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ABSTRACT 

Objectives: This paper presents estimates of narrow-sense heritability and bivariate genetic 

correlation for 14 tooth crown morphological variants scored on permanent premolars, first 

molars, and second molars. The objective is to inform data collection and analytical practices in 

dental biodistance and to provide insights on the development of molar crowns as integrated 

structures. 

Materials and Methods: African American dental casts from the Menegaz-Bock collection 

were recorded for the Arizona State University Dental Anthropology System (Turner et al., 

1991). Estimates of narrow-sense heritability and genetic correlation were generated using 

SOLAR v.8.1.1, which included assessment of age, sex, and birth year as covariates. Both 

continuous scale and dichotomized estimates are provided.  

Results: Heritability estimates were non-significant for the majority of variables; however, for 

variables yielding significant estimates, values were moderate to high in magnitude and 

comparable to previous studies. Comparing left and right side heritability estimates suggests 

directional asymmetry in the expression of environmental variance, something not seen in 

anterior tooth traits (Stojanowski et al., 2018). Genetic correlations were moderate among 

antimeres and metameres and low for different traits scored on the same tooth crown. Although 

several negative correlations were noted, few reached statistical significance. Results affirm 

some of the current data cleaning and analytical practices in dental biodistance, but others are 
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called into question. These include the pooling of males and females and combining left and 

right side data into a single dataset. 

Conclusions:  In comparison to anterior tooth crown traits, postcanine heritabilities were more 

often non-significant; however, those traits with significant heritability also tended to produce 

higher estimates. Genetic correlations were unremarkable, in part, because they were 

underpowered. However, M1 results may provide insight into the complex relationship between 

genes, environment, and development in determining ultimate crown form. 
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Teeth are used as genetic proxies to reconstruct evolutionary relationships in 

archaeological and paleontological contexts. Tooth morphology, for example, is used in 

bioarchaeology to infer population relationships at multiple scales of analysis. The size and 

morphology of tooth crowns are also used to infer the adaptive niches of extinct species, as 

heterodonty and the evolution of isomeric occlusion were among the distinct advantages of early 

mammalian taxa. For this reason, and due to the comparative abundance of tooth crowns in the 

fossil and archaeological records, understanding the genetic signals manifest in patterns of dental 

variation is important for a number of fields including anthropology, paleontology, and 

comparative mammalogy. Researchers have used a combination of experimental, evolutionary-

developmental, and quantitative genetic analyses to identify the mechanisms involved in tooth 

crown differentiation and to reconstruct the developmental processes responsible for the 

observed range of variation in molar crowns (Gómez-Roblez, & Polly, 2012; Grieco, Rizk, & 

Hlusko 2013; Hlusko and Mahaney, 2003; Hlusko et al., 2004, 2011; Jernval, Åberg, Kettunen, 

Keränen, & Thesleff, 1998; Jernvall, Kettunen, Karavanova, Martin, & Thesleff, 1994; Koh, 

Bates, Broughton, Do, Fletcher, Mahaney & Hlusko, 2010; Polly, 2015; Polly & Mock, 2018; 

Salazar-Ciudad & Jernvall, 2002, 2010). Developmental origins of crown variants have also been 

discussed within a quantitative genetic framework, particularly in studies of single species 

datasets (e.g., P. hamadryas –Hlusko, Maas, & Mahaney, 2004; Hlusko, Do, & Mahaney, 2007; 

C. parva—Polly & Mock, 2018). In particular, the work of Hlusko and colleagues has provided 

critical data on patterns of modularity and integration in the primate dentition, focusing on 
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features such as interconulid/interconulus presence (Hlusko and Mahaney, 2003), enamel 

thickness (Hlusko, Suwa, Kono, & Mahaney, 2004a), molar loph/lophid angle (Hlusko et al., 

2004b), molar cusp areas (Hlusko et al., 2007; Koh et al., 2010), and geometric morphometric 

assessments of tooth/arcade form (Hlusko et al., 2011).  

By comparison, quantitative genetic analyses of human dental data have been limited, 

especially concerning crown variation of the postcanine dentition. Most previous studies have 

focused on overall crown size (e.g., Alvesalo & Tigerstedt, 1974; Dempsey & Townsend, 2001; 

Stojanowski, Paul, Seidel, Duncan, & Guatelli-Steinberg, 2017; Townsend & Brown, 1978a, 

1978b, 1979; Townsend et al., 1986) or specific features such as Carabelli’s trait (Alvesalo, 

Nuutila, & Portin, 1975; Biggerstaff, 1973; Kolakowski, Harris, & Bailit, 1980; Laatikainen & 

Ranta, 1996; Townsend & Martin, 1992) or cusp 5 of the maxillary molars (Harris & Bailit, 

1980; Townsend, Yamada, & Smith, 1986). However, comprehensive assessments of a more 

complete suite of postcanine crown variants, such as that presented in the ASUDAS (Turner et 

al., 1991) is lacking (but see Scott & Potter, 1984).  

In two previous papers we used quantitative genetic methods to estimate heritability and 

inter-trait genetic correlations for mesiodistal tooth size and a series of anterior morphological 

crown variants in a sample of African American individuals from the southeastern US 

(Stojanowski, Paul, Seidel, Duncan, & Guatelli-Steinberg, 2017, 2018). Results presented in 

Stojanowski et al. (2017) indicated a high degree of genetic integration of mesiodistal crown size 

across the dentition. While univariate heritability estimates were lower than those reported for 

5 
 

This article is protected by copyright. All rights reserved.



other human populations, positive estimates of genetic correlation indicated a high degree of 

dimensional pleiotropy compared to a hypothesized general mammalian pattern based on 

previous studies of baboons and mice (Hlusko & Mahaney, 2007; Hlusko, Sage, & Mahaney, 

2011). In Stojanowski et al. (2018), estimates of narrow sense heritability and inter-trait genetic 

correlation were presented for anterior tooth crown morphological variants. Results indicated 

low but statistically significant heritabilities for most traits, strong genetic and phenotypic 

correlations among antimeres, strong genetic correlations among traits scored across different 

teeth, and a complex pattern of positive and negative genetic correlations among traits scored on 

the same tooth crown. As with the odontometric results, heritabilities for tooth crown variants 

were lower than previously reported estimates, which we interpreted as reflecting the combined 

effects of reduced additive genetic variation in this population as well as high environmental 

variance due to the socioeconomic/living conditions of the Gullah (Guatelli-Steinberg, Sciulli, & 

Edgar, 2006; Stojanowski et al., 2018). Although our interest was in estimating quantitative 

genetic parameters that speak to the dentition’s use as a proxy in evolutionary studies, the lower 

than expected heritability estimates reported in both papers are consistent with the documented 

degree of dental asymmetry in the Gullah sample (Guatelli-Steinberg et al., 2006).  

Here, we use the same sample of mid-20th century African American individuals living 

on James Island, South Carolina (ethnic Gullah) to generate estimates of narrow-sense 

heritability as well as genetic and phenotypic correlations among postcanine crown variants 

within the Arizona State University Dental Anthropology System (ASUDAS) (Edgar, 2017; 
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Scott & Irish, 2017; Turner, Nichol, Scott, 1991). This paper has two goals. The first is to present 

new estimates of narrow-sense heritability and genetic correlation for postcanine morphological 

crown traits. The second is to use quantitative genetic analyses to assess current assumptions and 

analytical “best practices” employed in dental biodistance research. The first goal provides 

foundational knowledge about dental biology, while the second is practical and informs data 

collection, data cleaning, and statistical methods in dental biodistance research. This work 

complements previous studies of the same sample (Stojanowski et al., 2017, 2018) and aims to 

refine the use of postcanine morphological variants for reconstructing biological relationships 

and microevolutionary processes. 

BACKGROUND 

Twin and family studies have been essential to exploring the genetic foundations of 

dental variation. These studies employ documented genealogical information and (typically) 

casted dentitions of extended pedigree members or kin pairs. For crown morphology, initial 

efforts focused on determining modes of inheritance, testing simple Mendelian versus complex 

polygenic trait models. In particular, Carabelli’s trait was the focus of intensive, foundational 

research. Early studies showed Carabelli’s trait data to fit either a dominant-recessive or 

autosomal codominant model, allowing for gene frequency estimation in some cases (Devoto & 

Perrotto, 1971; Dietz, 1944; Kraus, 1951; Tsuji, 1958; Turner, 1967). These findings were not 

always corroborated (Goose & Lee, 1971; Lee & Goose, 1972; Sofaer, 1970), suggesting a more 

complex, polygenic mode of inheritance. The fact that morphological characters like Carabelli’s 
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trait vary widely in their degree of expression has also been viewed as consistent with a 

multifactorial mode of inheritance (Sofaer, 1970; Scott, Turner, Townsend, Martinón-Torres, 

2018). Assuming an underlying polygenic framework, subsequent studies assessed the fit of 

threshold or quasi-continuous trait models to pedigreed datasets as a means of exploring the 

variable nature of discrete crown characters (e.g., Bailit, Anderson, & Kolakowski, 1974; Bailit, 

Brown, & Kolakowski, 1975; Harris, 1977; Scott, 1973). Complex segregation analyses also 

provided insight into competing genetic effects (i.e., “major genes” and “minor genes”) and trait 

transmissibility (Kolakowski et al., 1980; Nichol, 1989). The results of this work are summarized 

by Scott and colleagues (2018). 

Despite initial searches for major genes and simple modes of inheritance, current 

perspectives acknowledge that morphological crown traits are likely polygenic and characterized 

by complex modes of inheritance. As such, dental anthropology has embraced quantitative 

genetic approaches, which help ground truth the assumptions of biodistance analyses and 

enhance analytical methods for reconstructing evolutionary processes. Character-specific 

heritability estimates inform trait selection through quantification of the relative influence of 

genes on patterns of phenotypic variation; heritability is often seen as a measure of a trait’s 

“utility” for both biodistance and phylogenetic research. It is also a key parameter for 

reconstructing population structure from quantitative traits via R matrix analysis (e.g., RMET) 

(Relethford & Blangero, 1990; Relethford, 1994, 1996; Relethford, Crawford, & Blangero, 1997; 

Williams-Blangero & Blangero, 1989; reviewed in Relethford, 2007, 2016), and can inform trait 
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weighting in multivariate phenotypic distance calculations (Stojanowski & Schillaci, 2006). 

Narrow-sense heritability (h2) is the parameter of interest, because it represents the relative 

contribution of additive genetic variance alone, as compared to broad-sense heritability (H2) that 

does not distinguish between additive and non-additive (e.g., multigene interaction, dominance) 

genetic effects.  

Results of quantitative genetic analyses have shown permanent crown dimensions to be 

under moderate to strong genetic influence, with additive genetic variance accounting for over 

half of phenotypic variance on average (e.g., Alvesalo & Tigerstedt, 1974; Dempsey and 

Townsend, 2001; Dempsey et al., 1995; Lundström, 1948; Stojanowski et al., 2017; Townsend 

and Brown, 1979). By comparison, morphological characters on adult teeth yield lower 

heritability estimates, typically falling within the 0.40 to 0.80 range for the mesial-most member 

of each tooth class (Scott & Turner, 1997:164; for examples see Berry, 1978; Laatikainen & 

Ranta, 1996; Mizoguchi, 1977; Townsend & Martin, 1992). It is important to note that not all 

studies employ the same analytical methods and that heritability estimation has improved in 

statistical rigor over the years. Initial work derived estimates from trait concordance rates among 

monozygotic and dizygotic twin pairs, familial intra-class correlation coefficients, and analysis 

of variance. Carabelli’s trait, along with certain molar variants, received much attention 

(Alvesalo et al., 1975; Berry, 1978; Biggerstaff, 1970, 1973; Kaul, Sharma, Sharma, & 

Corruccini, 1985; Laatikainen & Ranta, 1996; Mizoguchi, 1977; Scott & Potter, 1984; Sofaer, 

MacLean, & Bailit, 1972). More recently, sophisticated model-fitting approaches have become 
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the norm, such as path analysis and structural equation modeling (Townsend & Martin, 1992; 

Townsend et al., 1992; Hughes, Vo, Mihailidis, & Townsend, 2010; Trakinienė et al., 2018), as 

well as variance components analysis via maximum likelihood estimation (Paul et al., 2018; 

Stojanowski et al., 2018).  

Considering the diversity of these analytical approaches and the population-specificity of 

heritability, it is not surprising that reported values vary greatly. Molar morphology is no 

exception. In a recent review of Carabelli’s trait research, Scott et al. (2018) summarized the 

results of several twin concordance studies (e.g., Berry, 1978, Biggerstaff, 1973; Scott & Potter, 

1984; Skrinjaric, Sliaj, Lapter, & Muretic, 1985). Heritability estimates ranged from ~0.0 to 0.91 

(mean h2= 0.45) (pp. 143-144). Family-based estimates also varied greatly. While Alvesalo et al., 

(1975) reported no evidence for correlations among siblings in a sample of rural Finns, Scott 

(1973) reported intra-class correlations ranging from 0.39 to 0.57 (across sibling and parent-

offspring pairs) in Euro-Americans. In a more recent study of South Australian twins, model-

fitting approaches yielded heritability estimates of 0.90 for M1 Carabelli’s trait and indicated that 

a combination of additive genetic effects, shared environmental effects, and unique 

environmental effects best account for observed phenotypic patterns (Townsend & Martin, 

1992). While no single heritability estimate can be applied across populations, research generally 

indicates a moderate degree of genetic determination for the varying expression of this character, 

with several twin studies converging upon similar estimates of ~0.40, despite using samples of 
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diverse bioregional origins (Boraas, Messer, & Till, 1988; Mizoguchi, 1977; Scott & Potter, 

1984; Scott et al., 2018; Townsend & Martin, 1992). 

Heritability estimates have been reported for select postcanine variants beyond 

Carabelli’s trait. Higgins and colleagues (2009) reported a hypocone heritability estimate of 0.87 

for M1 and 0.93 for M2 in a South Australian twin sample. The best-fit model incorporated only 

additive genetic and unique environmental effects as contributors to hypocone variance (Higgins 

et al., 2009). Hughes et al. (2010) also reported heritability estimates exceeding 0.75 for several 

mandibular crown traits in the same sample. With few exceptions, best-fit models included both 

an additive genetic and unique environmental term (Hughes et al., 2010). The estimates 

presented in these twin studies exceed all family-based intraclass correlation coefficients 

reported for postcanine tooth traits by Scott (1973) (M2 hypocone r=0.40-0.55; M1 Carabelli’s 

trait r=0.39-0.57; P1/P2 lingual cusp number r=0.21-0.61; M1 cusp 7 r=0.28-0.52). Family studies 

of M1 cusp 5 in Solomon Islanders (Harris & Bailit, 1980) and Australian Aboriginals 

(Townsend, Yamada, & Smith, 1986) yielded fairly low sibling-sibling correlation coefficients 

(Solomon Islands: M1 C5 sister-sister ρ=0.32; Australia: M1 C5 φ=0.04). These findings 

indicated a considerable environmental influence on cusp 5 expression. However, it should be 

noted that a statistically significant correlation was reported for the deciduous second molar in 

the Aboriginal sample (m2 C5 φ=0.66) (Townsend et al., 1985), and when Harris and Bailit 

(1980) pooled data for all Solomon Islander relatives, they obtained cusp 5 heritability estimates 

of 0.65 and 0.15 for M1 and M2, respectively. A more moderate sibling-sibling correlation 
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coefficient of 0.30 was reported for M1 cusp 6 in the Australian Aboriginal sample (Townsend et 

al., 1990). 

MATERIALS AND METHODS 

Data on 14 morphological molar crown variants were collected using ASUDAS standards 

(Turner et al., 1991). The trait list includes five maxillary molar traits recorded for both the M1 

and M2 (metacone, hypocone, cusp 5, Carabelli’s trait, parastyle), one mandibular premolar trait 

collected for both the P1 and P2 (lingual cusp variation), and eight mandibular molar crown 

variants, of which six were collected on both the M1 and M2 (cusp 5, cusp 6, cusp 7, cusp 

number, groove pattern, protostylid) and two were scored only on the M1 (anterior fovea, 

deflecting wrinkle). Third molar data were infrequent on casted dentitions due to the limitations 

of the casting protocol. All data were scored by a single investigator (WND) to minimize inter-

observer error. We have previously discussed assessment of intra-observer error for this dataset 

(Stojanowski et al., 2018), which produced estimates within an acceptable range (cf., Marado, 

2017; Scott, 1973). Mesiodistal dimensions were recorded by CMS and are used here as markers 

of crown size.  

The study sample consists of ~460 dental casts of African American individuals living in 

coastal South Carolina during the early to mid-20th century (ethnic Gullah). Casts and 

genealogical records were collected by Rene Menegaz-Bock during her dissertation research 

(Menegaz-Bock, 1968); the latter provide information on familial relationships, age at time of 

casting, sex, and birth year. We used these data to compile genealogies that resulted in the 
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identification of 22 bilineal families, including one single pedigree that included 313 individuals. 

The distribution of genealogical relationships is presented in Table S1 and includes 652 

individuals inclusive of non-casted founders. All individuals were living on James Island, South 

Carolina at the onset of Menegaz-Bock’s research project. She noted a population of 

approximately 3,400 individuals living on the island at the time, a number which slightly 

underestimates the total population size of the island and does not reflect the size of the entire 

coastal South Carolina Gullah population during the mid-twentieth century. The cast sample 

represent approximately 13% of the population living on the island at that time. Previous studies 

using the reconstructed genealogies suggest minimal impact of recording errors (Stojanowski et 

al., 2017, 2018), although there is the potential for adoptions and other fictive kin relationships 

(and half sibships) that were not captured in the genealogical recording (Twining and Baird, 

1991). Further details on the Gullah sample can be found in Stojanowski et al. (2017, 2018), 

which summarize the relevant details from initial work among the population (Menegaz-Bock, 

1968; Pollitzer, 1958, 1993, 1999; Pollitzer, Menegaz-Bock, Ceppellini, & Dunn, 1964), 

including prior dental anthropological analyses (Edgar, 2000; Edgar & Sciulli, 2004; Guatelli-

Steinberg et al., 2006) and assessments of genetic variation (McLean, Argyropoulos, Page, 

Shriver, & Garvey, 2005; McLean et al., 2003; Parra et al., 2001; Sale et al., 2009). All research 

presented in this paper was conducted under the approval of The Ohio State University IRB 

(2012B0529).  
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We estimated narrow-sense heritability (h2) using maximum likelihood variance 

components analysis. All estimates were derived using SOLAR v.8.1.1 (Almasy & Blangero, 

1998; Blangero et al., 2016), which accommodates unbalanced and complex pedigrees and 

provides more realistic estimates of trait heritability (i.e., free of over-estimation based on 

sibling, parent-offspring, or twin study designs). Four covariates were screened for significant 

effects: age, sex, age/sex interaction, and birth year. Significance of covariates was assessed at 

the p < 0.10 level; the total effect of all significant covariates was recorded. All significant 

covariates were fixed in subsequent bivariate analyses (see Boehnke, Moll, Kottke, & Weidman, 

1987; Falconer, 1989; Hopper & Mathews, 1982; Lange, Boehnke, & Opitz, 1983). 

Bivariate analyses (SOLAR v.8.1.1) were used to estimate additive genetic (𝜌𝜌𝐺𝐺) and 

environmental (𝜌𝜌𝐸𝐸) correlations between pair-wise combinations of traits (see Almasy, Dyer, & 

Blangero, 1997; Blangero, Konigsberg, & Vogler, 1991; Hlusko & Mahaney, 2007; Hlusko et 

al., 2004; Mahaney et al., 1995). Likelihood ratio tests were then used to assess whether the 

genetic and environmental correlations were significantly different from 0.0 (complete 

pleiotropy), significantly different from 1.0 (no pleiotropy), or significantly different from both 

(incomplete pleiotropy). Tests that returned two insignificant results were considered 

underpowered and interpreted as a non-result. Derived phenotypic correlations (𝜌𝜌𝑃𝑃) were 

subsequently estimated using the formula ρ𝑃 =  �ℎ1 
2  �ℎ22 ρ𝐺 + �(1 − ℎ12) �(1 − ℎ22 ρ𝐸. 

Because each pair-wise combination of variables could include multiple estimates of heritability 
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(see below) bivariate analyses included traits dichotomized at expression breakpoints that 

yielded the highest univaritate heritability estimate. 

Narrow-sense heritabilities and estimates of genetic, environmental, and phenotypic 

correlations were calculated for each variable in two ways. First, the variable was treated as 

continuous scale in recognition of the fact that ASUDAS morphological scoring applies an 

ordinal scale to what is an inherently (quasi)continuous variable (see Hlusko & Mahaney, 2003; 

also Carson, 2006; Cheverud, Buisktra, & Twichell, 1979; Corruccini, 1976; Harris, 1977; 

Sofaer, Niswander, McLean, & Workman, 1972). Data were transformed using SOLAR’s inorm 

function to mitigate the effects of distributional variance (primarily kurtosis) on significance 

testing. Analyses with kurtosis values beyond the acceptable range were marked in our output 

and should be interpreted with caution. These results are most comparable to the odontometric 

heritabilities and correlations previously reported in Stojanowski et al. (2017). Because SOLAR 

does not accommodate ordinal scale data, we then divided each trait into a number of binary 

scale variables at different breakpoints as determined by sample frequency. For example, 

Carabelli’s trait was analyzed as a continuous scale variable and as a series of seven binary scale 

variables with breakpoints for trait presence defined as 1+ = present, 2+ = present, and so forth. 

The distribution of raw scores is presented in Table S2. 

RESULTS 

Heritability estimates and results of covariate screening are presented in Table 1.  The 

covariates of birth year and age at time of casting returned significant p-values for some 
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variables, but these were not consistent across sides or breakpoints and are likely the result of 

family-wise error. In fact, exactly 9% of tests were statistically significant, which is expected at 

the 𝛼 = 0.10 level. Birth year may reflect a cohort effect or secular trends in morphological 

variation due to changing environmental (i.e., lifestyle) conditions. Age, on the other hand, likely 

indexes scoring error related to dental attrition and the lack of significance for this variable 

suggests scoring error has been minimized in this sample. For the sex covariate, 17% of p-values 

were statistically significant at the 𝛼 = 0.10 level, which is beyond the expectations of family-

wise error. Many of these significant results were isolated and inconsistent across 

sides/breakpoints and likely spurious. However, the results for RM2 hypocone, LM1 Carabelli’s 

trait, RM2 cusp 6, and RM1 cusp 7 suggest a real phenomenon is captured. These results are 

consistent with previous research documenting sexual dimorphism in Carabelli’s trait expression 

in some populations (Townsend & Brown, 1981; Tsai, Hsu, Lin, & Liu, 1996), and suggest that 

the expression of other cusp variants is sexually dimorphic. This may require reconsideration of 

the pooling of sexes in dental biodistance analyses, but even in this sample the effect was not 

consistent across antimeres.  

Heritabilities were moderate in magnitude and generally comparable to previously 

reported estimates based on analyses of other populations, contrary to results reported for 

anterior tooth crown data in the Gullah (Stojanowski et al., 2018). The best index of comparison 

is Carabelli’s trait, which returned significant heritability estimates at nearly all breakpoints with 

the maximum left (0.847) and right (0.691) side estimates comparable to previous studies of 
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European and Asian samples (reviewed in Scott et al., 2018). Average heritability by tooth type 

for all statistically significant estimates was: M1 = 0.621, M2 = 0.882, M1 = 0.707, M2 = 0.870. 

The average for all statistically significant estimates across tooth types and arcades was 0.748. 

The M2 (both maxillary and mandibular) heritabilities are likely spuriously high, resulting from 

small sample sizes. As such, these results should be considered preliminary and provide limited 

basis for comparing M1 and M2 estimates. We note that all molar averages are considerably 

higher than those we previously reported for anterior tooth crown variants, which averaged 

~0.340 across all statistically significant estimates (Stojanowski et al., 2018). These differences 

are unlikely to be statistically different given the large standard errors associated with these 

estimates. A number of molar traits are also characterized by heritabilities that were not 

significantly different from 0.0 for any breakpoint (M1 metacone, M2 Carabelli’s trait, M1 

parastyle, M2 parastyle, P1 lingual cusp number, P2 lingual cusp number, M2 cusp 6*, M1 cusp 7, 

M1 cusp number, M1 deflecting wrinkle, M1 groove pattern, M2 groove pattern, M1 protostylid*; 

* indicates kurtosis violation), which is in contrast with the anterior dentition for which only 

three traits failed to produce statistically significant heritability estimates (Stojanowski et al., 

2018). This difference could reflect variation in the way the molar traits are scored and the 

limited variation that results from the scoring protocol. For example, it is rare to have an M1 

metacone scored less than 4, thus compressing the range of variation to only two scores (4 and 5) 

for most individuals. Regardless, scoring scale does not explain all traits that returned zero 

heritability estimates (for example LM1 cusp 6 and 7).  
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Another difference between the postcanine morphology and anterior morphology results 

was the degree of asymmetry in the postcanine heritability estimates. There were many traits for 

which at least one left side estimate was significantly different from zero and the corresponding 

right side estimates were not (M2 metacone*, M1 cusp 5, M2 cusp 5, M1 cusp 5, M1 cusp 6, M2 

cusp number; * indicates kurtosis violation). For traits for which both sides returned a significant 

heritability estimate, there was also a tendency for the left side estimate to be higher than the 

corresponding right side estimate (M1 hypocone (left higher), M1 Carabelli’s trait (left higher), 

M1 anterior fovea (right higher), M2 cusp 5 (left higher), M2 cusp 7 (right higher)*; * indicates 

kurtosis violation). Given that additive genetic variance is held constant for these comparisons, 

the reduction in heritability on the right side suggests an environmental effect is evident, which 

represents directional asymmetry in this dataset.   

Asymmetry among antimeres is also indicated by estimates of genetic correlation (Table 

2), which were not uniformly high and many of which were not significantly different from zero. 

This is in sharp contrast to the genetic correlations among antimeres for mesiodistal dimensions 

(Stojanowski et al., 2017) and anterior tooth crown variants (Stojanowski et al., 2018). The same 

is true for the phenotypic correlations which were, on average, 0.628 for postcanine traits 

(inclusive of M2s), 0.708 for anterior tooth crown traits (Stojanowski et al., 2018), and 0.799 for 

mesiodistal dimensions (Stojanowski et al., 2017). That postcanine morphology demonstrates the 

least antimeric symmetry and overlap in additive genetic contribution might suggest a greater 

potential effect of environmental variance on trait expression.    
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Genetic correlations for metameres are presented in Table 3 for those traits scored on 

both the M1 and M2. The small sample sizes for observable M2s significantly limits the utility of 

these analyses, however. Significant p-values are infrequent but suggest complete pleiotropy for 

some hypocone and M1 cusp 5 comparisons. In general, the correlations are positive, many at or 

near 1.0, which suggests the same genes are implicated in the formation and size of primary and 

secondary cusps of the first and second maxillary molar crowns. The lack of consistency across 

sides and breakpoints indicates caution is needed; results should not be over interpreted. None of 

the observed negative correlations are significantly different from zero and should be considered 

spurious until confirmed with additional data. 

In Table 4 we present the results of the genetic correlation analyses for traits scored on 

the same tooth crown. These data test the assumption of trait independence, which is now 

generally recognized as problematic given our understanding of multicuspid crown development. 

Following standard protocol, the issue of genetic redundancy is instead ameliorated through the 

use of key teeth for ASUDAS data collection or through trait omission based on post hoc 

phenotypic correlations (Scott et al., 2018; Turner et al., 1991). Unfortunately, sample sizes for 

the M2s were too small to produce interpretable results. In addition, parastyle data were 

removed, because the trait was extremely infrequent in this dataset, rendering most results 

meaningless. Comparing left side M1 crown traits to the mesiodistal dimension indicates that 

cusp 5 and Carabelli’s trait are not genetically correlated with molar crown length; the 

underpowered metacone results suggest a similar interpretation. Mesiodistal diameter and 
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hypocone size are incompletely pleiotropic, which is as expected given that mesiodistal length is, 

in part, determined by hypocone presence and size. In other words, there is some overlap in the 

genes responsible for mesiodistal tooth size, the size of primary molar cusps, and the presence 

and size of secondary molar cusps. None of the right side comparisons produced significant p-

values, which we interpret as reflecting a higher than expected degree of asymmetry in this 

sample.  

Genetic correlations among maxillary morphological traits returned two significant p-

values, indicating complete pleiotropy between metacone and Carabelli’s trait and between 

hypocone and Carabelli’s trait. Other trait comparisons returned moderate to high positive 

genetic correlations; however, p-values were not significant, which in most cases indicated a lack 

of power. These results call into question the assumption of genetic independence for these traits. 

Once again, none of the right side comparisons produced a significant p-value. 

The greater number of traits scored on mandibular molars makes interpreting these results 

more challenging. Comparisons involving the M1 mesiodistal dimension and crown features 

returned significant p-values only for cusp 5, indicating complete pleiotropy. Results for y 

groove pattern, anterior fovea, and deflecting wrinkle were also positive, though underpowered. 

The most surprising result was the consistent finding of negative genetic correlations between 

tooth size and cusp 6, cusp 7, and cusp number. Although these correlations were also 

underpowered, the negative correlations suggest the same genes underlie the expression of crown 

length and the presence of accessory cusps but cause opposing phenotypic effects. In other 
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words, genes that increase tooth size decrease the presence or size of accessory, but not primary, 

cusps. Comparison among morphological features affirms this result. All correlations involving 

cusp 5 (at two different break point values) returned negative genetic correlations, including 

significantly negative correlations in the case of cusp 6. That is, the same genes that increase the 

size of cusp 5 work to reduce the size of cusp 6 (and to a lesser extent cusp 7). Remaining 

comparisons were all underpowered, and any significant p-values are associated with genetic 

correlations of 1.0, which are suspect.  

There is, however, a potentially significant relationship between groove pattern and other 

crown features. Because we used the variant that yielded the highest univariate heritability 

estimate for subsequent genetic correlation analyses, left M1 comparisons were made between 

the presence of a y configuration and other crown traits, while right M1 comparisons were made 

between the presence of a + configuration and other crown traits. For the left side comparisons, 

all minor crown variants, including accessory cusps, returned negative genetic correlations. The 

magnitudes varied considerably. Some were quite low and unlikely to achieve statistical 

significance with increased sample size (anterior fovea and, to some extent, cusp 7 and 

protostylid). However, the negative correlations between y groove pattern and both cusp 6 and 

deflecting wrinkle were large in magnitude and likely to be significant with a larger sample size. 

Interestingly, the right side comparisons against + groove pattern were all positive and mostly 

large in magnitude. This suggests a relationship between overall crown form, reflected in a y or + 

cusp configuration among the four earliest forming cusps, and the presence of most accessory 

21 
 

This article is protected by copyright. All rights reserved.



crown features. That is, the genes responsible for a y configuration work to reduce the presence 

of all other minor anatomical variants, including accessory cusps, while the genes responsible for 

a + configuration work in concert to produce a more architecturally complex, cuspidate molar 

crown. Though under-powered, univariate tests support this interpretation, with y form crowns 

exhibiting significantly lower cusp number (p = 0.011) and smaller cusp 6s (p = 0.053) when 

compared to + and x form crowns, as well as + form crowns exhibiting significantly higher cusp 

number (p = 0.019) and larger cusp 6s (p = 0.001) when compared to y and x form crowns. 

Comparisons for cusp 5, cusp 7, and protostylid generally followed the same patterns, although 

p-values were not significant.  

DISCUSSION 

 In this paper we have presented new estimates of heritability and genetic correlation for a 

series of dental morphological traits scored in the postcanine dentition using ASUDAS 

standards. Despite decades of prior work on the heritability of specific postcanine crown features 

(for a recent review see Scott et al., 2018), we believe this is the first paper to present heritability 

estimates for a nearly complete series of postcanine crown features using maximum likelihood 

variance components analysis, a statistically robust, model-fitting approach. Limitations of the 

paper include the small sample size for second molars and the high degree of asymmetry in the 

results. As such, we focus our discussion primarily on the first molar data from the left side only 

(except where asymmetry is the focus). We interpret the results with respect to two distinct, yet 

overlapping areas of inquiry: 1) the implications of these quantitative genetic analyses for the 
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practice of dental biodistance, and 2) the implications of these analyses for understanding 

patterns of variation and development in the human dentition. The latter directly relates to 

existing dental developmental models (i.e., the patterning cascade model- Jernvall (2000), 

Jernvall & Thesleff (2000)) and previous research using other primates and mammalian model 

organisms (Hlusko and Mahaney, 2003; Hlusko, et al., 2004a, 2004b, 2007, 2011; Koh et al., 

2010). 

Implications for Dental Biodistance  

Many postcanine traits scored in the Gullah sample were not heritable. In fact, more than 

half (12 of 21) of the features typically recorded in the ASUDAS returned heritabilities not 

significantly different from 0.0 (including premolar traits—cf., Ludwig, 1957; Lundström, 1963; 

Wood and Green, 1969) (Table 1). Some of these results can be explained by small sample size 

(most of the M2 traits) and some can be explained by low sample frequency. However, low 

frequencies cannot explain all of the non-significant results. For the maxillary M1, Carabelli’s 

trait (sample frequency = 20-63%), hypocone (14-69%) and cusp 5 (27%) all returned positive 

heritabilities (see Tables 1 and S2). However, metacone and parastyle did not, and while the low 

frequency of parastyles (1%) in this sample likely explains the trait’s lack of observed 

heritability, metacone frequencies varied between 4 and 25% across different breakpoints. The 

upper range matches frequencies of molar traits that returned positive heritabilities, and we 

suspect the metacone results reflect an issue with the compressed scoring scale with respect to 

this feature’s range of variation. The same pattern was evident for the mandibular first molar. 
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Traits with positive heritability included hypoconulid (sample frequency = 84%), cusp 6 (9-

20%), and anterior fovea (17%), while traits that returned 0.0 heritability included cusp 7 

(sample frequency = 40%), protostylid (8%), and groove pattern (4-84%). As such, there is no 

clear relationship between trait frequency and heritability that might reflect an analytical artifact.  

We previously attributed low heritabilities in the Gullah sample to both reduced genetic 

variance due to isolation and endogamy, as well as increased environmental variance due to 

suboptimal socioeconomic conditions (Guatelli-Steinberg et al., 2006; Stojanowski et al., 2017, 

2018). As such, the results reported for the Gullah may not reflect broader patterns among 

human populations. That is, while previous twin studies may over-estimate heritability due to 

study design, our results may under-estimate heritability due to the demographic and 

socioeconomic history of the study sample. However, we may have over-stated the case for 

reduced trait heritability in our previous papers. It is widely recognized that the Gullah were 

isolated from surrounding communities for an extended period of time after the Civil War and 

abolition of slavery (Opala, 1987; Pollitzer, 1999; Twining and Baird, 1991), with little reported 

out- or in-migration for the Sea Island communities of the South Carolina coast until very 

recently (but see Matory, 2008). As such, the cultural and linguistic ties to West Africa are still 

apparent, leading some to conclude that the Gullah are the least acculturated African American 

ethnic group. This is also reflected in patterns of genetic variation. The Gullah show the lowest 

levels of Euro-American admixture among African American communities (but not Afro-

Caribbeans/South Americans) (Parra et al., 1998, 2001). Estimates of Euro-American admixture 
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average around 3-4% and Native American admixture around 2-3%  (Maclean et al., 2003, 2005; 

Parra et al., 2001; Pollitzer, 1999). Even within South Carolina African American communities, 

the low level of European admixture is noteworthy with 80% of ethnic Gullah exhibiting < 10% 

European admixture as compared with ~50% of African Americans from the surrounding Low 

Country and Columbia environs (Parra et al., 2001). 

However, a low level of admixture is not necessarily the same as reduced additive genetic 

variance. The Gullah are clearly linked to West African populations, specifically to those in 

Sierra Leone and populations living along the “rice coast” of West Africa (McClean et al., 2003, 

2005; Stefflova et al., 2011). Therefore, as an African-derived population, internal genetic 

variation is actually considerably higher in the Gullah than in European populations (mtDNA 

haplotype diversity: Gullah = 0.8768, European American = 0.6280 per MacLean et al., 2005). 

Observed levels of haplotype diversity in the Gullah are also comparable to other African and 

African American populations. How patterns of mtDNA or Y chromosome haplotype diversity 

map onto dental phenotypes is difficult to predict. We note, however, that previous quantitative 

genetic studies of Gullah biomedical data failed to find evidence of bias due to population 

structure (Divers et al., 2010). Thus, there is no clear rationale for assuming a causal relationship 

between the isolation and endogamy of the Gullah and the low heritability estimates reported 

here and in our previous papers. Furthermore, we argue the pedigree structure of this sample 

better represents the realities of research on phenotypic variation using the archaeological record, 

as compared with single-generation twin or sibling studies. 
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Effect of breakpoints on heritability estimates. Dental morphological data are typically 

dichotomized in a distance analysis. There are two reasons for this. Dichotomization minimizes 

observer error allows for the calculation of sample frequencies and the Mean Measure of 

Divergence, the most commonly used population-level distance statistic in dental biodistance 

research. While trait dichotomization reduces the observed range of variation in a dataset, results 

presented here justify the approach. For example, treating the traits as continuous variables 

almost always produced lower heritability estimates than treating the traits as binary 

(presence/absence) variables. The average heritability for continuous scale analyses was ~0.38, 

while the average heritability for binary traits was nearly double that when the maximum 

dichotomization breakpoint was used (~0.69). Whether this reflects the effects of observer error 

or a real biological phenomenon is difficult to determine.  

A related question is whether the standard breakpoints identified in Scott and Irish 

(2017), which are used widely in the dental biodistance literature, are optimized for evolutionary 

inferences. Table 5 summarizes heritabilities presented here and in Stojanowski et al. (2018) at 

the breakpoints specified by Scott and Irish (2017). Of note, the final column presents additional 

data for those traits with non-significant estimates, in particular, the breakpoint and sample 

frequency at which a statistically significant heritability is observed in the Gullah sample (if 

any). For example, I1 double shoveling returned a 0.0 heritability using a breakpoint of 2. 

Reducing the breakpoint to 1 produces a significant heritability estimate of 0.34 and the sample 

frequency of expression increases from 20.9% to 57.5%. Data in Table 5 indicate that any 
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analysis of the Gullah sample using the breakpoints specified in Scott and Irish (2017) would 

include nine traits with significant positive heritability and 12 traits with 0.0 heritability. Shifting 

the breakpoint scale does little to ameliorate this; there is almost no correlation between positive 

heritability and sample frequency. For example, traits with positive heritability at the Scott and 

Irish (2017) breakpoint varied in frequency from 7.0 to 76.2%, while traits with 0.0 heritability 

varied from 0.7 to 73.7%. Therefore, it does not seem possible to use trait frequency as a guide 

toward generating project-specific breakpoints based on regional patterns of dental 

morphological trait expression. Rather, adjustments during the data collection phase may be 

required if ASUDAS standards fail to capture underlying genetic signals.  

Selecting between antimeres for analysis. Although data may be collected for both antimeres, 

the estimation of distances based on dental morphological variables does not use data from both 

sides of the dentition. Most often the side with the maximum degree of expression is used; 

however, other options include using left or right side data only with antimere substitution in the 

case of missing data. Here we provide genetic correlations for antimeres that were generally 

significantly positive (Table 2), which indicates that antimeres are highly genetically correlated 

and should not be double counted. However, further complicating the issue is the degree of 

asymmetry noted in postcanine trait heritabilities and genetic correlations. Right side estimates 

of heritability were inconsistent and more often non-significant than left side estimates. This is 

difficult to explain in any other way than to assume that environmental variance components 

were higher for the right side of the dentition, although a biological explanation for this is 
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unknown. Additionally, antimere genetic correlations were much lower than those observed for 

odontometric (Stojanowski et al., 2017) and anterior morphological variables (Stojanowski et al., 

2018), with derived phenotypic correlations being lower than expected based on previous studies 

of dental asymmetry (Baume & Crawford, 1979, 1980; Bollini, Rodriguez-Florez, & Colantonio, 

2009; Mayhall & Saunders, 1986; Marado, Silva, & Irish, 2017; Mizoguchi, 1990; Moskona, 

Vainder, Herschkovitz, & Kobyliansky, 1996; Noss, Scott, Potter, & Dahlberg, 1983; Saunders 

& Mayhall, 1982). Interpreting the entirety of the pattern is difficult, but results seem to suggest 

that the postcanine dentition experiences greater directional asymmetry in the expression of 

dental morphological variants. This may be related to differences in developmental timing across 

antimeres (Harris, 1992), that are potentially exaggerated in later-forming tooth crowns, such as 

the premolars and second molars. Guatelli-Steinberg et al. (2006) previously documented 

fluctuating and directional asymmetry for Gullah crown size. Although permanent molars were 

not included in their study, results presented here are consistent with their findings. Similarly, 

Riga et al. (2014) documented increased, directional variation in molar cusp number and size in a 

stressed (vs. non-stressed) sample, indicating that environment can act “non-randomly” on 

developmental parameters throughout crown formation. Our results suggest caution is needed in 

selecting which side to use in dental biodistance analyses. 

Sexual dimorphism in trait expression. The influence of sex on the expression of morphological 

traits is debated. As Scott et al. (2018: 105-106) note, "…given the nature of sampling 

distributions, reports of significant sex differences for traits vary from one sample to 
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another….When differences are found, they are usually inconsistent among samples and low-

order in magnitude. For this reason crown and root traits…can be pooled to estimate population 

frequencies.” Our results corroborate this, for the most part. We were able to replicate the results 

of numerous studies suggesting Carabelli’s trait expression is sexually dimorphic in certain 

populations (e.g., Durner, 2013; Kondo and Townsend, 2006; Scott, Potter, Noss, Dahlberg, & 

Dahlberg, 1983; Townsend and Brown, 1981; Tsai et al., 1996), although here only the left side 

data produced consistent results (but these were the most consistent for any variable). In addition 

to Carabelli’s trait, sex was a significant covariate for parastyle expression, and in the mandible, 

cusp 6 and cusp 7 expression. All of these traits are accessory cusps of the molar crown. It is 

often assumed that dental morphological traits (with the exception of canine distal accessory 

ridge) are not sexually dimorphic. Although our analyses leave the biological mechanism 

unexplained, the results suggest that care is needed in ascertaining the sex composition of pooled 

samples in archaeological contexts. Indeed, targeted association studies of single nucleotide 

polymorphisms and dental morphology have also documented significant sex effects for several 

postcanine dental traits (Kimura et al., 2015).  

Trait independence.  A basic assumption of biological distance analysis is that the traits used to 

estimate phenotypic similarity are genetically independent of one another. ASUDAS protocol 

dictates that each trait be represented by data collected on a single tooth, as supported by 

previous research on phenotypic correlation among metameres (Scott et al., 2018). Based on 
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thousands of samples, Turner and his students have identified what they call “key teeth” for each 

trait that best reflect patterns of variation (reviewed in Scott and Irish, 2017).  

Quantitative genetic analyses of metameric variation directly assess the independence 

assumption. While small M2 sample size for the Gullah prevents a comprehensive evaluation, 

data presented in Table 3 generally support it. Most genetic correlations among metameres 

demonstrate large, positive correlations that are statistically different from 0.0. Note that even 

large negative correlations validate using only one tooth per trait in biodistance analyses, because 

a negative correlation reflects the action of the same genes operating to produce the opposite 

phenotypic effects. For example, the consistent negative correlations between metameres for 

mandibular cusp number simply reflects the tendency for cusp number to decrease as one moves 

distally in the tooth row. Still, many p-values were not significant, and additional data are needed 

to fully evaluate the metameric correlations.   

The assumption of trait independence does not only apply to metameric scoring of 

morphological traits. A more foundational assumption of the ASUDAS is that each trait itself is 

genetically independent of all other traits recorded, including those located on the same tooth 

crown. Here, the results are less conclusive (Table 4), with many comparisons returning non-

significant p-values for tests of both complete pleiotropy and complete genetic independence. 

Many of the significant correlations were also spuriously high, suggesting an issue with model 

convergence. The one significant maxillary result suggests that hypocone score and Carabelli’s 

trait are genetically correlated, but this was found only on the left side. None of the right side 
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correlations were significantly different from 0 or 1, which is interpreted as a non-result. In the 

mandible, cusps 5, 6, and 7 demonstrate limited evidence for complete pleiotropy (Table 4). 

Although inconclusive, the results suggest more research with larger sample sizes is warranted, 

especially in consideration of evolutionary developmental research suggesting integration of 

molar crown morphology through iterative enamel knot signaling.  

Implications for Understanding Dental Variation   

Quantitative genetic research has, until recently, failed to explore patterns of pleiotropy in 

an effort to identify hierarchically-structured morphological modules across the human dentition 

(but see Stojanowski et al., 2018). Thus, a comprehensive study of postcanine variants in a 

sample of complex pedigree structure—especially one employing model-fitting approaches to 

estimate both heritability and genetic correlation—is timely. This work complements a rich body 

of research on Cercopithecoid dental traits (e.g., Hlusko et al., 2004, 2007, 2009, 2011, 2016; 

Hlusko & Mahaney, 2003, 2007) and evo-devo models of mammalian postcanine tooth form 

(Jernvall, 2000; Jernvall & Thesleff, 2000; Hunter et al., 2010; Moormann, Guatelli-Steinberg, & 

Hunter, 2013; Ortiz, Bailey, Schwartz, Hublin, & Skinner, 2018) in an attempt to map 

genotype—phenotype pathways in the dentition. Unfortunately, given M2 sample size 

limitations, as well as a dearth of homologous ASUDAS crown features scored across arcades, 

regions of the dentition, and postcanine tooth classes (premolars and molars), we were unable to 

evaluate higher-level modularity in the Gullah sample. However, we did elucidate differential 
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patterns of modularity at the within-crown scale, especially for the later-forming and accessory 

cusps of the M1/M1 crowns. 

That a pleiotropic relationship was shared between M1 Carabelli's trait and a) metacone, 

and b) hypocone meets expectations outlined by the patterning cascade model, as the size and 

presence of these three later-forming cusps are (to some degree) governed by the configuration 

of the earlier forming protocone and paracone. These results suggest an overlap in the genes that 

regulate distal and accessory cusp expression, which is perhaps complexly related to the 

activation, inhibition, and protein signaling mechanisms functioning at the level of the molar 

crown as a “developmental unit.” However, the negative genetic correlations between M1 cusp 5 

and a) cusp 6 and b) cusp 7 indicate that the mandibular molar is fundamentally different in its 

genetic architecture, at least with regards to its later forming cusps. Interestingly, it is 

hypothesized that negative genetic correlations are the hallmark of resource competition across 

processes, for example in life history traits (Atchely, 1987; Norry, Vilardi, & Hasson., 2000). 

Here, the resource in play may be the cellular real estate and developmental energy expended in 

crown formation, as negative genetic correlations are often expected when characters arise as the 

result of the subdivision of “developmental precursors” (Norry et al., 2000: 177; see also 

Atchely, 1987; Riska, 1986). It seems the expression of M1 cusp 5 and cusp 6, in particular, are 

impacted by overlapping genes but in opposite directions, as limited biological resources are 

allocated throughout crown development or epithelial “partitioning” (Bochdanovits & de Jong, 

2004). A functional explanation for this relationship is not readily apparent.  
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It is unclear why the patterns of within-crown genetic correlation were so different for the 

maxillary and mandibular molars. It is possible that genetic correlations between M1 isomeric 

cusp areas or crown shape would reveal these distinct morphological patterns to be the residual 

outcome of higher-level partitioning of the dentition into maxillary and mandibular occlusal units 

(or modules) (Gómez-Robles & Polly, 2012). Indeed, the functional role of the M1 in 

mastication makes this scenario plausible (Cheverud, 1996; Gómez-Robles & Polly, 2012; 

Young & Hallgrímsson, 2005), and analyzing continuous morphological variation between 

isomeres represents a crucial next step in exploring hierarchical modularity in Gullah dentitions. 

Importantly, results are specific to this sample and confirmation of these patterns in other 

populations is required before we can obtain a complete picture of the genetic architecture of the 

human dentition, as well as the potential contribution of small-scale modularity and negatively 

(genetically) correlated traits to the exceptional morphological diversity that characterizes our 

species.  

Finally, this research bolsters recent molecular genetic research on the pleiotropic effects 

of gene variants among the components of ectodermally derived structures such as hair, 

mammary glands, and teeth (e.g., Hlusko et al., 2018). While the bulk of these studies have 

examined the correlation between specific EDAR and PAX9 polymorphisms and incisor 

shoveling (Kimura et al., 2009, Lee et al., 2012; Park et al., 2012), molar morphology has also 

been examined. For example, Park et al. (2012) reported a marginally significant relationship 

between the Asian-specific EDAR 370A variant and M2 cusp 5 or hypoconulid presence; this, 
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despite minimal phenotypic correlation between hypoconulid expression and incisor shoveling—

another character associated with the EDAR genotype. Kimura et al. (2015) also reported 

associations between a single nucleotide polymorphism in WNT10A and variation in a) P2 

distolingual cusps, b) M1 cusp 5, and c) M2 cusp 5. These studies inform our understanding of 

microevolutionary processes and migration histories in Homo sapiens, yet their capacity to 

identify true “causation” and/or targets of selection are limited due to the effects of linkage 

disequilibrium and pleiotropy. Outlining the genetic architecture of the human dental complex 

provides insight into the overall potential for morphological characters to be impacted by the 

same genes or sets of genes, even when they are not phenotypically correlated. 
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