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ABSTRACT 

Reaction Pathways Initiated by One-Electron Oxidation of Guanine: Oxidation Steps Leading to 

Stable End Products 

by 

Zach Cutright 

 

8-hydroxyguanine (8-oxoG) is one of the most important products resulting from the oxidation of 

guanine in DNA. 8-oxoG is known as a biomarker of oxidative stress such as lung cancer. 2,5-

diamino-4H-imidazol-4-one (Iz) and its hydrolysis product 2,2-diamino-4-[(2-deoxy-β-D-erythro-

pentofuranosyl)-amino]-2,5-dihydrooxazol-5-one (Oz) are also important products of oxidation of 

guanine in DNA. Recently, novel types of dimer intermediates related to 8-oxoG and Iz have been 

identified in our research lab. Using high performance liquid chromatography (HPLC), LC-MS, 

and NMR coupled with educated hypotheses, it is possible to identify the products, X1 and X2, 

resulting from the oxidation of guanine and decipher the mechanisms leading to the products. 

Gaining a better understanding of these mechanisms could potentially lead to more effective 

medical treatment of conditions resulting from oxidative stress. X1 and X2 were isolated in large 

amounts from deoxyguanosine (dGuo) via photochemical oxidation. Subsequent testing included 

a comparison of the effects of different pH values as well as determination of the lifetimes for the 

X2 product during hydrolysis and reactions with amines. It was shown from the results that X1 

undergoes further oxidation to produce X2.    
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CHAPTER 1. INTRODUCTION 

 

Background 

 Humans are among the vast list of organisms that require oxygen in order to survive. 

Oxygen is a crucial component in countless metabolic processes, including mitochondrial 

respiration. During mitochondrial respiration, however, oxygen is reduced and dangerous 

reactive oxygen species (ROS) are produced1-8. These ROS, along with others, cause oxidative 

stress by overwhelming the antioxidants in the body designed to suppress and regulate ROS. The 

reactive oxygen species will oxidize biological organic molecules, which results in the oxidation 

and eventual break-down of cells known as oxidative damage1, 14-15. This often causes a chain 

reaction, promoting the activation of more ROS; among these are the superoxide radical anion 

(O2
•-), hydrogen peroxide (H2O2), and the hydroxy radical (•OH). When these ROS are found at 

high levels, they pose a serious threat to tissues and may incite apoptosis8. When higher levels of 

ROS persist, as in chronic cases, they can result in vascular diseases like arteriosclerosis9-10. The 

oxidation of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) as a result of ROS action 

has been found to cause mutations and plays a large role in the onset and advancement of 

carcinogenesis1,10. 

DNA oxidation is intricately linked to the onset of cancer3. Guanine is one of four 

constituent bases found in nucleic acids and is an important component found within DNA 

sequences. Of the four DNA nucleotide bases, guanine has the lowest one-electron redox 

potential; therefore, it will undergo oxidation more readily than the other three bases found in 

DNA sequences5-7. Oxidation occurs if there is any transfer of electrons during a given reaction. 
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Guanine is even more likely to undergo oxidation when it is found to immediately repeat within 

a given sequence:‘GG’ is more readily oxidized than a single ‘G’ found in the middle of a DNA 

sequence5-7.  

Table 1. Redox Potentials of DNA Nucleobases5 

 

DNA Nucleotide Base Redox Potential (Eo), V 

Guanine 1.29 

Adenine  1.42 

Cytosine 1.60 

Thymine 1.70 

In the case that guanine is oxidized, it can yield many different mutagenic products such 

as: dehydroguanidinohydantoin (DGh), oxaluric acid (Oa), parabanic acid (Pa), urea (Ua), 

spiroiminodihydantoin (Sp), and guanidinohydantoin (Gh)2. These products cause transversion 

mutations in DNA; they form non-Watson-Crick base pairs with guanine, which are the 

hydrogen bonds found between CG/AT base pairs in a DNA helix4. If DNA replication produces 

an adenine opposite of the oxidized guanine product, this will result in a G:C-T:A DNA 

transversion11-13. Likewise, if another guanine is produced opposite of the oxidized guanine 

product, this will result in a G:C-G:G DNA transversion4, 11-13. 

8-oxoG, Iz and Oz 

 

The three mutagenic products that tie into this research are 8-hydroxyguanine (8-oxoG), 

2,5-Diamino-4H-imidazol-4-one (Iz), and (Oz) (Figure 1).  
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Figure 1. Structures of mutagenic products as a result of guanine oxidation2.  

Mechanisms of Iz Formation 

 

Three different mechanisms can lead to the formation of Iz. The guanine radical (G•) will 

react with the superoxide radical anion (O2
•-), producing a peroxyl radical. The peroxyl radical is 

protonated to form an intermediate that is highly unstable, prompting it to lose CO2, formamide 

(HCONH2) and undergo a ring opening to yield Iz (Figure 2)2, 17.  

 A second mechanism yielding Iz involves the addition of molecular oxygen (O2) to G• 

instead of the superoxide radical anion. This is more common in vitro, hence the molecular 

oxygen. The new intermediate undergoes the same ring opening process as before. However, Iz 

is not stable in vivo and is easily hydrolyzed to form Oz (Figure 2)2, 17. 

 

-HCONH2 
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Figure 2. Formation of Iz and Oz. 

 

The third mechanism yielding Iz is a reaction between 8-oxoG and either a singlet 

oxygen atom, molecular oxygen, or the superoxide radical anion18 (Figure 3). A hyperoxide 

group is formed on 8-oxoG and this unstable intermediate undergoes two ring openings, two 

losses of CO2, and the loss of an amine group to produce Iz2, 18.  

 

 

 

Figure 3. Formation of Iz from 8-oxoG and singlet oxygen18. 

 

8-oxoG is of particular interest because it serves as a biomarker for oxidatively damaged 

DNA1. The structural analysis of 8-oxoG revealed that it will be produced in either a syn or anti 

conformation. If 8-oxoG is produced in the syn-conformation, it will form a base pair with 

adenine by via the Hoogsteen edge found on the syn 8-oxoG. If produced in the anti-

conformation, 8-oxoG will form Watson-Crick base pairs, as mentioned before, with cytosine2.  

It is prevalent in lung tissue before and during the onset of lung cancer. Therefore, it is most 

found in people working in areas that are saturated in diesel particles or polluted urban regions1.  
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Figure 4. Anti/syn conformations of 8-OxoG binding with cytosine and adenine, respectively2 

 

 For experimental purposes, this research utilizes deoxyguanosine (dGuo) as it is a 

monomeric analog of guanine in polymeric DNA. In earlier research in Dr. Roginskaya’s lab 

group, Guo and dGuo were used without any significant different of the products.  

Discovery of X1 and X2 

 

 Two stable intermediates were detected by HPLC during the oxidation of dGuo and Guo 

by a number of OEOs. One intermediate was eluted as two peaks with close retention times and 

identical UV-vis spectra, which allows one to suggest that these are isomers. These products 

were named X1-1, X1-2, and the second one was named X2 (Figure 5).  

    

 

 

 

Figure 5. One-electron oxidation of dGuo yields two intermediates. 

 

Deoxyguanosine 

 

X1-1 

X1-2 
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 Earlier data in Dr. Roginskaya’s research group predicted that X1-1, X1-2, and X2 are all 

dimers with links between the G-G structural units based on the analysis performed by liquid 

chromatography with tandem mass spectroscopy (LC-MS/MS) (Figures 3-5). The masses of both 

X1-1 and X1-2 were determined to be 548 units confirming that these products are isomers (in 

MS/MS one unit is added to the mass of the parental peak). While both isomers were recorded to 

have the same mass, the difference in HPLC elution times indicates structural differences 

between these two oxidation products. Identical UV-vis spectra indicate that X1-1 and X1-2 are 

stereoisomers. The mass of X2 was found to be 520 units.  

 Observation of Figures 6, 7, and 8 reveals that X1 and X2 contain two equivalents of 

deoxyribose20-22. These multiple peaks are a result of fragmentation and their amplitude is 

indicative of mass. Looking at Figures 3 and 4, the difference between the 549 peak and the 433 

peak is 116, the mass of deoxyribose. Again, the difference between 433 and 317 is 116. This 

discovery led to the hypothesis that the X1 isomer is a dimer consisting of two deoxyribose units. 

This same trend is followed in the LC-MS/MS spectra of X2 (Figure 8), supporting this 

hypothesis that X2 also contains two deoxyribose units20-22. 

 



18 

 

Figure 6. LC-MS/MS spectrum of X1-120-22 

 

 

Figure 7. LC-MS/MS spectrum of X1-220-22 

 

 

Figure 8. LC-MS/MS spectrum of X220-22 
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 These intermediates can potentially serve as biomarkers of oxidative stress. Therefore, 

knowing more about their structure and the reaction mechanism leading to these stable 

intermediates is crucial to the understanding of the chemistry of guanine oxidation in DNA. 

Specific Aims 

 

 The tasks assigned to me entailed the synthesis of both X1 and X2 in large amounts, 

testing samples of X1 and X2 in various conditions, and deciphering data to confirm the 

structures of X1 and X2.  

 The first several months of research were consumed in the synthesis of X1 and X2. The 

products were collected in large amounts and isolated for NMR analysis. X2 was then subjected 

to additional testing to investigate its properties. The first test was concerned with finding the 

half-life of X2 during hydrolysis reactions in the presence of different pH buffers. The reactions 

were carried out in an HPLC autosampler unit, and the data points were used to calculate the 

half-lives of X2 in each buffer solution. The half-life at physiological pH was determined to be 

7.25 h. The second test involved reacting X2 with different amines and again calculating the 

half-life of X2 during these reactions.    

  

CHAPTER 2. EXPERIMENTAL METHODS 

 

Instrumentation, Glassware, and other Materials 

  

 

Instrumentation: 

 High Performance Liquid Chromatography (HPLC) was a pivotal method in experiments 

as it was used for the separation and analysis of low-molecular-weight compounds. It is equipped 
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with an autosampler, a degasser, a column oven, and a photodiode array detector (PDA). Other 

instruments used in the research included an illumination apparatus (light-emitting diode, LED, 

operating at 470 nm), dry-oven, vortex mixer, microcentrifuge, spin-vacuum system, and 

electronic laboratory scales.  

Glassware and Other Materials: 

 Micropipettes, plastic pipettes, beakers, graduated cylinders, centrifuge tubes, stir rods, 

HPLC glass inserts, and glass vials were all used during the synthesis and experimentation that 

took place in the lab.  

Reagents 

 

Deoxyguanosine (dGuo): 

 The structure of dGuo is very similar to that of guanosine, but dGuo is missing a 

hydroxyl group at the 2´ position of the sugar ring, therefore making it deoxyribose. dGuo is one 

of four deoxyribonucleosides that form DNA.  

Potassium persulfate (K2S2O8):  

 Potassium persulfate was used to generate sulfate (SO4
2-) and a sulfate radical anion 

(SO4
•-) via illumination. 

Tris(bipyridine) ruthenium(II) chloride,-[Ru(bpy)3]
2+ 2Cl- (RuBpy): 

 RuBpy was used as a photosensitizer in the process of creating OEO’s through 

illumination. 

Buffers 
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To make potassium phosphate buffer (pH 6.9), 1 M K2HPO4 and 1 M K2H2PO4 were combined 

in a 1:1 ratio to produce this solution. pH was further adjusted by addition of HCl solution and 

measuring pH with the pH-meter. Sodium phosphate buffer (pH 6.9) was used to simulate pH 

conditions during half-life determination of X2. Acetate buffer (pH 4.6) was used to simulate pH 

conditions during half-life determination of X2. Borate buffer (pH 8.9) was used to simulate pH 

conditions during half-life determination of X2.  

HPLC Solvents 

 

40 mM ammonium acetate (CH3COONH4) was used as the mobile phase in HPLC during most 

experiments. 0.1% acetic acid was used as a mobile phase in HPLC to separate optical isomers 

X1-1 and X1-2. 80% v/v acetonitrile/water was used as the mobile organic phase in HPLC.  

Other Reagents 

 

Ethanolamine (OHCH2CH2NH2) and ethylamine (CH3CH2NH2) were used in experiments 

observing the reactivity of X2 with primary amines. Methanol (CH3OH) was used as a solvent to 

extract X2 and remove it from the solid phase.  

HPLC Preparation and Use 

 

 For HPLC analysis, a two solvent system was utilized. 40 mM ammonium acetate buffer 

(solvent A) is pumped through the HPLC column upon initialization and 30 min of equilibration 

of the device. Once this is done, a conditioning run injection is started with no sample loaded. 

The temperature of the column was held at 30 oC and the sample tray at 10 oC, minus a few 

exceptions.  
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 Once real samples were placed in the tray and inserted, 20% v/v aqueous acetonitrile is 

pumped through the column. Linear acetonitrile gradients were utilized to elute the products 

from 0% to 20% over a time range of 15 min; this occurred in tandem with an increase of 

acetonitrile from 0% to 16%. During this time frame, a two-lamp photodiode array (PDA) takes 

optical measurements of the eluted solution containing the various products16. Once the HPLC 

machine has concluded its measurements of the products and a representative chromatogram has 

been developed, the column is washed for two minutes with 40% acetonitrile solution.  

Synthesis of X1 and X2 

 

 Some small amount of solid dGuo was dissolved in 10 mL of phosphate buffer, pH 6.9. A 

prepared sample of dGuo underwent a 1:10 dilution using HPLC water. The UV-Vis spectrum of 

the resulting solution was measured. From this spectrum, the exact concentration of the stock 

dGuo sample was determined using the extinction coefficient of dGuo (13700 M-1 cm-1). The 

saturated solution of 0.2 M K2S2O8 was prepared by adding some amount of K2S2O8 to 600 mL 

of water and mixing the resultant solution. The sample of dGuo was combined with a 1:40 ratio 

of K2S2O8 (5 mM final concentration), 1:20 ratio of 0.950 mM RuBpy (0.0475 M final 

concentration), and a modified amount of phosphate buffer to yield a 3 mM dGuo solution. The 

persulfate was added last during the experiments, just before illumination to ensure the reaction 

can occur under accurate timing.  

For the mass production of X1 and X2, 10 mL of dGuo mixture solution was illuminated 

for 40 min in order to optimize the yield of X1. The reason behind this logic is that X1 can 

undergo further oxidation to yield X2. Therefore, X2 is produced much easier than X1. Using 

optimum conditions for the yield of X1 by illuminating the 10 mL dGuo reaction solution for 
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approximately 40 min, a roughly 1:2 yield of X1:X2 resulted; a 10 µL injection of the solution 

was run through HPLC to ensure optimum X1 yield was achieved (Figure 9).  

 

Figure 9. Yield of X1 and X2 after 40 min of illumination of 3 mM dGuo reaction solution. 

In order to separate X2 from dGuo and X1, 200-300 mg of ion exchange resin were 

added in order to purify the sample from the reacted ruthenium complexes. The solution was 

stirred for approximately 5 min. Then, 50 µL of 1M phosphate buffer was added in order to 

neutralize the solution.  

A miniature preparation column containing a Strata-X SPE cartridge (Figure 10) was 

conditioned by running 1 mL of methanol through the column followed by 1 mL of HPLC water. 

The mixture of methanol and water that was collected in the bottom of the column was removed. 

Then, the illuminated 10 mL of the solution containing X1, X2, and dGuo along with other 

products was run through the Strata-X SPE cartridge. X2 was absorbed on the methanol/HPLC 

water-soaked cartridge while X1 and dGuo flowed through and were collected in the bottom of 

the column. X1 and dGuo were removed from the bottom of the column and the retained X2 was 

forced through the column by adding a 1:1 mixture of methanol and 0.1% acetic acid to the 

X1 

X2 

dGuo 
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cartridge. Separate centrifuge tubes, one containing the X1/dGuo mixture and the other holding 

X2, were placed in a Centrivap to spin-dry the solutions and purify each of the samples.  

 Once the samples have been dried, 40 mM ammonium acetate was added to the tube 

containing X2 and stirred until the solid product was fully dissolved. The X2 solution was run 

through HPL using a 40mM ammonium acetate mobile phase at a flow rate of 4 mL/min. During 

the incidence of the X2 peak on the chromatogram, the elute was immediately collected into a 

clean 15-mL centrifuge tube. This was repeated through 80 µL injections until the X2 was 

collected. 

 This procedure was carried out with the X1 mixture using 0.1% acetic acid as the solvent 

and mobile phase in HPLC. Using 0.1% acetic acid produces separate peaks for the X1 isomers 

X1-1 and X1-2. This allowed for the collection of these products separately as they eluted during 

different peaks along the chromatogram. dGuo was also collected so that it could be reused 

(Figure 10). 

 

Figure 10. Collection of X1-1 (left peak) and X1-2 (right peak) 
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Oxidation of X1 to X2 

 

 A sample of pure X1 was dissolved in 0.1% acetic acid and a 10 µL-aliquot was run 

through HPLC. Once the chromatogram was produced, the same solution of X1 was mixed with 

some amount of 10 mM persulfate and was illuminated at 470 nm in the presence of 0.0475 M 

RuBpy for approximately 1 min. Once this was done, the sample (10 µL) was run through HPLC 

for the second time. The resulting chromatogram was compared with the previous results and 

analyzed for a conversion of X1 to X2 as a result of one-electron oxidation.  

Testing the Stability of X2 in Different pH Conditions  

 

 X2 was dissolved in variable pH buffers to test its stability under these conditions. The 

first step of the experiment involved dissolving the dried purified X2 product in acetate buffer 

with a pH value of 4.6; the amount of acetate added to X2 was just sufficient to dissolve all of 

the solid product. At time zero and every subsequent 30 min for a total of 270 min, or 4.5 h, the 

reaction solution was measured via HPLC. The solution containing X2 and acetate buffer was 

run through HPLC using acetate buffer (pH 4.6) as the mobile phase with a flow rate of 1 

mL/min held at a temperature of 37 oC. The intensity of the X2 peaks at each time recording 

were tabulated and the half-life of X2 was calculated. This was repeated using sodium phosphate 

(pH 6.9) and borate buffer (pH 8.9), each serving as the solvent and mobile phase in each 

experiment. However, when borate was used as the solvent and mobile phase, the reaction 

between X2 and borate proceeded too quickly at 37 oC and accurate results were not obtained. 

The experiment was modified by lowering the temperature conditions to 4 oC in order to 

decrease the rate of the reaction; these yielded data that were easier to interpret.  
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Reaction of X2 with Primary Amines 

 

 X2 was mixed with a sufficient amount of 0.1 M ethanolamine solution able to dissolve 

all of the solid product. The reaction solution was run through HPLC using an ethanolamine 

mobile phase at a flow rate of 1 mL/min. The temperature conditions for the reaction with 

ethanolamine was set to 15 oC in order to obtain accurate data. The sample was run through 

HPLC at time zero and every subsequent 30 min for a total of 270 min, or 4.5 h. The plotted data 

points were used to calculate the half-life of X2 in the presence of this primary amine. This 

experiment was repeated using ethylamine, but the temperature conditions were set to 37 oC as 

this yielded the best representative data.  

CHAPTER 3. RESULTS AND DISCUSSION 

 

Preparation of X1 and X2 from dGuo 

 During preparation of X1 and X2 from dGuo, the time of illumination was important to 

the yield of each compound. When illuminating 10 mL of the dGuo prep solution to produce 

OEO’s (Figure 11), an illumination time of 40 min was optimal for the yield of X1.  

 

Figure 11. Reaction scheme of production of OEOs: 𝑅𝑢(𝐼𝐼𝐼)𝑏𝑝𝑦3
3+ 𝑎𝑛𝑑 𝑆𝑂4

•− 

 

It has been later proven that X1 can undergo a one-electron oxidation to form X2. The 

illumination of 10 mL of the dGuo solution was monitored via HPLC every 10 min, and the 

collected data has been illustrated in Figure 12. 
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Figure 12. Intensity of X1 and X2 under different illumination times 

 In Figure 12, it is seen that X1 accumulation reaches a peak at a timed illumination of 40 

min. After this point, the concentration of X1 decreases and X2 accumulation is seen to rise at a 

higher rate, suggesting that X1 is oxidized to form X2.  

 An experiment was carried out to further prove this process: pure X1 was run through 

HPLC (Figure 13) then exposed to illumination in the presence of 5 mM persulfate and 0.475 

mM RuBpy for 1 min. Then, the sample was run through HPLC the second time (Figure 14). 

 

Figure 13. HPLC Chromatogram of pure X1 sample.  
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Figure 14. HPLC Chromatogram after 1 min illumination of X1 in presence of 5 mM persulfate. 

 When analyzing the chromatogram depicted in Figure 13, one major peak is seen 

resulting from the injection of X1. This sample subsequently underwent a 1 min illumination in 

the presence of 5 mM persulfate, which served the purpose of creating the one-electron oxidant 

sulfate radical anion. Figure 14 shows the chromatogram of the resulting solution, which shows 

one major peak characterized as X2. This led to the conclusion that X1 undergoes one-electron 

oxidation to form X2.  

 The mechanism for the one-electron oxidation of X1 is not clear, but a hypothetical 

reaction scheme has been proposed (Figure 15). X1 will undergo the initial step of one-electron 

oxidation, in this case by sulfate radical anion, and will lose a proton as a result. The 

intermediate produced from this oxidation is unstable, causing a ring-opening to form a second 

intermediate. The second intermediate contains a carbon-centered radical which undergoes 

reduction to evolve CO gas.  
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Figure 15. Proposed reaction mechanism for one-electron-oxidation of X1 to form X2 

 

Stability of X2 in Varying pH Conditions 

 

 This experiment was run on X2 alone. While X1 is known to be unstable upon one-

electron oxidation, previous research found its stability was not affected by different pH 

conditions.  

 The purpose of this experiment was to determine the the effect of pH on the stability of 

X2. The stability of X2 was determined through calculating the half-life for each of three pH 

values: pH 4.6, pH 6.9, and pH 8.9 (Figure 16). 
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Figure 16. Plot of X2 lifetime in presence of acetate buffer (pH 4.6, 37 oC, orange plot), sodium 

phosphate buffer (pH 6.9, 37 oC, blue plot) and borate buffer (pH 8.9, 4 oC, grey plot) 

 The temperature of X2 in the presence of acetate and sodium phosphate was kept at 37oC. 

When X2 was run through HPLC in the presence of borate buffer, the reaction proceeded too 

rapidly and the half-life of X2 at this temperature could not be accurately determined from the 

resultant data. X2 was run through HPLC in the presence of borate buffer again, but this time at a 

temperature of 4 oC to slow down the reaction. Therefore, the half-life of X2 is significantly less 

in comparison to the other two pH conditions than what is depicted by Figure 16. A summary of 

the conditions and half-life of X2 is given in Table 2.  

Table 2. Summary of Results and Conditions Testing X2 Stability at Varying pH 

Buffer Used pH Temperature Half-life of X2 

Acetate 4.6 37oC 11.5 h 

Sodium Phosphate 6.9 37oC 7.25 h 

Borate 8.9 4oC 1.5 h 
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 The sodium phosphate conditions at a pH of 6.9, 37oC are a good depiction of human 

physiological pH and temperature levels; human pH ranges within 7.35-7.45 and the average 

body temperature of the human body is 37oC. Therefore, when dGuo undergoes one-electron 

oxidation within human body tissue to produce the mutagenic product X2, it is predicted to have 

a half-life of roughly 7.25 h.  

 The reason X2 is more unstable at a higher pH is because its structure is prone to base-

catalyzed hydrolysis. When in the presence of a base, the negatively charged [OH]- is prone to 

attack either of the carbonyl carbons marked in the proposed structure of X2 (Figure 17). 

 

Figure 17. Proposed structure for X2.  

 The conclusions drawn from this experiment are that X2 is more stable in more acidic 

environments and that the half-life of X2 in physiological conditions is predicted to be similar to 

the half-life of X2 in the presence of sodium phosphate, 7.25 h.  
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Reaction of X2 with Primary Amines 

 

 The purpose of this experiment was to determine whether X2 is more likely to undergo 

hydrolysis or to react with primary amine groups. When X2 reacts with primary amines (Figure 

18), it yields mutagenic Iz.  

 

 

+    dGuo   + 

 

Figure 18. Reaction scheme of X2 with a primary amine19.  

 In this experiment, the reaction of X2 with either ethanolamine or ethylamine yields 

a mutagenic product Iz. The progress of the reaction was monitored through progressive HPLC 

chromatograms (Figures 19). 
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Figure 19. Representative HPLC chromatograms showing X2, OHEtIz, and EtIz.   

 The reaction between X2 and these primary amines was monitored through HPLC 

and plots were developed to calculate the half-life of X2 in the presence of each ethanolamine 

and ethylamine (Figures 20 and 21).  

 

Figure 20. Lifetime of X2 in the presence of 0.1 M ethanolamine at 15oC 
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Figure 21. Lifetime of X2 in the presence of 0.1 M ethylamine at 37oC 

 The half-life of X2 in the presence of ethanolamine was determined to be 2 hours, 

while its half-life in the presence of ethylamine was determined to be 2.2 hours. While these data 

may seem closely related, note that the experiments were carried out at different temperatures. 

The reaction between X2 and ethanolamine proceeded too quickly at 37oC to allow high-quality 

data to be collected. Therefore, the experiment reacting X2 with ethanolamine was repeated at a 

lower temperature, 15oC. The conclusion that can be drawn is that X2 reacts in a significantly 

more rapid manner with ethanolamine than it does with ethylamine.  

 This information is significant because it may be applied in vivo: X2 is more likely to 

react with primary amines than it is to undergo hydrolysis by DNA. In the body, nucleosomes 

contain primary amine groups such as lysine. When X2 reacts with these primary amines on 

nucleosomes yielding a mutagenic Iz product (Figure 22), the result is DNA-protein crosslinks. 

These adducts might interfere with cellular functions and prompt the cell to die.  
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Figure 22. X2 reacts with primary amine groups on nucleosomes 

 

 Therefore, if X2 is found within body tissue as a result of the one-electron oxidation 

of guanine, it will likely react with nucleosomes and cause significant tissue damage via cell 

DNA destruction. 

CHAPTER 4. FUTURE WORK 

 

 After the conclusion of this research, there is still more to be done. While there are 

strong predictions for the structures of X1 and X2, these structures are not certain. 1H NMR and 

13C NMR as well as LC/MS/MS will most likely be primary methods in further research to 

decipher the structures of the X1 and X2 isomers.  

 As seen in the experimental results, the hydrolysis of X2 yields mutagenic products 

such as Iz. Further investigation of the different products resulting from the hydrolysis of X2 will 

be important to the understanding of this reaction mechanism and will allow for a better 

understanding of how these products affect the body.  

 Lastly, the analysis of X1 and X2 in double-stranded DNA is especially important. 

Other products resulting from the one-electron oxidation of guanine such as Iz and Oz have been 

proven to cause DNA mutations. The effects of X1 and X2 within short self-complimentary 

oligonucleotides such as CGCG and CGATCG could help lead to a better understanding of their 

Nucleosome 

dGuo 

dR 
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role in vivo. It would also prove useful to study the formation of X1 and X2 in highly 

polymerized DNA, although there are problems with detections of these lesions in highly 

polymerized DNA since X1 and X2, if formed, would still be attached to DNA.  

CHAPTER 5. CONCLUSIONS 

 

Previous research discovered that X1 could undergo further one-electron oxidation to 

yield X2. In this research, experiments were conducted to further prove this phenomenon. It was 

demonstrated that one-electron oxidation of X1 by 5 mM persulfate and 0.475 mM RuBpy with 

illumination at 470 nm results in a nearly 100% conversion of X1 into X2    

 Progress made within this project prior to my assigned research led to the belief that 

X1-1, X1-2 and X2 are dimers with links between the G-G structural units. Dr. Roginskaya’s 

research group also predicted that X1-1 and X1-2 are stereoisomers as a result of UV-Vis 

analysis.      

X1 and X2 were able to be synthesized in large amounts through the one-electron 

oxidation of dGuo. dGuo was placed in the presence of 𝑅𝑢(𝐼𝐼)𝑏𝑝𝑦3
2+ and 𝑆2𝑂8

2− and illuminated 

to produce OEOs 𝑅𝑢(𝐼𝐼𝐼)𝑏𝑝𝑦3
3+ and 𝑆𝑂4

•−. These OEOs act on dGuo to produce X1 and X2, 

while the yield of each product depends on the time of the reaction solution under illumination. 

This is because X1 can undergo further one-electron oxidation to X2.   

 The stability of X2 in different pH conditions was tested. X2 reacted most rapidly in 

the presence of the borate buffer which had the highest pH of 8.9. The conclusion of this 

experiment is that X2 is more stable in acidic conditions; this is because X2 is prone to base-

catalyzed hydrolysis. The half-life of X2 in vivo was predicted to be close to 7.25 h in the 

phosphate buffer (pH 6.9) at 37 oC, closely mimicking human physiological conditions. 
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 The half-life of X2 was determined in the presence of different primary amines. The 

conclusion of this experiment is that X2 is more likely to react with primary amines than it is to 

undergo hydrolysis. This may be applied in vivo: X2 is more likely to react with primary amines 

found on nucleosomes than it is to be hydrolyzed by DNA. The result of the reaction between X2 

and a primary amine is the mutagenic product Iz. The mutagenic product may cause DNA-

histone protein crosslinks that will ultimately trigger cell death.  

 Future research is required to determine the structures of X1-1, X1-2, and X2. 

Further analysis using 1H NMR and 13C NMR, and LC-MS/MS, the investigations of X2 

hydrolysis products, and the studies of the effects of X1 and X2 in double-stranded DNA will 

help lead researchers in this aim.  
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