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A single cell transcriptomics map of paracrine
networks in the intrinsic cardiac nervous system

Alison Moss,1,5 Shaina Robbins,1,5 Sirisha Achanta,1,5 Lakshmi Kuttippurathu,1 Scott Turick,1 Sean Nieves,1

Peter Hanna,2 Elizabeth H. Smith,3 Donald B. Hoover,3 Jin Chen,4 Zixi (Jack) Cheng,4 Jeffrey L. Ardell,2

Kalyanam Shivkumar,2,* James S. Schwaber,1,* and Rajanikanth Vadigepalli1,6,*

SUMMARY

We developed a spatially-tracked single neuron transcriptomics map of an
intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical
mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used
neuronal tracing to extensively map the spatial distribution of the subset of neu-
rons that project to the SAN. RNA-seq of laser capture microdissected neurons
revealed a distinct composition of RAGP neurons compared to the central ner-
vous system and a surprising finding that cholinergic and catecholaminergic
markers are coexpressed, suggesting multipotential phenotypes that can drive
neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture
microdissected single neurons confirmed these findings and revealed a high
dimensionality of neuromodulatory factors that contribute to dynamic control
of the heart. Neuropeptide-receptor coexpression analysis revealed a combina-
torial paracrine neuromodulatory network within RAGP informing follow-on
studies on the vagal control of RAGP to regulate cardiac function in health and
disease.

INTRODUCTION

In this study, we performed a spatially-tracked single-cell transcriptomic analysis of an intrinsic cardiac gan-

glion in the pig heart to uncover the complex molecular landscape and putative paracrine neuromodula-

tory networks. The functional significance and complexity of the intrinsic cardiac nervous system (ICNS) has

been studied for years with the majority of the focus on the physiological aspects. The ganglia at the heart

are thought to constitute a ‘‘little brain’’ with afferent, parasympathetic and sympathetic components (Ar-

mour, 2008; Hoard et al., 2007; Neel and Parsons, 1986; Parsons et al., 1987; Wake and Brack, 2016; Weihe

et al., 2005). Physiological studies using epicardial ablation have demonstrated that the intrinsic cardiac

ganglia mediate central control of cardiac function through vagal and sympathetic circuits (Berger et al.,

2019; Driessen et al., 2016; Qin et al., 2017). Yet, little is known about the distribution and organization

of the molecular profiles of the neurons constituting the intrinsic cardiac ganglia. Recent single neuron

gene expression profiling studies have uncovered the wide range of molecularly-defined subtypes (Hu

et al., 2017; Kupari et al., 2019), gradient-based organization driven by inputs to neurons (Park et al,

2014, 2016; Shen et al., 2012), as well as molecular plasticity during homeostatic conditions and physiolog-

ical perturbations (Dulcis et al., 2013; Park et al, 2014, 2016) in the central nervous system (CNS) as well as in

the peripheral ganglia (Kupari et al., 2019). We set out to pursue such approaches and combine them

with 3D positional information within the tissue to develop an extensive spatially-tracked molecular map

of the ICNS.

In the present study, we focus on the RAGP as a key control point in the circuit that mediates vagal mod-

ulation of the SA node (SAN) activity. The routes of parasympathetic and sympathetic control of SAN were

determined by several studies; surgical ablation of different areas of the heart and vagal stimulation

showing a shift in pacemaker activity (Bouman et al., 1968; Geis et al., 1973; Randall and Ardell, 1985). Stim-

ulation of the RAGP fat pad was shown to cause a reduction in heart rate in dogs and human patients and

cause a pacemaker shift (Butler et al., 1990; Carlson et al., 1992; Furukawa et al., 1990). Later studies

ablating RAGP showed that this group of neurons is critical to the cardiac pacemaker response to vagal

stimulation (McGuirt et al., 1997). Molecular analysis of RAGP, and ICNS in general, has largely been
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Figure 1. Mapping spatially-tracked single-cell transcriptomics onto an imaging-based 3D tissue reconstruction

of pig right atrial ganglionic plexus (RAGP)

(A) Integrated workflow starting from injection of neuronal tracer into the sinoatrial node (SAN) region of the pig heart,

followed by isolation, embedding, and cryosectioning of the RAGP, acquisition of block face images for 3D

reconstruction, staining for neuronal localization within the tissue, and obtaining spatially-tracked single neuron samples

via laser capture microdissection (LCM) for downstream processing using RNA-seq and high-throughput real-time PCR

(HT-qPCR), yielding transcriptomic data that is mapped onto a 3D anatomical framework. Scale bars: 50 mm.

(B) Representative visualization of the 3D anatomical framework of an RAGP depicting the location of spatially-tracked

single neurons sampled via LCM (purple dots - neuronal samples for RNA-seq; yellow dots - neuronal samples for HT-

qPCR). The cross-sections of the stack show the corresponding tissue sections from which the neuronal samples were

obtained. Scale bars: whole tissue sections, 500 mm; regional lift zoom 1, 500 mm; regional lift zoom 2, 100 mm; isolated
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targeted at the protein level using immunolabeling. The majority of the cardiac ganglia have been found to

be cholinergic (ChAT+) (Hoard et al, 2007, 2008; Horackova et al., 2000; Richardson et al., 2003; Rysevaite

et al., 2011), while the proportion of observed catecholaminergic (TH+) neurons was widely variable across

studies (Hoard et al., 2008; Hoover et al., 2009; Richardson et al., 2003; Rysevaite et al., 2011). Additionally,

some studies have reported co-expression of ChAT and TH in 10–20% of ICNS neurons (Rysevaite et al.,

2011; Zarzoso et al., 2013). The expression of other neurotransmitter/neuromodulator systems such as

NPY, GAL, and SST have also been described within ICNS (Day et al., 1985; Habecker et al., 2005; Herring,

2015; Herring et al., 2012; Hökfelt et al., 1977; Moriarty et al., 1992). Here, we undertake a broad-based sur-

vey to characterize the gene expression of a wide range of neuromodulators underlying the dynamic

neuronal control of cardiac function and their co-expression in single neurons within the RAGP.

In a recent proof-of-principle study, we demonstrated a coordinated experimental approach that inte-

grates imaging technologies with high throughput gene expression data (HT-qRTPCR) to develop a 3D

anatomical and molecular map of rat ICNS (Achanta et al., 2020). Here, we build on that approach to incor-

porate single-cell scale RNA-seq and precisely integrate molecular data into a digitally reconstructed 3D

RAGP with anatomical context of the pig heart. This approach contrasts with that of typical droplet-based

single-cell transcriptomics techniques in that the spatial and anatomical information of each sample is

extensively tracked, which allows mapping of the molecular information into a 3D-reconstructed anatom-

ical organization of the tissue. Such an integrated anatomical-molecular map permits analysis of relation-

ships between spatial location and molecular profiles, within the tissue as well as reference to adjacent

anatomical features (Achanta et al., 2020; Park et al., 2016). We now find consistent neuroanatomical struc-

ture and diverse molecular properties of ganglia in the ICNS of a large porcine mammal, accepted as close

to human. Our newly developed data demonstrate that the local cardiac ganglia harbor anatomical and

molecular features necessary to function as complex signal processing units that critically mediate vagal

control of heart function and health (Hanna et al., 2021).

RESULTS

Mapping spatially-tracked single-cell transcriptomics onto an imaging-based 3D tissue

reconstruction of pig right atrial ganglionic plexus

We developed a 3D map of the single neuron scale gene expression within the pig RAGP. We used our

recently developed method pipeline that combines single neuron anatomical position using 3D mapping

with gene expression data of the mapped neurons obtained from single-cell scale RNA-seq and high-

throughput qRT-PCR (HT-qPCR) (Achanta et al., 2020) (Figure 1A). The RAGP neurons that project to

SANwere labeled by a tracer that was injected into the SAN 3 weeks prior to sacrificing the animal for tissue

harvesting. The heart tissue corresponding to the location of RAGP was sectioned serially from superior to

inferior end for laser capture microdissection (LCM) of single neurons and neuron pools (n = 4 animals).

During sectioning, blockface images were obtained, which were contoured and organized into a 3D image

stack (2,698 images across n = 4 animals). After sectioning and staining, the tissue was subjected to LCM

where both FastBlue labeled (SAN-projecting) and unlabeled (considered as Non SAN-projecting in the

present analysis) single neurons were collected for microfluidic HT-qPCR (405 single neurons X 241 genes

per neuron across 4 RAGP) and regional neuronal lifts were collected for single-cell scale RNA-seq (90

neuron pools from one RAGP). Image tracking was used to digitally annotate the spatial locations for sin-

gle-cell neuronal samples on a digitally reconstructed RAGP using TissueMapper software (Figure 1B,

Video S1). Expression levels of Uchl1 (PGP9.5), a pan neuronal marker, showed a wide range that is persis-

tent throughout the RAGP with no spatial bias for enhancement or depletion (Figures 1B and 1C). We as-

sessed all single neuron samples for expression of typical neuronal markers, cholinergic and catecholamin-

ergic markers, and key neuropeptides (Figures 1C–1E). Nearly 100% of all collected samples not only

showed detectable expression but also abundant expression ofNeuN, a common neuronal marker (Gusel’-

nikova and Korzhevskiy, 2015). PGP9.5 and Map2, another neuron-specific gene (Schofield et al., 1995;

Figure 1. Continued

neuron zoom 1, 100 mm; isolated neuron zoom 2, 50 mm. The relative expression of PGP9.5 in these spatially-tracked

neuronal samples is shown with reference to the axes of the 3D stack. The bounding box on the lower panel shows

18.8 mm, 19.4 mm, and 16 mm on the x, y, and z axis, respectively.

(C–E) Proportion of samples that showed detectable and abundant expression of select pan-neuronal markers (C),

cholinergic and catecholaminergic markers (D), and neuropeptides (E), as assessed by HT-qPCR. Data shown is based on

combining 405 single neuron samples across n = 4 animals.
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Soltani et al., 2005), were also abundantly expressed in a large majority of the sampled single neurons (Fig-

ure 1C). A high percentage of neurons showed abundant expression of Chat, Th, and to some extent, Dbh,

suggesting a high degree of co-expression between cholinergic and catecholaminergic markers across sin-

gle RAGP neurons (Figure 1D). Neuropeptides such as Neuropeptide Y (Npy), Galanin (Gal), and Somato-

statin (Sst) also showed abundant expression in a high proportion of neurons in the RAGP (Figure 1E).

Transcriptomic landscape of pig RAGP from a single-cell scale RNAseq analysis

142 regional neuronal samples from the RAGP of a female Yucatan minipig were collected through LCM

and spatially tracked as described above and subjected to single-cell scale RNA-seq using the Smart-

3SEQ protocol (Foley et al., 2019) (described in STAR methods). After quality check we were left with 90

samples with detectable expression in 15,000 genes. Using publicly available data in the GTEx database

(GTEx Consortium, 2013), we retrieved a list of genes that are statistically enriched in neuronal tissues

compared to other tissue types (p< 0.01). A total of 1,639 neuronally enriched genes showed detectable

expression in our RNA-seq data (Figure 2A). Of note, genes for ion channels associated with calcium

signaling as well as glutamatergic receptors were expressed at high levels throughout the RAGP

(Figure 2B).

The transcriptomic landscape of the neuronally enriched sample set was assessed through a nonlinear

embedding approach, t-stochastic neighbor embedding (tSNE) (Maaten and Hinton, 2008). The results

show that the samples were not separated into groups corresponding to distinguishable phenotypes,

but were instead organized as a single cloud suggesting a gradient of gene expression based organization

of underlying neuronal molecular states (Park et al., 2014). Coloring the tSNEmap for relative expression of

Chat, an important marker for cholinergic expression, reveals a distinct gradient across the transcriptomic

landscape (Figure 2C). We then visualized the expression pattern of Chat in the context of 3D anatomical

space. Similar to the spatially distributed expression of PGP9.5 (Figure 1B), Chat expression was widely

distributed throughout the RAGP with no spatial gradients along any axis (Figure 2D).

We compared the transcriptomic profiles of the RAGP neurons with the molecular phenotypes identified

from single neuron transcriptomics analysis in the CNS (Hu et al., 2017). We used the available mouse

CNS data, due to lack of comparable pig CNS single neuron transcriptomic dataset. We reconstructed

the tSNE map of single neurons in the mouse CNS based on the 1,968 expression of the highly variable

genes (Hu et al., 2017) (Figure 2E). To compare how the neuronal phenotypes identified in the CNS

compared to those in the RAGP, we first extracted genes contributing most to the variability in the

RAGP through principal component analysis (PCA). Of the 1,814 most variable genes in the RAGP, a subset

of 1,412 genes were found in themouse CNS single neuron data (Hu et al., 2017). Visualization by tSNEmap

shows that the well-defined neuronal clusters based on variable genes in the CNS are largely lost when the

neuronal heterogeneity was analyzed using the 1,412 most variable genes in the RAGP (Figure 2E). These

results demonstrate that the specific gene markers that delineate the variability in the RAGP are not simi-

larly variable in the CNS, and vice versa, suggesting a different organization of neuronal heterogeneity be-

tween RAGP and CNS structures.

Considering that a large proportion of neurons showed expressions of Th and Chat (Figure 1D), we exam-

ined the co-expression patterns of these genes in the transcriptomics data. Neurons in themouse (Hu et al.,

2017) and human CNS (Human Multiple Cortical Areas SMART-seq, 2019) show mutually exclusive expres-

sion of Th and Chat. In stark contrast to the lack of Th and Chat co-expression in the CNS, we found a high

degree of co-expression between Th and Chat in the RAGP neurons (Figure 2F). This finding further aug-

ments the results seen in the tSNEmap (Figure 2E) suggesting that the neuronal molecular states within the

RAGP may be organized in a manner that is not similar to the neuronal phenotypes observed in the CNS.

We further compared these co-expression patterns against other available data in the peripheral nervous

system (PNS). Comparing expression of Th and Chat in different branches of the mouse PNS (Zeisel et al.,

2018), as well as in different cell phenotypes in sympathetic ganglia (Furlan et al., 2016), revealed patterns of

mutual exclusivity similar to those observed in the human and mouse CNS (Figure S1). These findings

further highlight the unique molecular architecture of the RAGP.

Landscape of neuronal transcriptional states in the pig RAGP

Using the 3D map of a representative RAGP, examination at the single-cell scale allowed us to visualize the

distribution of neurons within their 3D anatomical framework, revealing that neurons, while distributed
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Figure 2. Transcriptomic landscape of pig RAGP from a single-cell scale RNAseq analysis

(A) Expression of 1,882 neuronally-enriched genes in 90 spatially-tracked neuronal clusters in RAGP based on single-cell

scale RNA-seq profiling of laser capture microdissected samples. The genes included in the heatmap were selected by

analyzing the GTEx database for those enriched in the neuronal tissues compared to other tissue types. Of the genes

identified as neuronally enriched in the GTEx database, 1,639 genes were present in the RAGP neurons.

(B) Distribution of select abundantly expressed neuronal genes.

(C) Transcriptomic landscape as delineated by tSNE indicating the gradient of Chat throughout a distributed cloud.

(D) Visualization within the 3D anatomical framework for a representative RAGP. The relative expression of choline

acetyltransferase (Chat) in these spatially-tracked neuronal samples is shown with reference to the axes of the 3D stack.

The bounding box on the lower panel shows 18.8 mm, 19.4 mm, and 16 mm on the x, y, and z axis, respectively.

(E) A comparison of the distribution of CNS neuronal types based on the most-variable genes in mouse CNS (Hu et al.,

2017) versus in pig RAGP (present data). The tSNE plots are colored based on 40 distinguishable mouse CNS neuronal

states described in Hu et al. (2017).

(F) Scatterplots comparing the expression of Th vs Chat in the pig RAGP (present data), mouse CNS (Hu et al., 2017), and

human CNS (Human Multiple Cortical Areas SMART-seq, 2019) (https://portal.brain-map.org/atlases-and-data/rnaseq/

human-multiple-cortical-areas-smart-seq).

ll
OPEN ACCESS

iScience 24, 102713, July 23, 2021 5

iScience
Article

https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq
https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq


throughout the RAGP, are more densely packed closer to the endocardium (Figure 3A). Annotation of neu-

rons based on their projection to the SAN indicates that while both projecting and non-projecting neurons

are present throughout the RAGP, SAN-projecting neurons appear to be more concentrated closer to the

SAN and less concentrated toward the epicardium (Figures 3A–3C, Video S1). We assayed 405 spatially-

tracked single neuron samples from RAGP (n = 4 animals) for expression of 211 genes within each neuron

using HT-qPCR, representing both SAN-projecting and non SAN-projecting neurons (Figure S2A). At the

molecular level, a set of only 6 genes (Cck, Gal, Grp, Hcrtr1, Ntrk1, Ret) showed significant differences in the

distribution of expression between SAN-projecting and non SAN-projecting neurons (K-S statistic, FDR-

adjusted p< 0.01, fold change >2, Figure S2B). Interestingly, expression of Cck, Gal, and Hcrtr1 have

Figure 3. Broad RAGP anatomy of SAN-projecting and non SAN-projecting neurons

(A) Visualization within the 3D anatomical framework of both SAN-projecting (blue) and non SAN-projecting (purple)

neurons that were comprehensively identified in select sections of a representative RAGP. Panels along the right side and

bottom show density plots representing the density of projecting and non-projecting neurons along each axis. The

bounding box on the lower panel shows 18.8 mm, 19.4 mm, and 16 mm on the x, y, and z axis, respectively.

(B) Anterior (top), angled (middle) and superior (bottom) views of a representative RAGP showing only the SAN-projecting

neurons (left) or non SAN-projecting neurons (right). The X, Y, Z measurements are consistent with those in panel (A).

(C) A select section of the RAGP (7,040 mm from the superior aspect) zooming in on three different neuron clusters

showing a high percentage of neurons within the cluster projecting to the SAN toward the SAN-proximal side of the RAGP

(1), a cluster with no SAN-projecting neurons toward the SAN-distal side of the RAGP (3) and a cluster with a mix of both

projecting and non-projecting neurons in between (2). Scale bars: 100 mm. Tissue measured 18.8 mm from left to right

(xaxis) and 19.4 mm top to bottom (yaxis). For an animated visualization see Video S1.
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recently been examined within the peripheral nervous system where expression of Hcrtr1 andGal has been

shown in sympathetic neurons in the PNS while neuropeptides Cck and Gal have been shown in enteric

neurons (Zeisel et al., 2018). Meanwhile, Ret and Ntrk1 have proven crucial for differentiation of neuronal

subtypes in sympathetic ganglia (Furlan et al., 2016), although the significance of their differential expres-

sion between SAN-projecting and non SAN-projecting neurons is still unclear. Comparing neurons across

all 4 RAGP, the expression distribution of select neuronal markers NeuN, PGP9.5, Chat, Th, Dbh, and Npy

were relatively consistent across animals and between SAN-projecting and non SAN-projecting neurons

(Figure S2C).

In order to identify gene expression modules that can better characterize the neurons based on the con-

nectivity to SAN, we used a combination of clustering and templatematching. This robust approachmimics

algorithms such as k-means that seed certain clusters and map the data into the seeds taken from an un-

biased hierarchical clustering approach, yielding six transcriptional states within the RAGP neurons (Fig-

ure 4A). Briefly, the gene expression profiles of SAN-projecting neurons from one male and one female

RAGP were subjected to hierarchical clustering to partition the single neurons into distinct states. These

states were used as templates to assign the remaining non SAN-projecting neurons to one of these states

based on correlation to the template, with neurons below the correlation threshold sequestered into an

additional state. Neurons from a different pair of male and female RAGP were sorted into these transcrip-

tional states based on correlation to the template profile, revealing similar patterns (Figures 4A andS3).

Examination of these transcriptional states reveals that the molecular signatures of SAN-projecting and

non SAN-projecting neurons are remarkably similar. A closer examination uncovered a state consisting

of almost entirely SAN-projecting neurons (state C), and another state consisting of almost entirely non

SAN-projecting RAGP neurons (state F). Notably, neither of these states could be distinguished from

the other neuronal states by the patterns of any given gene expression module. Instead, each state was

characterized by a combinatorial pattern of multiple gene expression modules (Figure 4A). Visualization

using a tSNE map revealed that within the context of the transcriptional landscape, these neuronal states

are distributed across parts of a single cloud, suggesting a gradient-based organization of the neuronal

states (Figure 4B). Analysis of the potential patterns and gradients of these states within the 3D anatomical

framework of a representative RAGP revealed that the neuronal states were evenly distributed throughout

the RAGP (Figure 4C, Video S2).

We further explored the heterogeneity of gene expression distribution across these neuronal states (Fig-

ures 4D–4F, Figure S4A). State A is largely defined by high expression of genes in module 2 which include

neuron-specific genes such as Map2, Eno2, and PGP9.5 as well as genes involved in neurotransmitter pro-

cesses such as Chat, Th, andDbh (Figure 4D). States B and C were both characterized by high expression of

genes in modules 5 and 7, which include several adrenergic receptors and potassium channels (Figure 4E).

Several adrenergic receptors were expressed abundantly within RAGP neurons (Figure S5A). Interestingly,

the beta-adrenergic receptors, which are of particular importance to cardiac function (de Lucia et al., 2018),

appear to have a spatial localization trend within the RAGP (Figures S5B–S5D). Modules 4 and 6 delineate

the separation between states B and C where module 4 is characterized by high expression in states B and

D and includes a variety of receptor subtypes. Module 6, consisting of a variety of neuropeptides and neu-

ropeptide receptors, has a broader range of expression across all samples, with mixed expression in most

states but particularly high expression in state C. Genes inmodule 1 were upregulated in states D and F and

included neuropeptides such asNpff andNppa as well as a voltage-gated potassium channel, Kcnip1 (Fig-

ure 4F). Examination of ion channels and glutamatergic and GABAergic receptors also show a range of

expression across the identified transcriptional states (Figures S4B and S4C).

Correlated cholinergic and catecholaminergic gene expression in RAGP neurons

Examination of genes involved in acetylcholine and catecholamine biosynthesis and transport processes

shows consistent expression across all RAGP and between SAN-projecting and non SAN-projecting neu-

rons and also reveal a surprising level of co-expression (Figures 5A, 5B, S2C, and S6A–S6D). A closer look at

the genes involved in the catecholamine biosynthesis showed that Th, the rate-limiting enzyme in the pro-

duction of all catecholamines, and Dbh, responsible for the conversion of dopamine to norepinephrine are

expressed over a wide range and show a high degree of coexpression (Figures 5B andS6B). Ddc, the

enzyme converting L-DOPA to dopamine, and Pnmt, responsible for the conversion of norepinephrine

to epinephrine, were both stably expressed in the majority of samples as seen by the high abundance

and narrow range of expression for both genes (Figure 5B). This further underscores the regulation of
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catecholamine biosynthesis process at the level of Th and Dbh as the rate-limiting enzymatic steps whose

gene expression levels are highly variable across single neurons. Notably,Nos1 and Vip, both known to be

expressed in certain cholinergic neurons (Blottner and Baumgarten, 1992; Schotzinger et al., 1994) showed

no correlation of expression to Chat in the RAGP (Figures S7A and S7B). Expression of Vip and Nos1 was

detectable in nearly all the assayed neurons (Figures S7C and S7D). Additionally, Ret and Ntrk1, that

showed differential expression between SAN-projecting and non SAN-projecting RAGP neurons,

showed similar patterns of co-expression with the cholinergic and catecholaminergic markers (Figure S3,

Module 2).

Figure 4. Landscape of neuronal transcriptional states in the pig RAGP

(A) Expression of 174 genes, each assayed in 321 single neurons (n = 3 animals) through HT-qPCR, yielding six

transcriptional states using a combination of clustering and template matching analysis. A majority of the states consisted

of both SAN-projecting and non SAN-projecting neurons. Sample annotations at the top of the heatmap indicate

whether the single neurons were SAN-projecting or non SAN-projecting and indicate the distribution across animals.

A complete heatmap with 405 neurons from all 4 RAGP is shown in Figure S3.

(B) Landscape of neuronal transcriptional states visualized as a tSNE plot. Colors correspond to the states shown in

panel (A).

(C) Visualization of the neuronal states within the 3D anatomical framework for a representative RAGP. The bounding box

on the lower panel shows 18.8 mm, 19.4 mm, and 16 mm on the x, y, and z axis, respectively.

(D–F) Expression distribution of select genes with enrichment in specific transcriptional states: (D) state (A)Map2, Chat,

Th, Dbh; (E) states B and CAdrab2b, Adrb3, Kcnab1, Kcnc1; and (F) states D and FNpff and Kcnip1. Enrichment assessed

by a one-way ANOVA and post hoc Tukey Honest Significant Difference test pvalue < 0.01.
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Visualization of key genes such as Chat and Th within the 3D anatomical framework of a representative

RAGP revealed that their wide range of expression is distributed spatially throughout the RAGP (Figures

5C and S8A, Video S3). Visualization of the expression distribution of Chat and Th through a tSNE map

revealed distinct and overlapping gradients within the transcriptional landscape (Figures 5D and 5E).

Figure 5. Correlated cholinergic and catecholaminergic gene expression in RAGP neurons

(A) Transcriptional state-wise gene expression of the components of acetylcholine and catecholamine biosynthesis and

transport processes, across 405 single neurons assayed through HT-qPCR in RAGP.

(B) Beeswarm plot showing the abundance and the range of expression of key genes involved in catecholamine

biosynthesis across 405 single RAGP neurons from n = 4 animals.

(C) Visualization of Chat gene expression within the 3D anatomical framework for a representative RAGP. The bounding

box on the lower panel shows 18.8 mm, 19.4 mm, and 16 mm on the x, y, and z axis, respectively.

(D and E) The distributions of Chat and Th gene expression overlap within the transcriptional landscape as visualized in

the tSNE plots.

(F) Correlated gene expression of Chat and Th across single neurons in RAGP (R2 = 0.69, pvalue < 2.2 3 10�16). The

pairwise comparison of gene expression levels is shown for SAN-projecting and non SAN-projecting neurons (n = 4

animals). The points marked gray correspond to RAGP neurons without information on SAN projection, as these were

microdissected from a pig heart without a tracer injection into the SAN region.

(G–I) Confocal images showing a cluster of neurons within RAGP double stained for TH (G) and VAChT (H). Colocalization

of TH and VAChT in a subset of neurons (I).
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Figure 6. Neuropeptidergic interaction networks in the pig RAGP

(A,C, and E) Expression patterns of somatostatin (A), galanin (C), and neuropeptide Y (E) and their cognate receptors

across 405 single RAGP neurons (n = 4 animals) assayed through HT-qPCR.

(B,D, and F) The transcriptional landscape across all RAGP colored for expression of the neuropeptides and their cognate

receptors. (G,H) Interaction networks of neuronal subtypes defined based on the combinatorial pattern of neuropeptides

and their receptor expression.

(G) The interaction network subset corresponding to the neuronal subtypes producing the neuropeptides somatostatin

(Sst), galanin (Gal), and neuropeptide Y (Npy). The circular nodes denote the neuronal subtypes.The size of the node is

proportional to the number of single neurons belonging to each subtype. The pie chart within each circular node

indicates the proportion of the neurons within that subtype that are identified as projecting to the SAN region. The arrows

from the circular nodes denoting the neuronal subtypes connect to the square-shaped nodes denoting the three
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Single-cell scale RNA-seq data suggested regional co-expression of Th and Chat (Figure 2F). Building on

these results, single neuron gene expression analysis showed that Chat and Th were highly correlated

across single neurons in the RAGP (Figure 5F). Interestingly, gene co-expression of these cholinergic

and catecholaminergic markers was in stark contrast to protein expression patterns that showed much

reduced overlap of expression between TH and VAChT, another cholinergic marker, in individual neurons

(Figure S6C). Immunohistochemistry for TH and VAChT revealed that a majority of neurons showed robust

protein expression of VAChT with a subset co-staining for TH (Figures 5G–5I). A more detailed quantitative

analysis of TH and VAChT protein co-expression are included in a complementary study (Hanna et al.,

2021). This finding suggests that post-transcriptional regulation plays a key role in shaping the neurotrans-

mitter patterns within RAGP. In particular, the high correlation between Th andChat at themRNA level sug-

gests that the RAGP neurons are poised to use both cholinergic and catecholaminergic processes, along

the lines of multipotential neuronal phenotypes observed in CNS (Park et al., 2014).

Neuropeptidergic interaction networks in the pig RAGP

We examined the co-expression patterns of neuropeptides and their cognate receptors to identify putative

local paracrine networks within RAGP. Identifying neuronal subsets based on co-expression patterns of a

neuropeptide with its receptors allows us to classify groups of neurons that exhibit autocrine or paracrine

signaling. We examined local paracrine networks for three important neuropeptides, Sst, Gal, and Npy, in

detail (Figures 6A–6F, S8B–S8D, and S9).

In the case of somatostatin and its receptors, Sstr1 and Sstr2, neurons cluster into six groups based on the

presence or absence of each gene (Figure 6A). This revealed one neuronal subset that expresses somato-

statin, but not its receptors, and therefore can transmit but not respond to the somatostatin signal in the

RAGP network. Meanwhile, two neuronal subsets were positive for somatostatin as well as either receptor

Sstr1 or Sstr2, representing groups that can both transmit and be activated by somatostatin.The remaining

three neuronal subsets do not synthesize but can respond to somatostatin (Figures S9A and S9D). Similar to

Sst, Gal and Npy and their cognate receptors each clustered into six neuronal subsets. When categorizing

each neuronal subset based on the presence or absence of each gene, however, the six neuronal subsets

were reduced to 5 categories for the Gal/Galr1/Galr2 set and 4 identifiers for the Npy/Npy1r/Npy2r set

(Figures 6C, 6E, S9B, S9C, S9E, and S9F).

Despite the strong patterns of expression seen within each individual network, none of the genes in either

the Sst/Sstr1/Sstr2 orGal/Galr1/Galr2 set showed a discernible gradient across the broader transcriptomic

landscape (Figures 6B, 6D, and 6F). However, Npy (and not its receptors) showed a gradient of expression

that largely mirrored the Th and Chat gradients, consistent with the co-expression of these genes across

single neurons (Figure 6F). Taken together, the results indicate that while Sst, Gal, and Npy each have

distinct co-expression patterns that outline local paracrine networks, the signaling of any one neuropep-

tide alone is unlikely to be the main driver of transcriptional states of RAGP neurons.

Integrating all three paracrine networks at once revealed that the overall combination is more complex

than any individual neuropeptide driven network (Figures 6G, 6H, and S9). Each neuron was categorized

as neuropeptide +ve or neuropeptide -ve, receptor +ve or receptor -ve, based on whether the gene

expression of the given peptide/receptor was above the median expression value for that gene across

all the neurons. Applying such a categorization to the 405 laser capture microdissected RAGP neurons re-

sulted in 61 distinct neuronal categories (out of a possible set of 64), indicating a combinatorial network of

neuropeptide signaling (Data S1). Of these 61 categorized neuronal states, a set of 12 states consisted of

more than 10 sampled neurons each, representing a total of 224 out of the 405 single neurons (about 55%).

A network representation of these 12 neuronal subsets highlighted the putative autocrine and paracrine

Figure 6. Continued

neuropeptides, based on which subtypes show the corresponding neuropeptide gene expression above a specified

threshold. The color of the arrows matches the color of the corresponding target square-shaped node.

(H) The interaction network subset corresponding to the neuropeptide receptor expression across the neuronal subtypes.

The notation of circular and square-shaped nodes is the same as in pane (G). The arrows connect each neuropeptide to

the neuronal subtypes based on which subtypes express any the corresponding neuropeptide receptors above a

specified threshold. The color of the arrows corresponds to the color of the neuropeptide node.

(I) Combinatorial pattern of expression of a wide range of neuropeptides and receptors of neurotransmitters across single

neurons in RAGP (n = 4 animals).
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network of neuropeptide signaling between RAGP neurons (Figures 6G and 6H). The conceptual frame-

work outlined by this paracrine network of neuromodulatory factors offers insight into different approaches

for pharmacological interventions in cardiovascular disease. Additionally, visualization of these individual

networks within their 3D anatomical framework also suggests the potential for widespread signaling

throughout the RAGP and enables a much more selective and specific study of the physiological involve-

ment of these neuronal clusters (Figures S8B–S8E, Video S4). Further expanding the network analysis to

include all assayed neuropeptides and receptors revealed a combinatorial mosaic of neuropeptide/recep-

tor expression (Figure 6I), indicating a complex local neuromodulatory network within RAGP.

DISCUSSION

In this study, we performed a combination of spatially-tracked single-cell transcriptomic analysis of an

intrinsic cardiac ganglion. Our results uncovered the complex molecular landscape and paracrine networks

of RAGP neurons in the pig heart. RNA-seq analysis revealed that the composition of RAGP neurons is

distinct from that of neuronal subtypes in the CNS, with minimal overlap in the combinatorial expression

patterns of neuronally enriched genes. Using HT-qPCR of hundreds of single RAGP neurons, we identified

neuronal transcriptional states with distinct gradients across the transcriptomic landscape. A remarkable

finding was a high prevalence of coexpression of cholinergic and catecholaminergic neuronal markers

Chat and Th in a large fraction of the RAGP neurons, contrary to immunohistochemistry data showing

only minimal coexpression, suggesting multipotential phenotypes. The gene expression profiles of

SAN-projecting RAGP neurons were distributed across multiple neuronal states without a single gene or

gene expression module serving as an exclusive marker of RAGP neuronal connectivity to the SAN region.

Our integrative analysis revealed complex expression patterns of neuropeptide signaling indicating that

any individual neuropeptidergic system is unlikely to act as the main driver of neuronal transcriptional

states. Neuromodulation of vagal activity to regulate cardiac function is an active and growing research

area with much potential for transforming clinical care in heart disease. The single neuron transcriptomic

landscape and paracrine networks uncovered in this study form the foundation for developing new neuro-

modulatory targets for improving heart health.

In recent years, the single-cell RNA-Seq studies of neurons isolated from various CNS components show

distinct separations along the transcriptomic landscapes with individual clusters specifically linked to excit-

atory or inhibitory processes (Chen et al., 2019; Darmanis et al., 2015; Hu et al., 2017; Kupari et al., 2019; Li

et al., 2020). Given the complex neural networks to and from the CNS that influence the ICNS, we compared

our RNA-Seq data with RNA-Seq data from single CNS and PNS neurons to compare cell types across cen-

tral and peripheral neurons.

Interestingly, our data showed little to no alignment with the cell populations identified in CNS neurons. In

contrast with CNS neurons which cluster distinctly into dedicated phenotypes, neurons of the RAGP

resemble mixed neuronal types with a gradient of expression as represented by a single cloud across

the transcriptomic landscape (Figures 2C and 4B) (Hu et al., 2017; Kupari et al., 2019). These results suggest

that comparing RAGP to CNS neuronal types is not akin to comparing the variability of neural phenotypes

in a single brain nucleus to the CNS as a whole. While transcriptomics and proteomics with 3D anatomical

location tracking have been established for the brain (Allen Brain Atlas) (Goel et al., 2014; Hawrylycz et al.,

2012; Roth et al., 2006; Shen et al., 2012), to our knowledge, we are the first group to attempt this at the

mammalian heart (Achanta et al., 2020). This work enabled creation of a 3D model of pig RAGP that pre-

cisely integrates molecular data of single neurons into the 3D anatomical framework. Unlike the CNS,

where molecular profiles correspond to specific anatomically located nuclei, we have found no discernable

connection between the molecular profiles and anatomical locations within the RAGP (Goel et al., 2014;

Hawrylycz et al., 2012; Roth et al., 2006; Shen et al., 2012). This suggests that the physiological functions

attributed to the ICNS are likely to not be restricted to a particular anatomical location within any gangli-

onic plexus, and that the RAGP, and possibly other ganglionic plexuses in the ICNS, is composed of a com-

bination of neuronal types whose integrative control of the heart enables the complex response patterns

observed in physiological studies (Hamon et al., 2017).

Available physiological data suggest the notion that RAGP may consist of 80% locally connecting neurons,

with the remainder distributed between those receiving afferent and motor input (both parasympathetic

and sympathetic) (Ardell et al., 2015; Armour, 2008; Hoard et al., 2008; Hopkins and Armour, 1984; Kawa-

shima, 2005; Neel and Parsons, 1986). Our results showed that the underlying transcriptomically-defined
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molecular states of neurons in RAGP are not necessarily aligned with the phenotypic categories postulated

by physiological findings. We identified six transcriptional states of RAGP neurons that are distinguished by

combinatorial patterns of gene expression modules that span several neuronal functions/phenotype cat-

egories, including cholinergic, adrenergic, neurotransmitter, receptor expressions and ion channels. No

state was exclusively represented by individual gene expression modules or a subset of the genes. Such

combinatorial patterning of neuronal states was present similarly in SAN-projecting and non SAN-projec-

ting neurons. Analysis of 3D spatial location of connectivity-based (SAN projecting, non SAN-projecting)

and transcriptional state-based neuronal groups showed a heterogeneous distribution across the anatom-

ical and transcriptional landscape of the RAGP. Our results on the combinatorially organized gene expres-

sion modules defining the spatially distributed RAGP neuronal states can serve to explain the variability of

physiological responses observed in experimental disruption of ICNS circuits (Berger et al., 2019; Driessen

et al., 2016; Qin et al., 2017).

Distinct neuron types that are sympathetic or parasympathetic have been identified in the ICNS in various

immuno-histochemical studies for ChAT and TH to identify cholinergic or adrenergic phenotypes, respec-

tively (Hoard et al., 2008; Hoover et al., 2009; Horackova et al., 2000; Richardson et al., 2003; Rysevaite et al.,

2011), where the majority have found the neurons to be either parasympathetic or sympathetic in nature.

However, some have found that ICNS neurons are not exclusively parasympathetic or sympathetic, with re-

ports showing 10-20% of the cardiac GP co-expressing both ChAT and TH (Rysevaite et al., 2011; Zarzoso

et al., 2013).

One of the more significant findings of this study is the co-expression of cholinergic and catecholaminergic

pathway genes in our data (Figure 5). To our knowledge, this is the first study to report co-expression of

both Chat and Th in the RAGP, with 90–95% of neurons showing detectable expression of both genes,

and 76% of neurons showing abundant expression of both genes at the single-cell transcriptional level (Fig-

ures 5A–5H). Of note, the ICNS is comprised of two neuronal types, large principle neurons (PNs) and small

intensely fluorescent (sif) cells, the latter of which contain a wide range of neurotransmitters and are often

more likely to express adrenergic phenotypes (Hall and Landis, 1991; Rysevaite et al., 2011; Wake and

Brack, 2016). Based on neuron size and through the use of LCM, we specifically targeted our single-cell

sampling to PNs (Figure 3C). While it is possible that some sif cells were collected along with the PNs,

we believe that the data and therefore the coexpression patterns between Chat and Th can be attributed

mainly to the PNs in the RAGP. Testing the protein level expression of these enzymes in the RAGP showed

consistent results with previous studies in the ICNS. Confocal microscopy studies of RAGP showed that 99%

neurons were VAChT positive and 10-20% neurons were also positive for TH (Figures 5G–5I). We interpret

these differences between gene and protein expression levels as representative of multipotential pheno-

types that are observed at the transcriptional scale that are then shaped further post-transcriptionally to

yield a specific distribution in a given physiological context.

Further evidence of post-transcriptional modifications is the strong co-expression patterns between Chat,

Th, and genes known to differentiate between neuronal subtypes such as Ret and Ntrk1 in other sympa-

thetic ganglia (Furlan et al., 2016). Ret and Ntrk1 encode for neurotrophic factor receptors that bind

glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), respectively. Interestingly, previ-

ous experiments have shown that cardiac neurons are immunoreactive for TrkA (encoded byNtrk1) regard-

less of whether or not they are immunoreactive for TH (Hoard et al., 2008). We and others have shown that

cells retain their plasticity beyond development and are able to adapt to perturbation based on the inputs

they receive in normal and diseased states by transcriptional, as well as post-transcriptional regulation

(Dulcis et al., 2013; Park et al., 2014). For example, we have previously shown that TH immunoreactive neu-

rons in the brainstem are organized along a gradient of catecholaminergic (Th+/Fos-) and non-catechol-

aminergic (Th-/Fos+) neuronal states (Park et al., 2014), and this gradient shifts in response to physiological

perturbation such as sustained hypertension. Our results on correlation of Th and Chat raise an intriguing

possibility of such plastic adaptive dynamics within the RAGP, with functional effects on vagal control of

cardiac function.

We delved into three peptidergic systems,Gal, Sst, andNpy, which displayed distinctive coexpression pat-

terns with their respective receptors. These neuromodulators have been shown to have important effects

on cardiac function and vagal tone (Beal and Martin, 1986; Gorky and Schwaber, 2019; Habecker et al.,

2016; Herring and Paterson, 2009; Herring et al., 2012; Hökfelt et al., 1977; Moriarty et al., 1992; Smith-White

ll
OPEN ACCESS

iScience 24, 102713, July 23, 2021 13

iScience
Article



et al., 2003). High concentrations of Sst have been found in cardiac tissues, specifically in the right atrium

and the atrioventricular node, where specialized conducting and pacemaker cells are found (Day et al.,

1985). Sst is found mostly in GABAergic neurons and mediates antagonism of sympathetic processes on

a broad scale as well as promotes parasympathetic effects, specifically reducing cardiac contractility in

an Ach-dependent manner (Gorky and Schwaber, 2019). Meanwhile bothGal andNpy have been identified

as co-transmitters in adrenergic neurons and have been shown to work in similar and complementary man-

ners with respect to vagal control (Herring et al., 2012). While Gal has been shown to attenuate cardiac

vagal activity with no effect on blood pressure, Npy does just the opposite, increasing blood pressure

but having no inhibitory effects on vagal activity (Smith-White et al., 2003). Studies have shown that Gal

and Npy released from sympathetic neurons inhibit the release of acetylcholine in the cardiac cholinergic

postsynaptic neurons (Habecker et al., 2005). Our results on the expression of Sst,Gal, andNpy in the RAGP

neurons suggest a strong likelihood of these neuromodulatory interactions arising from within the RAGP

paracrine networks to mediate parasympathetic and sympathetic control of cardiac function. This data is

largely consistent with our previous findings in the rat heart that also show a wide range of expression

and combinatorial patterns between peptides and their cognate receptors (Achanta et al., 2020). We exam-

ined each of these peptidergic networks separately and in combination with one another in the larger

context of the neuronal network. While examination of one neuropeptide-receptor set at a time reveals

discrete and overlapping co-expression patterns, these gradients are absent from the broader transcrip-

tomic landscape, further underscoring that examination of one peptidergic network is insufficient to

gain an understanding of the network as a whole. Combination of the three peptidergic networks yielded

a wide range of combinatorial gene expression patterns and reveals a widespread signaling network where

almost all sampled neurons are capable of being activated by one or more neuropeptides. Notably, Gal

and Npy, which have been shown to be released together in sympathetic neurons of the stellate ganglia

(Habecker et al., 2005), showed partly overlapping gene expression patterns across RAGP neurons, sug-

gesting distinctive adaptive and neuromodulatory phenotypes in the RAGP versus elsewhere.

Expanding the network analysis to account for the wide range of neuropeptide systems expressed within

RAGP suggests a conceptual formulation of RAGP as a highly adaptive and dynamic system driven by

combinatorial patterns of neuromodulators acting in local paracrine networks. The dynamicism observed

in these paracrine networks along with the level of correlation between cholinergic and catecholamin-

ergic markers underscores the distinct composition of the ICN in comparison with the central nervous

system and other studied ganglia (Furlan et al., 2016; Hu et al., 2017; Zeisel et al., 2018). This study

lays the groundwork for future studies to further illuminate how the unique organization of the ICN is

crucial to the pacemaking activities of the SAN and cardiac function. The neural network of the ICN is

aptly referred to as the ‘‘little brain’’ with its high level of complexity and large percentage of LCNs

that are capable of remodeling upon cardiac disease and injury (Armour, 2008; Rajendran et al., 2016).

We speculate that the complexity and variability associated with such a wide range of cardiac functions

may simply require more precise and dynamic control than other autonomic ganglia. The wide diversity

of potential transmitters may therefore be necessary in order to meet the needs resulting from such a

diversity of functions (Habecker et al., 2016).

Our data demonstrates that the local cardiac ganglia harbor anatomical and molecular features necessary

to function as complex signal processing units that critically mediate vagal control of heart function and

health. These conceptual advances provide the necessary anatomical and molecular foundation for new

functional and translational research. In addition, our study provides the data needed to begin a modeling

effort focused on neuroanatomical and electrophysiological properties of the intrinsic cardiac neurons.

Integrating these findings with other data obtained from our collaborative SPARC consortium will enable

development of computational models of neurons and networks in the RAGP as a critical mediator of vagal

control of the heart (Hanna et al., 2021). With the RAGP as a starting point, the RAGP network model can be

further expanded into a systems model of autonomic control of cardiovascular function to test novel con-

trol strategies for neuromodulation and to open the door to more effective therapeutics.

Limitations of the study

� A FastBlue retrograde tracer was injected into the SA-node of the pig to label SAN-projecting neu-

rons in the RAGP. It is possible that there was incomplete penetration of the tracer and that some

neurons identified as non SAN-projecting due to lack of FastBlue signal indeed project to the SA-

node.
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� The present findings are true for one species, the Yucatanminipig, and it should be investigated how

these results are represented across species, particularly in humans

� The relative homogeneity of the transcriptional data throughout the RAGP suggests that different

cardiac regulatory functions may not be localized to distinct subpopulations but are rather distrib-

uted throughout, which should be further investigated. If this is true, it may be that there is local co-

ordination for the regulation of different cardiac functions and regions that are integrated specif-

ically in different populations of the ICN.

� The present study investigates the healthy animal, and while there are implications for disease, the

exact manifestations of these networks in the disease state remain to be explored.
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Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Rajanikanth Vadigepalli: rajanikanth.vadigepalli@jefferson.edu.

Material availability

This study did not generate new unique reagents.

Data and code availability

The authors declare that all the data supporting the findings of this study are available within the article and

its supplemental information files or from the corresponding author upon reasonable request. Raw

sequencing data generated in this study have been deposited at the GEO database under accession

code:GSE154119. Raw and processed HT-qPCR data of single neurons from the pig RAGP have been

deposited in the GEO database under accession code: GSE149212. The RNAseq and HT-qPCR

datasets constitute a GEO SuperSeries GSE154411. All sample acquisition images, raw and processed

transcriptomic data, and annotations pertaining to 3D spatial location are publicly available in the sparc.

science (RRID:SCR_017041) repository with the digital object identifiers https://doi.org/10.26275/56h4-

ypua, https://doi.org/10.26275/kabb-mkvu, https://doi.org/10.26275/5jki-b4er, https://doi.org/10.26275/

qkzi-b1mq, and https://doi.org/10.26275/255m-00nj. A dataset containing high-resolution figures, supple-

mental figures, movies and files, as well as the TissueMapper XML annotations and the R code to generate

the data-driven plots and visualizations illustrated in the figures are available at https://doi.org/10.26275/

jdws-d7md. Data analyzed from Hu et al. (2017) is available in the GEO database under the accession code

GSE106678. Data from GTEx was retrieved from GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2). Single cell

data from the Human CNS was obtained through the Allen Brain Map (RRID:SCR_017001) project and is

available at https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-

seq. Data for RNAseq comparisons to the peripheral nervous system is available through online resources

associated with Zeisel et al. (2018) (http://mousebrain.org/genesearch.html; Mousebrain.org.level1/

L1_Enteric.loom; Mousebrain.org.level1/L1_Sympathetic.loom) and Furlan et al. (2016) (http://

linnarssonlab.org/sympathetic/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments were performed in accordance with the UCLA Institutional Animal Care and Use Com-

mittee, and euthanasia protocols conform to the National Institutes of Health’s Guide for the Care and Use

of Laboratory Animals (2011). Data for all experiments were collected from 2 male and 2 female normal

healthy Yucatán minipigs(>3 months old).

Continued
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bioc/html/Rsubread.html

ComBat-seq Zhang et al., 2020 sva package; https://bioconductor.org/

packages/release/bioc/html/sva.html

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq.html

SCnorm Bacher et al., 2017 https://bioconductor.org/packages/release/

bioc/html/SCnorm.html

Real-Time PCR Analysis Software Fluidigm https://www.fluidigm.com/software

NormqPCR Bioconductor RRID:SCR_003388; https://bioconductor.org/

packages/release/bioc/html/NormqPCR.html

cluster R package Comprehensive R Archive Network (CRAN) https://cran.r-project.org/web/packages/

cluster/index.html
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METHOD DETAILS

Optimization of neural tracers for laser capture microdissection

Fast Blue (Polysciences, 17740-1), CM-DiI (Thermo Fisher, C7000), Fast DiI (Thermo Fisher, D3899), TMR-

Dextran (Thermo Fisher, D3308), FluoroGold (Fluorochrome) as candidate fluorescent tracers were

scanned for their compatibility with the dehydration protocol of laser capture microdissection before

the tracer was adapted in the minipig. In each animal, one of the five tracers was injected into Sprague

Dawley rats (3-4 months old, purchased from Envigo) sino-atrial node at the same volume of 10 mL and

the heart tissues were harvested in the time window 10 am-12 pm 14 days after injection and stored in

OCT immediately. Cryosections were visualized under a fluorescence microscope before and after the

dehydration steps necessary for laser capture microdissection and acquisition of single neuron samples

(as detailed below). All five tracers labeled intrinsic cardiac nervous system neurons successfully but only

CM-DiI and Fast Blue-labeled neurons remained intact on the heart sections without fixation, whereas

TMR-Dextran and FluoroGold-stained neurons were not visible under the microscope under the conditions

suitable for laser capture microdissection. Only Fast Blue provided reliable and consistent labeling visible

under laser capture microdissection microscope after the necessary dehydration procedure and was used

in the subsequent tracing experiments in the study.

Neural tracing experiments

For initial surgery, following sedation (induction: ketamine (10mg Kg-1 IM)/midazolam (1mg Kg-1 IM),

maintenance: isoflurane 1-2% inhalation) and intubation, a right unilateral thoracotomy was performed

by dividing the pectoral muscle, making a small incision in the pericardium, and exposing the right

atrial-superior vena cava junction. Then 5mg of Fast Blue (Polysciences), a neuronal tracer that is retained

and diffuses within the lipid bilayer, in 250uL of sterile water (2% weight/volume) was injected using a

27-gauge needle into the SAN region. A chest tube was placed, and the incision was closed. Immediately

prior to removal, the chest tube was aspirated. Tissues were harvested in a terminal procedure at least

3 weeks later as described below.

Porcine tissue collection

Following sedation (induction: tiletamine-zolazepam 6mg Kg-1 IM, maintenance: isoflurane 1-2% inhala-

tion) and intubation, we performed a midline sternotomy and exposed the heart. A heparin bolus of

5000U IV was administered, and the pig was then placed in ventricular fibrillation with application of a

9V battery to the surface of the heart. The heart was explanted and syringe-flushed with heparinized normal

saline (5U mL-1) via the transected aorta. The area of interest (RAGP-SAN region) was then excised and

rinsed in heparinized saline. RAGPs were separated from the SANs, immersed in 1x PBS at RT for 30 sec-

onds and transferred to 25% Optimal Cutting Temperature compound (OCT, TissueTek; VWR 25608-930),

followed by 50% OCT and then embedded in 100% OCT and placed in a cryomold. The cryomold was

placed in a methanol dry ice bath for flash freezing.

Cryosectioning and staining

RAGP was sectioned along the superior-inferior axis (corresponding to the source animal) at 40mm

thickness, yielding between 447-1,030 sections per RAGP, with corresponding blockface images. Tissue

sections weremounted on PPSmembrane slides (LeicaMicrosystems, Catalog 11600294). Slides were fixed

in icecold ethanol (100% Ethanol) for a minute followed by four minutes of staining with 0.0001% Cresyl

Violet (ACROSOrganics, AC229630050). The slides were dehydrated using 95% and 100% Ethanol followed

by Xylene for one minute each. The staining protocol was kept to under 15 minutes and an RNAse inhibitor

(Invitrogen SUPERase-In RNase Inhibitor, Catalog AM2696) was added to all aqueous reagents to preserve

RNA quality. More detailed methods can be found in the research protocol available at https://doi.org/10.

21203/rs.3.pex-928/v1.

Laser capture microdissection

Slides were stained and immediately processed for sample collection to preserve RNA quality using Laser

Capture Microdissection (Arcturus, ThermoFisher). SAN projecting and non SAN-projecting neurons were

identified under fluorescence using FastBlue (excitation 365 nm, emission 420 nm) and 0.0001% cresyl-vi-

olet (585 nm excitation and 627 nm emission) stain and only cresyl-violet stain respectively. While it is

possible that the tracer failed to properly label all SAN-projecting neurons, for the purposes of this analysis,

all cells without FastBlue labeling were referred to as ‘‘non SAN-projecting’’ neurons. Neurons collected for
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RNAseq were identified using 0.1% cresyl-violet stain. Samples were collected on LCM Caps and stored at

-80�C. Samples were lysed at the time of gene expression experiments with appropriate lysis reagents

based on the downstream processing protocols (RNASeq or HT-qRTPCR). We stochastically sampled

nearly all of the neuronal clusters encountered throughout the RAGP from one of the animals, while the

other three animals were stochastically sampled throughout the RAGP in a less extensive manner.

More detailed methods can be found in the research protocol available at https://doi.org/10.21203/rs.3.

pex-927/v1.

Mapping LCM samples onto the reconstructed 3D stack

2D images of tissue blockface were acquired after each section. Using Tissue Mapper software 3D volume

of each RAGP was created from the outer contours of blockface images. Images taken during LCM sample

collection were assigned to corresponding sections in the 3D stack. Anatomical features and neurons

(collected and not collected) were assigned markers enabling extraction of specific XYZ coordinates for

the neurons in RAGP. Blockface images and acquisition images can be found at https://doi.org/10.

26275/56h4-ypua. More detailed methods can be found in the research protocol available at https://doi.

org/10.21203/rs.3.pex-922/v1.

RNASeq library preparation

Samples on LCM caps were processed for single cell scale RNASeq based on a protocol modified from

Foley et al., 2019(Foley et al., 2019). We followed the steps recommended for fresh frozen tissue with

the following modifications: We used 10ml of lysis buffer on HS Caps (original protocol recommends

5 ml). In the step 3 for performing PCR amplification of the tagged mRNA fragments, we used 22 cycles

of PCR (maximum allowed). The original protocol relies on a formula to compute amplification cycles,

and suggested 18 cycles based on sample RNA input and number of samples multiplexed per RNASeq

run. Our initial tests determined this to be too low for yielding sufficient material for downstream

sequencing. Considering that the gene expression in our dataset varies in a similar order of magnitude

as in typical scRNAseq datasets, we suggest that the amplification bias is not a dominant factor in the

data. The remaining steps of the protocol were followed as in the original. More detailed methods can

be found in the research protocol available at https://doi.org/10.21203/rs.3.pex-962/v1.

Single cell RNA-seq data analysis

Raw sequencing data (Illumina sequencer’s base call files (BCLs) was converted to Fastq files using the

Illumina bcl2fastq program. The reads were trimmed to remove polyA tail and G overhang, and the 5

base UMI was extracted. The genome sequence was indexed and the single reads were aligned to the

Sus scrofa reference genome sequence version Sus_scrofa.Sscrofa11.1.fasta available in the Ensembl data-

base (RRID:SCR_002344), using STAR software (RRID:SCR_015899) STAR-2.7.2a(Dobin et al., 2013). Amodi-

fied version of Sus_scrofa.Sscrofa11.1.95.gtf was used as a reference transcriptome. Feature count algo-

rithm (featureCounts, RRID:SCR_012919), Subread R package(Liao et al., 2019) was used to count the

reads to genomic features - genes and exons. These samples had an average sequencing depth of

2,591,998 reads/sample, with an average UMI count of 415,687/sample resulting in a median of 10,410

detectable genes/sample. A digital gene expression matrix was created from the gene counts. Multiple

batch correction algorithm ComBat-seq(Zhang et al., 2020) was used to account for technical variability

arising from batch effect. Out of 142 samples, 52 Samples with non-zero gene counts <6,000 were consid-

ered as outliers. Additionally, 10,800 genes that are present in very low quantities (<30 non-zero gene

counts) were filtered out. A regularized log transformation was carried out using DESeq2(Love et al.,

2014). We normalized the filtered data using a quantile regression method SCnorm(Bacher et al., 2017).

Our final matrix consisted of 90 samples and 15,000 genes.

Extraction of significant genes from GTEx

Wegenerated a list of neuronal genes enriched in brain and neuronal tissues using data from the Genotype

Tissue Expression (GTEx) project. We downloaded the median gene expression values for all tissue types

from GTEx Analysis V8 (dbGaP Accession phs000424.v8.p2). Pavlidis Template Matching was used to find

genes that were specifically enriched in brain and neuronal tissues (template-maximum for neuronal

tissues, minimum for non-neuronal tissues) with p value <0.01.
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Identification of highly variable genes using PCA

Principal component analysis (PCA) was performed on 90 neuronal RNAseq samples showing expression of

15,000 genes in the RAGP. 100 genes were taken from each of the first 50 PCs, the fifty genesmost positively

and most negatively contributing to each PC based on PC loadings, resulting in 1,814 genes that show the

most variability across the RAGP.

High-throughput real-time PCR

Single RAGP neurons in lysis buffer (Cells Direct Lysis Buffer, Invitrogen) were directly processed for reverse

transcriptase reaction using SuperScript VILOMaster Mix (Thermo Fisher Scientific, Waltham, MA), fol-

lowed by real-time PCR for targeted amplification and detection using the Evagreen intercalated dye-

based approach to detect the PCR-amplified product. Intron-spanning PCR primers were designed for

every assay using Primer3(Untergasser et al., 2012) and BLAST(Ye et al., 2012). Genes were selected

from across a wide array of neuronal functions, signal transduction and cell type identification. The stan-

dard BioMark protocol was used to process cDNA samples for 22 cycles of specific target amplification

of 283 genes using TaqMan PreAmp Master Mix as per the manufacturer’s protocol (Applied Biosystems,

Foster City, CA, USA). Real-time PCR reactions were performed using 96.96 BioMark Dynamic Arrays (Fluid-

igm, South San Francisco, CA, USA) enabling quantitative measurement of multiple mRNAs and samples

under identical reaction conditions. Each run consisted of 30 amplification cycles (15 s at 95�C, 5 s at 70�C,
60 s at 60�C). Ct values were calculated by the Real-Time PCRAnalysis Software (Fluidigm). Twenty one 963

96 BioMark Arrays were used tomeasure gene expression across all the (422 samples beforeQC) single-cell

samples from 4 RAGP. The same serial dilution sample set was included in each chip to verify reproduc-

ibility and test for technical variability. This 6-point dilution series also serves to detect any over-amplifica-

tion that may lead to a bias in the data. Samples from each animal were run across three chips to obtain data

on 283 genes per sample. Each set of chip runs for a given animal contained overlapping assays that served

as technical replicates to evaluate chip-to-chip variability. A chip-to-chip comparison of the serial dilution

samples and neuronal/assay technical replicates demonstrates the high reproducibility with minimal tech-

nical variability of our data (Figure S10). More detailedmethods can be found in the research protocol avail-

able at https://doi.org/10.21203/rs.3.pex-919/v1.

HT-qPCR data analysis

Individual qRT-PCR results were examined to determine the quality of the qRT-PCR based on melt-curve

analysis. Following this initial quality control, samples with >30% failed reactions and genes with >20%

failed reactions were excluded from present analysis. A further 10 samples were determined to be outliers

due overall gene expression distributions and were removed from the present analysis. Upon filtering

based on these criteria, a total of 405 single-cell samples (152 non SAN-projecting neurons, 169 SAN-pro-

jecting neurons, and 84 neurons without reliable connectivity information) and 241 different gene assays

were carried forward in the present analysis, with 211 genes showing >60% detectable expression across

all RAGPs, which were used for the majority of the analysis. Raw Ct values for individual samples were

normalized against a median expression level of a subset of 140 robustly expressed genes (genes with

greater than 60% working reactions) across all animals to obtain -DCt values.The vector of median sample

expression value was chosen over potential reference genes based on comparison of stable expression

across all samples against known housekeeping genes using the ‘selectHKs’ function in the NormqPCR

package in R (RRID:SCR_003388). The following equation was used to calculate -DCt values for each

gene:� DCtgene = ðmedian sample expressionÞ � Ctgene.

The -DCt data were then rescaled using the median across all samples within a gene using the following

equation:

�DDCtgene = � �
DCtsample � DCtacross�sample�median

�
:

The raw and normalized dataset is available online as a Gene Expression Omnibus (RRID:SCR_005012) da-

taset (GEO reference ID: GSE149212) and on sparc.science (RRID:SCR_017041) portal at https://doi.org/10.

26275/5jki-b4er.

Determination of abundant/detectable expression

We considered a sample to have detectable expression of any given gene if any signal was detected in the

HT-qPCR assay. A sample was considered to have abundant expression if its expression of that gene was
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less than 15 Ct. One exception is the expression level of Chat. The levels of Chat in the second female RAGP

(Pig 1729) had a median expression of 7 Ct higher than that of the other 3 RAGP. Despite the reduced

expression of Chat in raw Ct, it is important to note that the range of expression remains the same despite

the decrease in abundance. Due to this consistency in range and pattern, we considered samples from Pig

1729 to have abundant expression if it had a Ct less than 22, consistent with the 7 Ct difference between the

medians of expression.

Clustering and template matching to identify transcriptional states

Single neurons were separated into different subpopulations based on their molecular profiles using Pav-

lidis Template Matching. Briefly, template matching estimates the correlation between a rescaled expres-

sion profile used as the template and a test expression profile. The canonical subpopulations were identi-

fied in SAN-projecting samples from one female and one male RAGP using hierarchical clustering (Pearson

correlation, complete linkage) yielding seven sample clusters. The average silhouette width for all clusters

(estimated using the cluster package in R) was 0.217, significantly higher than 1,000 randomized trials. Gene

medians of these clusters were used as templates to classify the non SAN-projecting cells into one of the

canonical subpopulations. We used an R-based cutoff for our template match analysis (threshold R = 0.45).

Single neurons that did not pass the R value threshold for any of the canonical templates were sequestered

into a separate cluster, yielding 8 clusters total. Samples from another male (with cells annotated for pro-

jection) and female (without cells annotated for projection) were sorted into the original states based on

correlation to the template profile (Figures 4A andS3). Finally, based on visual examination, three states

were combined to form state A based on their similar expression profiles, giving 6 total transcriptional

states. An enrichment assessed by a one-way ANOVA and post hoc Tukey Honest Significant Difference

was used to examine genes that were significantly enriched in one or more states. A gene was considered

to be enriched in a state if p value <0.01 for at least two other states (Figures 4D–4F).

Plots for showing abundance and range of gene expression in Ct space

In order to accurately display the range of the normalized data while also keeping in mind the overall abun-

dance of each gene throughout the 4 RAGP, the -DDCt data was visualized in Ct space. To do this, we first

confirmed that the median Ct of each gene was relatively consistent across all 4 RAGP. The normalized

expression for each animal was multiplied by -1 and then offset by the median gene expression across

all 4 RAGP. This resulted in a plot that displayed expression level in Ct space (where the lower the Ct

the higher the expression), showing the overall abundance of the gene in question across 4 RAGP while

maintaining the normalized range of expression (across all RAGP for some figures, and comparing the

ranges of each RAGP for other figures).

Paracrine network analysis

Different paracrine signaling states of single neurons in the RAGP were created from the combination of

identifiers that describe whether a neuron is more likely to transmit a neuropeptide signal, be activated

by that signal, or both. Each neuron was identified as peptide+ or peptide-based on whether or not the

neuron in question expressed the given peptide above or below the median expression value for that

gene. Likewise, each neuron was identified as receptor+ if any one of the corresponding receptors showed

expression above themedian value for either receptor. Applying these identifiers to each peptide-receptor

set resulted in 8 possible unique identifiers for each set, which when combined resulted in 64 possible

unique identifiers. After applying these identifiers to the 405 sampled neurons, at least one neuron was as-

signed to 61 out of the 64 possible identifiers, indicating a large and widespread network of neuropeptide

signaling, even when examining only 3 neuropeptides and their cognate receptors (Data S1). Of those 61

states, 12 groups have a frequency of more than 10 sampled neurons, representing a total of 224 out of the

405 single neurons, about 55%. A network representation of these 12 identified groups further highlights

the interconnected nature of signaling between neurons.

Confocal staining and visualization

Porcine RAGP fat pads were fixed in cold 4% paraformaldehyde in PBS for 24 h, cryoprotected in cold 20%

sucrose in PBS, and sectioned at 30 mm thickness using a Leica CM3050S cryostat (Leica Microsystems Inc.,

Bannockburn, IL, USA). Sections were collected on charged slides and immunostained at room tempera-

ture using standard methods of fluorescence immunohistochemistry, as described previously(Hoard

et al., 2008; Hoover et al., 2009; Kaestner et al., 2019). Antibodies to vesicular acetylcholine transporter
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(VAChT; Synaptic Systems, Cat. No. 139103, RRID: AB_887864,1:500 dilution) and tyrosine hydroxylase (TH;

Millipore, Cat. No. AB1542, RRID:AB_90755, 1:500 dilution) were used to label cholinergic and noradren-

ergic neurons, respectively. The VAChT antibody was generated in rabbit using aa 475-530 from rat VAChT

as the immunogen, and it has been validated by experiments with knockout and knockdownmice as well as

by immunohistochemistry and Western blotting. The TH antibody was generated in sheep using native TH

from rat pheochromocytoma, and it has been validated by immunohistochemistry and Western blotting.

Sections were washed and blocked before incubation overnight with both primary antibodies. This was fol-

lowed by washing and blocking again before addition of species-specific donkey secondary antibodies

conjugated to Alexa Fluor 488 for VAChT and biotin-SP for TH (Jackson ImmunoResearch Laboratories).

After incubation for 2 h with secondary antibodies and washing with PBS, sections were incubated with

streptavidin conjugated Cy3 (Jackson ImmunoResearch Laboratories) to amplify the TH signal. Sections

were then washed with PBS, and cover glasses were applied with Citifluor (Ted Pella, Inc.) or SlowFade

Gold antifade reagent (Life Technologies Corporation, Eugene, OR, USA). Cover glasses were sealed

with clear nail polish. Specific staining did not occur in negative control sections processed without the

addition of the primary antibodies.The localization of VAChT and TH was evaluated by confocal micro-

scopy with a Leica TCS SP8 Confocal Microscope (Leica Microsystems Inc.). Confocal images were

collected at a resolution of 1024X1024 by sequential scans using 488 and 552 laser lines. Stacks of optical

sections, with the section number optimized by the software, were collected for regions of interest using 4-

line averages for each scan. Stacks spanned the entire tissue thicknesses. Figures were created using

maximum intensity projection images for individual channels and merged images. These images compress

the stack of optical images into a two-dimensional view by showing only the highest intensity pixel across

the stack for each point.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was done using the ‘R’ programming language. Pavlidis TemplateMatching was used

to find genes that were specifically enriched in the brain and neuronal tissues fromGTEx data with a p value

<0.01. Pavlidis Template Matching was also used to to separate single neurons into different subpopula-

tions and a subsequent ANOVA and post hoc Tukey Honest Significant Difference was used to examine

genes that were enriched in one or more subpopulations for p < 0.01. More information regarding statis-

tical analysis can be found within each figure legend and the accompanying sections within the method

details.
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