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C-reactive protein (CRP) performs two recognition functions that are relevant to cardiovascular disease. First, in its native
pentameric conformation, CRP recognizes molecules and cells with exposed phosphocholine (PCh) groups, such as microbial
pathogens and damaged cells. PCh-containing ligand-bound CRP activates the complement system to destroy the ligand. Thus,
the PCh-binding function of CRP is defensive if it occurs on foreign pathogens because it results in the killing of the pathogen
via complement activation. On the other hand, the PCh-binding function of CRP is detrimental if it occurs on injured host cells
because it causes more damage to the tissue via complement activation; this is how CRP worsens acute myocardial infarction
and ischemia/reperfusion injury. Second, in its nonnative pentameric conformation, CRP also recognizes atherogenic low-density
lipoprotein (LDL). Recent data suggest that the LDL-binding function of CRP is beneficial because it prevents formation of
macrophage foam cells, attenuates inflammatory effects of LDL, inhibits LDL oxidation, and reduces proatherogenic effects of
macrophages, raising the possibility that nonnative CRP may show atheroprotective effects in experimental animals. In conclusion,
temporarily inhibiting the PCh-binding function of CRP along with facilitating localized presence of nonnative pentameric CRP
could be a promising approach to treat atherosclerosis and myocardial infarction. There is no need to stop the biosynthesis of CRP.

1. Introduction

C-reactive protein (CRP) is a multifunctional and evo-
lutionarily conserved plasma protein (reviewed in [1-8]).
Through the circulation, CRP reaches tissues and is seen
deposited at sites of inflammation. Human CRP is comprised
of five identical subunits arranged in a cyclic pentamer
[9]. In this paper, we review two recognition functions
of pentameric CRP which are relevant to cardiovascular
disease: the phosphocholine- (PCh-) binding function of
native pentameric CRP that has been implicated in acute
myocardial infarction and ischemia/reperfusion (I/R) injury
and the atherogenic low-density lipoprotein- (LDL-) binding
function of nonnative pentameric CRP that has been impli-
cated in atherosclerosis.

2. PCh-Binding Function of Native Pentameric
CRP, Myocardial Infarction, and I/R Injury

A major function of CRP in its native pentameric form
is to bind, in a Ca**-dependent manner, to molecules and

cells bearing exposed PCh groups, such as the cell wall
of pneumococci and cell membrane of damaged cells [10,
11]. Once CRP is bound to a PCh-containing ligand, it
activates the complement system to destroy the ligand [12,
13]. When CRP binds to foreign pathogens, it helps in the
killing of the pathogen via complement activation. In mouse
models of pneumococcal infection, CRP has been shown
to be protective; that is, CRP decreases bacteremia and
increases survival of infected mice ([14] reviewed in [15, 16]).
Experiments performed in vitro using necrotic and apoptotic
cells reveal that the binding of CRP to necrotic and apoptotic
cells can facilitate the removal of such cells [17-21]. However,
experiments performed in vivo using animal models of I/R
injury reveal that the binding of CRP to damaged cells is
detrimental to the tissue [22-25]. Combined data suggest
that the consequences of the binding of CRP to damaged
cells depend on the tissue. In many places in the body (skin
and subcutaneous tissue, e.g.,), it does no harm to bind
complement and hasten death of dead tissue. The situation
for the organs which are working all the time and do not have
the ability to regenerate their tissue (heart, e.g.,) is different



and hastening removal of dead tissue will be harmful. During
myocardial infarction, the necrotic part of the myocardium
will be removed by CRP. However, the ischemic part of the
tissue where the damage can be reversed may also be removed
by CRP, as described previously [26]. Thus, the PCh-binding
function of CRP is defensive for the host because it leads to
protection against pneumococcal infection and removal of
necrotic tissue. On the other hand, the PCh-binding function
of CRP is detrimental for the host when CRP binds to
reversibly damaged myocardial cells, because it causes more
damage to the tissue via complement activation.

Studies in animals (mice, rats, and rabbits) and human
specimens have shown that both CRP and components of the
activated complement system are deposited and colocalized
in myocardial infarcts and that complement activation is due
to the presence of CRP [27-32]. CRP has been shown to
exacerbate left ventricular dysfunction and promote adverse
left ventricular remodeling after myocardial infarction [33].
Mostly by employing animal models of I/R injury, it has been
shown that CRP enhances the size of myocardial infarcts and
also contributes to ischemic tissue damage in intestine, lung,
kidney, and brain [22-25, 32-34]. In a mesenteric I/R model,
CRP deposition correlated with complement deposition,
suggesting a role of CRP in complement activation [23]; in
these studies, inhibition of complement activation by using
Cl inhibitor reduced the effects of CRP on intestinal injury.
Similarly, inhibition of complement activation by decay-
accelerating factor also prevented CRP-mediated intestinal
injury and remote lung damages following mesenteric I/R
[24]. In mice transgenic for human CRP, arterial injury
resulted in an expedited and higher rate of thrombotic
occlusion compared to that in nontransgenic mice [35].
CRP-mediated exacerbation of vascular injury involves com-
plement since lowering the biosynthesis of CRP prevented
complement consumption [36]. These findings indicated that
an intact complement system is required for the damaging
effects of CRP on myocardial injury because lowering of
CRP level, depleting complement, or blocking CRP-mediated
complement activation abrogated the effects of CRP. Thus,
CRP- and CRP-mediated complement activation both con-
tribute to myocardial injury.

Each subunit of CRP has a PCh-binding site. The three-
dimensional structure of the PCh-binding site reveals that
Glu8l in the PCh-binding hydrophobic pocket of CRP inter-
acts with the nitrogen atom of choline in PCh, that Phe66
interacts with the three methyl groups of choline, and that
Thr76 is critical for creating the appropriately sized pocket
on CRP to accommodate PCh. The phosphate group of PCh
directly coordinates with the two calcium ions bound to CRP
[9, 37]. We generated a CRP triple mutant, F66A/T76Y/E81A,
that does not bind to PCh and was therefore unable to form
complexes capable of activating complement [14]. Such a
mutant is suitable for use in experiments aimed at defining
the contribution of the PCh-binding site of CRP in deteri-
orating tissue injury. In another approach, pharmacological
inhibition of CRP using a PCh-based compound reduced
the deposition of CRP at myocardial infarcts and inhibited
complement activation, indicating that the PCh-binding site
of CRP participates in worsening the infarct size and that
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the inhibition of the PCh-binding site is a useful strategy to
prevent tissue-damaging conditions [38]. Similarly, pharma-
cological inhibition of biosynthesis of CRP also resulted in a
reduction of CRP-mediated exacerbation of vascular injury
[36].

3. LDL-Binding Function of Nonnative
Pentameric CRP and Atherosclerosis

Native CRP does not bind to native LDL under normal
physiological conditions [39-42]. Native CRP and native LDL
interact with each other only when either one is immobilized,
modified, or aggregated [39-44], raising the possibility that
CRP and LDL may interact with each other under patholog-
ical conditions. The native pentameric structure of CRP can
be modified in vitro and we have shown that the recognition
functions of nonnative pentameric CRP are different from
those of native CRP: one function of CRP in its nonnative
pentameric conformation is to bind to atherogenic LDL [45-
49]. Two types of LDL are used as models of atherogenic
LDL: enzymatically modified LDL (E-LDL) and oxidized
LDL (ox-LDL) [50-53]. To E-LDL, even native CRP binds
and the binding is inhibited by free PCh [40, 45, 54]. Data
obtained from PCh-inhibition experiments suggest that CRP
binds to E-LDL through the PCh groups in E-LDL and that
the binding is mediated by the PCh-binding site of CRP.
However, the amino acids in CRP that contact PCh are not
critical for the binding of CRP to E-LDL, indicating that the
PCh groups present in E-LDL are not the only components in
E-LDL through which CRP binds to E-LDL [45]. It has been
shown that CRP binds to E-LDL through cholesterol also and
that this binding was also PCh-inhibitable [55, 56]. Nonnative
CRP binds to E-LDL more avidly than native CRP through an
as-yet-undefined mechanism [45-47].

Several investigators have reported that native CRP can
also bind to ox-LDL through the PCh moiety in ox-LDL
[41, 54, 57] and several investigators have reported that native
CRP does not bind to ox-LDL [42, 47, 48, 55, 58]. CRP
has also been shown to bind to ox-LDL in vivo in diabetes
mellitus patients with atherosclerosis and when ox-LDL is
complexed with 32 glycoprotein I [59, 60]. We reported that
a modification of the native pentameric structure of CRP was
required for binding to ox-LDL and that CRP, in its nonnative
pentameric conformation, binds efficiently to ox-LDL [46-
48]. Taken together, it seems that the binding of CRP to ox-
LDL depends on the stringency of the method used to prepare
ox-LDL. If the PCh groups are exposed to ox-LDL, then
native CRP would bind, if the PCh groups are not exposed to
ox-LDL, then native CRP would not bind, and nonnative CRP
would bind to ox-LDL regardless of the extent and nature of
oxidation. The mechanism of interaction between nonnative
CRP and atherogenic LDL, however, has not been elucidated
yet. On the LDL molecules, the moieties that could interact
with CRP include PCh, cholesterol, apoB, and phospho-
ethanolamine [40, 41, 43, 45, 51, 52, 55, 56, 61, 62]. In addition,
the amyloid-like structures which are induced in LDL by oxi-
dation could also be recognized by nonnative CRP [63]. We
hypothesize that the LDL-binding site is buried (or absent)
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in native CRP and is exposed (or formed) in nonnative CRP
by the loosening up of the pentamer [47, 48]. CRP has been
found deposited and colocalized with LDL in atherosclerotic
lesions in humans and experimental animals, indicating the
presence of nonnative CRP at the lesions [64-70].

The recognition function of CRP to bind to atherogenic
LDL should have an effect on the formation of LDL-loaded
macrophage foam cells and also on the proinflammatory
effects of foam cells and LDL. The formation of foam cells
represents an early step in atherosclerosis and begins when
macrophages bind and take up LDL [71-73]. Using immuno-
histochemical staining of atherosclerotic lesions with anti-
bodies to CRP and LDL, the outcome of the interactions
among native or aggregated CRP, LDL, and macrophages
with regard to the formation of macrophage foam cells has
been investigated extensively [44, 57, 65, 74-76]; however, a
review of the published literature does not provide a clear-
cut overall conclusion [1, 77]. Similarly, it is also unclear
whether both Fcy receptor CD32 and LDL receptor CD36
on macrophages participate if there is an effect of CRP on
the uptake of LDL by macrophages [44, 57, 76, 78]. We
investigated the effect of CRP on the accumulation of lipid
droplets made up of cholesteryl esters in E-LDL-treated
macrophages and found that, in contrast to E-LDL alone,
CRP-bound E-LDL was inactive for the formation of foam
cells [45]. Other consequences of CRP-LDL interactions
have also been reported [74, 79-81]. CRP causes charge
modification of LDL [74]. CRP reduces the susceptibility of
copper-induced oxidation of LDL [58, 79]. CRP attenuates
adhesion and activation of monocytes via the prevention of
binding of minimally modified LDL to monocytes; this effect
was mediated by the binding of CRP to monocytes [80]. CRP
also suppresses the proatherogenic effects of macrophages
when bound to lysophosphatidylcholine, a moiety present
in oxLDL [81]. Collectively, these findings suggest that CRP,
under defined conditions, prevents foam cell formation and
reduces proinflammatory effects of LDL and foam cells.

To determine the role of CRP in the development of
atherosclerosis, human native CRP has been introduced into
three different murine models of atherosclerosis: ApoE ™/~
mice, LDLr~/~ mice, and ApoB'®/'"* Ldlr~/~ mice (reviewed
in [1, 77]). CRP was found to be neither proatherogenic nor
atheroprotective in ApoE~/~ mice [82-85]. Both passively
administered CRP and transgenically expressed CRP had no
effect on the development, progression, or severity of sponta-
neous atherosclerosis in ApoE™/~mice. In LDLr™/“mice also,
there was no effect of CRP on the development of atheroscle-
rosis [86]. In rabbits transgenic for human CRP also, CRP
did not affect aortic or coronary atherosclerosis lesion for-
mation [87]. However, two recent studies indicated athero-
protective effects of CRP [88, 89]. In ApoB'*/'Ldlr/
mice, CRP slowed the development of atherosclerosis [88].
In ApoE/"CRP™'~ and LDLr"/"CRP™'~ mice, the size of
atherosclerotic lesions was either equivalent or increased
when compared to that of ApoE~~ and LDLr™/~ mice, sug-
gesting that even mouse CRP may mediate atheroprotective
effects. These data raise hopes that nonnative CRP may
be more atheroprotective than native CRP considering the

difference between the LDL-binding recognition functions of
nonnative and native CRP.

Although much more experimentation needs to be done,
there are already several lines of evidence to indicate that
the LDL-binding function of CRP is beneficial and may con-
tribute to atheroprotection. First, CRP reduces further oxida-
tion of LDL. Second, CRP attenuates monocyte adhesion and
activation via the prevention of binding of atherogenic LDL to
monocytes. Third, CRP suppresses the proatherogenic effects
of macrophages. Fourth, CRP prevents foam cell formation.
Fifth, at least in two in vivo studies, both human and mouse
CRP showed some atheroprotective effects.

4. Conclusions

There is no data to suggest that CRP causes a disease. CRP
infused in healthy human adults does not result in any
significant clinical, hematologic, coagulative, or biochemical
changes or any increase in proinflammatory cytokines or
acute phase proteins [90]. In case of acute myocardial
infarction in model animals, CRP worsens an already existing
disease; CRP does what it is programmed to do, that is, to
bind to PCh and activate complement, and just in this case
CRP does harm. We conclude that CRP is an atheroprotective
molecule and, therefore, a host defense protein. CRP mutants
(nonnative CRP) capable of efficiently binding to all forms
of atherogenic LDL can be evaluated for their effects on the
development of atherosclerosis in available animal models to
test our conclusion. Administration of exogenously prepared
CRP mutant may be useful to capture atherogenic LDL to
prevent atherosclerosis. If it turns out that nonnative CRP is
indeed atheroprotective, a long-term goal could be to focus
on the discovery and design of small-molecule compounds
to target CRP (a compound that can change the structure
of endogenous CRP) for capturing atherogenic LDL. The
purpose of administering a PCh-based compound to target
CRP is to inhibit binding of CRP to damaged cells to prevent
further damage to myocardial infarcts. As of now, we do not
see any need to lower the circulating level of native CRP, as
we have suggested previously [91].
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