned from the many studies of these individual processes. If
mathematical representations of these processes are included in numerical
models of catchment respeonses, their implied effects on the magnitude and
timing of catchment surface water acidification can be examined in a series
of speculative simulation exercises (e.g., Hornberger and Cosby, 1985).

We present here a preliminary calibration of a quantitative model for the
Dargall Lane sub-catchment of Loch Dee in Scotland. The model is based on
mathematical representations of those processes (outlined above) which are
currently thought to be the primary catchment controls on acidification.
Because the model is based on the assumption that surface water chemistry
is determined by reactions taking place in the soils and rocks within a
catchment, the model is named MAGIC (Model Acidification of Ground-
water In Catchments).

The MAGIC model as applied to Dargall Lane in this study is conceptually
very simple with regards to spatial heterogeneity in the catchment. As
implemented, the model contains three compartments (Fig. 1) which are
assumed to be internally homogeneous. This assumption implies that vertical
stratification of soils in the catchment is unimportant or, equivalently, that
all water reaching the stream contacts and has its chemical quality deter-
mined by a single layer within the soil column. While this assumption is pro-
bably overly restrictive in a model intended to reproduce short-term {i.e.
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Fig. 1. Schematic view of MAGIC (Mondel for Acidification of Groundwater in Catch-
ments, Cosby et al., 1985a,b) as applied to Dargall Lane. MAGIC is comprised of two
parts-fluxes to and from the soil and a series of chemical equilibria between soil and soil
solution.

daily to weekly)} water quality responses, the purpose of this modelling
exercise is to estimate long-term (i.e. decades) changes in annual average
water quality. Viewed at this scale, many of the short-term dynamic water
quality changes arising from spatial heterogeneity of soil chemical and
hydrological processes ‘‘disappear” into the much slower long-ferm
*chronic” changes of water quality which are most likely determined by
single bulk properties of the whole catchment. Such lumped parameter
models are common in rainfall runoff modelling (e.g., Beven and Kirkby,
1979; Hornberger et al., 1985) and in chemical models of lakes and oceans
(e.g.. Lerman 1971; Imboden and Lerman, 1978). Lumped hydrochemical
models of surface water gquality responses have also been successfully applied
to whole catchments (e.g., Schnoor et al., 1983; Cosby et al., 1985a). The
use of lumped hydrochemical models for long-term water quality recon-
structions is less common, although, in cases where historical water quality
can be inferred (e.g., Wright et al., 1986), the models were capable of
reproducing the important historical water quality changes.

The objectives of this medelling study are threefold:

{1) To evaluate the suitability of a hydrochemical model containing soil
ion exchange reactions when applied to a catchment receiving large amounts
of sea salt deposition.

(2) To examine the extent to which soil processes may have controlled
surface water quality in southwest Scotland in response to increases in acidic
deposition over the last century.
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(3) To estimate likely future water quality responses to assumed scenarios
of future deposition {given that the soils might be the primary controls on
surface water quality responses). To these ends, the model we present has
the simple spatial structure illustrated in Fig. 1. Our current enquiry con-
cerns the role soils may play in the acidification response of surface waters.
We have chosen Dargall Lane as a study site because the land use practices
there have not much changed over the period of interest. The changes in
fluxes between the soils and the terrestrial biota (Fig. 1) are therefore minor
compared to the changes in fluxes from the atmosphere through the soil to
the stream. The model presented below contains only reactions expected
from the mineral fraction of the soil. The role of biological transformations
{except for uptake of NO3 and NHJ) and reactions involving organic com-
pounds are ignored. The implicit assumption is that these reactions have
proceeded unchanged despite the increase in deposition and therefore have
produced no effect on the changes in surface water quality. To this extent,
the present model must be considered preliminary. Future work will
examine these assumptions.

CONCEPTUAL BASIS QF THE MODEL

The most serious effects of acidic deposition on catchment surface water
quality are thought to be decreased pH and alkalinity and increased base
cation and aluminium concentrations. In keeping with an aggregated
approach to modelling whole catchments, we postulated that a relatively
small number of important soil processes — processes that could be treated
by reference to average soil properties — could produce these responses. In
two papers, Reuss (1980, 1983) proposed a simple system of reactions
describing the equilibrium between dissolved and adsorbed ions in the soil —
soil water system. Reuss and Johnson (1985) expanded this system of
equations to include the effects of carbonic acid resulting from elevated CO,
partial pressure in soils and demonstrated that large changes in surface water
chemistry would be expected as either CO, or sulphate concentrations
varied in the soil water. Christophersen et al. (1984) describe a model based
on similar chemical equilibrium reactions. This conceptual approach is
attractive in that a wide range of observed catchment responses can be
theoretically produced by a rather simple system of soil reactions. MAGIC
has its roots in the Reuss-Johnson conceptual system, but has been expanded
from their simple two-component (Ca-Al) system to include other important
cations (and anions) in catchment soil and surface waters.

MAGIC assumes that atmospheric deposition, mineral weathering and
exchange processes in the soil and soil water are responsible for the observed
surface water chemistry in a catchment (Fig. 1). Alkalinity is generated in
the soil water by the formation of bicarbonate from dissolved CO, and
water:

CO; + H,0 = H*+ HCO; (1)
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The free hydrogen ion produced by this mechanism reacts with an
aluminium mineral (e.g. gibbsite} in the soil:

3H* + AI(OH);(s) = AP+ 3H,;0 (2)

Generally, the cation exchange sites on the soil matrix have higher affinity
for the trivalent aluminium cation than for di- or monovalent hase cations.
An exchange of cations between the dissolved and adsorbed phase results:

AlP* 4+ 3BCX(s) = AlX;(s) + 3BC* (3)

where X is used to denote an adsorbed phase and BC* represents a base
cation. The net result of these reactions is the production of alkalinity [e.g.,
Ca(HCO;); 1. As CO, partial pressure or the availability of base cations on
the soil exchange sites increases, the equilibrium reactions proceed further to
the right-hand side in each case resulting in higher alkalinity.

When the solution is removed from contact with the soil matrix and is
exposed to the atmosphere (i.e., soil water enters the stream channel), the
CO, partial pressure of the solution declines. The pH of the solution
increases as CQ, is lost to the atmosphere. Because the solution is no longer
in contact with the soil matrix, cation exchange reactions no longer occur.
The alkalinity and base cation concentrations are thus unchanged.

If the exchangeable base cations on the soils become depleted, less
aluminium is exchanged from the soil water (eqn. 3) and the Al’* concen-
tration in the water entering the stream channel is higher. As the stream-
water loses CO, and the pH begins to rise, the solubility of aluminium
species in the stream is exceeded and a solid phase of aluminium precipitates
(e.g. the reverse of reaction 2). These aluminium precipitation reactions
retard the increase of streamwater pH as the CO, degasses, resulting in lower
streamwater pH for the case where exchangeable cations are less available.

Less adsorption of aluminium by the soils also decreases the soil and
surface water alkalinity. Consider an abbreviated definition of the atkalinity
of soil and surface waters:

ALK = (HCO3)— (H")— 3(Al’") (4).

where the parentheses indicate molar concentrations. It is apparent that as
the ability of the catchment soils to exchange Al*" declines and aluminium
and hydrogen ion concentrations increase, the alkalinity of the solution must
decline, even though the source of HCO73 is not affected.

The process of acidification is controlled in part by the rate at which the
exchangeable base cations on the soil are depleted. This in turn is affected by
the rate of re-supply through weathering of base cations from primary
minerals and the rate of loss through leaching of base cations from the soil.
Leaching of base cations is affected mainly by the concentration of strong
acid anions (i.e., S0%, NO3, CI7, and F7) and base cations in the solution
moving through the soil. As anions increase in concentration, there must be
an equivalent increase in cation concentration to maintain a charge balance.
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If anions derived from atmospheric deposition are accompanied by H™ (i.e.
acidic deposition) the excess H will initially displace base cations from the
soil exchange sites. As the base saturation (amount of exchangeable base
cations on the soil) declines, aluminium and hydrogen ion become
increasingly Important in maintaining the ionic charge balance. The water
delivered to the stream becomes more acidic as the acidic deposition persists.

On the other hand, if anions derived from atmospheric deposition are
accompanied by a base cation (i.e. deposition of neutral salts such as sea
salt), the catchment soils produce a different response. At the onset of the
neutral salt deposition, the water flowing through the soil has a higher con-
centration of base cations than previous flow-through. This causes a shift in
the equilibrium conditions of the soil (the reverse of reaction 3) and
aluminium ions are initially displaced from the soil until a new equilibrium
with the higher concentrations of base cations is established. Higher
aluminium concentrations in soil water produce lower soil and streamwater
alkalinity and pH (as discussed above). As the new equilibrium is established,
the initial mass action displacement of Al** declines and the soil and stream-
water alkalinity and pH rise again. This temporary depression of pH and
alkalinity on addition of neutral salts to catchment soils is known as the
“salt effect” (e.g. Reuss, 1980). It is important to note that the salt effect is
only temporary and, once the new equilibrium conditions have been
established in the soil, continued addition of neutral salts (unlike continued
addition of an acid) does not produce a progressive decline in pH or
alkalinity of the soil and streamwater.

Deposition of large amounts of sea salt has occurred historically in the
Dargall Lane subcatchment (Table 1). 1t is expected that the soils at Dargalt
Lane have achieved an equilibrium with this sea salt flux at some point in
the disiant past. One of the objectives of the present study is te examine
the expected effects of more recent additions of acidic deposition to soils
historically receiving large amounts of neutral salt deposition.

TABLE 1

Chemical characteristics of precipitalion, streamwater and soils in Dargal Lane sub-
catchment. Values in A and B are volume weighted annual averages for 1981, Vatues in
C are from regional soil surveys

Ca Mg Na K NH, 504 Cl NOy

A Bulk precipitation: pH = 4.6 )
meg m > 16 19 83 6 28 48 94 19

B Streamwater: pH = 5.1; alkalinity = 7 meq m ™~
meg m > 52 58 137 12 1 79 158 19

C Soil: pH = 4.7—3.0; base saturation = 5—10%; cation exchange capacity
= 100 meq kg™ !
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THE LOCH DEE STUDY AND SITE DESCRIPTION

This modelling study was undertaken as part of the Loch Dee Project in
Galloway, southwestern Scotland. The Loch Dee Project (1985) was
initiated in 1979 by the Solway River Purification Board with the support of
the Forestry Commission and the Department of Agriculture and Fisheries
for Scotland (Freshwater Fisheries Laboratory). The project is intended to
examine the combined and individual effects of acid deposition and
afforestation on surface water quality with particular emphasis on evaluation
of the Loch’s potential as a trout fishery (Burns et al., 1984). The Loch Dee
Catchment (15.6km?) lies in the Galloway Hills of Scotland west of
Dumfries, It consists of three subcatchments, Dargall Lane, Green Burn and
White Laggan Burn. The relief in the catchment is from 225 to 716 m.
Nearly two-thirds of the catchment is above 305 m (Burns et al., 1984). The
catchment 1s underlain by Ordovician and Silurian greywackes and shales and
intrusive granites of the Old Red Sandstone Age. Soils in the catchment
include peaty podzols and peaty gleys with basin and valley peats in the
lowest areas at the edge of the Loch (Bown et al., 1982).

The White Laggan Burn and Green Burn subcatchments have been planted
with Sitka Spruce and Lodgepole Pine and have been treated with P-K
fertilizers and limestone (see Bums et al., 1984, for details). The Dargall
Lane subcatchment is treeless, has not been manipulated and is used as a
control for the project. We will confine our attention to Dargall Lane in this
study.

The Loch Dee area has a mean annual rainfall (1941—1970) of 2.2 m. The
data presented by Burns et al. (1984) and unpublished data from the Loch
Dee project indicate that 80—90% of rainfall volume appears as runoff in
White Laggan Burn, the only gauged subcatchment prior to 1983, Burns et
al. (1984) have presented volume weighted annual average chemical data for
precipitation and Dargall Lane streamflow for 1981 (Table 1A and B). These
data are based on stream and bulk precipitation samples taken on a weekly
basis. Soil chemistry in the Green Burn is currently being investigated as part
of the Loch Dee study (Grieve, 1985). Scil chemical characteristics in
Dargall Lane have been estimated for this study (Table 1C) by using analyses
of pealy podzols and peaty gleys in other catchments in southwestern
Scotland (Mitchell and Jarvis, 1956; Bown, 1973). Average soil depth in
Dargall Lane subcatchment is approximately one metre.

EQUATIONS AND PARAMETERS REPRESENTING THE SOIL PROCESSES AT
DARGALL LANE

Complete details of the model structure and the method of implementation
are given by Cosby et al. (1984, 1985a,b). For this analysis we will be
concerned mainly with those inputs or parameters related to the five soil
chemical processes listed in the introduction.
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The model calculates the concentrations of four strong acid anions in both
soil and streamwater (SQ%, C17, NOj3 and F). Chloride, nitrate and fluoride
ions are assumed not to have an adsorbed phase at Dargall Lane. Sulphate,
however, does have an adsorbed phase and the relationship between
adsorbed sulphate (E,, meqkg™!) and the concentration of dissolved
sulphate [(SO37), megqm™] in soil water at Dargall Lane is assumed to
follow a Langmuir isotherm (Hasan et al., 1970; Cuoto et al., 1979; Singh,
1984}:

(80%)

Es = Emx (500

(5)
where E_,, is the maximum adsorption capacity of the soils {(meqkg™') and
C is the half saturation concentration (meq m™*). Sulphate adsorption para-
meters used in the model for Dargall Lane are:

Epe = Olmegkg ';” € = 150megm™’
These values are characteristic of podzolic soils with a low sulphate
adsorption capacity (Singh, 1984).

The model calculates the concentration of A in soil water assuming
dissolution of a solid phase of AI{OH); (eqn. 2). The equilibrium expression
for this reaction is:

13+

_ {A13+}
~{H'P

K4 (6)

where the accolades indicate aqueous activities. Several forms of Al{OH};
may be present in the catchment at different locations. The value of K.,
selected for a particular catchment will be some effective lumped value
characteristic of the entire catchment. For Dargall Lane the value of K,
was set to 10%C, typical of a range of crystalline forms of gibbsite (e.g.,
Cosby et al, 1985a). Several aqueous complexation reactions of Al**

(hydration reactions and formation of dissolved complexes with F~ and .

S037) are included in the model (see Cosby et al., 1985a, b). These reactions
are temperature dependent and appropriate corrections for temperature and
ionic strength are made in the model. :

Bicarbonate ion concentrations (eqns. 1 and 4 ) in soil water are
calculated using the familiar relationships between the partial pressure of
CQO, and hydrogen ion activity in the soil water:

— _ g Feo,
{HCOS} - KC {H+} (7)

where the combined constant K. is known for a given temperature (Stumm
and Morgan, 1970) and P¢o  is the partial pressure of CO; in soil water
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(atm). Pco, must be an effective partial pressure for all catchment soils. As
such, it is not clear that a value of Pg, measured directly at some single
point in the catchment is reprebentatwe of the catchment as a whole, We
thus consider Pg,. a parameter whose value must be ascertained for each
catchment by an appropriate calibration procedure. CO, partial pressure was
set to 0.02atm for the soils of Dargall Lane. This is approximately sixty
times atmospheric Pco, .

The model assumes that only Al** and the four base cations are involved
in cation exchange between soil and soil solution. The exchange reactions
{egn. 3) are modelled assuming an equilibrium-like expression (Gaines and
Thomas, 1933):

B {Bcz+}3 Eﬁl {BC+}3 Eax
Samc = {Aljﬂj?' Egc or Sapc = m (&)

for divalent or monovalent base cations respectively, where the accolades
indicate aqueous activities, Sapc 18 a selectivity coefficient (e.g., Reuss,
1983) and the E,,’s indicate exchangeable fractions of the appropriate ions
on the soil complex. That is, if the amount of Ca®* on the soil of a catch-
ment were given by X meq kg ', then:
. ,

Eqo = —— 9

Ca CEC ( )
where CEC is the cation exchange capacity of the soil (megq kg™ ). The base
saturation {BS) of the soil is then the sum of the exchangeable fractions of
base cations:

BS = E¢, T Eyy T Exy T Ex = 1—E, (10)

If the aluminium-base cation exchange equations in the model (eqn. 8) are
combined with the aluminium solubility equation (eqn. 6), the results are
equations that are Gaines-Thomas expressions for hydrogen ion-base cation
exchanges. That is, even though we have chosen to represent the exchange
processes using equations based explicitly on aluminium-base cation inter-
actions, the formulation is mathematically equivalent to exchange equations
based on hydrogen ion-base cation interactions. The equivalence holds as
long as the hydrogen ion to aluminium ratio is constant due to the assumed
presence of a soluble aluminium solid phase.

The parameters deseribing the cation exchange process in the model are
the selectivity coefficients, S,;sc (one coefficient for each base cation, Ca?",
Mg?*, Na*, K*), and the soil cation exchange capacity, CEC. Cation exchange
capacity for Dargall Lane soils was set to 100 meq kg™ . This value is typical
of the mineral horizons of many peaty podzols and peaty gleys in south-
western Scotland (Bown et al,, 1982). Values for the selectivity coefficients
were predetermined in the model from base cation weathering inputs (see
below) and the initial base saturation of the soil used in the simulations.
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The values of the selectivity coefficients used for Dargall Lane in this study
are:

Saica = 102'49;‘9‘411\-13 = 10%% 8, = 10739%;8,,, = 107922

The model assumes that there is a long-term net input of base cations
from mineral weathering. Weathering rates, and the degree to which the
weathering changes as soil conditions change, are extremely difficult to
determine {INAS, 1984). The weathering rates of base cations are treated as
lumped, constant imputs to the model. Weathering rates and initial base
saturation conditions were selected by a trial and adjustment procedure such
that simulated water quality variables matched measured water quality
variables in 1981 (Table 2).

Atmospheric deposition of base cations and strong acid anions used for
the simulations was calculated using measured concentrations of each ion in
precipitation (Table 1) and the annual average precipitation volume.
Sulphate deposition in excess of sea salt inputs was increased by a constant

TABLE 2

Model output of variable values at different points in the simulation, and a comparison
with measured values at Dargal Lane in 1981

Model Model Dargal Lane Model out- Model output
output output measured put constant 50% reduction
deposition of the

deposition

Year 1844 1981 1981 2001 2001
Streamwater
meqm™ H i 4 8 4 3
Ca 26 51 52 4G 38
Mg 48 62 58 56 48
Na 136 140 137 140 133
K 8 13 12 13 12
NH, ] 0 1 0 0
S0, 17 80 79 T2 47
NO; 4 18 19 17 10
Cl 139 139 158 159 139
Alk 39 8 7 & 14
pH 5.85 5.38 5.10 5.36 5,46
= 220 271 268 261 235
= 220 271 263 261 235
Soils
% BS 11 7.5 5—10° 7.1 7.3
pH 5.1 4.9 4.7-5.07 1.9 4.9

2Bstimated from soil survey data for similar soils in southwestern Scotland (Mitchell and
Jarvis, 1956; Bown et al., 1982).
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factor (1.4) to account for aereosol and dry deposition of anthropogenically
derived sulphur. A basic assumption of the modelling exercise was that the
catchment was in steady state with constant background levels of deposition
prior to 1844, A 140 yr deposition history was estimated for Dargall Lane
based on historic sulphur dioxide emissions records. The emissions data used
were those for the United Kingdom compiled by the Warren Spring
Laboratory (1983). The deposition trajectory for Dargall Lane was assumed
to have an identical shape to the regional emission data. The trajectory for
each ion that increased in concentration between 1844 and 1981 was
assumed to follow the same trajectory. Background (1844) deposition inputs
to the model were calculated from the sea salt fraction of current deposition
at Dargall Lane. The background deposifion of sea sall caleulated in this
manner from bulk precipitation measurements was increased by a factor of
1.4 to account for aerosol and sea spray inputs to the catchment.

Two scenarios are used for projecting future water quality in Dargall Lane.
The first scenario assumes continued deposition at current (1984} rates for
the next 140yrs. The second scenario assumes a b0% reduction of the
deposition in excess of sea salts. The reduction is assumed to occur
uniformly over 20 yrs (1984—2004) followed by 120 yrs of deposition at the
reduced level.

RESULTS

The historical reconstruction of water quality at Dargall Lane indicates
that the catchment surface waters have lost approximately 80% of their
alkalinity (Fig. 2a and Table 2}. Streamwater pH is higher than soil water pH
but has decreased more rapidly in recent years, (Fig. 2d). The decline in pH
follows closely the patterns of pH change determined by Batterhee et al.
(1985) and Flower and Batterbee (1983) from paleoecological studies in
southwestern Scotland. For instance, Flower and Batterbee {1983) estimate
that the pH of nearby Loch Grannoch has declined by 0.5 of a unit in recent
years. A very similar rate of decline, from 5.85 to 5.38 (Fig. 2a) has been
estimated by MAGIC for Dargall Lane over the same period. Concentrations
of strong acid anions (principally sulphate) have responded very rapidly to
changes in atmospheric deposition but base cation concentrations have
responded more slowly (Fig. 2b). Base saturation of the soil has declined by
more than 30% from a preacidification value of 0.110 to a 1981 value of
0.075 (see Fig. 2c). Even though deposition decreased and pH rose slightly
during the last 14yrs of the historical reconstruction (Fig. 2a), the base
saturation of the soil continued to decline during this period as base cations
were leached from the soils (Fig. 2c).

Simulations of future responses of Dargall Lane water quality are based on
the preceding historical reconstruction. Continued deposition at current
levels (Fig. 3) results in further deterioration of the water quality in Dargall
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Fig, 2a, b. Simulations of Dargall Lane for the period 18441984

Lane. Despite the slight recovery resulting from the deposition decrease
(1970—1884), and the subsequent slight rise in streamwater pH, continued
deposition in the future at 1984 levels produces further declines in soil base
saturation (Fig. 3¢) and the improvement in streamwater pH is soon lost
{Fig. 3d).
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Fig. 2¢. Simulation of base saturation-percentage for Dargall Lane soils for the period
1844—1884. d. Simulation of soil water and streamn pH in Dargall Lane for the period
1844—1984.

A reduction by 50% of deposition over a 20 yr period (1984—2084}, on
the other hand, results in a slight improvement of water quality followed by
reasonably steady conditions at the lower level of deposition (Fig. 4). By
reducing the acid input to the system, the leaching of base cations is slowed
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Fig. 3a, b. Simulations for the period 1844—2124 assuming 1954 deposition rates,

and the decline in base saturation is also slowed (¥ig. 4¢). The combination
of lower deposition and stable base saturation produces streamwater pH
values that are higher and steadier (Fig. 4d) than in the case of no reduction.
Note, however, that even a reduction of 50% does not return the water
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Fig. 3c. Simulation for the period 1844—2124 assuming 1984 deposition rates. d. Simu-
ation for the period 1844—2124 assuming 1984 deposition rates showing long-term
decline in soil water and stream pH.

quality to preacidification levels (Fig. 2). In fact, once the deposition
reduction is complete, no further improvement in stream quality is forecast.

At this new state with 50% reduced deposition, the catchment waters still
have less than 50% of their original alkalinity.
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DISCUSSION AND CONCLUSIONS

Application of this model of acid deposition effects based on soil ion
exchange processes to a catchment receiving large amounts of neutral salt
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(sea salt) presents no difficully. Earlier attempts at modelling catchments in
areas subject to sea salt deposition tended to ignore sea salt inputs and treat
only the inputs of strong acids {H,80, and NOj3, e.g., Christophersen et al.,
1982). This exercise indicates that sea salts can be explicitly treated and
equations involving exchange of all cations can be included. The conceptual

. .
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approach of Reuss (19280, 1983) and Christophersen et al. {1984) is robust
and the practice of “subtracting” sea salts from model atmaospheric inputs
1s not necessary.

The accuracy of the model results, however, cannot be directly addressed
except to say that the values produced by the model for the 1981 stream-
water quality variables are consistent with the measurements available. This
application of the model to Dargall Lane demonstrates a major prohlem
inherent in all efforts to model acid deposition effects; lack of data needed
for rigorous identification of model structures and the estimation of para-
meter values. Our understanding and conceptualizations of soil and surface
water acidification by atmospheric deposition are continually improving as
the results of process level field and laboratory experiments become
available. It is natural that we try to incorporate these results into
quantitative models of the acidification response of whole catchments.
Unfortunately, the models we construct quickly become more complex than
the available data will support. This is particularly true in models of long-
term response such as the one presented here. The problem is two-fold. First,
catchment surface water acidification is controlled by catchment soils and
complex, process-oriented models of acidification thus contain soil and soil
water variables that are infrequently (if everj measured in the field. Without
measurements of the internal state wvariables, the models cannot be
sufficiently constrained and unique calibrations of the models are not
possible. Second, models of long-term responses can, strictly speaking, only
be calibrated and verified using long time series of data from natural systems.
Such extended records exist for very few catchments. Simulation exercises
such as this one in which response times are on the order of decades suggest
that even the longest data records may be inadequate.

Despite these limitations, there is much that can be learned from the
process of constructing and testing acidification models. Even though
traditional tests of models against observations on real systems may not be
possible, we can conduct simulation experiments in which alternate model
structures (or parameter values) are compared to each other. In many cases,
the act of designing the alternate structures can result in identification of
gaps in our knowledge. In other instances, the simulations may reveal
unsuspected or inconsistent behaviour implicit in the model assumptions
that would lead us to reformulate or reintegrate the various components we
are considering, to adopt new structures or even to delete components that
have no demonstrable effect on the variables of interest. Speculative simu-
lation exercises may also indicate new or different data that can be brought
to bear on the problem.

1t is difficult at this stage to reach any firm conclusions with regard to the
problem of acid deposition in the UK. However there is increasing evidence
that streams draining upland catchments in the UK with little buffering
capacity are acidic (Harriman and Morrison, 1981; Stoner et al., 1984) and
the palececology work of Batterbee et al. (1985) suggests that the levels of
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acidity have increased in recent years. The results presented here support
these conclusions and give an indication of future catchment acidity. Despite
a 25% reduction in the UK emission levels since 1970 a continuing decline in
streamwater pH is predicted if further reductions in deposition are not
achieved. This is because the weathering rate of base cations in catchment
solls is not large enough to buffer the atmospherically derived acidity and
the cation exchange capacity of the soils is only a finite resource for
butfering purposes. A further reduction of 50% from present-day deposition
levels is required even to maintain current pH levels at Dargall Lane. Clearly
this has serious implications for the management of upland water resources,
forest and fisheries.

Management practices such as those discussed by Whitehead et al. (this
volume) may alleviate the problems to some extent but it does appear that
there has been a basic underlying change in upland stream chemistry which
will continue in the future.

ACKNOWLEDGEMENTS

The authors are particularly grateful to the Solway River Purification
Board for providing data from the Loch Dee study and to the EEC for
funding the modelling research. The views expressed represent those of the
authors. We thank Hans Martin Seip, George Hornberger and Dave
Kinniburgh for their helpful comments. This analysis was accomplished
while one of the authors (BJC) was visiting the Department of Environ-
mental Science, University of Lancaster, Lancaster, England. We gratefully
acknowledge the support of Professor P.C. Young and his staff. The research
was accomplished with the help of grants from the National Science
Foundation (#CEE-8215914).

REFERENCES

Batterbee, R.W., Flower, R.J., Stevenson, A.C. and Rippey, B., 1985. Lake acidification
in Galloway: A palaececological test of competing hypotheses. Nature, 314 (6009):
350—352.

Beamish, R.J. and Harvey, H.H., 1972. Acidification of the La Cloche Mountain lakes and
resulting fish mortalities. J. Fish. Res. Board Can., 29: 1131—1143.

Beven, K.J. and Kirkby, M.J., 1979. A physicaily-based variable contributing area model
of basin hydrology. Hydrol. Sei. Bull,, 24: 43—69.

Bown, C.J., 1973. The soils of Carrick and the country round Girvan (sheets 7 and 8),
Mem. of the Soil Survey of Scotland, Edinburgh: HMSO.

Bown, C.d., Shipley, BM. and Bibhy, J.5., 1982. Soil and Land Capahility for Agri-
culture, South-West Scotland. Macauley Inst. for Soil Research, Aberdeen,

Burns, 4.C., Coy, 4.8, Tervet, D.J., Harriman, R., Morrison, B.R.S. and Quine, C.P., 1984,
The Loch Dee project: a study of the ecological effects of acid precipitation and forest
management on an upland catchment in southwest Scotland. 1. Preliminary investi-
gations, Fish. Manage., 15: 145—167.



400

Christophersen, N., N., Seip, H.M., and Wright, R.F., 1982, A model for streamwater
chemistry at Birkenes, Norway. Water Resour. Res., 18: 977—996.

Christophersen, N., Rustad, S. and Seip, H.M,, 1984. Modelling streamwater chemistry
with snowmelt. Philos. Trans. R. Soc¢. London. Ser. B, 305: 427—439.

Chureh, M.R. and Gailoway, J.N., 1984. Acid precipitation and the chemistry ol three
Adirandack lakes in relation to empirical models derived from lakes of Scandinavia.
J. Water Air Soil Pallut., 22: 111120,

Coshy, B.J., Wright, R.F., Hornberger, G.M. and Galloway, J.N., 1984. Model of acidifi-
cation of proundwater in catchments. Project Completion Rep., EPA/NCSU Acid
Precipitation Program, Project number E2-14,

Cosby, B.J., Wright, R.F., Hornberger, G.M. and Galloway, J.N., 1985a. Modelling the
effects of acid deposition: assessment of a lumped parameter model of soil water and
streamwater chemistry. Water Resour. Res., 21: 51—63.

Cosby, B.J., Wright, R.F., Hornberger, G.M. and Galloway, J.N., 1985b. Modelling the
effects of acid deposition: estimation of lang-termn water quality responses in a small
forested catchment. Water Resour. Res., 21: 1581—16Q1.

Cosby, B.J., Hornbergetr, G.M., Galloway, J.N. and Wright, R.F., 1985¢c. Freshwater
acidification from atmospheric deposition of sulphuric acid: a quantitative model.
Environ. Sci. Technol., in press.

Couto, W., Lathwell, D.J. and Bouldin, D.R., 1979. Sulphate sorption by two oxisols
and an alfisol of the tropics. Soil Sei., 127: 108—116.

Flower, R.J. and Batterbee, R.W., 1983. Diatom evidence for recent acidification of
two Scottish lochs. Nature, 305(5930): 130—133.

Gaines, G.L. and Thomas, H.C., 1933. Adsorption studies on clay minerals: 1I. A
formulation of the thermodynamics of exchange adsorption. J. Chem. Phys., 21:
714—718.

Galloway, J.N. and Cowling, E.B., 1878. The effects of precipitation on aguatic and
terrestrial ecosystems: A proposed precipitation chemistry network. J. Air Pollut.
Countrol Assoc., 28: 229235

Gijessing, E.T., Henriksen, A., Johannsen, M. and Wright, R.F., 1976. Effects of acid
precipitation on freshwater chermistry. In: F.H. Braekke (Editor), Impact of Acid
Precipitation on Forest and Freshwater Ecosystems in Norway. SNSF Rep. FR 6176
SNSF Project, Box 61, 1432 Aas-NLH, Norway.

Goldstein, R.A., Gherini, 8.A., Chen, C.W., Mak, L. and Hunson, R.J.M., 1984. Integrated
acidification study (ILWAS): a mechanistic ecosystem analysis. Philos. Trans. R. Soc,
London, Ser. B, 305: 409—425.

Grieve, 1., 1985, Soil and soil solution chemistry, Loch Dee. Progress Pap., Solway River
Purification Board Dunfries.

Harriman, R. and Morrison, B., 1981. Forestry, fisheries and acid rain in Scotland. Scott.
For., 36: 89—95.

Hasan, S.M., Fox, R.L. and Botyd, C.C., 1970. Solubility and availability of sorbed
sulphate in Hawailan soils. Soil Sci. Soc. Am., Proc., 34: 897901,

Hendry, G.R., Galloway, J.N., Norton, S.A., Schofield, C.L., Shaffer, P.W. and Burns,
D.A., 1980. Geological and hydrochemical sensitivity of the Eastern United States to
acid precipitation. US Environmental Protection Agency, Rep. EPA-600/3-80-024.

Henriksen, A., 1979. A simple approach for identifying and measuring acidification of
freshwater. Nature, 278: 542—545.

Henriksen, A., 1980. Acidification of freshwaters: a large scale titration. In: D, Drablos
and A. Tolland (Editors), Proceedings of the International Conference on the Eco-
logical Impact of Acid Precipitation. Sandejford.

Hornberger, (.M, and Cosby, B.J., 1985. Evaluation of a model of long-term response of
catchments to atmospheric deposition of sulphate. In: H. Barker and P. Young
(Editors), Proceedings of the Tth IFAC/IFORS Symposium on Identification and
System Parameter Estimation. Pergamon, Oxford.




401

Hornberger, G.M., Beven, K.J., Coshy, B.J. and Sappington, D.E., 1986. Shenandoah
watershed study: Calibration of a topography-based, variable contributing area hydro-
logical model to a small forested catchment. Water Resour. Res., in press.

Imboden, D.M. and Lerman, A., 1978, Chemical models of lakes. In: A. Lerman {Editor),
Lakes: Chemistry, Geology, Physics. Springer, New York, N.Y., pp. 341336

Lerman, A., 1971, Time to chemical steady-states in lakes and oceans. Adv. Chem. Ser._,
106: 30—76.

Loch Dee Project Report, 1985, Solway River Purification Board, Dumfries.

Mitchell, B.D. and Jarvis, R.A., 1936. The Soils of the Country Round Kilmarnock.
Sheets 22 and 21, Mem, of the Soil Survey at Great Britain, Edinburgh: HMSO.

NAS, 1984. Acid Deposition: Processes of Lake Acidification. National Academy Press,
Washington, D.C.

Reuss, J.0., 1980. Simutations of soil nutrient losses resulting from rainfall acidity. Ecol.
Model., 11: 15—38.

Reuss, J.0., 1983. Implications of the Ca-Al exchange system for the effect of acid
precipitation on soils. J. Environ. Qual., 12: 591—595.

Reuss, J.0. and Jdohnson, D.W,, 1985. Effect of soil processes on the acidification of
water by acid deposition. J. Environ. Qual., 14: 26—31.

Rustad, S., Christophersen, N., Seip, H.M. and Dillor, P.J., 1986. A model for stream
water chemistry in a tributary to Harp Lake, Ontario. Can. J. Fish. Aquat. Sci,, in
press.

Schnoor, J.L., Palmer, W.D. and Glass, G.E., 1983. Modelling impacts of acid precipi-
tation for northeastern Minnesota. In: J.L. Schnoor (Editor), Modelling of Total Acid
Precipitation Impacts. Ann Arbor Science, Ann Arbor, Mich., pp. 135—17 3.

Schofield, C.L., 1976. Lake acidification in the Adirondack mountains of New York:
causes and consequences. In: L.5. Dochinger and T.S. Seliga (Editor), Proceedings of
the First International Symposium on Acid Precipitation and Forest Ecosystems. U.S.
Dep. of Agriculture, General Tech. Rep. NE-23, Northeastern Forest Experiment
Station, Upper Darby, Pa. )

Singh, B.R., 1984. Sulphate sorption by acid forest soils: 1. Sulphate adsorption
isotherms and comparison of different adsorption equations in desecribing sulphate
adsorption. Soil Sci., 138: 189—197.

Stoner, J.H., Gee, A.8. and Wade, K.R., 1984. The effects of acidification on the ecology
of streams in the upper Tywi catchment in West Wales. Environ. Pollut., 35: 125—157.

Stumm, W. and Morgan, J.J., 1970, Aquatic Chemistry. Wiley Interscience, New York,
NY.

Thompson, M.E., Elder, F.C., Davis, A.R. and Whitlow, 5., 1980. Evidence of acidifi-
cation of rivers in eastern Canada. In: D. Drablos and A. Tolland (Editors), Proceed-
ings of the International Conference on the Ecological Impact of Acid Precipitation.
Sandejford.

Warren Spring Laboratory Report, 1983. Acid deposition in the United Kingdom. Warren
Spring Laboratory, Stevenage.

Wright, R.F., 1976, Acid precipitation and its effects of freshwater ecosystems: an
annotated bibliography. In: L.8. Dochinger and T.S. Seliga (Editor), Proceedings of
the First International Symposium on Acid Precipitation and Forest Ecosystems. U.S.
Dep. of Agriculture, General Tech. Rep. NE-23. Northeastern Forest Experiment
Station, Upper Darby, Pa.

Wright, R.F., Cosby, B.J., Hornberger, GM. and Galloway, J.IN., 1936. Interpretation of
paleolimnological reconstructions using the MAGIC model of soil and water acidifi-
cation. J. Water Air Soil Pollut., in press.







Section 2

Modelling the effects of acidic deposition and conifer afforestation
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ABSTRACT

Neal, C., Whitehead, P., Neale, R. and Cosby, J., 1986. Modelling the effects of acidic deposition
and conifer afforestation on stream acidity in the British uplands. J. Hydrol., 86: 15-26.

Predictions of streamwater acidification using the MAGIC model, for the British upland
regions sensitive to acidic deposition are presented. They provide examples of how both acidic
deposition and conifer afforestation can increase streamwater acidity. Long term trends are
predicted. Model simulations demonstrate the relative effects of sea salt and acidic oxide inputs.
The study highlights the need for regional surveys of chemical and hydrological catchment
characteristics and the need for applications of the models at a regional scale.

INTRODUCTION

Acid soils overlying massive base-poor bedrock occupy much of the British
uplands. These soils, varying from peats, peaty gleys, peaty podzols, podzols to
rankers, are not only acidic but also most are a potential source of environ-
mentally toxic aluminium. Consequently, much of the British uplands are both
acidic and acid-sensitive. Stream acidification with concomitant loss of fish-
eries is being observed, probably on a large scale throughout the British
uplands. For example, Flower and Batterbee (1983) and Batterbee et al. (1985)
have shown that pH has decreased in several lochs in southwest Scotland and
Harriman and Morrison (1981), Stoner et al. (1984), Harriman and Wells (1985)
and Gee and Stoner (1984) report declining fish populations and in some cases
disappearance of fish from lakes and streams in Scotland and Wales. These
declines are associated with waters that are both acidic and have anomalously
high aluminium concentrations compared with most natural waters, and which
drain both moorland and conifer afforested catchments. The reason for the
decline in streamwater quality remains uncertain. However, the two principal
causes are believed to be acid deposition and conifer afforestation. As the U.K.
debate on stream acidification progresses the relative importance of these two
factors may well develop in a manner similar to that which has occurred in
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other countries where both factors have been attributed as the principal causes
of stream acidification (Rosengvist, 1980; Seip, 1980; Christophersen et al., 1982,
Krug and Frink, 1983; Havas et al., 1984). Establishment of the relative impor-
tance of these two factors is essential for assessing different U.K. management
strategies given that for the uplands: (1) they are extensively afforested (Binns,
1985; Davis and Solbe, 1984); (2) there is considerable economic pressure to
increase conifer afforestation (the U.K. produces only 12%, of its timber re-
quirements); {3) soil cover 1s predominantly acidic and highly susceptible to
acid deposition; (4) acid deposition levels are as high as in other countries
which are believed to suffer from the effects of acidic deposition {Overrein et
al., 1981; Barrett et al., 1983}

Many multidisciplinary studies have been initiated within the last five years
to identify the causes of stream acidification and fish decline. They demon-
strate the seriousness with which the UK considers the problems of stream
acidification. Such studies have included work in the Galloway Region of
South West Scotland (Burns et al., 1984), Wales (Roberts et al., 1983; Reynolds
et al., 1983; Hornung et al., 1935, Neal et al., 1986; Llyn Brianne study, 1986) and
Central Scotland (Mason and Seip, 1985); collaborating bodies include the
Solway River Purification Board, D.A.F.S. Freshwater Fisheries Laboratory,
Forestry Commission, Department of the Environment, Institute of Hydrology,
Institute of Terrestrial Ecology, the Macaulay Institute, a team from the
Imperial College, the Royal Society and the Scandinavian Academies of
Science.

(liven the scale of these UK. studies and the fact that both acidic deposition
and upland afforestation are extensive and variable on a regional scale there
is a great opportunity to determine some of the major effects of atmo-
spheric pollutants and conifer afforestation. Knowledge gained would also be
important with regard to the Furopean debate on the effects of acidic
deposition.

To illustrate the importance of both acidic deposition and conifer afforest-
ation a modelling study has been undertaken to investigate long-term changes
in stream acidity in Dargall Lane, a moorland sub-catchment of Loch Dee, in
Galloway, southwest Scotland. The model used, MAGIC, (Model of Acidifica-
tion of Groundwater In Catchment) which includes sea salt effects. is based on
the assumption that surface water chemistryis determined by reactions taking
place in the soils and rocks within a catchment (Fig. 1). The processes described
by the model include anion retention by the soils, cation exchange by soils,
solubility (Al(OH),) and mobilisation of aluminium, weathering of minerals as
a source of base cations, dissociation of carbonic acid with subsegquent ex-
change of hydrogen ions for base cations, and degassing of C(, in the streams
{Cosby et al., 1984, 1985a, b, 1986a, b; Wright et al., 1986). Stream chemistry
data for Dargall Lane are used to calibrate the model and details of catchment
characteristics, model structure and the application to Dargall Lane are de-
scribed elsewhere (Cosby et al,, 1986b). While the model represents a simple
lumped description of the catchment, the appropriateness of the model has been
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Fig. 1. The magic model.

in part validated in that it is able to reconstruct the same declining pH levels
of recent years obtained by paleoecological analysis not only for the U.K.
(Batterbee et al., 1985; Cosby et al., 1986b) but also for Scandinavia and the
USA (Wright et al., 1986). These results have been obtained using acidic oxide
(SO,, NO,) deposition rates following the pattern of industrial emissions.

No account has been taken of the role of organic acids in buffering stream-
water pH, and consequently here the model is primarily being used for catch-
ments where strong acids are the major acidifier. Various factors, such as soil
depth, soil chemistry, rainfall chemistry and bedrock type, affect catchment
and hence streamwater acidity. Thus different catchments will respond to land
use change and acidic oxide inputs in different ways, as the MAGIC model
predicts. For example with thin soils, consumption of base cations will be much
more rapid and consequently acidification will take place earlier. Examples of
different catchment responses are illustrated by the field work of Batterbee et
al. (1985) and the modelling exercises of Cosby and co-workers (Cosby et al.,
1985a, b, 1986a, b), Other factors such as climate or agricultural changes have
yet to be explored within a modelling context. Also, the MAGIC model gives
annual flow weighted averages whereas during storm events there will be
significant fluctuations around this mean. Dynamic models have been de-
veloped and applied to hydrology (Christophersen et al., 1982; Whitehead et al.,
1986a, b; Reynolds et al.,, 1986) and a dynamic version of MAGIC is currently
under development.

Several chemical, biological and hydrological processes control stream-
water chemistry. These processes are often interactive and not easily identifi-
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able from field observation. Modelling allows separation of the different factors
and the establishment of their relative importance quantitatively. Here the
factors considered are some aspects of afforestation and deforestation, dry and
occult deposition and variations in acidic oxide loading.

LONG-TERM ACIDIFICATION TRENDS FOR THE MOORLAND DARGALL LANE

Fig. 2 shows a simulation of long-term acidity for the Dargall Lane moorland
catchment. The sulphate deposition history (Barrett et al., 1983) is shown in
Fig. 2a and this "drives’ the MAGIC model. The historical simulation of pH
shown in Fig. 2b is similar to the values obtained from the diatom records of
lochs in the region in that a significant decrease in pH from 1900 onwards is
inferred (Batterbee et al., 1985; Flowers and Batterbee, 1983). The steeper
decline from 1950 to 1970 follows from the increased emission levels during this
period. The model can also be used to predict future streamwater acidity given
different future deposition levels. For Dargall Lane moorland stream acidity
trends are investigated assuming two scenarios for future deposition. Firstly
assuming deposition rates are maintained in the future at 1984 levels, the model
indicates that annual average stream pH is likely to continue to decline below
presently measured values. Secondly, assuming deposition rates are reduced
linearly by 509, from 1984 levels (between 1985 and 2000) the results indicate
that further streamwater acidity will be averted and pH rises to 1950 levels
(Fig. 2b). Further details of the application of this model are given elsewhere
(Cosby et al., 1986b). Note an increase in streamwater pH about 1980; this
follows a significant drop in sulphur emissions during the 1970s. Evidence is
emerging for this recovery based on diatom records although chemical ev-
idence is inconclusive to date. Note also that a more rapid decline in stream-
water pH is predicted if there had been no reductions in emissions since 1970,
Regarding the effects of reduced emissions the size of the adsorbed organic and
inorganic sulphur stored in the soil will be a major factor in controlling
recovery rates. If this store is large, recovery in-streamwater pH could be
extremely slow.

AFFORESTATION EFFECTS

Afforested systems are more complex to model than moorland systems be-
cause of the introduction of the forest perturbs a moorland ecosystem which in
itself is difficult to model. The effects of the forest root system, leaf litter layer
and drainage ditches will change the hydrological pathways; this will control
the nature and extent of the chemical reactions in the soil and bedrock.
Further, the additional filtering effect of the tree on the atmosphere will
enhance occult/particle deposition (Fowler, 1984; Unsworth and Cressley,
1986, Fowler et al., 1986) and evapotranspiration will increase the concen-
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ter in the Dargall Lane moorland catchment assuming three

tration of dissolved components entering the stream. The magnitude of these
different effects varies congiderably; for example evapotranspiration from
forests in the British uplands is typically of the order of 30%, of the precipi-
tation which is almost twice the figure for moorland estimated as 16%,. This will
have the consequence that the total anion concentrations within the stream
and soil waters increase by 149, following afforestation (Law, 1956, 1957;
Calder, 1979; Calder and Newson, 1979). The forest will also increase anion and
cation loading due to the enhanced filtering effect of the trees on air and occult



20

sources. By occult deposition we refer to deposition of wind-driven particles
and droplets that are not captured/detected in standard open collector rain-
gauges, e.g., low cloud and mist. [Several forest catchment studies have shown
that chloride concentrations are higher in streamwaters than in the corre-
sponding rainfall or grassland streams. Such a difference results from dry and
occult deposition assuming that chloride is derived from a maritime source and
not from leaching from the catchment bedrock. Such increases are typically of
the order of 309,; N.B. sometimes Cl inputs do not match Na inputs, and
consequently not all Cl inputs come from a maritime source. However, such
pollutant Cl inputs are only likely close to major sources of HCL] The filtering
effects will apply both to marine and pollutant aerosol components. Altering
the hydrological pathways can also have a major effect on streamwater quality
since the forest tends to increase surface runoff thereby flushing/displacing
highly acidic water from the surface layers; the soil zone acts as a proton and
aluminium source whilst the bedrock, if silicate or carbonate bearing, provides
proton consumption by weathering reactions (Neal et al., 1986; Whitehead et
al., 1986b; Reynolds et al., 1986). To illustrate the effects of afforestation simply
in terms of increased concentrations from both enhanced dry deposition and
evapotranspiration, the MAGIC model has been applied to the Dargall Lane
catchment assuming that a forest is developed over the next 40 years. It should
also be noted that many biological, chemical and hydrologic factors may also
be important. For example, no allowance has been made for the effects of cation
and anion uptake by the trees during their development; the incorporation of
base cations into the biomass would result in an enhanced acidification effect
during this period. Consequently the results presented here must be viewed as
highlighting the importance of dry and occult deposition processes,

Of critical importance is the relative and absolute contribution of marine
and pollutant inputs from dry and occult deposition. Fig. 3a shows the effect of
increasing evapotranspiration from 16 to 30%, over the forest growth period
with varying levels of marine, pollutant and marine plus pollutant inputs,

Fig. 3. a. S8imulation of the pH of the streamwater from the Dargall Lane catchment comparing the
moorland catchment response assuming the Fig. 2a deposition rates (—-—), the effect of 149
additional evaporation following afforestation (------ ), the effect of 149, additional evaporation
plus 15%, additional input of natural seasalts following afforestation in 1985 {~-—-), and the effect
of 149%, additional evaporation plus 30%, additional input of natural seasalts following afforest-
ation in 1985 {(—-—-—).

b. Simutation of the pH of streamwater from the Dargall Lane catchment comparing the moor-
land response (-——) to the forested catchment response assuming increased evaporation (—-—- -}
with different levels of pollutant scavenging (------ = 209%, additional sulphate; ——- = 40%,
additional sulphate; —--— = 60%, additional sulphate).

c. Simulation of the pH of streamwater from the Dargall Lane catchment showing the mooriand
response (——} and the combined effects on the forested catchment of increased evapotran-
spiration, increased scavenging of natural sea salts, and various levels of increased scavenging of
pollutant inputs {(~-—- = zero additional poilutant scavenging; -~ - - = 20%, pollutant scaveng-
ing; ——-- = 40%, pollutant scavenging; — —— = 60%, pellutant scavenging).
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Increasing either marine or pollutant components (Fig. 3, b and c) leads to
enhanced stream water acidity, the greatest effects being observed when both
components are present; the effect of simply increasing evapotranspiration
from 16 to 30% has a similar effect but the changes are much smaller. The
important features of these results are the enhanced sea salt and acidic oxide
inputs from increased scavenging by the trees resulting in a marked reduction
in pH levels and the additive effect when both processes are combined. These
reductions are much greater than the effect of evapotranspiration.

ATMOSPHERIC ACIDIC OXIDE EFFECTS

An important factor in determining stream acidity in the upland U.K. is the
amount of acidic oxide deposition; rates of deposition (non marine wet depo-
sition and dry deposition) can vary from 0.5 to over 6gm™*yr ' of § and from
0.1 to over 0.5gm 2y of N (Barrett et al.,, 1983; Overrein et al., 1981). Fig. 4
shows the effects of such variations for both moorland and forested catch-
ments; the highest levels correspond to areas with high atmospheric acidic
oxide rates (3 times the historic and 1984 deposition levels observed in the
Southern Uplands of Scotland). For the forest simulations it has been assumed
that a conifer forest has been introduced onto the Dargall Lane moorland in
1844. With increasing atmospheric acidic oxide pollution, the decline in stream
pH is accelerated, the changes occur much earlier, and the final pH of the
streamwater is lower.

DEFORESTATION EFFECTS

Whilst afforestation increases stream acidity, as shown both by the model
predictions and field evidence (Harriman et al., 1985), then deforestation will
result in a reduction in streamwater acidity. Fig. 5 shows the effects of de-
forestation from the present time for a range of acidic input loadings. The
result shows that while there is a short-term improvement in stream acidity,
the long-term acidification trend is maintained. It is interesting to note that the
pH recovery following deforestation at the intermediate deposition levels is
greater than that at the higher levels. However, in terms of H* concentrations
the greatest recovery occurs under the highest deposition loadings. This is
because base saturation has not been completely depleted, and the reduced
deposition following deforestation can be buffered by the available cations.
Note that afforestation following tree harvesting will negate the improvement
in streamwater acidity. At deforestation, several factors not included in the
model will become particularly important (e.g. increased NO; in the stream-
water, changes in acidity/base saturation, accumulation/breakdown of humus,
and logging practice).
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Fig. 4. a. Simulation of the pH of streamwater from the Dargall Lane moorland catchment
assuming sulphate deposition patterns (shown in Fig. 2a) modified by various factors to reproduce
a range of loading conditions (i.e. from pristine to heavy pollution).

b. Simulation of the pH streamwater from the ‘forested’ Dargall Lane catchment assuming
afforestation from 1844 onwards and sulphate deposition patterns (see Fig. 2a) multiplied by
various factors to reproduce a range of loading conditions from pristine to heavy pollution.

— . Background rates(pristine conditions)

------ 0.5 = Fig. 2a deposition concentrations{low pollution)

————1 = Fig. 2a deposition concentrations |
———_ 1.5 = Fig. 2a deposition concentrations
— .—-—2 x Fig. 2a deposition concentrations
—.._—.-—3 x Fig. 2a deposition concentrations

} intermediate pollution

} heavy pollution

IMPLICATIONS

The modelling enables preliminary assessment to be made of some of the
relative effects of atmospheric acidic oxide pollution and conifer afforestation,
as well as highlighting some of the topics that need further consideration. For
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from 1544 and deforestation in 1990. Deposition patterns as described in Fig. 4.

example, the above simulation suggests that for present acidic oxide loadings
significant streamwater acidification can occur, irrespective of other com-
plicating processes. The model also suggests that reductions or increases in
acidic oxide loadings can significantly change the acidity of streamwater in
upland areas similar to Dargall Lane. The model predictions are similar to
observations of stream acidity found in Southern Scandinavia and add weight
to the conclusion that such pollutant inputs can be a major source of stream
acidification in those countries as well. How important this acidification
process 18 on a regional basis in the upland U.K. cannot be gauged immediately
from the present study because many unresoclved factors remain, as mentioned
above. However, much of the British uplands have soils which are susceptible
to acidic inputs; it is therefore reasonable to assume that the modelling exer-
cise could be applied on a regional scale. If the above results are representative
of sensitive upland areas then reductions in present acidic depositions of the
order of 50%, are required to prevent further increase in stream acidity for
moorlands; afforested catchments require greater reductions. N.B. The rela-
tionship between deposition and emissions is not necessarily linear, emission
levels may need more substantial reductions. The study points to the need for
further regional analysis of soil and streamwater chemistry, as well as a better
understanding of hydrogeochemical processes operating within catchments.
Further, the study provides an example of the need to establish the extent of
scavenging of aerosols onto plant surfaces, and more generally on the benefits
of multidisciplinary catchment and modelling studies. While there is uncer-
tainty regarding the nature and the extent of the hydrogeochemical processes
operative there is a need to change existing forestry practices which are of
immediate pragmatic concern (Whitehead et al., 1986b).
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Modelling the effects of hydrological changes on stream water acidity
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ABSTRACT

Whitehead, P.G., Neal, C. and Neale, R., 1986. Modelling the effects of hydrological
changes on stream water acidity. J. Hydrol., 84: 353—364,

A mathematical model describing the hvdrology and chemical reactions associated
with soil and groundwater compartments in a catchment is used to assess the effects of
hydrological changes on stream water acidity. By altering the percolation equation in the
model the proportion of baseflow to surface soil flow is altered. This radically affects the
stream chemistry and it is shown that increasing baseflow can significantly improve
stream quality, reducing acidity and lowering aluminium levels. It is proposed that catch-
ment experiments are established to investigate methods of altering the hydrology to take
advantage of the buffering capacity of baseflow waters.

INTRODUCTION

Catchment studies investigating the acidic behaviour of upland streams are
expensive, time consuming and difficult to establish due to the complexity
of hydrological, chemical and biological interactions. Nevertheless many
catchment studies have been and are being established to evaluate short-term
and long-term fluctuations in stream water chemistry. For example as part of
the joint Scandinavian—DBritish Surface Water Acidification Programme
(Mason and Seip, 1985) major studies are being established in the UK and
Scandinavia. Other organisations such as the Welsh Water Authority (Llvn
Brianne Study; Stoner et.al., 1984) the Solway River Purification Beoard
(Loch Dee study; Burns et al., 1984) and the Freshwater Fisheries Labora-
tory (Loch Ard Study; Harriman and Morrison, 1981) have also established
catchment studies following mounting concern over the loss of fisheries in
Scotland and Wales and the possible detrimental effects of stream acidity on
water resources. Several researchers involved in these studies (Harriman and
Morrison, 1981; Gee and Stoner, 1984) have reported elevated acidity and
aluminium levels in upland streams draining afforested (conifer) catchments
in the UK. Moreover in many of these areas and particularly forested catch-
ments fisheries have deteriorated and restocking programmes have been
unsuccessful.

0022-1694/586/303.50 D 1986 Elsevier Science Publishers B.V.
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Fig. 1. Hydrological model used for Harp Lake catchmenl and main processes operating.

One major advance in this area has been the development of mathematical
models to describe the dominant interactions and processes operating and to
simulate catchment behaviour. Recently steady-state models have been used
prescriptively to demonstrate the long-term consequences of changes in the
industrial emissions of SO, (Cosby et al., 1985 a,b, this volume; Kaméri et
al., 1985). Correspondingly, dynamic models have been successfully applied
descriptively to several catchments (Christophersen et al.,, 1982, 1984;
Whitehead et al., 1986). For example, Christophersen et al. (1982, 1984)
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have developed a simple conceptual model that reproduces major trends in
chemical and hydrological behaviour in Norwegian catchments. This model
has been successfuily extended (Seip et al., 1985; Rustad et al_, 1986} and
applied descriptively to the Harp Lake catchment in Canada. The model has
also been applied to two forested catchments in Sweden {Grip et al., 1985).

Several workers have identified the importance of baseflow processes in
buffering stream water acidity (Ramberg, 1981: Sharp et al., 1984:
Kinniburgh and Edmunds, 1984; Puhe and Ulrich, 1983). In this paper the
extended model applied to the Harp Lake catchment, has been used pre-
scriptively to investigate the buffering potential and the effects of hydro-
logical changes on stream water acidity. This work is presented to open
discussion on the potential of using hydrological techniques to improve
stream water quality particularly in areas where land use change may
enhance the effects of acid deposition and acid soil formation such as upland
afforested catchments.

MODELLING APPROACH

The model used here has been described in detail elsewhere (Seip et al.,
1985; Rustad et al., 1986) and hence only the salient features are given here.
The three-compartment model shown in Fig. 1 represents chemical and
hydrological processes operating in snow cover, near-surface soils and
groundwater. The figure shows the flow pathways and the dominant
chemical processes in each compartment. Flow movement between the soil
and greundwater compartments is restricted by a *‘percolation” equation as
follows:

ASIG = Pﬁ(B_Bmm)fmeax for B = Bmin

and:
ASIG - 1.33P_ 033P(B/Bmm)3 fOI‘ B < Bmin

where B refers to the groundwater compartment water level and B,
and Bp,, refer to minimum and maximum water levels, respectively,
The parameter P can be considered as a percolation parameter so that
increasing P increases the fraction of flow, Agg, routed to the lower
reservoir. This leads to an increase in the baseflow contribution to the
stream. The model also includes a piston flow component to describe the
hydraulic movement of water out of the groundwater compartment.

This model has been calibrated and validated using several years data for
the forested Harp Lake catchment in Canada (catchment area 1.4 km?; bed-
rock geology is amphibolite, schist and gneiss; overlying soils are sandy loams
of less than 1 m thickness; thin soils and rock ridges account for 33% of the
catchment; tree types are sugar maple, beech, birch and aspen). Here the
model and the data have heen empioyed to evaluate the effects of changing
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TABLE 1

Flow and chemistry simulation results for 1977—80: Percolation parameter 0.1 (52.3%
baseflow}

Flow HT Al

(m’s™") (keql ™) (ueq ™)
Sall compartment
mean 0.7a 1978 416.71
st. dev. 2.05 1.438 4.06
maximum 24.98 52.19 53.70
Groundwater compartment
mean 0.82 2.32 0.0183
st. dev. 1.65 1.79 0.0644
maximum 11.47 12.38 0.7165
Stream
mean 1.37 6.59 2,118
st. dev. 3.36 11.65 5.978
maximum 30.71 51.68 5214
TABLE 2

Flow and chemistry simulation results for 1977—80: Percolation parameter 0.6 (33.5%
haseflow)

Flow H* APt
(m?s™h) (Heq ™) {teq ™)
Soil caompartment
mean 0.186 49.78 46.71
st. dev. 0.49 1.48 1.086
maximum 7.11 52.19 23.70
Groundwater compartment
mean 1.23 1.69 0.0048
st. dev. 2.26 1.04 0.01423
maximum 15.48 7.58 0.1650
Stream
mean 1.39 0.46 t.0095
st. dev, 2,71 1.43 0.0939
maximum 2459 i6.15 1.59

baseflow contribution via the percolation equation. Also since acidic
deposition is relatively low for the Harp Lake area, additional model runs
have been undertaken to simulate an area subject to significant stream water

acidity by increasing wet and dry sulphur by a factor of 3 (from 2 to 6g8
m 2 yr!). ,
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TABLE 3
Flow and chemistry simulation results for the rainfall period 28/TITT1TIL20TT
Percolation parameter 0.1 (42.2% haseflow)

Flow 3 At
m3s™h (egl™ (pegl™h)
| Soil compartment
| mean 1.27 51.12 50.48
| st. dev, 2.17 0.65 1.94
§ maximum 11.28 52.19 33.70

Groundwater compariment

pe

Flow and chemistry simulation results for the rainfall period 2BTITT-1T/12/77:
Percolation parameter 0.6 (39.5% haseflow)

| mean 0.92 3.16 0.0242

| st. dev. 1.14 1.77 0.0376
maximum 4.03 7.47 0.1273

Stream

mean 2.18 16.56 6.369
st. dev, 3.07 15.29 9.302

| maximum 11.75 51.68 52,14

|

|

i TABLE 4

| Flow H* AT
| m*s ) (Leql™h) (neq1™")
Soi compartment
mean .18 51.12 50.48
st. dev. .29 0.65 1.94
maximum 1.30 52.19 33.70

Groundwater compartment

; mean 1.28 2.09 0.0042
‘ st. dev, 1.47 .05 0.0033
‘ maximumn 6.04 3.63 0.0183
j Stream

| mean 1.43 0.65 0.0008
| st. dev, 171 0.68 0.0038
} maximum 7.23 4.48 0.0335

RESULTS AND DISCUSSION

The percolation parameter, set to 0.75 for Harp Lake by Seip et al. {1985).
was varied between 0.075 and 0.9 to assess the sensitivity.of flows and
chemistry to changes in percolation and hence baseflow.
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Fig. 2. Maximum H' and Al'7 concentrations in {he stream showing variation over a range

of baseflow conditions (three-yr simulation 1977—1980).

v statistics for flow, H* and Al®* concen-
(i.e. those used in the Harp Lake Study —
Seip et al., 1985). The simulation period is 197780 and results are given for
the outputs from the soil and groundwater compartments and the stream.
Table 1 shows the results given a percolation parameter of 0.1 and Table 2
for a percolation parameter of 0.6; these runs correspond to baseflow con-
tributions of 52.3 and 88.5%, respectively. In general there is little change in
the concentrations of H™ and AL3* for the soil and groundwater com-
partments with change

s in the percolation parameter since in the short-term
the ion exchange and solubility controls are computed largely independent
of flow. However the concentrations in the stream

do change significantly
with changes in the percolation parameter. For example maximum H* con-
centrations decrease from 51.68 to 16.15 weql™' . Similarly maximum AT
concentrations decrease from 52.14 to 1.59 peql™t. These changes are due
to the reduction in the upper soil zone flows reaching the stream and the
corresponding increase in flo

w from the lower soil horizon and bedrock.
In this particular case average

naseflow increases from 52.3 to 88.5% of the
streamflow and average soil flow reduces from 47.

7 to 11.5%. Thus changes
in percolation and hence baseflow can have a significant effect on H' ion
and Al®* concentrations.

The peak values of H'
are dominated by the snowmelt ev

Tables 1 and 2 give summar
trations given low deposition rates

jon and Al** concentrations in the stream waters
ents in Harp Lake with snowmelt pro-
viding a major source of stream water acidity, However even mean stream
water levels show reductions of 93% in the case of H and 29.6% for AlPT
just by changing the proportion of baseflow. Mean levels are biased by the
summer/dry season flows when the streamn chemistry is dominated by non-
acidic baseflow. Thus the effects can be even more significant if a rainfail
rather than a snowmelt period is considered. Tables 3 and 4 show flows and
concentrations during the rainfall period (28;’9;’77—1’7;’12/’77). Peak Al°T
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Fig. 4. Maximum H” and AI’" concentrations in the stream showing variation over a range
of baseflow conditions-(simulation over rainfall period 28/7/77—17/1 2/7T)

concentrations fall by 99.9% and peak H* ion concentrations fall by 91.4%.
Mean concentrations over the period fall by 99.9 and 96.1% for AlI’* and H*
ion concentrations, respectively.

The changes in stream water concentrations for H' ion and A** to changes
in the baseflow contribution to stream water is non linear. This is illustrated
in Figs, 2, 3, 4 and 5 which show H" and Al’* maximums and means over a
range of baseflow conditions for both the long- and short-term data sets: All
concentration values fall as the percolation parameter increases; the rate of
decrease varying from one variable to another. In general increases in base-
flow results in significant reductions in H* ion and Al concentrations.
Studies by Seip and Rustad (1984) show a similar non-linear behaviour when
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Fig. 6. Maximum H* and AP
of baseflow conditions (three-
6gSm ° yfl ).
upper and lower soil horizon waters are mixed. Note, however, that the

model assumes aluminium solubility controls with gibbsite and this may
require modification as turther information on aluminium chemistry

becomes available.
Finally, the model yuns have been repeated assuming an increased acid

deposition rate of 6gSm~ yrt, a factor of three times the Harp Lake
values. This higher rate s more representative of the values obtained in

central Britain and central Europe. The effect of this change is ilustrated in

Pigs. 6, 7, 8 and 9 which show the curves for the H* ion and Al*" stream

water concentrations; increased H* ion and Al?* concentration maximums

\
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are obtained and the curves are shifted along the baseflow axis. In other
words in catchments subject to increased acid deposition the effect of the
paseflow contribution is even more important in determining streamflow
chemistry. Thus a small increase in baseflow is likely to have a significant
offect in reducing stream acidity and aluminium levels.
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CONCLUSIONS

The Harp Lake model has demonstrated the importance of baseflow con-
tribution to controlling stream water acidity from conifer forest systems and
has highlighted the value of mathematical modelling as a prescriptive tool.
Clearly generalisations cannot be made regarding the effects of baseflow
changes for catchments since acid buffering mechanisms will be strongly
related to bedrock type, the nature of hydrological and chemical processes
in the different soil horizons, the extent of mineralisation and land use; the
latter three usually being poorly defined and not easily definable on a catch-
ment scale. Nevertheless the results suggest the need for research on the
physical means of controlling stream water quality in upland afforested
catchments and also illustrates the sensitivity of predictions to changes in the
parameters controlling percolation and hence bhaseflow. In general thereisa
need for further research into the sensitivity of the process models
particularly in relation to parameter uncertainty.

Some of the drainage and cultivation techniques used in upland affore-
station programmes in the UK have proved inappropriate, and are presently
being reviewed and changed. Downslope ditches and land disturbance have
led to the reduction of drinking water quality (colour, turbidity and taste)
and increased costs of treatments to the water indusiry (Davis and Solbe,
1984; Richards, 1985). This water quality deterioration results from
increased physical erosion which in turn has had a deleterious effect on the
landscape (Newson, 1980; Robinson, 1980). Further the use of downslope
drainage ditches has ensured that acidic, aluminium bearing, storm water
from the upper soil organic horizons enters the stream directly. During high
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flow events the groundwater store (where acidic surface soil waters are
neutralised by inorganic reactions) is bypassed (if percolation rates are low)
and thus groundwater buffering controls are minimised. As mentioned in the
introduction, this has had a deleterious effect on fish populations in
afforested streams in upland UK. Consequently there is an urgent need to
review and modify forestry practices in the uplands particularly since there
s considerable economic pressure to increase conifer afforestation in the
“economically marginal™ upland regions; the UK produces only 9 to 12% of
its timber requirements.

New forestry management practices are being investigated as part of
several studies, supported by the Forestry Commission. The results presented
here suggest that modifying the hydrological regime to increase percolation
and hence baseflow could significantly improve stream water acidity and
reduce aluminium levels. Regarding the techniques used to change the hydro-
logical regime, these are not well established and will need to be site specific
and cost effective. Schemes that might be/are being considered include con-
tour or herring bone drainage, deep planting/ploughing to allow water
penetration through the impermeable clay soil layer (while mintmising
erosion effects), planting without ploughing, planting of deep rooted trees
{particularly near the stream channels), and the restriction of direct entry of
drainage channels into the stream, and the drainage of “old” water from the
catchment. These alternatives might not only improve stream acidity and
aluminium levels but most would also reduce the problems of colour,
turbidity, taste and erosion.
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ABSTRACT

Whitehead, P.G., Neal, C., Seden-Perriton, 5., Christophersen, N. and Langan, 5., 1986.
A time-series approach to modelling stream acidity. J. Hydrol., 85: 281-—-303.

The techniques of time-series analysis are applied to field data from Norway, Scotland
and Wales to model the response of stream acidity. Hourly, daily and weekly data for pH,
flow, aluminium, sulphate, magnesium and calcium are used to identify model structures
and estimate model parameters. The recursive time-series techniques are shown to be
particularly useful for identifying physical and chemical changes and providing simple,
robust models of streamwater chemistry. The dominant processes are identified using
the time-series techniques which provide a systematic method of analysing hydrochemical
data prior to the development of more complex physico-chemical models.

INTRODUCTION

In recent years acid deposition is believed to have had significant effects
on water quality in North American, Scandinavian and European rivers, lakes
and reservoirs. Extensive research has been conducted on individual pro-
cesses affecting acidity (e.g. interception, rock weathering, soil chemistry)
and there is now a need to study the integrated process behaviour at the
catchment scale. Studies in the USA, Norway and the UK have shown that
descriptive mathematical models can be developed successfully given a
suitable data base (Christophersen et al.,, 1982, 1984; Cosby et al., 1985,
1986). Such models provide an understanding of the interactions between
chemical and hydrological processes and in the future may allow realistic
predictions to be made of the long-term acidity of catchments, the
possible effects of land use change and the short-term acute effects such as
acidity associated with snowmelt.

0022-1694/86/53.50 ©1986 Elsevier Science Publishers B.V.
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Fig. 1. Combining “‘theoretical” knowledge and field measurements in the modelling
procedure {adapted from Beck, 1984).

MODELLING PROCEDURES

Physical, chemical and biclogical components all affect the behaviour of
catchment runoff water quality and it is not surprising that a wide range of
models have been developed to predict stream acidity. A summary of the
approaches that may be used in such circumstances is given in Fig, 1 which
shows the two ingredients necessary for a suitable model. Firstly, a knowl-
edge of the theoretical behaviour is required so that the correct principles
can be incorporated. Secondly experimental or field data are required to
calibrate and validate the models. Models vary according to the degree to
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which theoretical information is included and the extent to which data are
used to derive or estimate model parameters.

One approach is to use physical, chemical and biological theories to
derive partial differential equation descriptions of the system under inves-
tigation. These models are likely to be non-linear and although they represent
the best information available on the system behaviour they are certainly not
perfect representations. For example the heterogeneous nature of a catch-
ment both chemically and hydrologically defies precise mathematical rep-
resentation while the constantly changing shape of a river bed cannot be
reproduced precisely in a mathematical form. Moreover, the selution of par-
tial differential equations is particularly difficult requiring finite differernice
or finite element approximations. Such approximations may introduce
numerical dispersion unless extreme care is taken and thus even computer
solutions may not accurately portray the behaviour represented by the
model equations. Nevertheless some of the most advanced modelling research
has resulted in partial differential equation descriptions (Lam and Simons,
1982) and these may become available as modelling packages. Users not
familiar with the difficulties of numerical integration techniques may how-
ever be mislead by the model results.

One simplification used by modellers to ease the computation burden is to
linearize the equations. The approach produces sensible solutions provided
the system is not changing rapidly or has not moved away from the lin-
earization range (when linearization errors become large). However numetical
dispersion again causes problems because of the discretization of advective
terms in linear partial differential equations. Another simplified approach is
to develop ordinary differential equation models (Christophersen et al,,
1982; Cosby et al., 1985). In order to use these approaches, assumptions are
made to lump system characteristics or parameters. Thus a catchment may
be segmented into compartments and soil characteristics are assumed to
apply uniformly over a compartment. The advantage of this approach is that
the model equations can be solved with relative ease and the model para-
meters determined by calibration against field data. The disadvantage is that
errors may be introduced by the lumping of system characteristics. However,
provided care is taken this simplified modelling approach is often very
productive.

Recently there has been research conducted on the estimation of model
parameters from hydrological and water quality field data (Beck and Young,
1976; Whitehead, 1979, 1980; Whitehead et al., 1979, 1981; Whitehead and
O’Connell, 1984). These estimation techniques provide an efficient means of
analysing water quality data and although lumped parameter models are
generally used in combination with these techniques, the joint approach
represents an efficient procedure, drawing the maximum degree of infor-
mation from the data whilst incorporating theoretical knowledge of process
behaviour. The particular technique applied in this paper to model stream
acidification is the recursive approach to time-series analysis. The emphasis
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Fig. 2. Representation of a general transfer function with superimposed noise model.

in the current approach is to identify and represent dominant processes
controlling system behaviour with the minimum number of parameters. This
avoids the problems of over-parameterization in models of such ill-defined
systems, as emphasised by Young (1978).

TIME-SERIES MODELLING TECHNIQUES

Time-series models are suitable where the overall input—-output behavicur
is of prime importance and where internal mechanisms are particularly com-
plex. It is assumed that a ‘“law of large systems” applies (Young, 1978)
whereby the combination of all the complex non-linear and distributed
elements gives rise to an aggregated system behaviour that is relatively simple
in dynamic terms.

It will be seen from Fig. 2 that the general single input—single output
{SISO) model consists of two parts, a process model, and a noise model (Box
and denkins, 1970). The observed output, y, is taken to result from an
observed input u,, which causes most of the output variation and a stochas-
tic input a,, that accounts for random disturbances such as measurement
noise. The output y, is then given by the sum of the deterministic and
stochastic components x, and n,, respectively, i.e.:

Ye = xptn, (1)
x, is obtained from the transfer function model:

8(Blx; = w(B)u,_, (2)
where:

§(B) = 1+6§,B+8,B +...+ 8B

and:

w(B) = wg + w;B+ w,;B? +...+ w,B* (3)
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B is the backward shift operator, i.e. B’x, =x, 5. Thus, b =1 gives a time
delay of one sample instant between the input and the systems response to
it, via its output, y,.

The noise component at time, £, n,, is generated by an ARMA model simi-
lar to eqn. {2) but in this paper the analysis is restricted to the transfer
function model. This is because we are concerned with investigating the pro-
cess behaviour and the relationships between variables associated with stream
acidity and not with providing real time forecasting models.

There are several techniques for estimating model parameters; for example
Box and Jenkins (1970) utilised an optimization procedure. In the present
approach, the parameters characterising the deterministic or process time-
series model, §, and w,, are estimated using a recursive instrumental vari-
able procedure in which the parameter estimates are updated a sample
at a time while working serially through the data. The technique strongly
resembles the Kalman filter and details of the estimation procedure are
given by Young (1974) and Young et al. (1971). '

The recursive 1.V, algorithm has been incorporated into a time-series
analysis computer program package (Shellswell and Young, 1973; Mutch and
Whitehead, 1976; Venn and Day, 1977), and has been applied to the mod-
elling of water quality data for several systems (Whitehead and O’Connell,
1984).-

The time-series techniques have also been extended to estimate multi-
variable systems (Young and Whitehead, 1977; Jakeman and Young, 1979)
and applied to water quality problems. Such models are relevant in this
study because of the complexity of catchment chemistry and hydrological
behaviour.

The multivariable model has the following discrete time state—space
representation of a multi-input multi-output, linear dynamic system:

x;, = Px, | + Qu, (4}

where x; = (xy %3, .. Xp¢)T is an n-dimensional vector of state vari-
ables that characterise the system at the kth instant of time. u#, = (1, stz
¢ ..Uy )T is an m-dimensional vector of deterministic input variables, also
sampled at every time instant, while P and () are, respectively, n x n and
n x m matrices with elements:

Pij (l,] = 1,2,...,”) andQu(I = 1,2,--.,n;j = 1,2,...,m]

As in the case of the single input—single output case a recursive [.V.
algorithm may be used to estimate the model parameters (Young and
Whitehead, 1977; Jakeman and Young, 1979).
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CATCHMENT STUDIES

pH cng conducthiity —eccrd

The data used in the present modelling studies have been obtained from
three principal catchment areas, Loch Dee in southwestern Scotland, Birkenes
catchment in southern Norway, and Plynlimon in mid-Wales.




287

R F}fw\
YU 2

Zw

e e
r;.,f%?q-. .

v

~
&

~

NORWA% :,' {r )\)
,.,: /) //
o B 7
: O
B ';‘ \K
|
C e

BIRKENES), - ¢ G’
\ Jf
§
i;ﬂj

Fig. 4. Birkenes catchment, Norway.

Loch Dee

Loch Dee has a remote setting in the Galloway Hills in southwestern
Scotland (see Fig. 3). The catchment is made up of three sub-basins: the
Dargall Lane to the west, the White Laggan Burn with its tributary the
Black Laggan towards the south, and the Green Burn entering from the
southeast. The outflow at the northeast end of the loch is the source of
the River Dee and up to this point the catchment has an area of 15.6 km?
of which the loch surface itself occupies 1.0km?, Catchment altitudes
range from 225m on the loch shore to 716 m on Lamachan at the head
of the Dargall Lane. Nearly two thirds of the catchment lies above 3056 m
(1000 ft). Geologically the area comprises two distinet rock types: Ordovician
greywackes/shales and granites of Old Red Sandstone age (Burns et al.,
1984).

The climate in this region is cool and wet. Annual rainfall averages 2200 mm
and monthly falls of less than 25 mm are rare. Night frosts are common
throughout the year. Based on a daily mean temperature threshold value of
6°C the growing season varies between 220 days at the loch side to 150 on
the high ground where little growth can be expected before the end of May.
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Birkenes

Birkenes lies at 200—300 m above sea level about 15 km north of Kristian-
sand, near the southernmost tip of Norway (Fig. 4). The 0.41 km? catch-
ment is semi-circular in shape and drained by two first-order streams that
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combine to form a second-order stream 150 m above the catchment outflow
weir. Relief is 200—300 m above sea level with granitic outcrops on the ridge
tops and moraine and peat deposits in the low lying areas. The vegetation is
characterized by mixed coniferous forest, and about half the catchment has
a soil depth less than 20 cm.

The southern area of Norway is severely affected by acid precipitation,
acidification of surface waters and loss of fish peopulation. In the Birkenes
catchment (Fig. 4) precipitation and runoff flow and chemistry have been
measured since 1972 with the aim of describing and modelling stream water
chemistry (Christophersen et al., 1982, 1984).

Plynlimon

The Plynlimon study area lies in mid-Wales (Fig. 5) and consists of two
sub-catchments, the upper Wye catchment and upper Severn catchment.
The Wye catchment is used for sheep grazing and the Severn catchment has
been extensively forested with spruce and larch from 1930 onwards. These
two different land uses provide the basis for an ideal comparative study and
detailed hydrological and water quality data has been collected for the past
ten years. Newson (1984) has reported the wide range of pH obtained from
different land use. In the forested Severn catchment (Afon Hore and Afon
Hafren) storm events generate acidic runcoff. In the grassed Wye catchment
acidity levels are much meore stable and pH values are higher due to liming
of the land and the presence of calcium carbonaterich sediments derived
from lead mining. However, this part of Wales is also subject to significant
loads of deposited sulphur (Barrett and Trwin, 1984) in which 30% of the
load is of non-marine origin and it is to assess and model this aspect and
the interaction with the forest that we are primarily concerned here. .

TIME-SERIES ANALYSIS OF CATCHMENT DATA
Loch Dee

In Loch Dee an extensive record of hydrological water quality data has
been collected over a five year period (Burns et al., 1984; Langan,
1986). Our analysis has been restricted initially to a time-series model
relating flow to hydrogen ion concentration for the White Laggan sub-
catchment. The White Laggan is subject to episodic acidification, primarily
attributed fo atmospheric inputs (Langan, 1986).

The hourly runoff and hydrogen ion concentration data was initially
analysed using correlation and prewhitening techniques (Box and Jenkins,
1970). The cross-correlation of the prewhitened series suggested a first-
order autoregressive model with a single moving average parameter; i.e. an
equation of the form:
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x, = — 8, X T Wolly (5)

where x, is the hydrogen ion concentration (peql™) and u, is the flow
(m? s7!) in the stream at time t.

The parameters 5; and w, were estimated using the time-series algorithm
referred to previously and applied to 200 hourly observations of flow and
hydrogen ion concentration. The parameters were estimated to be:

8, = — 0.680 (standard error 0.012)
we = 0.659 (standard error 0.022)

‘and Fig. 6 shows the simulated hydrogen concentration against the observed
concentration. A remarkably good fit to the data is obtained with 93% of
the variance explained and suggests that H™ ion and flow are closely related.
However a true test of the mode! would be to use an additional data set;
Langan (1986) has conducted split sample tests to data from all three sub-
catchments of Loch Dee and found that equally good results have been
obtained for a wide range of storm events. In the case of the White Laggan
a mean response time (7T) of 2.6 is obtained, reflecting the fast response
{ime between output flow and hydrogen ion concentrations. The gain of the
system can be determined as:
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Wo - 0.659
1+5, 1-068

Gain = = 2.06 (6)
In other words an increase of 1m? s7! in flow is associated with a con-
centration increase of 2.06 yeql™' of hydrogen ions in the streamwater.
Flows of 5m? 57! and more are common, suggesting that hydrogen ion con-
centrations above 10 ueq1™! (i.e. below a pH of 5) will be frequent.

The model demonstrates that even a very simple dynamic representation
can be used to predict hydrogen ion concentration and supports the view
that, for the relatively homogeneous White Laggan catchment, a simple
hydrological model should suffice. This should not be used to imply that
stream acidity is directly caused by hydrological processes rather than-
by pollutant inputs. Aecid deposition and flow through humus and
mineral horizons in the soil give rise to stream water acidity. The hydrological
processes provide the means of transfer of these acid waters into the stream
(Whitehead et al., 1986},

Birkenes

The aim of the modelling in the Birkenes study is to predict daily hydrogen
ion and aluminium concentrations since these are of primary importance in
establishing the impact of stream acidity on aquatic ecology. The only
unbroken and consistent set of daily data available consisted of daily flow
(m?s™!) and hydrogen, sulphate, aluminium, calcium and magnesium ion
concentrations (ueql™!) for a 90 day period from September to November,
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1974. (A much longer record of weekly data is available, Christophersen
et al.,, 1982, 1984.)

The data for the Birkenes catchment have already been subjected to
significant modelling analysis. Christophersen et al. {1982, 1984) developed
a two-compartment hydrochemical model based on the mobile anion con-
cept. Early work has also been undertaken on time-series analysis of pre-
cipitation and runoff data (Skroppa and Mohn, 1975). The current-analysis
draws on the work of Christophersen et al. (1982, 1984) but again uses the
times series approach to estimate model parameters. Initial time series
analysis showed that highly non-linear behaviour was associated with
flow peaks in the Birkenes catchment and this prevented good esti-
mation of model parameters. In order to achieve stable parameter values
these peaks have been removed in our analysis using a simple threshold. It
is assumed therefore that peak flows above 7 mm per day by-pass the catch-
ment model and take no part in the water quality reactions; hydrogen ion
concentration is therefore a function of the remaining flow moving through
different flow pathways. :

As in the case of Loch Dee a time-series model of the form of egn. (5) was
fitted to the data initially. The response (Fig. 7) indicates that again the
model output follows the observed hydrogen lon concentration although
the model fit is generally not as good as the Loch Dee model with only
64.9% of variance being explained by the model. Of particular interest is that
the model does not reproduce the first flush of hydrogen ions following the
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first storm event. This is reflected in the parameter estimates for w, which
shows a significant rise in this period (see Fig. 8), and consequently it is
necessary to move to a multi-input, single output model of the form of eqn.
(4) to incorporate the sulphate component. Figure 9 shows the effect of
including sulphate in the model. The estimated equation in this case is:

x, = 0.45%x,, +262u; , +0.045u, , . (7)

where u, , and u, , refer to flow and sulphate respectively at time . The
effect of including sulphate is now to reproduce the flushing effect. How-
ever, the recession part of the response is still inadequately modelled. This is
possibly due to ion exchange reactions, in which hydrogen ions displace
divalent metal ions (M?*) on sediment surfaces, which are not taken into
account i.e. NIC,; + 2H' = NICy + M? " where NIC,; is the notional inter-
facial content for M2 * of a soil particle — analogous to the term ‘“‘adsorbed”
{c.f. Neal et al., 1982). This relationship can be described by an exchange
constant where:

_ NIC, [M**]
T NICy [H*]2 (8)
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For the case where the cation exchange capacity is large compared with the
flux of ions through the soil system v/ [M?**] o« [H]. Incorporating this
factor into the model gave:

2, = 0.38x,, +2.38u,,+013u, ,—1.121,, (9)

where u; =+/M*" and the model response is now close to the observed
hydrogen ion concentration (see Fig. 10). The estimated coefficient on
VMt s —1.12 suggesting that hydrogen ions are removed by the release
of Ca and Mg and this fits in with the expected chemical behaviour. The
observed model now predicts the observed hydrogen ion concentration
closely and consequently the time-series model, albeit a simple represen-
tation of the system, gives an adequate simulation of system behaviour with
92.4% of the variance explained by the model.

The other key variable to predict in catchment acidity studies is alu-
minium. Unfortunately, modelling the variation in water chemistry of this
element is difficult due to the wide variety of complex species (hydroxy,
fluoride, organic, ete. ¢.f. Driscoll et al., 1984: Seip et al., 1984) present in
the pH range of most natural waters. For example the pH relationship with
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the AI** and hydroxy Al species is shown in Fig. 11. Also, there is a wide
variety of silicate and hydroxide parent/secondary minerals in the catchment
capable of releasing aluminium or precipitating it from solution.

However, assuming aluminium solution, precipitation can be described for
time-series moddelling purposes by general reactions of the type:

3H* + Solid, = Solid; + A¥* + xH,0  Si0, |
(10)
3H* + Solid, = AI*T + xH,0 + 8i0, ;
where silica concentrations are buffered in solution, e.g. by quartz solubility,
and equilibrium equation can be derived such that:

_ [APY]
R E

K {c.f. Christophersen et al., 1984 for gibbsite solubility)

Given that aluminium is complexed in natural waters:
Total aluminium = A" + AOH)?** + A{OH)! + AOH); + AL,

where Zal, is the sum of the non hydroxy aluminium complexes (in the case
presented here this is mainly for organo and fluoride-aluminium complexes).
Alsgo since the chemical and thermodynamic data available are very limited,
as a first approximation, Z Al, is taken as independent of pH and aluminium
concentration. Thus:

ke o+ ok ks |
[H*] [H*]?  [H*]%

Total aluminium — AL, = APY {1+ '{11)
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where k|, k,, k£, are equilibrium constants for the reactions:

APR* + H,0 == AOH)** + 2H"

AP* 4+ 2H,0 = A(OH)} + 2H" (12)
APT + 4H,0 = Al{OH); + 4H*

Rearranging the above equations and incorporating values for k,, k., k;
provided by Truesdell and Jones {(1974) gives:

(Total aluminium — AL} = w, {107¥[H*]?® + 1077 [H*]? +
10715.76 I'H+] 4- 107161 [H+]-l} — wof[H+]

where hydrogen ion concentrations are given in ueql™?!,

If this equilibrium relationship holds we would expect a plot of alu-
minium against hydrogen ion cencentration to be curvi-linear {actually a
cubic relationship). However, the plot of the observed data shows a straight
line relationship as shown in Fig. 12. From the regression line the intercept
on the y axis is 29.6 yeql™ and the regression relationship is:
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(Total Al —29.6) = 1.03 [H'] (R? = 0.83) (13)

Using this relationship a simulation of aluminium, is shown in Fig. 13. Why
this linear relationship is so satisfactory when the equilibrium theory pre-
dicts a cubic relationship between aluminium and hydrogen ion concen-
tration can be explained by four possible factors:

(a) Some other aluminium solubility relationships are operating such that
the stoichiometric relationship is less than three (for example Al and SO, are
highly correlated and sorption/solubility controls involving Al-80, surface
complexes might be involved).

(b) The above assumptions of constant silica, organic carbon, fluoride and
temperature are an oversimplification (variations in concentration of at least
an order of magnitude are required).

(¢) Mixing of chemically distinct water from different compartments in
the catchment is masking the equilibrium relationships for individual com-
partments. Thus it is necessary to move to a process-based model (e.g.
Christophersen et al., 1982) in order to adequately differentiate between

chemical and hydrological factors.
{d) Kinetic rather than thermodynamic equilibrium processes are oper-

ating.
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Plyniimon

The data from Plynlimon consists of weekiy flow, sulphate, aluminium and
hydrogen ion data for the Afon Hore and Afon Hafren catchments over a 45
week period summer 1983—spring 1984. The same approach of relating flow
to hydrogen ion concentration has been followed although, because catch-
ment response is much faster than the weekly sampling rate, the time-series
model is reduced to a simple moving average model. Mogdel equations were
estimated as follows:

Afon Hafren X4

175w, ,

Afon Hore X 1.34u,y ,

(14)
where x, is the hydrogen ion concentration (ueql™) and u, , is the flow
(m? s7!) at time ¢.

The variances explained by the models are 65.4 and 66.8%, respectively
and this was improved slightly to 69.3 and 71.9%, respectively by introducing
sulphate into the model. The models in this case were estimated as:

Afon Hafren xy = 126 u; , +0.09u, , (15)

Afon Hore Xy 1224, , +0.026 u, 4

(16)

where u; , is the sulphate concentration {ueq1™!).
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Fig. 14. (b) Simulated and observed H" ion in the river Hore, Plynlimon, UK, hased on
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Figures 14a and b show the model simulation for the two catchments
and in both cases a reasonable prediction of hydrogen ion concentration is
obtained. However, the model simulations are not as geod as for the Loch
Dee or the Birkenes catchments because of the use of weekly data rather
than hourly or daily data. This is emphasised by the values obtained around
week 25 when peak hydrogen ion concentrations correspond with low flows
for the Afon Hafren following major storm events. Using the storm flow
values the peak hydrogen ion concentrations were reproduced.

In the case of aluminium a scatter diagram of aluminium against hydrogen
ion concentrations shows that the aluminium concentration intercept is
much lower than Birkenes with a level of 8.6 ueql™! for the Afon Hafren
and 8.8ueql™! for the Afon Hore. Fitting a regression model between
hydrogen ion concentration and aluminium gives the following relation-
ship:

Afon Hafren (x;,—86) = 1.085u, , (r* = 0.75) (17}

Afon Hore {x, —8.8) = 1.338 1, , (r* = 0.62) (18)

where x, is the aluminium concentration and u, ; is the hydrogen ion con-
centration {ueql™!).

TFigures 15a and b show the aluminium simulations for the two catch-
ments using these regression relationships.

CONCLUSIONS

Firstly, successful characterisation of streamwater acidity and aluminium
concentrations using relatively simple time-series models can be achieved for
a wide range of catchments and sampling frequencies. In contrast to con-
ventional modelling approaches parameters may be estimated directly from
ohserved streamflow and water chemistry data. Since parameters are obtained
within a recursive framework the time variation in parameter estimates can
be investigated. Such variations may highlight process changes such as the
flushing effect in the Birkenes catchment.

Whilst flow and hydrogen ion concentrations are closely linked in the
catchments studied this does not mean that this will always be so. For
example a similar analysis of data from the Storgama catchment in Norway
(Christophersen et al., 1984) has shown that a simple flow—hydrogen ion
relationship does not exist and that the situation is further complicated by
the snowmelt processes. Thus whilst time-series analysis is extremely valu-
able early on in a modelling study it will not always be applicable.

A crucial factor in any modelling study is having data at a suitable sampling
frequency. The time-series models show that it is progressively more dif-
ficult to reproduce catchment behaviour as the sampling frequency decreases
relative to catchment response time. Thus sampling on a weekly basis in
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catchments that have a fast response, or in which antecedent conditions are

important will produce poor time-series models and make data Interrogation
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A common problem with modelling catchments is the extent to which
hydrological complexity is required. Our analysis suggests that relatively
simple hydrelogical descriptions will often suffice. Given typical errors of
10% on hydrological and chemical data it is unlikely that very detailed
hydrological models can be justified except in circumstances such as a
highly heterogeneous catchment in which a particular zone or layer has a
disproportionately significant effect on catchment quality. A time-series
analysis of the data will generally reveal any significant difficulties
associated with the catchment and is recommended as an efficient means
of analysing data prior to more complex modelling studies.
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Section 5

preferential discharge of pollutants during snowmelt







Introduction

Work in Scandinavia has shown that at the onset of spring snowmelt there
can be a marked deterioration in the water quality of snow-fed streams
{Skartveit and Gjessing,1979; Johannessen and others, 1980) caused by

the preferential discharge of pollutants stored in the snow pack. This
increase is associated with an increase in acidity which is known to

have a serious effect on aquatic corganisms; the spring snowmelt occurs

at a time which is critical for the hatching stage of salmonid fish
species (Johannessen and Henriksen, 1978), The level of acid precipita-
tion in Scotland is comparable to that in Scandinavia (Fowler and others,
1982) so that there will be a similar amount of pollution in the snowpack.
Since snow is an important part of the hydrological cycle in the upland
parts of Britain a significant decrease in stream water quality could take
place during snowmelt in this country. However, as we explain below, the dif-
ferent hydrological and meteorological conditioms in Britain mean that it
is impossible to predict a priori that this will occur. Hitherto there
has been no direct evidence of a deterioration in water quality during
snowmelt in Britain although fish kills at the time of snowmelt have been
recorded in south Scotland (Newland, pers. comm.}. This paper describes

a three~fold increase in total dissolved load at the beginning of spring
snowmelt in an upland stream in Scotland and shows that it is by far the

most significant of the acute events occurring during the year.

When snow melts the first meltwater appearing at the bottom of the snow
column contains much of the dissolved load of pollutants of the snow.

This is because the impurities are concentrated on the surface of the

ice grains and in the liquid water held between them and may thus be easily
leached from the snow by the first meltwater which percolates through. The
effect of this preferential discharge of impurities on the water quality of
the catchment stream may be discussed in terms of a simple mixing model.

Let f be the flow of water released from a snowpack of ave;age concentration
€ . The concentration, c¢, of the meltwater will vary from a maximum

av

value of ¢ > C at the onset of melt to values much less than ¢ in
max av av

the last stages, A component f of the flow £ travels rapidly over the

1
underlying surface and through pipes and macropores to the stream and may be

assumed to have the same concentration, c, as the metlwater. A second




component, f travels more slowly through the soil and mixes with the soil

2!
water before reaching the stream. When fl reaches the stream the discharge

will rise from the base flow value f_ and the concentration will change

3

from the base flow concentration, to (flc + faca)/(f1 + f3). To simplify

Ca
the discussion, suppose that fl,f3 and 03 are constant in time, Then the
maximum concentration in the stream will be cgeak = (f1 cpax + f3c3)/(f1 + 3)
and the relative magnitude of the concentration peak produced by the snow-

melt will he

c
= = _jmax  _
n = cpeak = 1 + [(-3 /(1 + £,/2]
c3 3
Clearly there will only be a marked peak with say n > 3 if both Cmax/c3
and fl/f3 are sufficiently large.

The magnitude of the base flow depends on the thickness and hydraulic
conductivity of the organic and inorganic soils in the catchment and on

the amount of water stored in them. Thus thin seils, impervious rock and

long periods of no rain orrsnowmelt lead to low values of fa. The magnitude of £
depends on the snowmelt rate and on the condition of the soil, which

controls the partition of f into "fast" and "slow" snowmelt components.

The concentration of the base flow depends on the average concentration of
the precipitation, €, the residence time of water in the soil and the
geochemical reactions occurring there. For a given input a thin organic
soil on slowly-weathering impervious rock will produce the lowest values

of base flow concentration, ©¢_ =z €. The value of C a will always be
max

3 =
several times that of cav at the onset of melt because of preferential
elution. However, cav will decrease from Cav = C before the first melt
episode of the season to values much less than this after the snow has
been leached by several melting episodes. Hence cmax will also decrease
from ¢ >¢C to C < c,

max max
It is not suprising that peaks of pollution have been observed at the
onset of the annual snowmelt flood in some Scandinavian streahs. In
these high mountain catchments the bulk of the snow accumulates during

the winter at sub-zero temperatures and is melted during a short period

in the spring. There is a large snowmelt flood (f1>>f3) and, since this

is the first snowmelt episode, Cmax > €. The s0ils are thin, on a granite

bedrock, so 03 % ¢. Thus Cmax > €, and the two conditions for a marked

pollution peak hold,
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However, the pattern of snowmelt is different in Britain; it is usual

for there to be several episodes of melting in a single winter, even

in the highest areas. Snowmelt floods do occur but not every year and
not necessarily during the first melt episcde of the season. Therefore
the pollutants may be released in several small, unimportant events with,

say, n * 1, rather than in one major surge as in the Scandinavian case.

Results and Discussion

As part of an investigation of the acute effects of acid rain in British
conditions, electrical conductivity, stage and stream temperature were
measured at a gauging point 998 m above sea level in Ciste Mhearad, a
corrie on the south-east side of Cairngorm Mountain. The catchment
defined by this gauging point has an area of 0.4 km? and a median height
of 1131 m. The soil consists of a thin organic mat overlying fairly
coarse-grained pink granite composed of quartz and red feldspar with a
little mica. The vegetation is sﬁarse and typical of mountain tundra.
The data were recorded at 20 minute intervals using an Institute of
Hydrology solid state logger throughout the period 19 October 1982 to

17 August 1983. The stage measurements were converted to discharge
using a calibration curve established by dilution gauging. The absolute
error in discharge is = 5.].0_3 mss_l. The conductivity data were
corrected to 25°C using the stream temperature measurements and are
precise to * 53%. An empirical relation between electrical conductivity

at 250C and total dissolved load was established for the stream. The

relation is linear and gives total dissolved load values precise to t 10%.

Figure 1 shows discharge and conductivity corrected to 250C as a function

of time during the first major snowmelt event of the year. Noise is present
in the discharge record because the stage was measured in mid-stream, not in
a stilling well. The average value of conductivity before the melt is 21

uS cm_l. The peak in conductivity comes very quickly after the onset of
melt with a maximum value of 63 uS cm—l. The ratio of these two values, the
maximum concentration factor, is n = 3.0. The second and third peaks in
discharge are both larger than the first peak but produce far smaller peaks
in conductivity. This is clear evidence of preferential discharge of

pollutants at the onset of melt. The measurements of the peollutant levels

in the snow before and after the melt support this.




At the onset of melt the average water equivalent of the snowpack was

22.5 cm, which 18 equivalent to an average snow depth over the catchment

-3
of 45 cm using the average snow density of 500 kgm . Samples of snow
3

taken before the melt had an average total dissolved load of 20 g m .
which is the same as the average total dissolved load of fresh snow
samples. Thus the pollutant load in the snow per unit area before melt
was % 4.6 g m-a. After the first melt episode, which lasted two days,
4.3% of the snow had melted but 7.8% of the load had been discharged to
the stream. By the end of the third episode, after 24 days, B80% of the
snow had melted and 86% of the load had been removed. Samples of snow

4
taken at this time had a total dissolved load of 12 g m , equivalent to

-2
an average pocllutant load of = 0.6 gm for the average snow depth of

9 cm.

The maximum concentration factor n = 3.0 for the stream water is higher

than the maximum value of 2 found by Johannessen and others (1977) for streanm
water in two catchments of similar area (0.98 km? and 0.56 km?) in Norway.
However, since their water samples were taken daily this may be an under-
estimate of the true maximum. Since f_/f = 0.2 at the time of the

31
concentration peak (Fig.l) equation (1) gives an estimate of cnax/c° x 3.4 Since

ps

e > cC the maximum concentration factor for the meltwater © /c is
3 av max av

certainly greater than 3.4. The range of values of cmax/cav found for melt-

water in field and laboratory experiments is 3 - 7 (Johannessen and others
1977; Johannessen and Henriksen,1978; Colbeck, 1981). Since equation (1)
does not take any account of dispersion processes within the catchment it
is likely that the meltwater had a maximum concentration factor towards the

upper end of this range. The wide variation in the maximum concentration

factor in the laboratory experiments may be attributed (i) to variation in
the vertical distribution of the impurities in the snow with a higher
"factor occurring if the impurities are concentrated near the base of the
column (Colbeck, 1981) and (ii) to variation in the type of impurities,
aince not all ions are leached from snow at the same rate. A high concen-

tration factor in the first spring meltwater in Ciste Mhearad is quite

possible since previous minor snowmelt episodes may have produced a higher

concentration of impurities at the base of the snowpack.

Figure 2 shows the conductivity and discharge of the stream for the whole

of the 10 month period. The range of the variables during each day is

shown ag a vertical line. There is a slow increase in the base level of




conductivity during the autumn and winter when the discharge is
very low and sustained by slow drainage of the soil and a decrease
from March onwards when the streamflow is much larger and is fed
by meltwater from leached snow. Small peaks are associated with
autumn rain storms in November and minor snowmelt events during
December and January. There 1s a small peak associated with the
start of the second major snowmelt period in early May. Clearly
the peak during the first snowmelt period in early March, which

is shown in detail in Figure 1, is the most significant event in

the year.

The minor snowmelt peaks during the winter illustrate how pollu-

tants may be released in several unimportant surges in British

conditions. Although C >~ € and the ratio ¢ /¢_ 1s probably
av max 3

quite high the discharge record shows that fl/f3 < 1. Hence the

maximum concentration factor n is only about 1.5 for these peaks.

The effect of the slow snowmelt component fz can be seen in the

slow rise in the base level of conductivity c3 as the s0il water

gainsg pollutants from the snow.

The minor peaks in May illustrate the effect of snowmelt when
Cav is low and 03 high. Here the discharge record shows fl>>f

i C (o
but the ratio max/ 3

produced despite the fact that preferential elution still occurs.

3
ig too small for a large peak to be

A high snowmelt discharge in June produces no peak at all in
conductivity sc by this time ¢ = 03.
For most of the year conditions in Ciste Mhearad may be taken as
representative of these in areas of similar al titudes, vegetation
and bedrock. The catchment faces southeast so melt rates will be
a little higher than these in north facing areas. However, there
is an unusually high rate of deposition of wind blown -snow in this
catchment, Snow persists later into the year than in most other
areas of the Cairngorms. Thus the data from October to May may be
taken as applicable to other areas, whereas the summer snowmelt in

June and July is a special aspect of the hydrology of Ciste Mhearad.

The field data from Ciste Mhearad show that even under British

weather conditions a three-~fold increase in the level of pollution




in a stream can occur during snowmelt. We have explained why this
may hot happen in every year or in every upland catchment. Never-
theless, aquatic organisms are clearly at risk at the onset ot

snowmelt in this country.
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Legends for Figures

Conductivity and discharge during the first major

Figure 1
showmelt event.
Figure 2 Daily range of conductivity and discharge from October 1982

to August 1983.
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Appendix 1

The Allt a Mharcaidh Catchment S5tudy







1. THE ALLT A MHARCAIDH CATCHMENT STUDY

1.1 DATA COLLECTION RESPONSIBILITIES

-

The IH contribution to the SWAP catchment study in the Allt &

Mharcaidh is to provide;

- stream flow data

- precipitation data

- weather statiomns

- continuous water quality menltoring

- spnow surveys and snowmelt chemical analysis

and to undertake subsequent data management, analysis and interpretation.
The extent to which these commitments have been achieved, results to date

and examples of data available, are set out below.

1.2 TINSTRUMENTATION AND RESULTS TO DATE

Work on the instrumentation for the Allt 4 Mharcaidh began at the
outset of the project to enable a rapid deployment of equipment following
planning approval. All monitoring equipment was purchased from commercial
outlets or manufactured at TH and in both cases considerable development
was necessary prilor to field installation. Commercial equipment had to be
made site specific to establish a compatible interface between data
recorders and loggers whilst custom built equipment required design,
construction and extensive testing. 1In both cases the necessity for
employing equipment which is not only robust enough to survive the
Cairngorm environment and transport over rough terrain, but also
semi-permanent so as to comply with the planning agreement, posed
considerable problems, Nevertheless, following planning approval in late
August 1985, installation of instruments began and much of the agreed data

collection commitment is underway.

In addition to the field instrumentation a temporary laboratory has
been erected and furnished at Grantown-on-Spey and is fully equipped for

sample analysis, storage and data translation.




1.2.1 Stream Water Quality land Quantity Data

A stream gauging station has been established at the bottom of the
catchment, (Figure 1). 1t consists of a fixed stilling well housing
pressure transducers for stage measurement and a pHOX 100 DPM water quality
monitoring unit. Stage, pH, conductivity and temperature are logged at 20
minute intervals and the data is transferred to a solid state store. The
system is powered by a 12 volt supply which 1is continuously charged by a
wind generator thereby preventing data loss due to battery failure in cold

weather,

The system has heen in operation since 10:10:85 and results analysed
to date demonstrate that the stream is susceptible to rainfall induced acid
pulses. Figures 2(a)-(d) summarise stream data for the period 23:10:85 to
6:11:85. Initially, dry antecedent conditions and low rainfall input
lowered the stream to baseflow level and pH rose to c.6.7. This pattern
was broken by heavy rain and snowfall on 4:11:85 causing a fapid response

in stream stage and a corresponding decrease in pH to Ce5.5.

The raw 20-minute interval data illustrated in Figure 2 are now
available and with a salt dilution-gauging programme in progress, discharge
data will be available in the Spring 1986 after a stage—discharge rating

curve has been established.

1.2.2 Weather Data

An automatic weather station has been installed in the centre of the
catchment at a height of ¢.575m (Figure 1). Again, to prevent data loss
through battery failure the station is connected to a wind generator.
Rainfall, wind speed and direction net radiation, total incoming radiation,
dry bulb temperature and wet bulb depression are logged at 5 minute
intervals. These five minute data are summarised to produce hourly

averages totals of all parameters.

The weather station has been operational since 11:9:85 and Figures
3(a)-(e) illustrates an example of the output covering the period 26:10:85
to 6:11:85. The data show that for the storm on the 4/5th November,
temperatures were mild during the rainfall event and then dropped sharply;
wind direction moved from SW to NE and wind speed is generally lower
immediately after the storm. This situation is clearly indicative of a

cold front moving in an easterly direction across Scotland.
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Figure 1 Allt a Mharcaidh Catchment
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1.2.3 Precipitation Data

In addition to the raingauge associated with the AWS, two further
raingauges have been deployed in the catchment (Figure 1). These ground
level gauges may be converted to snowmelt gauges during the winter. The
raingauge cabled to the AWS remains on the surface at all times., The two
ground level gauges have operated since 4:10:85 and hourly rainfall

intensities from both sites are available until 10:12:85,

Precipitation quality is monitored by weekly sampling of bulk
collectors installed at the stream gauging site and at the AWS site. These
were deployed in December. Chemical analysis of collected samples will be

carried out by the Macaulay Institute.

1.2.4 Snowmelt Data

Estimation of rate of snowmelt is obtained by converting the two
ground-level raingauges to snow-melt gauges. This has been achieved by
covering the grids with 'artificial grass’ thereby allowing a snow
cover to build up over the gauge. Snowmelt data are available from
10:12:85, In addition, snowmelt quality is monitored using a bulk

collector at the AWS site and is sampled weekly during thaw conditions.

" Work 1s underway to install further collectors higher in the catchment.

1.3 INSTROMENTATION IN PROGRESS

Further instrumentation is underway and installations to be completed

include;

— a mountain weather station at a height of ¢.1000m together with

associated rain and snowmelt gauges.

- two automatic snowmelt samplers to be located at the snow survey
gite, (NB. The 'shells' of these samplers have already been

transported to the site).

~ an automatic rainfall sampler capable of taking discrete samples

during the course of a storm event,.

- automatic stream samplers to be triggered on rising stream stage

and conductivity.
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SUMMARY

This reports describes the preliminary data analysis and modelling
studies being undertaken jointly by the Institute of Hydrology, Welsh Water

and Swansea University.

1. Data Transfer and the Data Base at TH

A system has been estahiished between Welsh Water and TH for the
transfer of hyvdrological and chemical data., The data from the continuous
flow and quality monitoring equipment and from the chemical analysis of
routine rainfall, stream and storm event samples is being transferred via
magnetic tape Erom the WW computers to IH. Weather Station data is also
being processed and automatically transferred to the TH data base. The
data is stored on a relational database system (ORACLE)} available on the
new IBM computer at IH, 1In total over 3 million items of data are.being
generated each year in the Brianne Study and an extensive suite of computer
programs have been developed to handle the storage, retrieval, preliminary

statistical analysis and plotting of this large data set.

2. Preliminary Data Analysis

Preliminary analysis of the data has been undertaken including:-

a) Plotting of routine and storm event chemistry data

b) Plotting of hydrological and water quality data from the
continuous monitors

c¢) Statistical analysis of hydrological and chemical data including
means, max, min, standard deviation, cummulative distfibution

information and correlation analysis,
The interpretation of these statistical results is being undertaken to
evaluate the principal chemical characteristics of each sub-catchment and

present a summary of the pre-treatment condition.

3. Preliminary Modelling Studies

The continuous data is being used initially to evaluate catchment
dynamics. The response time of the catchment hydrology and water quality

can be evaluated using time series techniques with the models



satlsfactorily reproducing observed flow patterns following a storm event.
The models provide basic information on the catchment response which will
be essential in later studies to evaluate the complex acidification

processes operating and the interactions with land use change.

4, Advanced Modelling Studies (MAGIC)

MAGIC (ﬁpdel of épidification of Groundwater In Egtchments) is
probably the most sophisticated model available at present. It includes a
wide range of chemical processes considered to be controlling acidification
in catchments and is being used in the Brianne study to determine long term

trends and predict the effects of land use change.



1. DATA TRANSFER AND THE DATA BASE AT IH

A system has been established between Welsh Water and TH for the
transfer of hydrological and chemical data. The data from the continuous
flow and quality monitoring equipment and from the chemical analysis of
routine rainfall, stream and storm event samples is being transferred via
magnetic tape from the WW computers to IH. This has not been
straightforward, however, because of the basic incompatibility of ICL and
IBM computers. A special computer program has been written to translate
the data from the Welsh Water ICL machine to the IH IBM machine. There
have also been problems transferring data from the Welsh Water Data General
machine to IH. However, now that these difficulties have heen largely
resolved the data is being stored on a relational database system (ORACLE)
available on the IBM machine at IH. Weather station data is also processed
and transferred to the IH database system. In total over 3 million items
of data are being generated each year in the Llyn Brianne Study and an
extensive suite of computer programs have been developed to handle the
storage, retrieval, preliminary statistical analysis and plotting of this

large data set.
2. CONTINUOUS HYDROLOGICAL, AND WATER (UALITY DATA

Continuous data is being obtained from monitors in the Llyn Brianne
catchments recording flow, pH, conductivity and water temperature. The
sampling interval is 135 minutes which is sufficiently fast to detect all
storm events., In addition the IH weather station,. based at Lynn Brianne, -
monitors soil and air temperature, rainfall intensity, relative humidity,
wind speed and direction and solar radiation. All of this data is stored
on the IH data base and is available for analysis and modelling purposes,
The data is being examined in detail by members of the catchment
characteristics group and a report is in preparation. A typical plot of
rainfall, flow and pH is shown in Figure 1 for catchmeat LIl and indicates
the rapid response of the catchment flow and pH to rainfall events. This
rapid response is being investigated using the time series modelling
techniques at IH and preliminary results are presented in section 6.
Figure 1b also shows rainfall, flow and pH but this time over a snowmelt
event in March; the pH is reduced from 6 to 4 in under eight hours

indicating the importance of snowmelt events in Wales.
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3. RAINFALL AND STREAM CHEMISTRY.

Introduction
Table 1b lists the catchments for which data are availlable and
some of their main characteristics. Figures 2a and 2p define

their locations and those of the two bulk precipitation sampling
\

sites. Where appropriate the results are expressed in ueq 1,
elsewhere mg l—I , are used, The analysis is presented in four
parts. First, the bulk precipitation data are summarised.
Second, the <conifer afforested catchment data. Third, the
acidified moorland stream data. And fourth, the unacidified
moorland and cak woodland stream data. Storm event samples are

not included in the analysis.
Bulk precipitation chemistry

Tables 2a and 3a show that the composition of bulk
precipitation at Llyn Brianne is dominated by marine salts and
terrestrially derived amnions. At C7 in the Camddwr catchment pH
ranged from 3.1 to 6.9, with a rainfall-weighted mean of 4,19.
Corresponding levels at L3 ranged from 3.4 to 7.1 and averaged
4,12, Consequently, acidity levels can be considered moderate
but with the occurrence of some highly acidic events. Indeed, 25%
of those samples taken (Ql), exhibited a pH of 4.4 and 4.3 or
less at C7 and L3 respectively.

SC concentrations also exhibit a large range at both sites,

l‘.
] -\
with rainfall-weighted means of 71.84 ueq 1 and 77.9 ueg 1 at

C7 and L3 respectively. Moreover, 25% of those samples taken
A -
exceeded 83.3 ueq 1 (c?7) and 117.1 ueq 1 {(L3). "Excess" - S0,
- -\
concentrations averaged 63.5 ueq 1 (C7) ana 71 ueq 1 (L3).

Thus , sulphate contributions to acid events are sometimes
significant and reflect the presence of anthropogenic sources of

sulphates. In addition, the higher levels found at L3 probably
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Table 1a

notation

pH
Cu
Cd
Zn
Al
Pb
Cr
Mn
Fe
Ni
MNa
K

Ca
Cl

N02

Dpa

510

2 *
50,

Amma.N

TON *
T.A1k *
T.H.
Cond.
Tuzhk
H.Acid

P. solids
poc

F. pH

I. Flow
W, Temp
uv

SEaFF

¥ K ok ok ok ok

Conversion
to ueg 1

1000
1000
20G0

23.
39.
2

1000
1000

2000 / 96.06

-

1000 / 14,01
2000 / 100,05

H entilog (6.0 ~ pH)

/

/

/ 24. 31
2000 / 40.08

/ 35.46

/ 14,01

Convarsion factors, units and notations

Name

pH

Copper

Cadmium

Zinc

Aluminium

Lead

Chromium
Manganese

Iran

Nicksl

Sodium
Patasaium
Magnesium
Calcium
Chloride
Nitrite

Free Carbon dioxide
Orthaphosphate
Silicate
Sulphate

Ammoniacal nitrogen < NH

Ta* el oxidised nitrogen = NO
Total alkalinity (as CaCUS)
Total Hardness (as CaCUS)
Conductivity

Turbidity

Humic acid

Particulate solids

Dissolved Organic Carbon (as C)
Fisld pH

Instantaneous flow

Watar temperaturs

U ¥ wavelength

Watar lavsel

Hydrogen ien

3

nit

pH unlts
mg 1

mg l‘
mg

mg 17,
mg
mag
mg
mg
maq l
uaq

ueg

ueq

ueq

uagqg

ueg

= b
[l

wh

e e

S
i

i

-

~

1

3 3 3
T It BT
— ke
LoL L

C

[

o
L

-

mg »
uag l
ueg l
mg 1™
us em”
FTU .
mg 1
mg l
mg 1™

pH units
m1 s
C

g}

m

ueqg 1
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reflect the greatér amounts of occult ~and dry deposition
characteristic of its forestry location.

T.0.N. concentrations (approximately equivalent to N0y )
average 44.4 ueq " (¢c7) and 36.5 ueq 1 (L3) and exhibit
similar patterns at both sites which match 50, variations but are
affected by occasional samples showing very high levels. Hence,
at times the NO; compocnent of acid rainfall <can be quite
substantial. ©n the other hand, both sites indicate the presence
of comparable concentrations of ammcniacal nitrogen
(approximating to NHy at low pH), averaging 30.8 ueq 17 (C7)
and 38.8 uedq lhi (L3) and offering a limited capability to
neutralise some of the rainfail's acidity.

As mentioned previously, the marine salts (Na , Mg and C1l )
are present in large concentrations, with rainfall-weighted means

of 113.8 ueq 10, 27.95 ueg 1 and 142.4 ueq 17" (c7) and

9.4 ueq 1", 25.2 ueq 1" and 113 ueq 1" (£3) . The higher
ievels at C7, probably reflect the sites closer proximity
to the <coast. Hence, sea-salt effects are likeiy to be
significant in the study area. Sodium to c¢hloride ratios

averaging 1.25 at each site, also support the suggestion that
much of the chloride is sea-derived.

Terrestrially derived Ca, total alkalinity and total hardness
concentrations are all low on average suggesting that there are
limited amounts available in bulk precipitation to buffer against
acid inputs. Nevertheless, some samples have exhibited high
alkalinity and hardness levels of fering considerable buffering
capacity on occasions,

Lastly, 1in all cases trace metal concentrations were very low
with only aluminium and iron being present in any significant
amounts. Thus, there is little evidence of any acute atmospheric

metal pollution at Llyn Brianne.



To sum up, a comparison of the bulk precipitation gquality data
for 1984 with those already reported by Stoner et al. (1984) for
1981-82 are presented in Table 4, First, acidity concentratlons

are seen to be generally higher than in 1981-82 for all of the

major components (i.e. H*, S0, and N0; }» although the NH:

concentrations are similar. However, this might be explained by
the fact that the earlier years were not only nen rainfall-
weighted, but also (Figure 3) wetter, with annual rainfalls of
2059mm and 1943mm in 1981 and 1982 respectively, {recorded at
Nant v maen) and 1699mm in 1984. Hence the acidic inputs were
likely to have been diluted in the earlier years. Nevertheleés,
these factors may not account for the entire difference and
suggests that a more detailed programme sampling wet, occult and
dry deposition needs to be implemented. Other factors
such as the changing magnitude and frequency of heavy rainfalls,
rainfall seasonality, changing synoptic frequencies and
evaporation effects also need to be considered.

Comparison with other .sites in the British 1Isles thus
indicates that levels are comparable with many of the more
contaminated areas iIin terms of HY at ;east. In addition,
sulphate and nitrate levels were certainly higher in 1984 and
compare with those recorded in Central Scotland and the South
Pennines. High sodium and chloride concentrations meanwhile,
confirm the importance of marine salts at Llyn Brianne.

Correlation matrices relating all of the chemical determinants
are given 1in Tables 2b and 3b. As 1is expected pH is
significantly and positively correlated with total alkalinity and

to a lesser extent total hardness at each site, Moreover, it is

-+
significantly and negatively correlated with free COy and H . 504
and NHl are also highly positively correlated, suggesting their

common source. The major marine derived ions are also highly and

..



Table 4, Some rainfall «qguality comparisons for the British

Isles.
) -t

m"cgm.msm OMSQQSnHWwHo: {ueq 1 W| - + + - 1+ 14 *
location H 50, 3 Excess S0 NOy zm; Na cl Mg Ca K
1. C7 This report (1984) 59 71 64 44 31 114 142 28 17 8
1. L3 Thiz report (1984) 49 17 71 37 39 9d 113 25 28 7
3. Llyn Brianne (1981-82) 27 54 39 17 31 136 148 34 15 12
{Stoner et al., 1984)
Central Scotland 49 B3 73 7 16 93 - 191 .24 23 7
(Harriman and Meorrisen, 1982)
South Pennines 45 91 77 27 29 185 144 27 45 5
(Brown and Martin, 1988)
East Midlands 73 171 157 1) 129 1% 140 27 57 13
(Martin and Barber, 1978)
Rothamstead 54 143 86 78 122 94 167 34 21 18
(Williams, 1976)
Mid Wales 11 - - - - 96 115 28 70 3
{(Cryer, 1976)

- Dyfed 29 54 43 16 13 89 187 23 15 [3

{Martin, 1980)

1. rainfall - weighted mean using Napt-y-macn daily rainfalls
2. Fxoess 504 = Total 50, -0.1035 Cl concentrations
3. not rainfall - weighted
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positively intercorrelated at both sites, reflecting their
common Ssource. Few other significant correlations exist and g¥
concentrations rarely correlate with any other determinand, with
the obvious exceptions of pH, conductivity, free COq. and total
alkilinity. Of the metals, dissolved aluminium shows some
indication of a positive correlation with manganese and iron at
both sites, few other consistent relationships are apparent.
Logarithmic transformations improve the correlations petween Al,
Mn and Fe at both sites and confirm the correlaticons £found
between determinands prior to their transformation.

Any temporal patterns in rainfallfchemistry must be viewed in
the context of the varying rainfall amounts received in the area
(Figure 3). Eurthermoﬁe, within each year monthly rainfalls also
vary. For example, not only was 1984 a dry year, but also its
rainfall seasonality was unusual in the sense that from February
to August, rainfall inputs were extremely low. 1In addition, the
low rainfall period was characterised by a much greater frequency
of easterly-type airflows than was the case for the rest of the
year which was dominated by westerly and anticyclonic airflows.

Thus, at C7 and L3 (Figures 4 and 5) without exception, the
most acid events (< pH 4.5) were recorded in the period March to
August, with H+ concentrations rising well above 30 ueg l-l .
June saw the most acid sample, with a pH of 3.1 at C7, following
a long dry period. Presumably such a situation arcse as a result
of the flushing of accumulated dry particles from the atmosphere
and their collection in the sampling instrument over a
considerable period. Both SO% and NH; levels were also elevated
during the long dry period and show two major peaks in early May

and August, Both correspond to short periods dominated by the



..............m!........

— mmaﬂ *wq— L] L) L) L) - T 1 v T mma— T T L T — L] T T T L] *mm— L] L) T ¥
1- 070§ 1
4y
-
1-0°001 ]
n
. 2 v
] 8 1.. 2
+ 0°0S1
” 1.
1 0°00Z .
. 4
1 /ber
1 G861 i 14: {1 I G861 — 861
T T L) L] T L L ¥ L) L) <d Ll T LS T T LE T L T L L T T L L] L T
.
mr o.om '
] - * 00z
1- 0° 001
L
: g ;]
__ mlo oSt = 4 o0t z
]
1+ 0°00T T
N
] + "009
T 0°0ST
} 0:00e

| /borl :  I/bert

LID) TIVANLIVY  veerow




1 5861 1 786! L 8861 | 861
L} T T T T T L ¥ T L T L) LE ¥ T T | L T ¥ L L} T T L) T T /\'.'-\;- T T LB L) T T
+ °00T 7 / 1
) +—~ 0y
- 4
1~ “oor -
a i
+ "08
1 ‘o009 :
4 . 1 cozt
\ 4~ ‘008 .
, 1 /barf ) 1 sbert
m m”a— — *wa— - m T T L) r L) m-wqq— L) T — L *«”0-- Ll L} Ll LE
-
N L N~
.
4 "or
1 4+ ‘o002
Hl ‘08 =x 1
| () ; £
- *00F
A ]
§ += 009
\ {- ‘091 (
| /ool ) 1 /bert

00000000040 0¢d 4000000000



O 6 0 00 .-.. o 000 .v.. iy.. ...v o 060 060

[ mma_ .vwn_ now__ vmﬂ

é L Ay
- 1 "or
T* . 2
4+ "1
- 1 “08
4 91 -
4
| /6w 1 /bar
1 G861 1 861 t 5861 1 et 786! I
T T T T T T L T T LIRS T T L] T T T LA N L e § T T T T T T T L] T i
7 l j L
- "0C -
— "01
. - 1
1+ "0 > |
= ] =
] + ‘oz
- .oo k -I.
4 "08 4+ '0&
| /oonl . | /bl

(ZI2) TTIVANIVY



| 861 . 861 _ ! sesl pag1
—1 o10%0
1 0z0"0 ]
! 4- 0200
4 ov00 ]
= ]
| m 1 og0%0 F
- 090°0 ]
‘ 1 avoo
- 080°0 / “
_ m; 0500
| /0w Vol
_ 86! | 861 | 5861 . 7861
| LI LB T L T L Li 1 L T L ] T L /1 Li L T T LB -.* 1 T L i L3 Ll 1 T L A N Ll | 2l B Ll ¥ T L L) L 1 .
B —} o100
4 0700°0 ;
/] +0z0°0
1 0800°0 i
) 3 1-0g0°0 ”
4021070 )
. -
’ 1 ov0'0
4-0910°0 | ;
w 1 os0°0
L 0020°0 ]
| /6w ‘ | /0w

| mu TIVANTIY Y
......... ............



mmaﬁ vum_

T

T r 1t 1 71 -qqﬂl._.u-.- L

'l

— 0¥ 0

JIov'H

. 090

— 0B°0

1/6w

00 b=

(£I1ID)

0°0S

0°00!

TIVANIVYH

0°o0s1
0°00%
0'0sT

W

TIVANIVY

PR T S T WS N NNNY NN NG NN SN N SR E A

-~ "0%

— *02

- 08

- "OF

T0d" 4



[ G861 ) 861 L SR61 I 861
r L) L) ¥ L T ¥ T Ll T L) L] L T T T T ) L] T T F T T L] LJ T T L T T L Tr 7 T T T T T 4 ™7 T
\ b E
b . E
) oS +°r
+ 07001 > J
J " 1
) 8 ; z
] ]
+ 0° 0451 9
b -4
” T
+- 07002 * 7
“1 — .h
| /barl
I G861 I Y861 | G861 L 861
L] L] L) T Ll T ¥ L) L] L] Li L] g- ) q!qﬁlq/ L L] L] -\- L v T Ll L] L] L] L) T T T T -<- L) L} T T T T -g-'nl
4+ 0705 4
] + *001
4+ 07001 4 T
. MU.. i ) M
] z 100z <
f 1 0°0s1 )
i ur " 00€
+ 0°00C ...

 sbarl . | fbarl

00000000000 dd o0 0e000e0 00



O 0000000606060 0060 0000900 9000

. c861 1 861 0 861 \ 7861
L) T Ll L L] L L] T T T T T L] T T §<q L) L) ¥ L] L] T L] Ll T T Li T T 44\ T T T L T L] 1 T T
1- *oor 1o £
a ] a-00t I
+ "009 + 070S1
-
4 o008 +- 0°002Z
j/bar | /bort
' 86! | Y861 ' 5861 | 7861
¥ L] T 1 L F L) L L2 LE L 1 Ll L Jq )ﬂ T ¥ L ¥ T T L] L] Li L] L] L) ¥ L) T L T b L} T L] T T T T T T T T T -
+ 001
. 4
[ . -o* -
] 2 T ‘00T z
/ -
4- "00€
e . .Ow of
J + ‘00¥

| sberl . | /bar

(€1 1) TIVANLVY




1 G861 | 86! 1 CB61 1 ¥Yo61
--------------- T ForroTT v T rrrrTTy haie = LA L T ]
[~ 7 )
\ ] b A
4- 0¥
f— -* .
I
pr >
- "8 }
lﬁ 021
r -N— “r .8—
J
t /6w y /ber
L G861 1 ¥861 1 5861 1 861
------------ 1T La Ll Li Li ¥ T T F T F L) L] L) L] L) L) L) T L] L) L) L) T L) L) ' ) L] L) L) L) LA Li L
3 7\. §
- N VI ]
- -4
. - co* .
i + "0l
L - | ]
+ ‘08 > J
= .
— 0T
4- " 0% 1 T
4 + -oe
4+ 091 .
1/bard | /bar




mwa_

861

T

L]

R

LI T L

7

TN

— 5070

—-01°0

34

~S1°0

- 020

IR S S WA W W TUU N NN T UHNY NN GHNY GHN SN S SN S I — - |

1 /8w

(€L 1)

T+ 0r0°0

NUW

1T 08070

T+ o0z1°0

1/0w

TIVANIVY

n&m_

1@0__

L)

>r

T

Ll

.........O....‘..O.....

4+ 0v0°0

- 080°0

v

- 0z1°0

— 091°0

| /8w

- 0¥0°0

— 080°0

vy

—091°0

| /Ow



_ mﬂm _— | *“Q — T T L3 —W ----- n-om-_— T T T T w T '-Qm.ﬁ T T T 1
------- A"4 S/ ]
1 ov*0
- "1 b
“ z 1 oavo
- V -~ s
a1 0 =
e ¥ ] S
b -
] 4~ 02°1
) i
4 €
; -
. 4 09°1
| u* .
i po*z
| /6m ) /0w
“||-. T T ¥ T m-“wﬂaq— T T T 7 ——r—rr Nwaé—li\- T ] Q.o m ----- mua-— L | LB | m ----- .V.QQ-— T L] T ]
< ;‘ 0°0S
» / 4y
0°00! M -
> O
! -~ 5
“Io.om_
1 07002 / T '8
1 0°0s2 :
] J
1/0w

| C(ELTT)Y IV NIV Y
® 0606 00O ...O%. .ﬂ k o 66060606 0606 0 O




cccurrence of easterly airflows, suggesting some industrial
emission influence on the rainfall quality at Llyn Brianne.

The strong maritime influence is reflected in the patterns
of Na, Mg and Cl concentrations at each site. Levels are highest
during the wet month of January in particular. Other 1isclated
peaks correspond to isclated storm events occuring during the
year, Overall concentrations were slightly reduced at L3,
probably due to its more remote 1inland location. Nct
surprisingly, the terrestrially derived Ca concentrations were
highest during the low rainfall months, when the fall out
contribution was at a maximum,

Iin conclusion, the rainfall while dominated by marine salts
and terrestrially derxrived anions, 1is sometimes moderately
acidic, especially during or following periods of easterly
airflow, In addition the area also receives a large volume of
mildy acid rainfall, averaging 187 mm p.a. at Nant-y-maen,
although the amount and seasonality is subject to extensive

variability.

Stream chemistry

The major potential sources of acidity in poorly butfered
streams such as those found at Llyn Brianne are atmospherically
derived anions and terrestially derived inorganic anions ana
humic acids. As shown in Table 1, the sampled catchments are
subject to two major and contrasting land uses, that of conifer
affocrestaticon and rough moorland pasture. These generally
contribute to a contrasting water quality as will be seen in the
remainder of this report. Of the streams being monitored, the

conifer-afforested catchments will be considered first.




Conifer afforested catchments (LI1l, LI2, LI3, LI4 and LI8)

1,11 is the largest of the catchments monitored (2.53 kmi) and
the main stream slope is not surprisingly almost the lowest,
hence response times and flow velocities might be expescted to bDbe
lower than at other sites. Table 5a indicates that pH averaged
4,87 and HY 18.2 ueq l'i over the period August 1984 to December
1985, However, levels of 4.3 have been sampled and 25% of all
samples indicated a pH of 4.6 or less. Such levels are
comparable to the mean pH of bulk precipitation at L3 (without
rainfall-weighting) and suggest a very limited buffering capacity
in this catchment. Similarly, Table 6a indicates that LIZ (which
drains an area less than half that of LIl and with a steeper mean
slope), exhibits a mean pH of 4.,62; with 25% of the much reduced
sample number yielding levels of pH 4.5 or less. Furthermore, '
concentrations average 26 ueq 14 at this site. The latter may
be a product of the reduced sample size, or alternatively, they

may reflect the reduction in catchment size and hence reduced

residence times in LIZ2. Meanwhile, at LI3 (Table 7a) conditions

are less acid with pH averaging 5.2 and H* averaging 10 ueq 1_1 .
This catchment 1is even smaller than LIZ and far steeper than
either of the previous streams, hence residence times would
presumably be reduced. One reason for the slight improvement
might be the bankside clearance of conifers in LI3, a treatment
which had not been performed in LI2 during the peried being
studied. However, conclusive proof of the above awalits a
further, more detailed examination of the situation. Too few
samples have been taken from LI4, the smallest catchment beilng
monitored, hence 1little real indication of its chemistry can be
gained. Lastly, LI8 (which is of a comparable size to LI3 but
much steeper), drains an area dominated by young conifers and pH

i -\
averaged 5.38 and H" averaged 8 ueq 1 (Table 8a). The acidity
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is markedly reduced in this catchment, presumably because the
open canopy reduces stemflow, occult deposition, atmospheric
scavenging and evapctranspirational losses. All of the above
factors are considered to be of major importance in determining
stream acidity in afforested catchments. Nevertheless, acid
events do occur as indicated by the minimum recorded pH of 4.4,
In addition, 25% of all samples exhibit a pH of 5.8 or less, even
in an open canopy conifer forest area, Hence, scme o¢f the
aspects of such a land use which contribute to stream acidity,
are clearly already present prior to its maturity.

Second, SOlr cbncentrations are high at LI1 averaging
154 ueq 14 , with 25% of all samples exhibiting concentrations of
178 ueq lﬂ Or more. Hence on average, concentrations are more
than double those found in bulk precipitation and presumably
reflect the large evapotranspirational losses {typically 3¢% or
more) and enhanced sulphate scavenging capacity associated with
such a land use, as well as the possibility of enhanced sulphate
contributions from the forest soils. Average S04 concentrations
in LI2 are even higher (174 ueqg l“), although the sample size is
much smaller. On the other hand, in LI3 levels are only slightly
lower averaging 153 ueg l—\, suggesting that bankside clearance
has done little to affect sulphate concentrations.
Concentrations in LI8 however, average 135 ueq Id indicating a
significant reduction presumably as a result of its juvenile
status causing reduced evapotranspiration and scavenging.

Third, NOz concentrations are very low at LIL, averaging

1.5 ueq l" , some 25 to 38% of that found in the bulk

precipitation. Clearly these 1low concentrations reflect the
large uptake of nitrates by the mature conifer wvegetaticn
cover, Hence, LI2 and LI3 also exhibit low concentrations




averaging 12.9 ueq 1 and 2¢.8 ueg 1 respectively. More

surprisingly, levels only average 16 ueq l—‘at LI8, suggesting
that nutrient uptake rates are ccmparable with those of the
mature forests.

Similarly, the low ammoniacal nitrogen concentrations found at
211 sites contrast with the higher levels found 1in the bulk
precipitation. Again this reflects the effects of plant uptake,
as well as the utilisation of ammonia in neutralising any stream
acidity.

The marine salts (Na, Cl and Mg) are all present at gquite high
concentrations at LI1, averaging -204 ueq lf‘, 247 ueg l’\and
68 ueq 14 respectively. Hence all three are present at average
concentrations more than 100% higher than those found in  bulk
precipitation at L3. Consequently, all three reflect the strong
sea-salt influence in the area and the very effective scavenging
capability of the forest, with its large evapotranspirational
losses. In addition, ©LI2 and LI3 exhibit similar, although
slightly lower concentrations of all three due to their
comparable land use , 1lithology and climate. On the other hand,
concentrations at LIB8 while similar in the case of Na and Cl, are
higher for Mg averaging 72 ueq l" . Thus, while scavenging
capacities and evapotranspirational losses are similar, there
appears to be an additional source of Mg, possibly present in the
catchment soils due to the reduced base cation uptake of a
younget forest cover. Terrestrially derived Ca c¢oncentrations
are very low at LIl, averaging 59 ueq l”‘, confirming 1ts limited
buffering capacity with levels only slightly higher than that

found in bulk precipitation. At LIZ2, «c¢oncentrations are even

—

. { . .
lower (averaging 53 ueq 1 } while at LI3 they are considerably

higher (averaging 105 ueq l"‘), although the latter is clearly

influenced by a single very high concentration. Nevertheless,



I3 does seem to poSess a greater buffering capacity despite its
similar land wuse, possibly this is due to the effects of the
bankside conifer c¢learance. Again though, the conclusion 1is
necessarily speculative gliven the available infermaticon.
Meanwhile at LI8 <Ca concentrations average 76 ueq l" slightly
higher than at LIl and LI2, but lower than at LI3, Hence 1its
buffering capacity 1is slightly enhanced relative to a mature
forest probably due to its open canopy and reduced base cation
uptake., |

Not surprisingly, dissolved aluminium levels are elevated at
LI1 with average concentrations of ¢.38 mg fﬂ and peaks of up to
@.85 mg lul. This represents a major increase on that found in
the bulk precipitation and reflects the enhanced dissoclution of
alumina silicate minerals in the forest soils since aluminium
acts as a powerful buffer to acidity in the absence of available
base caticon buffering c¢apacity (i.e. low hardness and low
alkalinity waters). Thus, with total hardness averaging only
5.7 mg l”l , the above process contributes large amounts of
aluminium intc the stream during acid evenﬁs. Aluminium levels

—\
are similarly elevated in LI2 and LI3, averaging .48 mg 1 and

#.35 mg f—‘respectively, with total hardness averaging 4.8 mg l'\
and 7.9 mg l-‘ respectively. Thus, again LI3 gives an indication
of its slightly enhanced buffering capacity possibly resultcing
from the bankside clearance, although its soils need to be
thoroughly examined before any such effect can be confirmed.
Conceivably, removal of the trees might result in the creation of
less acid soil conditions on the banks, through and/cor over which
runoff would have to pass. Iin additicon, the scavenging
capability of the catchment would be reduced slightly. Both

factors would presumably contribute to a slight reduction in its

acidity. Meanwhile LI8 exhibits slightly lower dissolved




alumihium concentrations averaging #.2 mg l‘\, although a maximum
of  #.72 mg l'\ suggests that it too does suffer from the
intermittent effects of acid events flushing out toxic aluminium.

Finally, Table 9 presents a comparison of selected streamwater
chemistry for the afforested catchments. Clearly, LIl and LIZ
are most acidic with wvery low buffering capacities and
consequently high levels of aluminium contamination. LI3 is less
acid, while LI8 is even less so,due to its juvenile forest cover.
Another factor of importance is the change 1in the catchment
hydrology brought about by the forestry land use. For example,
the installation of drainage ditches leads to a more rapid storm
response and reduced baseflow compcnents in storm- hydrographs
{(Neal et al., 1986). In addition, the increased

——

evapotranspirational losses also affect catchment hydrology

(UKAWRG, 1986).
Examination of the correlation matrices for each catchment
reveals several common and significant parameter correlations

(Tables 5b, 6b, 7b and 8b). LI1 shows a clear negative

correlation between pH and dissolved aluminium (r = =8.7},
suggesting that acid events are accompanied by enhanced
concentrations of aluminium, Furthermore, high positive
correlations between pH and total hardness, ©pH and alkalinity

and pH and calcium concentrations, all support the suggestion
fhat the 1limited buffering capacities are crucial te the
generation of acid runoff and elevated aluminium concentrations.
On the other hand SOlr shows little correlation with any other
variable, at least on the basis of the spot sampling data.
In addition, the marine salts are not highly correlated (i.e.
r & ©.4) suggesting that hydrochemical processes within the

catchment serve to modify the inputs passing through LIl. Ca

and Mg concentrations however, are well correlated (r = @.861)



Table 9. A comparison of afforested streamwater chemistry
(ueq 17V). ‘ ' .
LIl LI2 LI3g L1417 LI8
o °
2.3 4,87 4.62 5.17 - 5.28
max 7.0 3. d 6.3 - 6,8
min 4.3 4,3 4.5 - 4.4 1"
H*
| % 18 26 i - 3 ¢
3 max 50 50 32 - 44
min g.1 11 G.5 - 9.2
®
% 154 131 153 - 135
max 260 168 221 - 365 .
min 983 g 2 - 85
°
% 11 13 21 - 16
max 29 . 29 5@ - 57
min 7 7 7 - 7 1.'
S NH,
g 1.5 1.4 1.7 - 1.6 ‘.
max 5.0 1.5 6.4 - 4,3
min 1.4 1.4 1.4 - 1.4 .
Na*
z 204 174 185 - 162
max 434 220 277 - 368 .
min 4 135 45 - 17
cl |"
% 247 213 203 - 211
max 367 592 282 - - 3L9
min 113 141 56 - 85 .
A
Mg
% 60 47 57 - 72 .
max 192 6l 1a7 - 132
min 24 35 11 - 9 .
Cgi
% 59 53 185 - 76
mnax 129 75 1998 - 155 ¢
min 13 35 4 - 1@
K* o
% 5 3 3.7 - 7.8
max 26 8.2 7.7 - 22
min 1 0.5 4.5 - 1 o
b Al
% 3.38 g.48 .35 - 3.2 .
max .85 F.68 g.88 - 9,72
min @.03 ¥.27 9.013 - g.335 .
1. oH units. 3. n < 13 . 5. mg 17"
2. ¥ = arithmetic mean 4, Dissolved Al. (mg 1 ") 6., n < 30 .




and both exhibit negative correlations with HY, thus confirming

the importance of limited buffering during acid events.
Consequently, aluminium concentrations are also negatively
correlated witn alkalinity and calcium concentrations are

positively correlated with £free CO, and HY, reflecting the
combined effect of increased acidity and reduced buffering 1in
contributing ta enhanced aluminium levels. Logarithmic
transformation merely confirms the existence of all of the above
correlations.

At LI2, similar relationships were found for pH and dissolved
aluminium (r = -@.661) and pH and total hardness (r = @.75),
alkelinity (r = @.54) and calcium concentrations (r = &.,7).
Again SO shows little correlation with any other parameter and

the marine salts are largely uncorrelated, although Na and Mg

concentrations exhibit a high correlation (r = 0.9) reflecting
their common source. On the other hand Ca and Mg levels are
again highly correlated (r = 8,76) reflecting their common source
in the catchments soils and geology. In addition, both exhibit

negative «correlations with gt confirming the 1importance of
buffering capacities during acid events. Consequently, u¥ and
aluminium concentrations are highly correlated (r = #.64) as at
LIl. Again lecgarithmic transformations confirm all of the above,
as well as yielding a higher correlation {(r = @¢.724) between HY
and humic acid concentrations. Hence both sources of acidity

appear to contribute to the severity of acid events in LIZ.

At LI3 pH and dissolved aluminium concentrations are again

highly correlated (r = -0,75). As expected, free CO, is also
highly negatively correlated with pH (r = -0.821) and alkalinity
: .- . b

(r = -¢,78) and positively correlated with H (r = @.81).

Meanwhile, 50, and Cl are slightly correlated (r = #.56) and Cl1l

and Na are correlated (r = $¢.62), presumably reflecting their



common marine source. In addition, H' is positively correlated
with dissolved aluminium (r = @.691) as at the other sites, and
negatively correlated with §iQ, (r = -@.7) suggesting that

silicate concentrations are reduced during acid events.

Lastly, at LIS pH 1is again negatively correlated with

i

dissolved aluminium levels (r = 8.73) and positively correlated
with total hardness (r = €.58). The marine salts meanwhile, show
less evidence of intercorrelation between Na and Mg (r = 9.53).

Ca and Mg levels are however highly correlated (x = #.9) as at
the previous sites and both show slight negative correlaticns
with H*. Not surprisingly, H' and Al also exhibit a positive
correlation (r = 8.7), supporting the suggestion that acid events
accompanied by elevated aluminium'concentrations are also quite
common  even in a Jjuvenile «conifer catchment. Finally,
logarithmic transformations merely confirm the above, although Cl1
and 50O, also exhibit a positive correlation (r = #.52) as do Al
and Mn (r = 0.62), reflecting their common sources in marine

salts and catchment soils respectively.

Temporal patterns

Figure 6 shows tha pH and H+ concentration patterns for LIL
since 1981, The first point to make is the increase in sample
numbers since mid - 1984. Secondly, in general pH and a¥ 1evels
indicate that stream conditions were more acid in 1981 and 1382
and +that the winter high rainfall and high f{low months were more
acid than the summer months. Clearly, one reason might be the
occurrence of enhanced rainfall inputs in 1981 and 1982. Thus,
although the rainfall acidity seems to have increased in 1984,
the overall zreduction 1in precipitation volume received has

compensated for the former, producing slightly reduced levels of

stream acidity. Moreover, an examination of the fractional
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Figure 6 pH and H' patterns at LI 1 ( 1981 - 1985)



cumulative freguency of H+ samples taken during each year since
1981 confirm that ©Soth 1981 and 1982 were characterised by a
higher freguency of more acid events (Figure 7). Clearly then,
the freguency of occurence of large storm events seems to be a
major factor in determining the magnitude of monitored acid
avents.

Subsequent analysis in the present report will concentrate

upon the stream conditicons monitored since 1984, with only

occasional references to earlier samples. First, at LIl the dry
period from February to August 1984 was followed by high rainfall
in September which resulted in a major increase in stream acidity
{Figure 8). Presumably this pattern reflects a flushing effect
following the dry period. acidity continued at a fairly high
level over the Winter high rainfall months, £falling to a minimum
in May 1985 before recovering untii a further minimum 1in
September, The latter c¢oincided with a further perioed of
unusually low rainfall from September to November. Thus the
major factor influencing streamwater guality patterns appears to
be the rainfall inputs. <Consequently, the unusual nature of both
1984 and 1985 cannot be under-estimated. 1984 experienced an
unusually dry Spring and early Summer and a total rainfall 94% of
normal. Likewise, 1985 experienced an unusually dry late Winter
and Autumn, vielding a total rainfall 91% of normal. Thus, both
years to date make it difficult to establish the nature of any
normal seasonal patterns in streamwater chemistry.

The higher SOlT concentrations were recorded during August
1984, following the long dry period. Levels then declined during
the latter part of the year before recovering during the low

rainfall months of January to March 1985, Presumably the

patterns reflect the influence of flushing effects following the



g861 —H—

z sSUCLEIIUsTUDD j0 Agusnbelg satieTnwno JeLoTinedd g adnbiy ¥B6!I —H—
L 17 17 SUDLIRIIUGIUDD | § en1iel T vae!
7851 —A—
| /bart uoiH 1861 —%—
091 "021 08 “ov 0
.o _ ¥ T L _‘ T T : T _ L) T T _ T T .o
"0 — — 1*0
-
"0 —t — 20
. - n
£°0—t+ —£"0 W
0
H
i o
Yo — —y"0 _W
- ! 4 m
. o
s*0— f-c0 €
Ilﬂ
| [
et 190 3
m
| i >
i , D
z
00—+ . 4270 G
80— 4—8°*0
150
A i A .
v v v ~
2 L ﬂ I 1 L ﬂ 1 L P w2 £ T 1 "1
021 "08 "0

(1177) ouuo|dg UA|T
00.0.000....0..0.......



..............‘r........

S861 { 861 S861 1861
H ] s
1 ‘ozt .
i Los
<+ 091 .
. n 1e
. 2 res 2
4 -o00z Yoo
” J “
| 1 1S9
+ "ovZ b
) / Loy
| sber
0 G861 ¥861 L c861l ¢ ¥861
Ly T T Ll U U L) L T L L) T T T L) L L) L. L Li 1 T L T L] T T L) Ll ¥ T I L] ) L] Le
+ 00t ; b
i | +- ‘ol
+-0°81 -
1 - 1 "oz m
] 2 ] 2
] ]
4+ 00z + ‘0t
] ]
: 1 -ov
{-0'sz 1
] -
] ]
. -Om

| /bard : | /ber

T ANNVISE NAT B e




[ S86! | 861 | 5861 | pgg1
1 o051 T "2
}-0°00z '
] L.
; A ] £
4-0°0s2 -
+- 0°00€ +°r
h E
1 0-0se -
i L.
[ /boar | /berl
, 861 | S86] | 861
T T T L L] 1 T L) L] L) L) L) L] L) 4
T o 1 -o0t
W ]

1 00 3 T ‘00T Zz
! )
L og 1 -o00e
1 ]
- - 001 1L 00
| /berd _ | /ber

(

I NNVId9 NAT1
® 006000 00

1) 4
O © 0006060000 00 0 0

L



..............,>.O......

mma_ *wmﬁ

-
3]
aw
[~
-+
bl
O

(TI1)

QUYH" L

Warl

AL

| /berl

mmﬂ

vmm“

'R

- "oy

¥o

- *08

— 021

1 /ber

ANNVIHE NATT

U VONY AN NN U PR NN TN TN U NNY NS SOUN N T SN I N N S .

—-0'S

— 0°01

- 0°S!

— 0°02

- 0°62
| /ber



1 G861 1 ¥861 1 G861 — P61 ot
” 4
4-¢co‘0 ._l 0z"0
wno_.o
3. op*

3 m or*0 z
+61°0 1
] +- 09*0
1oz ]
] 1= 08*0

| /Cu | /8w

¥861 G861 Y861
Wq-q-mﬂﬂ—...._-.ul--...-.n- m. =TT .q-.“-.-nq-..-.4|u1|°—.°

7 -
+ 0¥0°'0 b
i 0 +0z°0
-_1 f ] -
+- 0800 L ae* :
] 2 ; toeo =
+ozive Ulo.w.o
. 1 ace
+ o910 1-os°0

| /0w ) | /0w

(TI77) ANNVIHE NAT
®© © 0000000000000 0660 090 00 000



©00600000000000 9y

5861 861

T T T —raramrr ] @ FFrrrrer oo oo T T T 1
b -
J .
.

¥ -

_— -
.
- -

T B

1 02*1

+- 09"1

Li_LILIillllill
0 - ™
QIJSY°H
e
ZoIs

| /8w ) 1 /6w

------------------------

002

Rainfall (m‘m)

00€

00Y-

(TI71) INNVIJE NA 1T




dry spell and thé concentrating effects of reduced ©runoff
draining the forest land use. The NO~ concentrations aiso
indicate the presence of a flushing effect in September 1984,
with other peaks occuring 1in the Winter months especially,
presumably when plant uptake of nutrients is at a minimum.

The marine salts all indicate a decreasing trend in 1984 with
the high concentrations of Summer 1984 representing the
concentrating effects of high evapotranspiration losses from
February to August and subsequent flushing effects. Fluctuations
in 1985 were fairly limited but with some evidence of a minimum
in July and August.

Terrestrially derived calcium concentrations were low
throughout the study period and gave little indiéation of a
seasonal pattern, although scme evidence of a flushing effect was
apparent in early September 1984. In addition, 1in general the

low rainfall months tended to record elevated Ca concentraticns.

~Both total hardness and total alkalinity exhibit similar

patterns. Yence, during low £flow months when the baseflow

component of streamflow is elevated, the limited stream buffering
capacity is at its highest,

0f the metals, dissclved aluminium concentrations consistently
peak during periods of high acidity and high runoff. Dissolved
Fe and Mn concentrations exhibit a similar pattern, with peaks
generally corresponding to rainfall events.

Free COl levels not surprisingly mirror HT concentrations,
while 510y concentrations decrease when H+ levels increase.
Lastly, humic acid levels were reduced in March to June 1985 and
recovered 1in July/August 1985 probably reflecting patterns in
soil and vegetation conditions.

At LI2 data are only available since June 1985 making any

analysis of trends impossible (Figure 9). The plots are thus
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included merely for.info:mation. On the other hand, LI3 has been
monitored since September 1984 (Figure 10}. In summary, the
patterns are very similar to those exhibited at LIl. pH and H
levels tend to exhibit acid conditions during the high rainfall/
nigh runoff periods. NOS levels also show peaks during the
Winter when plant uptake is reduced. Likewise, the marine salts
also show some evidence of a seasonal pattern with reduced
concentrations in July to September 1985, as at LIL. Similaxly,
Ca, K, total hardness and total alkalinity patterns mirror those
found 1in LI1l, although K levels are lower and Ca and total
hardness concentrations are occasion;ily much higher than at LIL.
The latter might reflect a SIightly greater buffering capacity as
mentioned earlier, Tﬁe patterns-in aluminium concentration at
LI3 aré almost identical to that found in LI1 and thus high
levels correspond to acid high runoff events.

Again, too few samples have been taken in LI4 since October
1985 to allow any sensible interpretation. Thus, conditions at
LI8 are now reviewed (Figure 11). First, the availlability of
data since 1982 allows the determination of some seasconal trends
which are probably common to all the afforested sites. Hence, pH
and H+ reveal clear seasonal patterns with peaks in acidity
corresponding to the winter high rainfall and high runoff
periods. More specifically, the obvicus seasonal pattern in the
two parameters is clearly lacking since mid - 1984 illustrating
that periods atypical nature. Similarly, seasonal patterns in Ca
and Mg concentrations with a clear Summer peak, also disappear in
the latter part of the study period. However, in order to retain
compatrability further analysis is restricted to 1984 and 1985,

but must be viewed in the context of its unusual nature.
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Y levels again reflect the fluctuations 1in rainfall

pH and H
and runoff as at previous sites. In addition, the flushing
effect suggested for September 1984 1is confirmed. 5O levels
meanwhile exhibit no real patterns although a peak was recorded
during the high rainfalls of late 1984, NO4 concentraticns again
exhibit a pattern of peaks corresponding to the Winter months as
at previous sites. Similarly, the marine salts exhibit patterns
almost identical to those found at LIl, as was the case for the

terrestrially derived Ca and hardness concentrations, and

dissolved aluminium.

Conclusion

In conclusion, afforestation has probably resulted 1in an
approximate doubling of evapotranspirational losses (Law, 1956;
Calder, 1985). In addition its presence can probably be linked
to several other mechanisms contributing to streamwater acidity
(Bache, 1983; Nilsson et al., 1982; Harriman and Morrison, 1982;
Neal et al., 1986). These include the more effective scavenging
0f air pollutants, stemflow and throughfall contamination, the
effects of acid leaf litter, increased base cation uptake, the
effects of forest soil characteristics and forestry ploughing and
drainage practices. Moreover, a forestry land use c¢an encourage
the generation of more rapid hydrological runoff processes such
as overland flow, macropore flow and shallow throughflow. As a
result of the above, residence <times are reduced especlally
during storms, and baseflow contributions are reduced at all
times due to evapotranspiration (UKAWRG, 1986). Small catchments
such as the ones being studied are also more prone to fast

reacting surface and shallow sub-surface runoff processes.

Clearly, residence times and the extent of water - rock

contact are important in determining the stream chemistry. In




general, baseflow is characterised by low acidity and Ca bearing
streamwaters, and stormflow is characterised by high acidity and
2l hearing waters. During storms the processes determining
stream chemistry appear to be limited to the flushing and mixing
of waters from the near surface soil layers, fed by dry
deposition washed from the trees. on the other hand, under
normal Summer low flow conditions, soil moisture deficits are
high and water is supplied from the deeper inorganic
horizons. During the Autumn storm period, however, the deficit
decreases and streamwater is probably supplied from both sotl
matrix and macropore flow, mainly from the upper organic soil
horizons.

Thus, conditions in all of the afforested catchments are
similar, producing similar responses to rainfall inputs. The
major differences in response can presumably be related to the
juvenile status of the forest in the case of LI8., In the case of
LI3 however, the link with the effects of bankside clearance and
a slightly improved sfream chemistry remains necessarily
speculative and awaits further information about the catchment

soils in particular.

acidified mooriand catchments {CI3, CI4, CI5, Ci6, UC4).

CI3 1is the largest of the Camddwr catchments (fable 1} and
consequently one of the least steep. Table 1@a indicates that
C13 1is generally only slightly less acid than the afforested
catcnments, with the exception of LI8, with pH averaging 5.27
and H* 8.5 ueq lvi . Hence, despite the reduced
evapotranspirational losses of the moorland {typically 5@% less)
and its reduced scavenging capacity, the catchment is still prone
to acid events. Indeed, 25% of all samples taken exhibited a pH

of 5.8 or less. Tables 11lA and 12a both indicate that
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| Takle 112 €14 streamwater guality (1984-5)

g e C AN v THHEAN 5T0EV SIMZAN YN AA il 2l
L T 47 T 0.0C255 0.0055%2 0.00113 i_cu GaLoree GalZBGT
T_/7% ) 47 50 Gl U.01259 C.01059 g.00202 1_24 0,0 N.046900
1_¢cn 5 %3 30 0LI0I1CG GLOC10C 0.0000C 0.000C0 T_co Nt .7C01C0
T at 2¢ ar 11040 G.31939 0.131%F C.07431 0.06477 T_ 6L 040 Gal7000
T_¥ la 47 DIIU2 0 GLNC2G0 GaCO314 C.0U432  G.00072 T_F3 0.0 HaC7 100
T_C% ) 44 Qa1 Q. 005%CC  0.3C30C 2,J0C04C 0.CC008 L 0.20C nzaon Ca03CY
, T_#N N2 4“9 B.1%47 1115 Oalbaid 0.0741 0.C151 T_FN 0 M-D R 0.71CC
" T_F< 25 43 Caslén 30ac 04527 0.3317 0.0763% T_FE fe ann Ge7760
T_NT 73 A B NS B £33y 0400304 0.00044 0400007 T_MI 0.r 5309 . 0.003C0
P 1 Ge2174 50000 Ga143%6 043457 0.0702 pH 4 oG by 750 5.70C0
B 1 Fa 4 35.00 34,812 Y G759 ConD 21 250 HARGDN) 324750
1 2r 0. oDR+ld Cad0e+C0 T.00E40C + . Tuss Calll CLnrenn * +
v 2 1.°01% 144224 1.445¢C 2724 D.C519 AMM _H 1. 2.2971 1.4214 1.4228
TN 7 1 a2l 7.143 G375 L.574 De537 TN ? PR 70148 16.284
” NS 73 0 0.12370 D.2837C 0.23537C NL,00C0C 0.C0000 NCYC U £0.23570 0.25570 G.24370
TH ) 5 bebhih 44500 4.539 1,655 G.173 TH 2 10,4017 1. 700 54404
o 67 11 1,739 3500 3.532 1,906 0,242 T Fen? 1. 144400 2.900 4,200
1a a1 12 37.97 29.67 33,97 13,13 4.2 Th 200 177,45 15457 42,96
cL 73 0 163,27 141.C4 149.51 37.02 .33 cL Shak? 225,67 117,54 169,25
CoCh 72 1 0.020%3 0.02000 0.02006 0.00715 0.0003% CPC4 C.C2500  0.€3010 0.02000 0.G20C0
SIr2 73 0 047431 0.70C0 047408 0.2044 0.0723% SIC? G.5C00 1.2000 C.5000 0.90C0
, 504 24 3 23,95 91.24 89,10 25.03 3.00 S04 4623 147456 66417 107.61
NA Y 7 1iC.74 132.63  130.32 29.12 1.59 NR £1.54 191.33 112.73  149.58
K 55 ] 4.712 44359 4.756 24661 0.330 K Ga513 124651 2.564 b.666
cu 57 6 N.00247 0.C0200 0.00226 0.C015% 0.900017 cy 0.C0100 0.01200 €.€C200 0.00200
MG 47 6 52473 52.63 51.87 16.74 2.05 FG 4436 113493 £2.60 61.48
ch 57 é 42,17 60,42 t1.2¢ 15,29 1.9%7 cA 104438 100,90 13.93 49,94
IN A7 6 0.01470 0.013C0 0.01418 0,00672 0.00032 N 0.C0500 0.03600 0.C1000 G.G13C0
co £ & 0.C0123 C.CO1C0 0.00104 (0.C0127 (0.0CC1s cn 0.C0N30 0.01100 0.801C0 G.C01CO
aL 57 5 0.12922  0L.12100 0.12801 0.06333 (0.00529 BL 0.C2500 025200 0.,10600 G.154C0
Fs A7 5 0. 00710 G.CO5CC C0.00743 0-01155 0.00141° FH 0.NG2C0 0.G75C0 0.00200 0Q.01309
cR &5 1 (.CN272 0.C0C3CC 0.0028C 0.00876  0.00009 cR c.00100 0.20%00 0.00300 0.€03C0
N 67 A C.13203 G.12300 0.13711 0.05377 0.00857 MN 0.05700 0,26600 0,104C0 0.17200
FrE 44 ? 0.253% G.1335 0,2299 C.2290 0.0282 FE G.0520 1.13%00 C.1160 0.2952
W 57 & 0LW07341 UL00306  0.00344 0.00258 0.00031 NI rL.00100  0.0132C0 0 0,00300 0Q.003C0
HU™LZ z 1 24247 1,750 2.126 1.582 0.1864 o0 ¢.300 L. 208 3.150
1a 1 72 0.C0E400 Gu002+4CC 0.00E+GC * * 400 DLO0E+GD * *
; TEvp 1 72 0.0CE4CO C.OCE+C0 0.00E+0C * > +30 0.002+00 + *
T_N2 1 72 0.,0CE+00 C.0GE+C0G C.UNE+CC * " 40y 0L06F 3D * .
T_x 1 77 (a0 L0400 GadGe4C0 + * LErR IR IR S L)) " * ,
LI 1 2 Ca00 C.O0E+0C 0.DDE+GE + * ) G.00E40) * * '
f_ce 1 72 0.0 GoOCE4CT 0.00F+0C * * +970 GL000400 * * !
aT1a 1 7oy CLOUZHC0 Ca30E+400 + . 430 0.000+00 * *
Uy 1 FAA Cooneeln 0e32m+40CE " » I TL 007400 * *
1 7SO0 L.00 Cororefn CaO0E+QL + * 470 JathAeN0 * *
1 72 000 0 CL00P+C0 Galdd+00 * » 23] 0.0 10400 * *
10 A 1.0 1.0¢% 1.175 1.1 B.575 Tar fen0 1.040 2.25C
1 AL CEE T CLNCERTT DO F DL 3 . [PEH RN * "
70 1 11,72 12.00 1Ce37 11,71 1, 40 Join 51,100 2070 12,95 :
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Table 11b

Correlation matrices
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(i) normal
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: Co? Deabi
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TS “es L.575 BOPRT

fa1i2 Costl Y7 Cod 3
SRR ~eis 105 a2

cuntt Faia?  =Gelll  mGeUs7

R E R T —0.CAS

J.102 Colab B.144

B.320  —Cdnb “0. 565

£l 5.5rG —G.117

Del3h  =2.5.7 -0.2v5

5.5 Sl Colld
S0.137 =076 ~Ce453 =Ca335
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Table 17a €15 stresamwater quality (1984-5)

~ K] MEAN MESLAN THAS AN STOEV SEMENN B! s
Ty o 1 MaCT247 CLLPSU 0400227 0.00%106  0,00022 La202%0 .00k
T >, TIO3.01047 CL0100C £.01035  C.L0413 0.GO0R3 GLCOTG0 0.011C0
Voo 25 79 G.00104 0 0.08150 CL.0010¢  C.00045 0400008 2.00100  0.I010C
T_pL 4 74 0L120%1 Gu09590 0406977 CeC3531 0.00771 5.06975  £,124GC
T_Fz A 1D Gh0d2%n CLI0200 0 CLC249¢ Ca0C1Ad D.CCDt4 J.0024090  0.00430
T_c- s Ji 0 GeTV3L) C.003C0 GL00IGC 0.90008  0.00000 0.993532 G.003CC
T_en 14 30 C.0474h G.03000 C.04%41 0.C1011 G.C0294 Tan 0405450
T_ft s 77 0.103% 000900 0.1027  0.0727  0.0145 0e16C0
T_NE 25 77 0.C0316 0.00300 G.0C3C% 0.0005% 0400011 ¢ C.003CO
PH 173 1 52225 9,2C0C 542104 €254 L0330 5.5000
crn 173 1 374343 36,000 37,934 5.558 Te5853 42.00C
Tus s 1 10T JeDUT4C0 0,JCE+CC 0.00€+08 * + . .
aev_n 104 D 1.5047  1.4286 0.4071 0.0401 1.4278 1.629%
TON 157 1 14,54 7eld 11.7% 1.16 7.1k 21443
e 104 U 024570 G.2357¢ C.ONCIC  0.0CCET Q.75 N.2357C
55 5 6.9:7 P 1. 146 c.122 1,900 $.400
: 3 P10 343317 342000 34295 04764} D.02%7 FCLY 243063 3.70CC
o "z 1 29,40 .58 25.26 16,37 1.14 TE 19,93 35.97
cL 174 O 167463 169425  16%8.535 42,12 halld cL 14106 197.46
CFrs 13 1 C.C2143 £.02000 0.02000 G.CI1C33 G.GC1G2 £ro4 0.C2060 0.02000
SY62 104 0 09173  0.R0CO  0.8219  0.1717  £.0143 SIC2 0.7000  1.0000
504 130 4 102.19  163.37  101.81 12447 1,489 54 B7.51 114,31 _
Na %4 16 149,05 146.32 148,62 31,72 3.27 AN 128,17 149.70
K 23 11 8626 5,897 6,232 3.936 0e408 K 3,590 7.948
cu 22 21 C.C02C5 0€aCC2GC CGua0O015C G+CC116 0.GGG13 cu 0.50180 0.00800 C.0C16C 0.C0Z60
G 95 9 56417 53.C4 55,78 14.20 t.46 G 12,97 91,94 43,59 62,09 _
o 3 9 41,99 42.91 41.75 11.47 1.18 ¢n 19,96 71,34 35445 50448 !
A 53 9 0.CEBR7 U0,015€C 0.01617 G.C1694 0.00174 N 0,00400  0.129C0 0.€1200 0.82000
co 95 9 0.GO0%3  Cl.00100 0.00050 0.G0C32 0.0C0C3 ¢ D.0CC40 0.00280 0.0608K0 0.C0100
By 96 8§ C.1624 0.1310  0.1538  0.1198  0.0122 aL 0.005C C.6260  C.0672  G.2275
Fe 45 9 0.C0209 C.C05C0 0.004G4 0.01262 0.GC129 Py 0400200 041C75C 0.00200 0.60700
8 72 27 C.C0N247 0.0C3CC 0.00235 0.00161 0.00013 R G.20100 0,01400 0.00100 0.003C0
T G4 10 0.070352 (06750 0.C6864 0.02798 €.CC289 A 0 07700 0.16400 C.04767 0.08725
Fe 73 9 0.07957 €.056C0 0.07213 0.06713 0.066639 FE 0.CC100 0,34300 0.03300 ©.11000
N1 21 72 €.00307 C.0C300  0.00287 0,G0173 6.00C19 N1 €.00100 €.01000 C€,.00360 0,00300
FU¥ 1o a5 15 043515  0.36LC  0.3272  0.2182  0.0231 HUFIC 0.0500 1.4007  §,2000  €.5000
16 57 54 0.01032 C.0C6L0 0.U0918 G.C1C37 £.00147 Is 0.CCOC0  D.042CC 0.00275 0,017CC
TeEwp 2 72 9,831 104250 9,954 44650 0.822 TEFP £.000  17.000 5.625  14.60C
T_A3 1 193 DLOQE+O0 Go0CE+CO 0.00F+00 * * T Q.0CC400 0.C0E+00 * *
- i
1 133 0.000+30 0.00E+CC C.00E40C * * T 0.7CF4n0 CL0CE+D0 * *
1 103 NL00F+00 ChDOE+CK GEeGT * . T_*6 QvHOFe00 0.C02+00 - *
1 123 C.CGE+CY C.0UE4CC 0.00E+0C * . 1.cA UsOCEHGD CL,EGE4QD N *
1 103 0D.0OF+00 0. 00E4CO C.QCE+CE * * acie G.NCEAOC 0.00E+00 * .
24 43 C.CH123  C.005CC 0.01814 G.60811 0,00166 uy .cCon0 0402500 0.C0500 0.02000
9 95 4a344 44300 4.344 1.6406 0549 F_rH €.rno 5.4C0 4a650  5.000
41 e Ce?350 D.06CC Del93% Dehd53 0.0740 STAGE 2.5060 c.ninn 0.2066
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~C.327
~0.322
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~Ca257
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~C.C48B
-C.2721
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-Ca134
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05391
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C.250
~Ce539
—Ca+435
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conditions in CI4. and CI5 are very similar with pH levels
averaging 5.2 1in each stream and ' averaging 12 ueq 14 and 8
ueqg 14 respectively. Both catchments are much smaller than CI3,
with steeper slopes and presumably reduced residence times,
nevertheless they are comparable, In the «case of CI4, 25%
of all samples yielded a pH of 4.7 or less, while in Ci5 the
corresponding level was 5.¢ or less.

On the other hand, Table 13a suggests that conditions in CIb
are slightly less acid with oH averaging 5.6 and H+'5 ueaq l_‘ .
One factor contributing to the above might be its larger area
compared to CI4 and CI5 and more importantly its very gentle
slopes which would tend to favour increased residence times and
perhaps encourage a reduction in overland flow processes.
Moreover, the valley bottom is characterised by a large area of
peat which probably increases residence times, reduces
stormflows and controls the baseflow chemistry. Hence, the
catchment may not be ideally representative of the Camddwr
system. Lastly, Table l4a indicates that too few sample
been taken at UC4 to allow any conclusions to be drawn, the data
is merely provided for information.

SOlTlevels at CI3 averaged 95 ueq Idl, less than 6@% of those
found at LI1 but still about 39% greater than was found in bulk
precipitation at C7. Thus, the reduction in evapotranspiration
and scavenging capacity in the moorland catchment has presumably
led to the above, aided by a probable reducticn in sulphates
contributed from the soils. The other acidified moorland sites
exhibit similar concentrations, although levels are slightly
lower in CI6 averaging 88 ueg fﬂ as might be expected given 1its
slightly reduced acidity.

Despite the very different vegetation cover, NO-Slevels are

similar to those found at the LI sites. Hence they are
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substantially Llower than those recorded for bulk precipitation
indicating the continuation of nutrient uptake at the CI  sites.
NHH_levels are similarly low.

The marine salts are all present at much lower concentrations
+han were found in the LI catchments, especially Na and Cl.
Indeed, concentrations of the latter two average about 148 ueqg T
and 150 ueg l" respectively in the Camddwr sites. These can be
compared to an average of 114 uegq 1-‘ for Na and 142 ueg l_FI for
Cl in bulk precipitation samples taken at C7 in 1984. Thus the
reduction in evapotranspiration losses and sea-salt scavenging
capacity has resulted in a major reduction in the marine salt
concentrations. . Hence, chloride probably behaves almost as a
conservative element, although some enrichment of sodium seems to
occur., More specifically, the slightly higher mean Na and Cl1
concentrations recorded in CI5 may reflect the effects of road
salting since the site is below the access road. The above
however, requires confirmation in the field.

Mg concentrations average 54 ueq ]L"I at all sites in the
Camddwr and are even lowef than those found at LIl and LI3,
although they are still almost twice that found in bulk
precipitaion at C7. Thus, although additional Mg is present
within the catchment soils, the amounts only allow for a limited
buffering capacity during acid events. Indeed, Ca concentrations
are also low, averaging 43 ueg 1“ in CI3, Ci4 and CIS5.
These levels are again lower than those recorded at the LI sites
and further support the suggestion that there is still only a
limited buffering capacity available in these catchments, CIh
however, exhibits a slightly higher mean Ca concentration
(53 ueg l"l ) supporting the suggestion that it 1s somewhat
atypical due to its soils, hydrology and topographny and hence

less acid. Likewise, total hardness concentrations average



- . -\ ]
‘', 4.8 mg 17" and 5.1 mg 1 at CI3, CI4, CIS

4.6 mg l'\, 4,6 mg 17
and CI6 respectively. Hence, the catchment soils, geolegy,
hydrology and topography at each site combine to produce
moderately acid waters without the added problems associated with
afforestation demonstrated in the previous section.

Not surprisingly, dissolved aluminium levels are woderately

- -k —
high averaging @.12 wmg 1 ‘, .12 mg 1 , 8.1l mg 1 ' and

#.11 mg i" at CI3, Cl4, CI5 and CI6 respectively. While, not as
high as those found in the LI streams, the levels still represent
a major increase on those found in bulk precipitation (averaging
P.327 myg f4 Al at CT). In addition, the maximum concentrations
recorded at each site all exceed the average levels found at LIS8.
Hence, although Al levels are not as severe in these moorland
catchments, intermittent problems of high Al still occur at all
of the sites principally during the more acid storm events.

also, most CI sites exhibit very low dissolved Fe and Mn
concentrations of less than @.2 mg ld\ and J.1 mg le‘
respectively. CI4 however exhibits a mean concentration of
#.206 mg l" and @.14 mg f4 for Fe and Mn respectively. Hence
there appears to be an unusual source of these two metals in Cl4.

Lastly, Table 15 presents a compariscn of selected stream-
water chemistry for the acidified moorland catchments. These can
be compared directly to Tables 9 and 4. Clearly, CI3, CI4 and
C15 are slightly more acid than C1e6, while sulphate
conce~trations in the latter are lower than in the other three.
In addition, Ca concentrations are slightly higher at Cle,
further supporting the suggestion that the stream has a slightly
improved buffering capacity perhaps due to its atypical valley
"pottom soils and low slopes.

Examination of the correlation matrices for each acidified

moorland catchment reveals several common and significant




-1
. Tables 15. A comparison of acidic moorland chemistry (ueq 1 )
C13 Cr4 CIS5 Cl6 uc4 3
. \ pH
7.¥ 5.3 5.2 5.2 5.6 5.9
max 6.2 7.9 6.8 6.8 6.8
. min 4.1 4.2 4.6 4.5 4.8
-\7
H
. X 9 12 g8 5 2.4
max 79 63 25 32 16
min g.6 G.1 1 G.L g.2
¢ 50y
X 95 9@ 12 88 67
. max 132 15@ 1549 132 36
‘ min 63 46 6y 33 43
® NO 3
X 15 12 15 14 8
. max 138 21.4 86 43 29
| . min 7 7 7 7 7
x
SEH]_‘,
. X 1.5 1.5 1.5 1.5 1.5
' max 2.9 2.9 5 2,9 2.1
min 1.4 1.4 1.4 1.4 1.4
® s
X 139 130 149 137 137
| . max 278 191 283 266 183
| min 78 62 99 77 86
@ S
3 146 141 168 146 138
max 226 226 226 226 226
. min 77 56 85 56 85
Mq‘u—
. X 54 53 56 54 64
‘ max 95 114 91 98 98
min 34 4 33 26 42
(] R
X 43 42 44 53 54
. max 73 Lal 71 182 85
min 29 11 2@ 25 34
o ¢
X 5.2 4.9 6.6 5.9 4,8
max 21.8 12 21 26 13
. min 1.8 3.5 3.5 @.3 @.5
W, Al
. X g.12 @.13 d.16 .11 a.ae7
max @.38 #.25 @.63 d.22 #.439
min g.822 @.825 9.805 g.ad13 g.04
. 1., pH units. . 2. X - arithmetic mean 3.n < 21
4. Dissolved Al., (mg 1 } 5. mg 1'as ammoniacal nitrogen




correlations (Tables 18b, 1lb, 12b, 13b and 1l4db). First, CI3

indicates a significant negative correlation ©otetween pH and

dissolved aluminium (r = -0.,563) as at the LI sites. It also
exhioits the expected positive correlation between pH and
alkalinity (r = @.968). Hence, acid events are accompanied by
high aluminium levels during poorly buffered situations.

Meanwhile 80y shows little correlation with any other parameter,
as was also the case in the affcrested catchments. The marine
salts however, are more highly correlated at this site than was
the case at LIl. For example, Na and Cl (r = #.398); Mg and Cl
(r = ©.6935) and Na and Mg (r = 0.645) all reflect the major
influence of sea-salts on rainfall chemistry with the reduced
vegetation interference. Ca and Mg are also positively
correlated (r = ©.813), although they do not exhibit any
relationship with HY or al concentrations, unlike LIl. Hence, at
CI3 acid events accompanied by high aluminium concentrations do
not necessarily correspond to periods of lowest buffering. As
a result, aluminium concentrations and pH conditions are not as
severe as those found in affcrested catchments. Other notable
correlations with HY include that with conductivity (r = @.,93),
NO; (& = ©.933), free CO4 r = §.67) and total alkalinity
(r = -9.84)., Logarithmic transformation also suggests a high
correlaticn between H+ and al (r = 9.66) which was not in
évidence pricr to transformation and probably reflects tne
curvilinear and scattered nature of the relationship. The high
positive correlation with conductivity has not been demonstrated
elsewhere and is difficult to explain since one wculd expect a
negative correlation if any, as a result of the rapid runeoff and
reduced residence times assocociated with acid storm events.

At CI4 the relationships between pH and dissolved aluminium,

and total alkalinity are repeated. The relationships between the




marine salts however are less significant, perhaps suggesting

some interference present within the catchment affecting the

chemistry of marine salt inputs. On the other hand, Ca and Mg
continue to exhinit a high correlaticn (r = @.84), but with
little correlation with H+ concentraticns, as at CI3, More

specifically, the high correlation between #° and conductivity 1is

not apparent at this site (r = @.43), perhaps indicating a

slightly different hydrochemical response during acid storm
*

events, Lastly, H and Al exhibit the familiar positive

correlation {r = ©.67) associated with a stream subject to acid

and aluminium pulses.

Similarly, CI5 exhibits a clear relationship between pH and
dissolved aluminium (r = -8.762) and the existence of similar
relationships to all those found at CI4, with no correlation
between T and conductivity. CI6 also indicates a clear negative
correlation between pH and dissolved aluminium (r = -0.85), In
addition, lower <correlations between the marine salts are also
demonstrated at this site. More importantly, <CI6 deces not
indicate a gecod correlation between HY aﬁd conductivity as was
the case at CI4 and CI5, but not CI3, Hence, the c¢hemical
interrelationships appear similar for each CI site, with the

possible exception of CI3; a feature which requires more detailed

investigation with regard to the catchments soils and
hydrochemistry. Finally, correlation matrices for UC4 (Table
14Db) are merely provided for information and are of limited

applicability due to the small sample size.

Temporal patterns
Figure 12 indicates that pH generally varies between 6.9 and
4.5 at CI3, but with two isolated peaks in acidity; these however

correspond to two sample contamination incidences. Confirmation
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of the contamination is afforded by the correspondingly high
levels of conductivity and NOg . In noermal circumstances as Was
the case with the statistics in Table 1lfa such samples will be
remcved from the record. Their inclusion 1s merely used to
illustrate the need for careful sampling. Mcoreover, the above
probably explains the spuriously high positive cortrelation
between HY and conductivity at CI3. More generally then, pH and

u' are seen to vary with rainfall inputs as at previous sites,

In addition, some evidence of an Autumn flush is apparent 1in

1984,

SOH_concentrations, while much lower than at LIl for example,
also show evidence of a flushing effect in August 1984, as well
as late winter/ early Spring maximum during the low rainfall
period of 1985, NOq levels indicate the usual Winter maximum
caused by reduced plant uptake, the anomalous peaks being -caused
by nitric acid contaminatiocn.

The marine salts exhibit widely fluctuating patterns similax
to those found in the forested streams. Levels are elevated
following the Summer low flows of 1984, presumably reflecting
concentraticn and flushing effects caused by the long dry spell.
The reduced concentration in the Summer of 1985 probably reflects
reduced flows when higher evapotranspiration losses countered
moderately high catchment rainfall.

Ca, total hardness and total alkalinity levels alsoc fluctuate
widely, but show higher concentrations both following the dry
summer of 1984 and during the low rainfall peried at the
peginning of 1985, The latter probably occurred as a result of
the larger baseflow contribution to streamflow at the time as

well as the reduced evapotranspirational losses evident in

Winter.



Dissolved aluminium at CI3 also exhibits a flushing effect in
1984 while in 1985 peaks correspond to individual acid events
triggered by isolated rainfall inputs. Lastly, 510,
concentrations indicate a seasonal pattern of increased levels
during the Winter high flow months. Certain dilatoms may act as a
sink for silica during Spring/ early Summer, perhaps accounting
for the decline at such times.

At C14, pH and HY patterns again indicate the presence of an
Autumn flush in September 1984 (Figure 13). In addition, high
rainfall and high runoff months consistently exhibit elevated
acidity levels, as at CI3. Furthermore, most of the other
parameters exhibit very similar patterns to those found in CI3
although at slightly different concentrations in some cases.

CI5 also exhibits similar patterns, {Figure 14) mere
importantly the records available for the whole of 1984 also
highlight the clear flushing effect recorded in September 1984,
In addition, 80, and NOz patterns are similar and confirm the
seasonal nature of both, moreover SO% peaks correspond with
Winter periods. The marine salt and terrestrial cation patterns
are also similar to those of CI3 and C14, Aluminium
concentrations again vary according to the incidence of acid
events and exhibit a major flush following the reduced flows ot
Summer 1984, Lastly, 510, also exhibits a clesar seasonal pattern
as at the previous site.

At CIe6, pH and HY yield similar patterns, although their
overall levels are slightly less acid (Figure 15). Hence, acid
events continue to occur in conjunction with high rainfall ard
runoff, but the acidity is slightly dampened. All the other
parameters again display almost identical patterns to those found

at the other CI sites. The data for UC4 are included merely for
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information, since too few samples are available for any

meaningful analysis (Figure 16).

Conclusion

Thus, analysis of the acidified moorland sites seems to
confirm that the reduction in evapotranspirational losses and
scavenging capacity coupled with the change in catchment land use
and its effects on catchment hydrology and hydrochemistry has
resulted in a slightly improved and less acid streamwater
chemistry. However, Table 15 still suggests that intermittently,
moderately acid events do occur especially in CI3, CI4 and C15,
causing aluminium levels to rise significantly during storms and

thus presumably making the re-establishment. of fisheries

difficult.

Unacidified catchments (LI6&, GIl).

LLi6 drains an area of d,68 kﬁl and is the steepest of all the
catchments monitored, hence runoff rates and residence times are
likely to be affected accordingly. Table l1l6a shows that LI6
experiences few problems of acidity or aluminium contamination.
pH averages 6.9, while H+-and dissclved aluminium concentrations
average only ©.15 ueq 1™ and .06 mg 17" respectively. SO0y,

-1 . .
concentrations average 183 ueq 1 similar to those found at the

CI sites and reflect the scavenging capability and
evapotranspirational losses assoclated with a grassland
vegetation.,. The marine salt concentrations are also similar for

the same reasons. Major differences are only in evidence for the
terrestrially derived Ca, Mg and K concentrations which are all
elevated; suggesting that LI6 is well buffered against acidity

due to the presence of larger amounts of these base cations in

the catchment's soils and perhaps geology.
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GIl is similarly unacidified (Table 17a) with an average pH of
6.3 Conditions in the catchment again snow few signs of any
quality problems. SOH' Na and C! levels are all slightly higher
than at LI& reflecting its acid oak woodland vegetation <cover
which scavenges the above more effectively than grass and 1s
characterised by greater evapotranspiration losses. Levels
nowever, do not approach those found in the conifer afforestead
catchments. NOy concentrations are also occasionally higher than
at Ll6, presumaply as a result of Autumn leaf deposits
contributing nutrients wvia runoff. Ca and Mg concentrations
however, are much lower than at LI16, averaging 66 ueq 1'\ and
88 uedq ld respectively. Nevertheless, the concentrations are an
average still higher than.those recorded at aﬁy of the other
sites and clearly offer a sufficient puffering capacity for most
of the time. Table 18 summarises the general differences in
stream chemistry between the two sites and can be compared with
tables 4, 9 and 15.

The correlation matrix for LI6 (Table 16b) confirms the
existence of the expected correlations such as those betwsen DH,
total alkalinity and total hardness; ©pH, free CO4 and H*; total
hardness, total alkalinity, Ca and Mg. As at many orevious sites
the marine salts are not highly correlated suggesting that
hydrochemical processes continue to greatly modify the inputs
even in an unacidified moorland. Few other significant parameter
correlations exist in LIG6. Similarliy, the matrix for GIl (Takcle

17b) reveals few notable correlations other than those expected.

Tempcoral patterns

Figure 17 indicates that although H+ levels are always low at
LI6, they still fluctuate in accordance with rainfall and runoff

patterns. Likewise, 50, concentrations also indicate some
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Table 18, A comparison of unacidified streamwater chemistry
. (ueg 17" ). ‘
LI6 GI1l
. \. PH
2 % 6.9 .3
max 7.9 6.7
. min 6.2 6.9
g
@ 2 3.15 5.6
max B.63 1
. min B.21 F.2
SO:
| X 193 131
. max 198 183
min 23 62
. NO3z
X 149 11.46
max 54 121
. min 7 7
| +
| b NHH
. X 1.6 16
max 11.4 7.1
: . min 1.4 1.4
Na
X 138 180
. max 267 404
min 36 126
@ c1
X 155 178
max 197 310
. min 85 85
‘ re
| Mg
o o
| max 420 1d3
. min 44 47
catt
X 146 88
. max 456 188
min 23 5d¢
@ K"
X 11 6.4
: max 43 15.4
. min 2.6 2.6
1. Al
.' X d.,06 d.95
max @.48 d.35
1. pH units 3. dissolved (mg 17%)
. 2, arithmetic mean 4, mg 1™' as ammoniacal nitrogen
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evidence of flushiﬁg in September 1984 and NOi also exhibits a
seasonal pattern with a Winter maxima, Similarly, the marine
salts (Na, Cl and Mg) all indicate the presence of an Autumn
fiusnh in 1984 and variations similar to those recorded at all of
the other sites. Terrestrially derived cations and total
hardness also indicate the occurence of flushing at the end of
the 1984 dry period. In addition, hardness fluctuates,
presumably in response to individual rainfall and runoff events,
throughout the period. Lastly, dissolved aluminium
concentrations indicate a tendency to rise sharply during
occassional events, reaching conceﬁfrations of up to @.48 mg f\
in December 1985 during one very large storm. Hence, ‘even in
this catchment aluminiuﬁ levels can reach levels approaching the
highest recorded in the CI catchments, despite its "unacidified"
nature. Clearly in these instances the catchments hydrological
and chemical response is crucial in determining the level of
acidity and aluminium contamination.

Lastly, at GI1 (Figure 18) there is a clear seasonal pattern
of pH and H*, with pH levels reaching a maximum during the Summer
low flow periods. This presumably results from the larger
paseflow component in streamflow during the Summer months. SOLr
concentrations also show a tendency to peak during the months
receiving low rainfall. NO o concentrations meanwhile, continue
to exhibit Winter peaks in response to reductions 1in nutrient
uptake. The marine salts exhibit 1little seascnal pattern,
although Cl does indicate a major reduction in concentration in

August/ September 1985 when flows are reduced by

evapotranspirationl losses occuring during the Summer months, as

at wvarious other sites. In general, the total hardness and
alkalinity levels however, show some indication of

increased concentrations during low rainfall and low runnoff
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months, presumably reflecting the increased baseflow component
and residence times prevalent at such times. Lastly, dissolved
aluminium and manganese concentrations, while generally low,
exnibit several major peaks which correspond to major rainfall

and runoff events. Again then, even in an apparently unacidified

cak woodland catchment, exteme conditions can give
rise to significant levels of aluminium contamination.
Analysis of the data for the two unacidified catchments

confirms that few problems exist with regard to streamwater
chemistry irrespective of whether the land use is oak woodland or
rough grassland, Nevertheless, there still remains the
intermittent occurrence of elevated aluminium concentrations
during extreme hydrological events. However, in general the two
catchments are clearly sufficiently well buffered with pH and
calcilum concentrations well above those levels cansidered

: . -\
problematical (i.e. pH < 5.5 and Ca < 1d9 veqg 1 ).

Conclusion

In conclusion, while bulk precipitation.quality in the area is
dominated by marine salts and terrestrially derived anioens,
moderately acidic events do occasionally occcur. Morecver, the
arsa receives a large volume of mildly acidic precipitation,
although as has been seen both its volume and acidity are subject
fo variations. Furthermore, within the study area those
catchments dominated by conifer forest land use clearly exhibit
the most acid streamwater and highest aluminium concentrations
due to the limited buffering available. Iin addition, factors
such as the enhanced evapotranspiration, enhanced scavenging
capability, stemflow contamination, increased base cation uptake
and the encouragement of more rapid runoff processes, contribute

to the above. Conditions within the acidified moorland



catcnments are also by no means satisfactory desplite their
reduced scavenging capacity and evapotranspiratiocnal losses,
since only limited buffering is available from the catchment
soils. As a result pH, Calcium and aluminium levels during storm
events combine to create conditions unsuitable for the re-
establishment of fisheries. Only in catchments GILl and LI& are

conditions totally satisfactory.

@ 0000 00000000000 000 0 0 9
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4 . STORM EVENT CHEMISTRY

Monitoring Strategy

Previous work in the Llyn Brianne area (Stoner and Gee 188%5) and
elsewhere has demonstrated the importance of monitoring episodic
events in stream water guality. Short duration flushes in
response to storm or snow melt events may be of ecological
significance and it is essential that detailed information on
these events is obtained. Monitoring frequency also needs to be
sufficient to provide data for mathematical modelling of stream

chemistry responses to changes in flow.

Arising from these needs continuous monitoring systems for pH,
conductivity, temperature, flow and rainfall intensity have been
installed at all the study catchment stream monitoring sites in
the Llyn Brianne study area. Measurements of these parameters
are logged at 15 minute intervals, monitoring being continuocus
throughout the year. These systems of measurement have provided
detailed information on individual catchment responses and this
information is currently being used for modelling purposes. The
value of the continuous monitoring systems in describing
episodic events is illustrated by Fig.19. This example summary
plot shows the pH response of stream LIZ to a series of summer

storm events.

Automatic sampling to provide discrete samples for detailed
analysis from episodic events is effected by a rainfaill
activated trigger system. This system, developed by the
Institute of Terrestrial Ecology, is based on a standard tipping
bucket raingauge which, as well as providing a rainfall record
for each monitoring station, triggers the autosampler to
commence sampling when a pre-set rainfall intensity is exceeded.
Sampling times are automatically recorded on the site data
logger. The trigger threshold value may be varied depending cn

the type of storm event which needs to be monitored. The
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systems installed at Llyn Brianne were initially set to activate
automatic sampling when rainfall exceeds 3mm/hour. This method
of triggering is more effective 1n ensuring that the "first
£lush" is sampled than flow or pH triggers which depend on
significant responses in stream flow or gquality to activate
sampling. An example of this effective triggering is shown by

the plot of stream CI3 for 26th July 1985 (Fig. 207,

Several operational constraints of this system have been

identified which have necessitated modifications to the sampling

strategy:

(1Y The setting of the trigger threshold value is important.
I+ has been found that triggering at rainfall intensities
of 3mm/hour and above may lead to autosampling of
insignificant events. An example of this problem is shown
by Fig 21. In this case, a short duration rainfall event
led to activation of the autosampler on 21st August 1985,
The system was subsequently unavailable to sample a
significant episode which occurred on 23rd and 24th August.
Resetting of the system would not then have occurred until
+he next fortnightly service visit. The trigger threshold
value has now been raised to a rainfall intensity of
Amm/hour but the possibility remains that autosampling of
significant storm events may be missed if preceeded by less
significant events which are however sufficient to trigger
the system.
Further increases in the trigger threshold value would
possibly delay triggered sampling until later in the
episodes possibly leading to failure to pick up the first
flush conditions. Also extended duration storms with
relatively low rainfall intensity but which are still

sufficient to lead to a significant stream response may be

missed.
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(2)

(3)

(4)

Prior teo February 1986 only a single prototype trigger was
available to cover all the =ites. The number of episodes
for which sampling was completed priocr to that date are
therefore limited and data for that period are only
available for selected catchments.

Invariably and ideally triggered autosampling will be
synchronucus in all catchments for high rainfall espisocdes.
Under these circumstances the sample numbers generated
exceed the capacity within the laboratory facilities at
Llanelli. (13 catchments would generate a maximum cf 624
samples under these conditions). The Modelling sub-group
have therefore made the decision to select 12 samples from
each set of 48 samples generated per site per event. The
requirement for 15 minute interval sampling during the
early part of the episcde remains. BSelection of samples
for subseguent analysis is made by reference to the
continuous monitoring records for the period of the
episode.

The requirement for 15 minute interval sampling throughout
the period of increasing and peak flows has restricted the
sampling period to a maximum of 12 hours. This frequency
prevents sampling throughout the full recession limbs of
the episcode. To overcome this problem the autosampler
timers are currently being replaced with dual interval
timers which will allcw pre-setting of two sampling pericds
at different sampling frequencies. For example, it will
now be possible to sample at a frequency of 15 minutes for
the first 6 hours of an episode followed by hourly sampling
for a further 24 hours. Both periods and frequencies may

be varied as required.

The revised autosampling strategy will lead to a reduction
in the sample loading on the analytical facilities without
significant loss of information together with increased
information on the recovery of water quality following

episodes. The decision to be selective in analysis of




samples will allow those samples not required to be used
for other purposes such as the Lampeter College sediment

studies.

Regults

A number of important episodes have been identified from the
continuous monitoring records for each catchment. Information
on those periods for which detailed water quality data from

autosamples are available is summarised in Table 19.

Detailed processing of data from episodes is pending.
Considerable progress in preliminary processing of the back
log of continuous monitoring data by Welsh Water has been
achieved for most sites but difficulties in transferring data

+o IH have led to some delays.

Continuous data for sites LI1, LI6 and CI6 for August 1385 are
currently being run through the CAPTAIN model at IH and fiow SH*
ion response characteristics for single events are being

examined.

An important episode occurred during March 1986 when a high
rainfall event following a prolonged cold period led to rapid
run-off and snow melt resulting in substantial effect on the
water quality of the streams in the study area. Because of 1ts
apparent importance this particular episode has been reported in
detail as an example of episodic effects on stream water

quality.
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5 . SNOW. _MELT EVENT CHBEMISGTRY

Preceeding Weather Conditions

Throughout the whole of February and the beginning of March 18938
4 stable weather system was established over the U.K. and

extremely cold conditions prevailed.

Sub-zero daily mean air temperatures were recorded at the Llyn
Brianne Automatic Weather Station (A.W.5.) from 4th February
until 3rd March and during this period soil temperatures (10cm
depth) fell progressively from 3.7¢C on 1lst February to a
minimum of 0.3¢C on 4th March. The coldest air temperature

recorded was -11.1oC during the night of 2lst/22nd February
(Fig. 22).

Falls of snow occurred on 30th and 31st January (approx. 10cm)
and 9th and 10th February (approx 5cm) although the precise
times and quantities of snowfall for Llyn Brianne are not

avallable.

Following the first and subseguent falls, snow covered the area
until early March although the extent of this cover gradually
reduced to approximately 50 per cent following each snowfall
event as a result of drifting and very limited gradual daytime
surface thaw. Air temperatures were only very infreguently
above zero throughout the whole period and any surface thaw
would only have cccurred in direct sunshine in the early

afterncon (Fig.22).

The surface winds throughout the period were predominantly
easterly and north easterly although these moved arcound to the
south in the early hours of 3rd March preceeding a sudden change

in weather conditions (Fig.Z23).
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Snow _Quality

Following field cobservations of increasing accumulation of black .

cmuts and the formation of a dirty surface layer on standing

snow throughout the study area a series of snow samples were .

Samples were collected in duplicate from three sites in the .
study area from both surface and sub-surface (mid-depth) layers. .
The resulting meltwater from all samples was grey in colour with
black particulate matter in suspension. Subsegquent analyses .
confirmed that the samples were significantly polluted compared

to average bulk deposition guality for Llyn Brianne (Stoner et .
al 1884) and variation in snow quality was apparent between

sites and snow depth (Table 20). .

+aken on 27th February.

At both the automatic weather station and the conifer forest .
site LI2, the quality of the surface layer cf snow was

significantly poorer than the sub surface layer whereas at the .
moorland site CI3 the snow was of poor quality both at the

surface and at depth. The surface layers at LIZ and the weather .
station and both levels at CI3 were found to have pH values
considerably lower than typical Llyn Brianne bulk depositicon. .

Levels of S0s2-, NO3- and Cl- were considerably elevated in the

polluted layers compared to typical bulk deposition, as were
"axcess' or non-sea derived sulphate levels. Levels of NHaN,

CaZ+ were also substantially higher in comparison to typical

deposition.

The ilevels of ROs-, Cl- and S5042- in the polliuted layers were
equal or greater than those found in average East Midlands rain
(Martin and Barber, 1884) and levels of excess 5042- comparable
and considerably greater in the case of the weather station

surface sample.
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The quality of the poliluted layers was not as poor as that of
the "black snow’ reported from the Cairngorms (Davies et al
1984) although the surface sample from the weather statiocn
contained comparable levels of NO3-, Cl- and S042- and excess
504 -, NHa-N levels were considerably higher in the polluted
Brianne snow samples than in the Cairngorms black snow or

average East Midlands rainfall.

Similar observations to those at Llyn Brianne were made in the
Maesnant, Plynlimon area during the same period (Hyatt,
pers.comm.1986). Visible discoloration of the snow with
considerable guantities of black smuts was reported with pH

levels somewhat lower than those recorded at Brianne.

Whilst back trajectories to establish the sources of pollution
have not been plotted, the dominant period of easterly and north
easterly winds throughout February strongly suggests that dry
deposition of industrial pollutants from the North West, the
Midlands and South Wales may be responsible for the conditions
obgserved. Snow scavenging of aeroscls during precipitation
seems unlikely due to the differences iﬁ snow quality obserwved

at different depths.

Reasons for differences in snow quality at depth and between
different sites at Brianne are not clear although the overall
shallow snow depth, considerable drifting and a second snowfall
event following approximately 10 days after the initial fall may
have led to the earlier surface layer subsequently forming a
sub-surface layer at CI3. The lower levels of pollutants in the
surface layer at LIZ2 may suggest that scavenging of dry
deposition by the tree canopy caused localised reduction in the

quantity of deposited material reaching the ground level.

The chief source of Ca2+ in rainfall is thought to be
terrestrial dust (Reynolds et al 1984) and the comparatively

elevated levels observed for the Brianne snow samples may be




attributable in part to this source, as may part of the

NHs4-N.

Snow _melt

From 06900 hours on 3rd March the wind direction became more
variable and after 0900 hours moved around to the south. By
0100 hours on 4th March air temperatures were beginning to rise
and it commenced raining. Throughout the next 18 hours, 50mm of
rainfall fell in the Llyn Brianne area and whilst air
temperatures progressively increased to a maximum of B.60C, soil
temperatures remained very low and field cbservations during the

day confirmed that the surface soils remained frozen

(Figs.22 & 23).

The effects of the rainfall, which rapidly reached a peak
intensity of &mm/hour were dramatic. Rapid run-off occurred
over the frozen ground and the snow cover was either melted or

washed off leading to flood conditions in the study streams.

Effects on Stream Water Quality
Results

Despite the adverse conditions, continuous records of water
gquality were obtained from 8 of the 12 mcnitoring stations for
the duration of the snow melt episode. Measurements of stage
were more difficult to maintain in the sub-~zero temperatures
preceeding snow melt and as a result full flow records for the
snow melt episodes were obtained for only 3 sites. Triggered
autosampling was successful at two sites from the beginning and
throughout the episode with manually triggered autosampling
providing samples for a further 4 sites from later stages
(Table 21}).
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The effects of the combined rainfall and snow melt episcde on
stream water quality was virtually immediate despite the initial
1ow intensity of rainfall. The pH levels in the streams
commenced dropping between 0100 and 0200 hours following only
imm of rainfall and were accompanied by large increases in
conductivity. Minimum pH levels were reached by early afternocon
in most streams coincidental with peak flows. Stream LI4 was
atypical in that the response was muich more rapid and the

minimum pH was reached within 41 /2 hours.

The fall in pH at all sites was considerable. Pricor to the
rainfall the flows in the sfreamS'were very low and in some
cases virtually frozen solid. Stream pH values were also in
most cases well above normal winter levels (Tables 22 & 23).
However, during the snow melt episcde minimum pH values fell to
near or below the minima recorded from spot samples during the
1984-85 winter pericd and were comparable with the minimum
lavels recorded by the continuous monitoring systems during the
exceptional storm events of 21st December 1985 and 25th August
1986 when considerably more rainfall and higher flows resulted
{Table 23). The pH drops ocbserved during the snow melt were
amongst the largest which have been observed in the study

streams for any single episode since continuous monitoring

commernced.

The large increases in conductivity which also occurred during
the early snow melt were atypical of the normal stream responses
during storm episodes and appear to be peculiar to the

conditions prevailing during the snow melt.

Complete records of continuocusly monitored water quality
determinands and stage together with autosampling from the
beginning of the episode was achieved for only 2 sites, CI5 and
LI1 (Table 21). This does however provide the opportunity to
compare the responses of both moorland (CI6) and forest
catchments (LI1) over the full period of the episode.
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Whilst the catchment sizes of LIl and LI5S are somewhat
different, (LIl, 2.64 km-!, CI5, 0.33 km2), responses in terms
of time to peak flow during 4th March were similar and pH minima
for the episocde occurred in both cases approximately 12 hours
after the onset of rainfall. The pH response in the streams
differed in that for stream CI5 a slight increase in pH was
initially recorded followed by a drop from 5.6 to 4.7 units.

The response in catchment LI1 was much greater, dropping from

6.0 to 4.0 within 11 hours (Fig.25).

In both catchment streams large increases in conductivity
occurred during the period of increasing flows although the peak
for CI5 was much earlier than in LI1, of greater magnitude but
of shorter duration. The conductivity had peaked and was
falling in stream CI5 approximately 8 hours before peak flow was
reached whereas in stream LIl peak conductivity was of longer
duration and more coincidental with peak flows. In both streams
there was no evidence of a significant secondary peak in
conductivity coincidental with the secondary peak in flow
(Fig.26).

The dissolved calcium and alkalinity of moorland stream CI5 were
initially substantially higher than in LIl although these levels
fell rapidly from an early stage in the episcde. Although
initially at a lower level in stream LIl, dissolved calcium
levels were maintained at that level for approximately 3 hours
longer than in stream CI5 and over the period of peak flows,
although somewhat reduced, remained slightly higher than the
levels in stream CI5 (Fig.Z27).

Similar levels of sulphate were recorded in both streams
although the levels in stream CID were at peak when autcsampling
commenced. The highest levels in stream LI1 occurred some hours
later during peak flows. In both cases the changes in levels
followed the pattern described for conductivity. The

concentrations of sulphate recorded were considerably greater

than the maximum levels recorded by routine sampling during the
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previous 1984-85 winter period (Fig.28).

Nitrate levels were comparatively much lower and not
substantially elevated in either stream compared to data from
1984-85. However, levels in stream LI1 increased during the
episode following a similar pattern to that of sulphate, being

highest during peak flows.

Dissoived aluminium levels increased substantially in both
streams and reached the highest levels during peak flows. In
both streams increases in dissolved aluminium were closely
associated with a fall in calcium although the dissolved
aluminium in stream LIl was already increasing prior to any
reduction in calcium. The levels of dissolved aluminium in both
streams were the highest recorded since the current monitoring

programme commenced. In stream LIl the levels peaked at

1.04 mgl-1 (Fig.29).

Other differences were observed between the two catchments.
Elevated levels of ammoniacal nitrogen occurred in both streams
although as with sulphate, the peak levels occurred earlier in

stream CI5 than LI1 (Fig.29).

Chloride levels were elevated in stream CI5 during the early
snow melt period but these dropped rapidly to levels comparable

+o these in stream LI1 which remained constant (Fig.26).

Turbidity levels in stream LIl increased coincidentally with the
period of highest flow whereas the turbidity in stream CIb

remained relatively low {(Fig.30).

The levels of dissolved organic carbon again differed between
the two streams during the episode, being highest in stream CI5
earlier on and before peak flows, whereas in stream LI1, the

levels increased and peaked corresponding to the increasing tflow

(Fig.30).
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Whilst records for the other study catchments are incompleate the
available data support the trends observed for streams CI5 and
LI1. Tt does appear however that the quality of stream CI5 may
have been somewhat lower than in the other comparable mcorland
sites. The dissolved aluminium levels in moorland streams CI4
and CIB arcund the time of peak flows were lower than in CIS.
Under the winter conditions of 1984-85 the mean levels of
dissolved aluminium in CI5 were approximately twice those in
CI3, CI4 and CI6 (Table 22).

Unfortunately no sampling occurred during the early stage of the
episode in other moorland sites and no direct comparisons may be
made between these catchments. However, the chemistry of these
streams was otherwise not dissimilar to that of CI5 at the

comparable times when sampling commenced.

The gquality of forest catchment stream LIZ responded in a
similar manner to stream LI1l, with a minimum pH of 4.2 units and
dissolved aluminium and sulphate levels similar to those in

stream LI1 {Table 22}.

The episcde also appears to have had a substantial impact on
normally relatively well buffered streams. The deciduous
catchment stream GI1 experienced a drop in pH to 5.2 units
accompanied by very high levels of sulphate and elevated
dissolved aluminium. Similarly there is evidence to suggest
+hat the stream draining catchment LIS, which is normally
classified as unacidified, experienced atypically low pH and

elevated dissolved aluminium levels during the episode.




Digcussion

The changes in stream chemistry following this "rain on snow
event' appear to be attributable to a combination of reduced
buffering capacity resulting from frozen scils and reduced
groundwater flows, combined with rapid run-off of material

deposited from the atmosphere during the preceeding period.

The monitoring of snow quality, prior to the episode described,
has confirmed that the surface layers of snow in particular
contained high levels of deposited materials. It appears that
pollutants in the snow cover and on the ground and vegetation
surfaces were rapidly flushed into the streams leading to the
observed responses. Other workers have shown that when snow
melts, the first meltwater appearing at the bottom of the snow
contains much of the dissolved lcad of pellutants (Morris and
Thomas 1985; Gregory et al 1988). Whilst only limited
information is available on bulk precipitation chemistry at the

time of snow melt, the available data suggest that the rainfall

associated with this episode was relatively unpolluted and was

not responsible for the observed effects (Table 20).

The observed increases in conductivity confirm the "first flush”
of solutes typically observed during snow melt conditions. The

different response times in moorland catchment CI5 and conifer

forest catchment LI1 may be a reflecticn of catchment size, LIl

being considerably larger than CI5. However, peak flows and
lowest pH values occurred in both catchments at approximately
the same time and this suggests that the delayed flush in .
catchment LIl may result from the tree cover. In catchment CIb
preferential leaching of solutes from the snow and predominantly .
overland flow due to frozen surface soils may have led to rapid
transport to the stream. In the afforested catchment LI1, .
leaching of pollutants through the tree canopy by stemflow and
throughfall may have led to less rapid transport.




The rapid flush of sulphates and chlorides into stream CIi5 may
have been buffered initially by the calcium in the stream and
from the snow, together with the elevated level of ammoniacal
nitrogen which appears to be derived from the pelluted snow
layvers. The high levels of chloride in the first flush in
«tream CI5 may have resulted from the snow cover although it is
possible that run-off of road salt above the sampling point
initially had a significant effect on stream chloride levels
(Dissolved sodium levels were also elevated compared to

catchment LI1 during the early part of the episode).

The absence of further peaks in conductivity corresponding to
the observed secondary peaks in flow for the sites studied
supports the conclusion that a flush of solutes occurred during

the early part of the episcde.

Nitrate levels in stream CI5 are generally higher than in LI1
under normal winter conditions (Mean values, LI1 15 uequivl-i;
CI5 27 uequivl-! during 1884-85). The observed increase in
stream nitrate values during the episode for LI1l, which did not
oeccur in CIS, may indicate that the forest catchments had
increased deposition of nitrogen oxides compared to the moorland
as a result of scavenging by the tree cancopy (similar increases

were observed in conifer forest stream LIZ and in deciduous

catchment GI1).

The elevated levels of ammoniacal nitrogen in both moorland and
forest catchments were atypical and appear to be derived from
the snow cover. The levels in stream CI5 may have been elevated
by the effects of the concentration of sheep within certain
areas of the catchment during the cold spell. However, the data
from moorland catchments CI4 and CI6 suggest that similar levels

of ammoniacal nitrogen also occurred in these streams during the

episode.




The increases of dissolved aluminium observed in the streams for
which data are available confirm the significance of the
episode. It appears that peak levels have occurred closely
associated with a fall in stream calcium levels. The levels
recorded in both streams LI1 and CI5 were considerably elevated
above those levels which are considered to have harmful
ecological effects particularly as peak levels were also
coincidental with periods of lowest pH and dissolved calcium
values. The observed unusual increases in dissolved aluminium
in those streams normally well buffered, such as streams LIS and
GI1 confirm that this particular type of episode may be of high
importance even to those streams not normally considered to be

vulnerable.

Recent evaluation of routine aluminium fractionation results has
shown a very close correlation between the routine "fiiterable"
or dissolved aluminium concentrations and labile species of
aluminium determined by fractionation, for samples with rH
values of less than 5.0. The labile species of aluminium are
thought to be those of greatest toxicity. During this
particular snow melt episode the pH values of all the study
streams with the exception of LIS and GI1l fell below 5. The
source of aluminium during such events is not certain although
given that the soils were frozen, some reduction in contributicn
of aluminium from surface soils may be expected. Under such
circumstances it has been suggested that aluminium previously
precipitated onto the stream bed under a higher pH regime may be
mobilised by episodic flushes of higher acidity (Norton and
Henricksen, 13883).

Information obtained during the snow melt episode is still bteing
processed and that currently reported results from preliminary
assessment only. Various aspects require further consideraticn,
and this work is continuing. In particular ionic balances at
various stages of the episode and further consideration of
mechanisms leading to differences between catchments reguire

further consideration.




It is suggested that "rain on snow' events of this nature may
occur more frequently than pure snow melt events and that
preparations should be made to monitor conditions in more detail
should a similar set of circumstances arise during the

forthcoming winter. Additional information needs include:

1. Aluminium fractionation on samples taken at various stages

of the episode for catchments with different land use

should be arranged.

2. Attempts should be made to establish back trajectories to
more accurately describe the origin of deposited material.

This should be attempted for the 1986 data.

3. Samples of snow should be taken on a regular basis and
changes in quality monitored. If possible, electron

microscopic analysis of smuts should be carried cut to

identify possible sources.

4. It is essential that automatic sampling 15 triggered at the

beginning of snow melt or rainfall to ensure that the

“first flush” is sampled.

5. Vegetation and soil water data are of key importance and

efforts should be made to ensure collection of sufficient

data to cover the episcde.
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6. TIME-SERIES MODELLING STUDIES

The main objective with the time-series modelling has been to derive
preliminary statistical models of catchment rainfall-runoff responses in an
attempt to gain an insight into the dominant dynamics which occur in
control catchments LIl, LI6 and CI6. Hourly point rainfall from the
Automatic Weather Station (AWS) at Trawsnant was taken to be the areal
rainfall input for all three catchments {(the shortcomings of this
assumption became apparent during analysis). Other objectives of the
preliminary statistical modelling exercise were to (a) examine the
streamflow data for gross errors and ilnconsistencies, (b) relate different
catchment responses (if detected) to catchment characteristics and (c) to
become familiar with the many data handling and analysis options afforded
by CAPTAIN (a time series analysis system on the GEC computer at the
Institute of Hydrology). The CAPTAIN package has alsoc been used to model
flow-hydrogen ion response; an understanding of these dynamics wiil be

particularly important in later modelling studies,

Rainfall-Runoff Dynamics

For each of the three catchments, a data set of hourly rainfall and
stage t for the 180 hour period from 1300 GMT 10 August to the end of 17
August 1985 (referred to subsequently as the 7-day time series) was
retrieved from the Llyn Brianne Acid Waters Study database held at the
Institute of Hydrology. The data transformation facility of CAPTAIN was
employed to convert stages into flows using appropriate stage-discharge

relations.

The first step in any data analysis is to inspect the data for gross
errors and inconsistencles. Flgure 3la shows the 7-day hourly rainfall
time series and Figures 31b, 3lc and 31d show the corresponding hydrographs
for LIl, LIA and CIf respectively. A most striking difference between the
hydrograph for CI6 and the hydrographs for LI1 and LI& is that there were
three runoff events at CI6 but only two at LTIl and LIH. Approximate
distances from the AWS site at Trawsnant to the centroids of catchments are
2.1, 4.7 and 7.8 km for LI6, LIl and CI6 respectively. It was expected
that the relevance of the hourly rainfall would decrease with increasing
distance from Trawsnant and, indeed, there was a hydrologically significant
rainfall event over catchment CI6 (corresponding to the second runoff event

at CI6) during which there was only light rainfall at Trawsnant. This




observation confirms the need for good records of rainfall from a network

of recording raingauges in the Study area for measuring areal rainfall

inputs to individual catchments,

During the 180 hour period 95.5 mm of rain was recorded at Trawsnant

and the totai runoff was computed to be 90.3, 103.8 and 70.9 mm from

catchments LIl, LI6 and CI6 respectively, i.e. 95, 109 and 747% of Trawsnant

rainfall. The very high apparent yields of catchments LIl and LI6 and the

inconsistency between the runoff from €16 and the runoffs from LIl and LI6

cannot be explained at the present time and there will have to be further

investigations into catchment rainfall differences and the uncertainties

involved in streamflow measurement (there are some comments on streamflow

measurement at LI1, LI6 and CI6 in a later section of this report).

CAPTAIN

The CAPTAIN system was employed to identify the best structure and to

estimate the parameters of transfer funetion models of the general form
(148 B8 B2 +...)Q = (wgtwB+e. IRep

where 61,89 etc. are autoregressive parameters
wp,w] etc., are moving average parameters
b is the time delay (hours)
Q¢ 1s the relevant streamflow at time t {1/s)
Re—p is the rainfall in the hour ending at time t-=b {mm)

and B is the backward shift operator (i.e. Bxg = Xe—1)

For pach catchment, models were derived for the 7-day time series and

for sub-time series corresponding to the two main runoff events at LTI and

LI6 (referred to subsequently as time series 1 and 3 respectively)}. In

cach case the best model was obtained when the means were subtracted from

variables and the option for 1 iteration was gelected in the CAPTAIN

parameter estimation routine. Wwith due regard to the standard errors of

parameter estimates and to the principle of parsimony with respect to the

number of parameters permitted in a model, the best model structure in each

case, whatever the time delay (b), was one autoregressive parameter

(51) and one moving average parameter {wp). The general form of the

transfer function models derived in the current exercise may be reduced,

therefore, to




(145 1B) (Qe-Q) = wo(Re—6-R) .

The CAPTAIN system can also provide (a) the system impulse response
function, {(b) the system step response function aad {(c) plots of the
recursive estimates of the autoregressive and moving average parameters.
These and many other output options of the CAPTAIN system are extremely
useful in applications outside the scope of the preliminary analyses of the

current exercise and they are not, therefore, discussed in detail here.

The systems theory background upon which CAPTAIN is based permits the
system mean residence time (T) and the system gain (G) to be calculated

from the autoregressive and moving average parameters as follows.

T = - !
ind 1
Wo
G = szE_S-X (a factor to account for the units of the input and
1

output)

Interpretation of mean residence times in the context of catchment
input and output is not straightforward if there is piston flow in a
catchment. The gain (G) is the asymptote of the step response functioen
referred to above, i.e. the steady state system output caused by a step
input. Clearly, rainfall does not occur as a step input and catchments do
not reach a steady state and so care should be exercised when interpreting
gains calculated from CAPTAIN ocutput. However, both T and G may be
expected to vary with factors such as antecedent wetness and amount of
rainfall: for summer events T would be expected to be higher and G lower

than for winter events.

The variances of (a) the observed streamflow data, (b) the noise (the
component of the observed streamflow data not explained by a transfer
function model)} and (c) the final residuals (the component of the observed
streamflow data not explained by a transfer function—noise model) were
selected for output by CAPTAIN. From these variances the percentage of
ohserved streamflow variances explained by transfer function and transfer

function-noise models were calculated,




Data Analysis

The 7-day rainfall is shown again in Figure 3Za and the model outputs
for LIl, LI%6 and CI6 are shown in Figures 32b, 32c and 32d respectively.

The model parameters (8] and w,) mean residence times, gains and percentage

variances explained for all the models derived (7-day time series and time

series 1 and 3) are summarised in Table 24. The standard errors (shown in

parentheses in Table 24) indicate that all the estimated parameters are

very significantly different Erom zero. Figures 33a and 33b show the
rainfall land model fit for CI6 time series 1. In general, simple transfer

function models with one autoregressive parameter {&1) and one moving
average parameter (wg) provide good fits to the time series of observed

streamflow. As expected, however, there was a very poor model fit for the

second runoff event at CI6, as shown in Fiéure 32d.

Some of the interesting points revealed in the summary of the medels
given in Table 24, and speculation on the hydrological processes which
caused ﬁhe particular catchment rainfall-runoff responses, are as follows.
The models derived from the 7-day time series and from time series 3 have
autoregressive parameters (&) of decreasing magnitude in the order LII,
CI6 and LI (0.870 for both LIl and CI6 for time series 3). This might
have been expected since (a) catchment 'memory' increases with catchment
size and (b) a value for & of unity would mean that streamflow in the

absence of rainfall remained constant {catchment areas are 2.5, 0.72 and

0.68 km? for LIl, CI16 and LIb respectively). However, although catchments
LI6 and CI6 are about the same size, the autoregressive parameters derived
from the 7-day time series and time series 3 for LT6 are considerably
smaller than the corresponding parameters for CI6 (see Table 1). This
could be due to the fact that the main stream slope is much greater for LIb
than for CI6 (194 and 67 m/km respectively), causing more rapid runoff in

LI6 than in CI6.

The reverse order of decreasing autoregressive parameter values from
the CAPTAIN analyses of time series | 1s, on the basis of the preceding
argument, anomalous. However, the differences between &) values for
different catchments from the analysis of a given time series are about the

same as the standard errors of individual &) values and so the anomaly




TABLE 24 Summary of CAPTAIN models

O
W
~
)
=g
=
o
=
(m3

Series 51 Wo b Mean % variance explained
(hours) residence Gain
time, T G Transfer Transfer
(hours) function function-noise
0.883 65,2

LIl 7-day 0 8.0 0.76 70.1 88,7
. {0.041) (11.73

0.837 20.1
LI& 7-day 0 5.6 0.54 69.7 88.4
. (0.042) ( 2.6)

0.870 10.1
CIe 7-day 0 7.2 0.47 72.4 91.2
(0.042) ( 1.9)

0.741 44.1
L1l 1 2 5.3 0.23 85.0 94,0
(0.063) ( 8.5)

0.843 12.8
LI6 1 0 5.9 0.36 73.2 89.0
(0.070) ( 3.0}

G.809 8.95
CI6 1 1 5.7 0.28 93.3 96.3
(0.041) { 1.38) ‘

0.870 80.2
LI1 3 0 7.2 0.84 77.1 B6.6
{0.050) (15.1)

0.808 23.3
LI6 3 0 4.7 0.53 78.3 85.8
(0.051) ( 3.1

0.870 11.2
CI6 3 0 7.2 0.52 §9.0 92.7
(0.037) { 1.8)
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Figure 31 (continued)
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Flow-Hydrogen Ion Relationships

Another application of CAPTAIN is in the analysis of flow-~hydrogen ion
relationships. An essential requirement of any modelling study concerning
acidification is the adequate prediction of hydrogen ion concentrations
(H+ = 10(6—pH) e.g. pH of 4 gives H+ = 100 peqk_l). The flow-hydrogen ion
relationship has been investigated for LI and as in the case of the
rainfall-runoff model a first order model has been obtained with &) =
-0.806 (0.037) and w, 0.0152 (0.003) and zero time delay. The model

produces a satisfactory simulation of hydrogen in concentration as shown in

Figure 34 and indicates that the hydrology plays an extremely important

role in determining catchment acidiry.
7. MODELLING LONG TERM BEHAVIOUR USING MAGIC

An extremely important aspect of the Llyn Brianne study is the
investigation of long term trends in acidification and the effects of land
use change on stream chemistry. A modelling technique developed recently
has been successfully applied to a range of catchments in Scotland, Norway,
Sweden and USA. The model MAGIC (Model of Acidification of Groundwater In
Catchments) is explicitly designed to perform long term simulations of
changes in soilwater and streamwater chemistry in response to changes in

acidic deposition. The processes on which the model is based are:

- anion retention by catchment soils (e.g. sulphate adsorption):
- adsorption and exchange of base cations and aluminium by seils;
- alkalinity generation by dissociation of carbonic acid (at high
CO; partial pressures in the soil) with subsequent exchange of
hydrogen ions for base cations;
- weathering of minerals in the soil to provide a source of base catioas;
- control of A+ concentrations by an assumed equilibrium with a solid

phase of A1(OH)3.

A sequence of atmospheric deposition and mineral weathering 1is assumed
for MAGIC. Current deposition levels of base cations, sulphate, nitrate
and chloride are needed along with some estimate of how these levels had
varied historically. Historical deposition variations may be scaled to

emissions records or may be taken from other modelling studies of




atmospheric transport into a region. Weathering estimates for base cations
are extremely difficult to obtain. Nevertheless, it is the weathering
process that controls the long term response and recovery of catchments to

acidic deposition and MAGIC can be used to estimate these weathering rates,

A detailed description of MAGIC is given in Appendix 1., 1In the Llyn
Brianne Study the model has been applied initially to the acidified
moorland catchment CI5.

MAGIC requires a considerable input of data such as:

a) Physical and chemical properties of soil (mean depth, bulk density,
porosity, cation exchange capaclty, rate of sulphate uptake,
temperature half saturation concentration for sulphate, equilibrium
constants, base saturation levels and partial pressures of COs;

b) Hydrological factors (annual and monthly rainfall and runoff);

¢) Dry deposition factor

d) Cation weathering rates and nitrate and ammonium uptake rates;

e) Background and present rainfall chemistry;

f) Historical patterns of sulphate emissions.

A typical set of data for CIS is as follows with the model determining
both background stream and soil chemistry and then simulating annual
chemistry every year up to 1984. Only 1984 levels are presented here but
Figure 35 gives a typical response of stream and soil pH over the period

1844-1984,

The following constants have been set for the Llyn Brianne CI5 MAGIC

Tun
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1 DEPTH M = 0. 7500 2 POROSITY = 0.4500
3 BULK DEN = 1060.,0000 4  CEC = 90.0000
5 € MEQ/M3 = 150.0000 6 EMX MEQ/KG = 0.4100
7 DRYDEP S = 1.3000 8  LOG(KAL) = 9.0000
9 LOG(KAL) § = 10,3000 10 LOG(SALCA) = 2.1233
11 LOG(SCANA) = -1.7878 12 LOG(SMGNA) = -1.8448
13 LOG(SKNA) = 0.3129 14 Q = 1.7400
15 QP = 2.0000 16 DCO2 = 0.1500

The monthly variations of temperature and PCO2 are:

MONTH TEMP DEG C PCO2 ATM
1 4.8 0.05000
2 4.5 0.05000
3 6.0 0.05000
4 7.8 0.05000
5 10.6 0.05000
6 13.1 0.05000
7 14.6 0.05000
8 14.9 0.05000
9 1.5 0.05000
10 11.1 0.05000
11 7.7 0.05000
12 6.1 0.05000

MEAN 9.56 0.05000

The fractions of mean annual fluxes occuring 1n each month are:

MONTH STREAMFLOW PRECIP WEATHERING UPTAKE

1 0.141 0.112 0.083 0.083
2 0.104 0.076 0.083 0.083
3 0.C84 0.070 0.083 0.083
4 0.070 0.066 0.083 0.083
3 0.054 0.062 .083 G.083
6 0.032 0.057 0.083 0,083
7 0.030 0.064 0.083 0.083
8 0.046 0.074 0.083 0.083
9 0.055 0.083 0.083 0.083
10 0.093 0.100 0.083 0.083
11 0.134 0.116 0.083 0.083
12 0.157 0.120 0.083 0.083




The following weathering rates will be used (MEQ/M2/YR)

BACKGROUND {(H) POWER
cA 1 44.00000 10 0.00000
e 2 45.00000 1 0.00000
NA 3 40.00000 12 0.00000
K 4 0.00000 13 D.00000
S04 5 0.00000 14 0.00000
j CL 6 0.00000 15 0.00000
; NO3 7 0.00000 16 0.00000
3 F 8 0.00000 17 0.00000
| N4 9 0.00000 18 0.00000

The following are concentrations in precip (MEQ/M3)

| BACKGROUND PRESENT
§ 5.40 4.23
1 PH 1 11,5 10 17.2
§ cA 2 249 1 27.9
| MG 3 104.9 12 113.7
NA 4 2.2 13 7.7
K 5 13.6 14 69.9
S04 6 131.9 5 142.3
cL 7 3.0 16 44,3
NO3 8 0.0 17 0.0
NH4 9 1.0 8 30.8

The following uptake rates will be used (MEQ/M2/YR)

BACKGROUND PRESENT
CA 1 3.00000 10 0.00000
MG 2 0.00000 11 0.00000
NA 3 0.00000 12 0.00000
K 4 0.00000 13 0.00000
S04 5 0.00000 L4 0.00000
CL 6 0.00000 15 0.00000
NO3 7 1.00000 16 55.00000
F 8 0.00000 17 0.00000
NH4 9 1.000600 18 55.00000




Historical deposition sequence:

MODEL

BREAK

YEAR
1915
1935
1870

south west Wales

SCALE FACTCR

0.860
0.860
1.570

ESTIMATED 1844 CONDITIONS LLYN BRIANNE CIS

SOIL STREAM PRECIP

CA 32.0
MG 453.3
NA 130.8
K 2.3
S04 18.4
CL 145.8
NO3 2.8
F 0.0
NH4 0.6
SBC  210.4
SSA  166.9
MEQ/M3
PH
ALK
AL
TOTAQ AL
SUM PLUS
SUM MINUS

~-MEQ/M3-~-————-

3z.0 11.5
45.3 25.0
130.8 105.90

2.3 2.2
18.4  13.7
145.8  132.0
2.8 3.0
0.0 0.0
0.6 1.0

210.4 143.7
166.9 148.7

S50IL STREAM
4.9 5.6
44,2 44,1
8.3 1.4
15.8 20.8

237.3 221L.4
237 .4 222.8

STREAM ATMDEP NTFLUX

WEATH UPTAKE

—————————————— MEQ/M2/YR
49.8 23.0 26.8 44,0
70.6 50.0 20.6 45,0
216.1  210.0 6.1 40.0
3.8 b.oh - 0.6 0.0
33.0 35.6 -~ 2.6 0.0
212.6  264,0  -51.4 0.0
4.2 5.0 - 1.8 0.0
0.0 0.0 0.0 0.0
1.0 2.0 - 1.0 0.0
340.3  287.4 52.9  129.0
249.8  305.6  -55.8 0.0
MEQ/M3 SOIL STREAM
H 14.0 2.8
HCO3 70.5 53.3
TOTAQ F 0.0 0.0
TOTAQ 504 18.4 18.4

0.0
1.0

ES
ECA
EMG
ENA
EK
BS

TOTAL

-MEQ/M2-

1469,5
1830.4
3077 .8
110.2
61.5
41.2
0.8
0.0
0.2
6488.0
103.6

EXCHAN

10,90
1.53
1.90
3.17
0.11
h.71

¥




MODEL SIMULATED 1984 CONDITIONS LLYN BRIANNE Ci5

SOIL STREAM PRECIP STREAM ATMDEP NTFLUX WEATH UPTAKE TOTAL

—————— MEQ/M3-ommeoe  —mommmmmmmeemMEQ/M2/ YRm=m=———=======  -MEQ/M2-

CA 42.6 42.6  17.2  67.0  34.4  32.6  44.0 0.0 798.0

MG 53.3 $3.3  27.9  84.0  55.9  28.1  45.0 0.0 B879.3

WA 148.6  148.6 113.8  246.6 227.6  19.0  40.0 0.0 2237.1

K 10.3 10.3 7.8 17.0  15.6 1.4 0.0 0.0 313.3

so4  104.9  105.5  70.0 182.8  182.0 0.8 0.0 0.0 249.0

CL  155.1  155.1 142.3  229.2  286.7  =35.4 0.0 0.0  44.5

NO3  33.6 33.6  44.4  55.1  88.8 -33.7 0.0 28.0  10.7

F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NH4  18.7 18.7  30.8  33.3  61.7 -28.4 0.0 28.0 6.5

1 SBC  254.8  254.8  166.8  414.6  333.5 81,1 129.0 0.0 4227.7

| SSA  293.6  294.1  256.7  467.1  555.5 —B8.4 0.0 28.0  304.2
MEQ/M3  SOIL STREAM MEQ/M3  SOIL STREAM EXCHAN 7

PH 6.7 5.2 H 22.1 6.4 ES  41.14

ALK -21.0 -21.0  HCO3 46.9  23.4 ECA  0.82

AL 33.0  16.5  TOTAQ F 0.0 0.0 EMG  0.90

TOTAQ AL 50.5  63.8  TOTAQ S04 106.0 106.0 ENA  2.29

SUM PLUS 338.3  317.9 EK 0.33

| SUM MINUS 338.5  334.6 BS 4.34




The simulated 1984 chemistry 1s generally very close to the observed

chemistry as indicated in Table 25.

TABLE 25
Observed Chemistry Simulated Chemistry

CA 44,0 42.6
MG 36.0 53.3
NA 149.0 148.6
KO4 6.6 10.3
S04 102.0 104.9
CL3 167.6 155.1
NO3 14.8 33.6
NH4 15.1 18.7
PH 5.22 5.2
H 7.7 6.4

* ALKALINITY -30.0 ~-21.0
AL 18.0 16.5
SOTL BASE SATURATION 6% 4,347

ALKALINITY = (HCO3)-(H")-3(aL>")
(in MAGIC) '

All chemistry units ueql‘L

With exception of nitrate the simulation reproduces with reasonable
accuracy the observed chemistry. The nitrate uptake in the catchment may be
higher than that estimated and this may explain the discrepancy in the
nitrate simulation. Alternatively the raiafall nitrate concentrations seem
rather high (almost double the levels observed at Plynlimen and elsewhere in
Wales - see Table 4) and nitrate rainfall chemistry should he rechecked.

"However, as a first run with MAGIC the model appears to perform adequately

and the long term trends indicated in Figure 35 appear reasonable and follow
gimilar trends obtained for catchments in Scotland and Wales. Tt would he
extremely interesting to compare the simulated trends with results from

paleoecological studies or fisheries data.




Significant features of the 1984 chemistry compared to the 1844
chemistry is the major decrease in alkalinity from 44.1 to -30 and increase
in aluminium from 1.4 to 18 ueqi—l. This indicates a major shift in

catchment chemistry during the past 150 years.

Further applications of MAGIC will be undertaken for all catchments and

land use change will be investigated as described in Appendix 1.
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PREDICTING LONG TERM TRENDS IN SOIL AND WATER ACIDIFICATION

P.G. Whitehead
Institute of Hydroleogy
Wallingford
17/9/86

BACXGROUND

Tn sensitive areas recelving acidic deposition, paleolimnological data
indicate changes in lake pH over 1-3 decades during the past century
(Batterbee et al., 1985). Estimates of emissions and deposition of $3Cx and
NOx over this same perfod suggest that deposition increases ocecurred (1)
earlier and (2) more slowly than did the lake pH changes. Clearly chemical
and biological processes in the terrestrial catchment and lake ecosystem
damp, delay, and moderate the response of surface water pH to deposition of
acidifying compounds. This response is controlled by key terrestrial
processes that include chemical weathering, sulphate adsorption, cation
exchange, dissolution and precipitation of aluminium compounds, and
dissolution and disassociation of inorganic carbom. These various
processes interact in a complex fashion and may exhibit marked spatial
variability. Consequently, quantification of the mechanisms of freshwater
acidification has proved to be difficult. Nevertheless, future treads in
surface water acidification can only be predicted using mathematical models
based on an understanding of these mechanisms.

To estimate surface water response to future reduction in deposition,
mathematical models must (1) be based on physical, chemical and biological
processes that control catchment response, {(2) treat interacting processes
simultaneously and (3) be capable of representing long-term responses.
MAGIC (Model of Acidificatien of Groundwater In Catchments) provides a tool
by which soil processes can be simultaneously and quantitatively linked to
examine the impact of acid deposition on surface water chemistry over time-
scales of several years to several decades. The model was originally
developed and tested for catchments in Shenandoah National Park, Virginia
(USA) and has recently been adapted for catchments in Scotland (Loch Dee,
Loch Grannoch) and in Norway (Lake Hovvatn, and the RAIN project catchments
at Sogndal and Risdalsheia). MAGIC provides the ideal tool for _
investigating the regional aspects of acidification and for predicting the
effects of reduced emission levels on soll and stream water quality. MAGIC
is curreatly belng applied to geveral UK catchments and an applicatien to
the Loch Dee catchment in Galloway is presented here.

APPLICATION OF MAGIC TO LOCH DEE

MAGIC (Model of Acidification of Groundwater In Catchments; Cosby et al,
1985) is explicitly designed to perform long term simulations of changes in
soilwater and streamwater chemistry in response to changes in acidic
deposition. The processes on which the model is based are:

- anion retention by catchment soils (e.g. sulphate adsorption):
- adsorption and exchange of base cations and aluminium by soils;
- alkalinity generation by dissociation of carbonic acid (at high
C0, partial pressures ia the soil) with subsequent exchange of
hydrogen ions for base cations;
- weathering of minerals in the soil to provide a source of base cations;
- control of A1%+ concentrations by an assumed equilibrium with a solid

phase of Al(OH).




A sequence of atmospheric deposition and mineral weathering is assumed for
MAGIC. Curreat deposition levels of base catlons, sulphate, nitrate and
chloride are needed along with some estimate of how these levels had varied
historically. Historical deposition variations may be scaled to emissions
records or may be taken from other modelling studies of atmospheric
transport into a region. Weathering estimates for base cations are
extremely difficult to obtain. Nevertheless, it 1s the weathering process
that controls the long term response and recovery of catchments to acidic
deposition, and MAGIC can be used to estimate these weathering rates.

The MAGIC program has beea applied to the Dargall Lane sub-catchment in
Loch Dee and a detalled description of the application is given by

Cosby et al (1986). The model has been calibrated using measured rainfall
and stream chemistry data together with relevant hvdrological and soils
data. The model simulates long term behaviour and can be used to separate
out different effects. For example sea salt acidity has a different effect
to athropogenic sources of acidity and afforestation has another type of
effect. In the application to Dargall Lane the factors considered are
afforestation, dry and occult deposition, variations in sea salt and acidic
oxide loading and deforestation.

LONG TERM ACIDIFICATIOK TRENDS FOR DARGALL LANE

Figure 1 shows a simulation of long term acidity for the Dargall Lane
catchment. The sulphate deposition history is shown in Figure la and this
'drives' the MAGIC model. The historical simulation of pH shown in Figure
ib is similar to the values obtained from the diatom raecords of lochs in
the region in that a significant decrease in pH from 1900 onwards 1is
inferred(Betterbee et al, 1985, Flower et al, 1983), The steeper decline
from 1950 to 1970 follows from the increased emission levels during this
period. The model can also be used to predict future stream water acidity
given different future deposition levels. For Dargall Lane stream acidicy
trends are investigated assuming two scenarios for future depositioca.
Firstly assuming deposition rates are maintained in the future at 1984
levels, the model,indicates that annual average stream pH is likely to
continue to decline below presently measured values. Secondly, assuming
deposition rates are reduced by 50% from 1984 levels (between 1985 and
2000) the results indicate that current stream water acidity will be
maintained (Flgure 1lb). Note an increase {n stream water pH about 1980;
this follows a significant drop in sulphur emissions during the 1970s.
Note also that an earlier decline in streamwater acidity is predicted if
there had been no reductions in emissions since 1970.

Afforeatation

Afforested systems are more complex to model than grassland systems because
the introduction of the forest pertubs a grasstand ecosystem which in
itself is difficult to model. The effects of the forest root system, leaf
litter layer and drainage ditches will change the hydrological pathways;
this will control the nature and extent of the chemical reactions in the
soil and bedrock (see Whitehead et al., 1986). Further, the additional
filtering effect of the tree on the atmosphere will enhance occult/particle
deposition and evapotranspiration will increase the concentration

of dissolved components entering the stream. The magnitude of these
different effects varies considerably; for example evapotranspiration from
forests in the British Uplands is typically of the order of 30% of the
precipitatation which is almost twice the figure for grassland, This will
have the consequence that the total anion concentrations within the stream
and soil waters increase by 14% following afforestation. The forest will
also increase anlon and cation loading due to the enhanced filtering effect




of the trees on atmospherfc sources. The filtering effects will apply both
to marine and pollutant aerosol components. Altering the hydrological
pathways can also have a major effect on stream water quality since the
forest tends to increase surface runoff thereby flushing/ displacing highly
acidic water from the surface layers; the soll zone acts as a proton and
aluminium source whilst the bedrock, 1f silicate or carbonate bearling,
orovides proton consumption by weathering reactions.To 1llustrate the
effects of afforestation simply in terms of increased concentrations from
both enhanced dry deposition and evapotranspiration, the MAGIC model has
been applied ta the Dargall lane catchment assuming that a forest 1is
developed over the next 40 years. It should also be noted that, here, no
allowance has been made for the effects of cation and anion uptake by the
trees during their development; the incorporation aof base cations into the
biomass would result in an enhanced acidification effect during this

period.

Of critical importance is the relative and absolute contribution of marice
and pollutant inputs from dry and occult deposition. Figure 2 shows the
effects of increasing evapotranspiration from 16 to 30% over the forest
growth period with varying levels of marine, pollutant and marine

+ pollutant inputs. Increasing either marine or pollutant components leads
to enhanced stream water acidity, the greatest effects being observed when
both components are present; the effect of simply increasing
evapotranspiration from 16 to 30% has a similar effect but the changes are
much smaller. The important features of these results are the enhanced and
acidic oxide inputs from increased scavenging by the trees result in a
marked reduction in pH levels and that there 1s an additive effect when
both processes are combined, These reductions are much greater than the
affect of evapotranspiration.

Atmospheric acidic oxide iaputs

An i{mportant factor in determining stream acidity in the upland UK is the
level of acidic oxide deposition; rates of deposition (non marine wet
deposition and dry depositign) can vary from 0.5 to over 6 g S m “yr~ and
from 0.1 to over 0.5 g N m™ y‘k. Figure 3 shows the effects of such
variations for both moorland and forested catchments; the highest levels
correspond to areas with high atmospheric acidic oxide rates (3 times the
historic and 1984 deposition levels observed In the Southern Uplands of
Scotland). With increasing atmospheric acidic oxide pollution, the decline
in stream pH is accelerated, the changes occur much earlier, and the final
pH of the stream water is lower,

Deforestation

Whilst afforestation increases stream acidity, as shown both by the model
predictions and field evideace (Whitehead et al., 1986), then deforestation
will possibly result in a reduction in stream water acidity. Figure &4
shows che effects of deforestation from the present time for a range of
acidic input loadings. The result shows that while there 1s a short term
improvement in stream acidity, the long term acidification trend is
maintained. It is interesting to aote that the recovery following
deforestation at the intermediate deposition levels is greater than that at
the higher levels. This is because base saturation has not been completely
depleted, and the reduced deposition following deforestation can be




buffered by the available cations. Under the higher deposition levels base
saturation is reduced to very low levels making recovery much less
significant. Note that afforestatioan following tree harvesting will negate
the improvement in stream water acidity.

Implicatiouns

The modelling enables assessment of the relative effects of atmospheric
acidic oxide pollution and conifer afforestation, as well as highlighting
some of the taopics that need further consideration. For example, the lecag
term treands in stream water aclidification for the grassland catchment
suggest that for at least part of the upland UK, acidic oxide pollutant
inputs are the dominant source of fncreased stream water aclidity. The
model predictions are similar to observations of stream acidity found 1in
Southern Seandinavia and add welght to the conclusion that such pollutant
inputs are also a major source of stream acidification in those countries
as well. How important this acidificarion process is on a regilonal basis
in the upland UK cannot be gauged immediately because many unresolved
factors remain. However, much of the British uplands have soils which are
susceptible to acidic inputs; 1t is therefore reasonable to assume the
results of this present modelling exercise are widely applicable. If the
above results are representative of sensitive upland areas then reductions
in present acidic emissions of the order of 50% are required to prevent
further facrease Iin stream acidity moorlands; afforested catchments
requlire greater reductions. The study points to the need for further
regional analysis of soil and stream water chemistry, as well as a better
understanding of hydrogeochemical processes operating within catchments.
Further, the study provides an example of the need to establish the extent
of scavenging of aerosols onto plant surfaces, and more generally on the
benefits of multidisciplinary catchment studies. Finally, the detrimental
effect on stream water quality caused by conifer afforestation in uplands
subject to acidic deposition appears highly significant. While there is
uncertainty regarding the nature and the extent of the hydrogeochemical
processes operative there is a need to change existing forestry practices
which are of immediate pragmatic concern.

CONCLUSIONS

The MAGIC model has proved to be particularly useful yielding information
on the catchment responses, processes and possible future behaviour.

whilst considerable doubt remains on the exact processes controlling stream
acidification MAGIC does appear to describe the dominant mechanisms aand can
be considered a useful tool in assessing the relative importance of
different sources of 'pollution’ and land use change.
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Figure { (a)

Sulphate deposition history used as input for the MAGIC
reconstruction of pH in the Dargall Lane mcorland catchment.
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Figure } (b}
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Simulation of the pd of streamwater in the Dargall Lane
moorland catchment assumiag three sulphate deposition
scenarLos

—  Historical levels to 1984 and constant 1984 levels
rhereafter (see Figure | {(a))
- “Historical levels to 1984 and 1984 levels reduced
by 50% by the year 2000 and constant thereafter
-a-- Historical levels to 1970 and constant 1970 levels
thereafter.
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Figure 2 (a) $imulation of the pH
of the streamwater from the Dargall
Lane catchment comparirg the
meorland catchment Tesponse
assuming Figure 5(a) deposition
rates y, the effect of 147
additional evaporation following
affores-ation { 3y, the effect
of 147 addig&onal evaporation plus
(57 additional input of natural
sea salits following afforestation
1985 (------ }, and the effect of
additional evaporation plus
additional input of natural
saltrs following afforestation
(985 (—— ).
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Figure 2 (b) Simulation of the pH
of streamwater from the Dargall
Lane catchment comparing the
moorland response { ) to the
forested catchment response
assuming increased evaporation

(-——-—-) with different levels of
pollutant scavenging ( -, 207
additional sulphate,-----5 407
additonal sulphate,———, 607%

additional sulphate).

Figure 2 (c¢) Simulation of the pH
‘of streamwater from the Dargall
Lane catchment showing the
moorland response { } and the
combined effects on the forested
catchment of increased evapo~
transpiration, increased
scavenging of natural sea salts,
and various levels of increased
scavenging of pollutant inputs

(-——, zero additional pollutant
scavenging, -~ -, 20% pollutant
scavenging,-----, 40% pollutant
scavenging, — — , 60% pollutant
scavenging) .
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Figure 3 (a) Simulation of the pH of
streamwater from the Dargall Lane
moorland catchment assuming sulphate
deposition patterns (shown in Figure
1{a)) modified by various factors to
reproduce a range of loading
conditions (ie from pristine to
heavy pollution).

Figure 2(b) Simalation of the pH of
streamwater from the 'forested'
Dargall Lane catchment assuming
afforestation from 1884 onwards

and sulphate deposition patterns
(see Figure {{a)) mulriplied by
various factors to reproduce a

range of lcading conditions from
pristine to heavy pollution.

Figure 4 Simulation of the pH of
streamwater for the Dargall Lane
catchment assuming afforestation
from 1844 and deforestation in
1990,
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Field and Laboratory measurement of pH im low conductivity

natural waters
C Real and A G Thomas

Institute of Bydrology
Maclean Building
Crowmarsh Gifford
Wallingford Oxom OX10 8BB

Introduction

The accurate measurement of pH is fundamental to most environmental
and hydrogeological studies. Many mineral and fon exchange equilibria are
controlled by acidity levels and establishment of saturation indices
requires accuracies to within 0.1 pH units. Correspondingly, in studies of
the impact of acidice deposition, accurate pH measurement of rainfall,
surface runoff and unsaturated zone/ground water it is esgential to
establish the proton sources and sinks in the various hydrological
pathways. Measurement of pH both in the field and laboratory almost
universally involves electrode systems based on silver - silver chloride
and calomel cells; these devices although convenient, inexpensive and
portable are in many instances not sufficiently accurate for low
conductivity waters such as rainfall and many upland streams. HNumerous
studies for bicloglcal and Inorganic systems as well as inter laboratory
comparisons have demonstrated this problem (Il¥1ngworth, 1981; Tyree, 1981;
Mason, 1984, Covington et al, in press); hydrogen ifon concentration
discrepancies of up to an order of magnitude are observed even under
laboratory conditions. Such inaccuracles will be exacerbated in the more
testing environment of field measurement. Improved electrodes based on a
free diffusion liquid junction and flowing sample are being designed
(Covington et al, 1983, in press), however, these are not readily available

and may not be suitable for fileld use.

A deseription of the sources of these errors is given and suggestions

are made for pragmatic solutions to the problems encountered. It is
concluded that a fresh approach to field and laboratory measurement of the
pH of low conductivity waters is urgently needed.

Magnitude and Sources of Error

Laboratory and fleld studies have shown at least 4 major sources




of error with pH measurement using Ag/Ag Cl and calomel electrodes. These
studies have employed commonly used electrodes from various manufacturers
to provide a limited, bat representative, selection., The different types

of error are described below, detailed results are described elsewhere in

report form (Neal and Thomas in press)

(1) Different pH responses are obtained when different electrodes are
used on low conductivity stream waters and dilute sulphuric acid
solutions (even when ionic strength, buffers (KC) are added).
These differences show that while consistent results can be
obtained by different workers using the same electrode (1.e.
precision 1s high), major differences occur when different
electrodes are used (i.e. accuracy is low). For example the pH

| of an upland stream water (Afon Hore)} of low conductivity varied

| by up to 0.6 units, a 4 fold difference in hydrogen ion

concentration, according to which of 6 electrodes were used.
Correspondingly for a 10-% N sulphuriec acid solution the pH
varied by 0.8 units, a 6 fold difference in hydrogen fon
concentration (for 11 electrodes). Such variations are usually
considered related to differences in the liquid junctions of the
various electrodes used (Illingworth, 1981) although the glass
alectrode also does not behave "ideally” (Covington et al, 1in
press); all the electrodes were calibrated satisfactorily using
standard NBS buffers; i.e. the Nernst response (electrode

| afficiency) lay between 95 and 100% and results were independent

| of the meters used and the analysts.

(2) The electrode response time varied according to the particular
electrode used and its storage history. For example stable
readings were achieved more slowly, for most of the electrodes
tested, when the electrode was transferred from buffer to low
conductivity waters. Transferring subsequently from low

conductivity to other low conductivity waters, decreased the time

to achieve a stable value. Stable readings, in several cases,
took over 1 hour to achieve when the previocus solution was a
buffer although in some cases reaction times were of the order of

minutes. Errors incurred due to unstable readings could amount

to 0.6 pH. This effect probably relates to contamination/

diffusion in the electrode's porous plug (liquid junetion).

(3) Differences in temperature between sample, buffer and electrode

introduced discrepancies of up to 0.7 pH for a temperature range

6 to 1€ C even after temperature compensation although response




-studies (Tyree,

varied according to the individual low conductivity water
analysed. For example, Afon Hore stream water at field
tepperature (£ C) gave a pH of 4.9, at 6°C this value was reduced
to 4.4 and at 1€€¢C it was increased to 5.1, the electrodes and
buffers being at 1€C in the first instance. Analogous
discrepancies were observed in the field as the electrode cooled

to the temperature of the stream. One possible source of these

differences is the slow precipitatiom or solution of KCl in the

reference electrode.

(4) Errors assoclated with stirring the sample during pH measurement

can give systematic errors of up to 0.5 pH with the stirred

values being lower. This phenomenon ig commonly assumed to be

associated with streaming potential and has been described
previously (Bates, 1973). While adding an ifonic strength buffer
(0,02 N KC1) stabilised the readings, the large inter-electrode

variations in values remained.

DMsecussion

Given these results, informal comments made by other workers at

several meetings, the results of Illingworth (1981) and interlaboratory

1981; Mason, 1984), major problems exist in pH measurement

of low conductivity waters. For example, the typical pH measurement errors

observed (0.5 pH) would make correlation of fish mortality, from laboratory
studies, to lake acidity (Record et al, 1982; Mason, 1984; Howells et al.

1984) very difficult. The great variation in the techniques of pH

measurement and in the equipment used by the various laboratories casts

in the literature
This is of

doubts upon the accuracy of the quoted pH values
notwithstanding the precision of the various sets of data.

profound importance to the establishment of multinational/multidisciplinary

studies planned for the near future on acidic deposition, as well as to the

interpretation of historical data on acidity.

In the absence of a definitive solution to the problem several
possible pragmatic alternatives can enhance the reproducibility of
measurement. These include (1) the introduction of new electrodes
(Covington et al, 1983) for laboratory use which avoid the liquid junction

potential problem, (11) new calibration solutions more representative of

the samples under investigation (Galloway and Cosby, 1979), (1ii)




the addition of an inert electrolyte to increase the conductivity of the
samples near to that of the electrode filling solution (Whitfield, 1971),
to reduce the stirring effect (iv) pH measurement should be made under
i{sothermal conditions with buffer solutions, elaectrodes used and waters -
collected being at fleld temperature, (v) where several groups measure
acidity for the same project/location a thorough intercomparison under
working conditions is required, (vi) the standard approach to acceptance of
an electrode, ife the gradient of the Nermnst Slope, is inappropriate and
should be changed to include measurements of dilute mineral acids of known

pH. This final alternative should also be incorporated into manufacturer's

electrode specification.

Whatever the intermediate soclution adopted, the introduction of a
universally applied standardised method using electrodes which have been

shown to provide reproducible results is imperative.
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