East Tennessee State University

Digital Commons @ East Tennessee State University

Appalachian Student Research Forum & Jay S. Boland Undergraduate Research Symposium

2022 Boland Symposium Schedule

Apr 6th, 9:30 AM - 9:45 AM

Severe Hypoxia Alters Metabolism in Daphnia by Inducing Gluconeogenesis

Morad Malek East Tennessee State University

Lev C. Yampolsky East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/asrf

Malek, Morad and Yampolsky, Lev C., "Severe Hypoxia Alters Metabolism in Daphnia by Inducing Gluconeogenesis" (2022). *Appalachian Student Research Forum & Jay S. Boland Undergraduate Research Symposium*. 44.

https://dc.etsu.edu/asrf/2022-boland/schedule/44

This Oral Presentation is brought to you for free and open access by the Events at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Appalachian Student Research Forum & Jay S. Boland Undergraduate Research Symposium by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu. Severe Hypoxia Induces Gluconeogenesis in Daphnia

Morad Malek

Dr. Lev Yampolsky's Lab

Introduction: Hypoxia

 Hypoxia is an ecological constraint on aquatic organisms

 O₂ concentrations in aquatic habitats can fluctuate from 300% to near complete anoxia

We want to understanding the effects of hypoxia on life - including adaption.

Genetic Responses to Hypoxia

- Hypoxia inducible factors (HIFs) are the main hypoxia response genes
- Once activated, HIFs alter the transcription of hundreds of downstream genes
- Genes involved in metabolic compensation, O2 delivery...what else?

Metabolic Changes During Hypoxia

- Oxidative phosphorylation stops
- Glycolysis takes over to produce energy, with pyruvate made that is converted to lactate
- This is bad because the body will loss significant amounts of ATP

Research Questions:

- What metabolic changes occur during severe hypoxia?
- Are these metabolic changes adaptive do they show genotype-by-environment interaction?
- Used Daphnia magna as a model organism for an RNA-seq and survival in hypoxia experiment

Methods: Daphnia

 Daphnia magna are freshwater micro-crustaceans

 They can reproduce identical female clones of themselves

 We used 4 clones: 2 intermittent hypoxia prone, 2 not prone

IL-M1-8	Jerusalem,	Intermittent mediterranean pond
	Israel	1
FI-FSP1-16-2	Suur-Pellinki,	Intermittent summer rock pool
	Finland	P P
GB-EL75-69	London, UK	Permanent pond
HU-K-6	Hungary	Permanent lake

Methods: Acute Severe Hypoxia

 We reared our 4 clones to normal O₂ (8mg O₂/L)

 Exposed to 12h of acute hypoxia (1 mg O₂/L) – Control kept at normal

 Removed some clones for RNA seq and analysis using MinION

Methods: RNA seq & analysis

Extracted RNA from full
 Daphnia, then sequenced
 copy-DNA and aligned them
 to reference transcriptome

Used gene ontology analysis
 GO (gene clusters) to see
 what gene pathways are
 up/down-regulated

Results: Hypoxia Survival

 The clones originating from hypoxia waters generally have better survival in severe hypoxia

 However, results are limited by only having 4 clones

Lactate Response to Hypoxia

• Not surprising, but what else can pyruvate do?

Gluconeogenesis (GNG)

 GNG is the opposite of glycolysis.

 The pathway is mostly the same as glycolysis with "gates"

Cori Cycle

Why would both pathways occur at the same time?

 We see significant up-regulation in (3/4) key GNG transcripts

Glucose-6-phosphatase ■ intermittent ■ permanent q > 0.1 Acutehypoxia Fructose-1,6-bisphosphatase 1 q = 2.9E-3 Acutehypoxia

Fructose-1,6-bisphophate is the only one for hypoxia tolerant clones that is more up-regulated

Possible protective effect

Conclusions:

- Hypoxia tolerance appears to show genotype-byenvironment interactions – but more clones needed
- Overall, we can add GNG to the list of possible metabolic compensation changes that occur during hypoxia.
- Cori cycle activation (compartmentalized) by HIFs
- Could be conserved across invertebrates Vora et al. (2021)

Future work:

Expand the number of clones to 24

Full meta-omics analysis – metabolites, etc.

Tissue specific RNA sequencing

Any Questions?

Acknowledgments

- Dr. Lev Yampolsky, Cora Anderson,
 Millicent Ekwudo, and Taraysha Moore
- ETSU student faculty collaboration
 grant for funding & summer stipend
- Dieter Ebert and Peter Fields, Basel Univ., Switzerland for the most recent Daphnia reference transcriptome and Dr. Kumar for lab equipment

CC BY-NC-ND