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Abstract
Background: Catecholamines, such as epinephrine, are elaborated in stress responses, and
mediate vasoconstriction to cause elevation in systemic vascular resistance and blood pressure.
Our previous study has shown that IL-1 can induce mast cells to produce proinflammatory
cytokines which are involved in atherogenesis. The aim of this study was to determine the effects
of epinephrine on IL-1-induced proatherogenic cytokine production from mast cells.

Results: Two ml of HMC-1 (0.75 × 106 cells/ml) were cultured with epinephrine (1 × 10-5 M) in
the presence or absence of IL-1β (10 ng/ml) for 24 hrs. HMC-1 cultured alone produced none to
trace amounts of IL-6, IL-8, and IL-13. IL-1β significantly induced production of these cytokines in
HMC-1, while epinephrine alone did not. However, IL-6, IL-8, and IL-13 production induced by IL-
1β were significantly enhanced by addition of epinephrine. The enhancing effect appears to involve
NF-κB and p38 MAPK pathways. Flow cytometry showed the presence of β1 and β2
adrenoreceptors on resting mast cells. The enhancing effect of proatherogenic cytokine production
by epinephrine was down regulated by the β1 and β2 adrenoceptor antagonist, propranolol, but not
by the β1 adrenoceptor antagonist, atenolol, suggesting the effect involved β2 adrenoceptors. The
enhancing effect of epinephrine on proatherogenic cytokine production was also down regulated
by the immunosuppressive drug, dexamethasone.

Conclusions: These results not only confirm that an acute phase cytokine, IL-1β, regulates mast
cell function, but also show that epinephrine up regulates the IL-1β induction of proatherogenic
cytokines in mast cells. These data provide a novel role for epinephrine, a stress hormone, in
inflammation and atherogenesis.

Background
Atherogenesis involves the cellular infiltration of several

cell types, including monocytes, T lymphocytes, and mast
cells. Cytokine secretion by these cells and endothelial
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cells are contributing factors in the growth and propaga-
tion of atherosclerotic plaques as well as the stability and
degradation of fibrous caps. Cytokines implicated in
atherogenesis include Interleukin (IL)-1β, IL-6, IL-8, IL-
13, and Tumor Necrosis Factor (TNF) [1,2].

IL-1β is secreted mainly by macrophages and virtually by
every cell type in the body. IL-1β is produced in response
to various stimulants, such as cytokines, bacteria, and
viruses, but most interestingly to epinephrine [3]. IL-1β
has a broad range of functions which includes activation
of neutrophils, endothelial cells, monocytes, T-cells, and
mast cells. It may also induce procoagulant changes in
endothelial tissue. IL-6 induces an acute phase response
consisting of increased fibrinogen synthesis and thrombo-
cytosis with increased vascular permeability. The detec-
tion of IL-6 in the blood of patients suffering from
unstable angina suggests that nuclear factor-kappa B (NF-
κB) activation may be occurring at the vascular level in
patients with heart disease [4-7]. IL-8 is in the CXC family
of chemokines and functions to recruit neutrophils to the
site of inflammation. IL-13 exerts multiple effects on cell
differentiation and function of monocytes/macrophages.
It can also suppress the cytotoxic function of monocytes/
macrophages and the production of proinflammatory
cytokines by these cells [8,9].

Mast cells are found preferentially around blood vessels
and beneath the epithelium of the skin and mucus mem-
branes [1,10-12]. Traditionally, mast cells are responsible
for allergy and asthma pathogenesis. Typically, mast cell
activation occurs in response to cross-linkage of the high
affinity IgE receptor (FcεRI) by antigen and IgE [12]. Acti-
vation may also occur in response to a range of agents,
such as pathogens, cytokines, and even oxidized low den-
sity lipoprotein (ox-LDL). After activation, key mediators
secreted by mast cells include preformed mediators like
histamine, proteoglycans, proteases, and several cytokines
and growth factors [1]. Mast cells have been observed in
both aortic atherosclerotic lesions and in coronary arter-
ies. The large numbers of mast cells found in the adventi-
tia of arteries and in the intima are in proportion to the
severity of heart disease [13]. The study of the distribu-
tion, activation, and phenotype of mast cells in lesions of
250 specimens of human carotid arteries by Jeziorski, et
al. further supports the role of mast cells in atherogenesis
[14]. They demonstrated significant numbers and focal
accumulations of mast cells in association with macro-
phages and extensive activation/degranulation at all
developmental stages of atherosclerotic lesion develop-
ment. It now appears likely that inflammatory events and
mast cells play an important role in atherogenesis as
recently reviewed by us [1,2].

Stress is known to influence immune function [15-17]. An
immunoregulatory effect of the sympathetic nervous sys-
tem in stress has been indicated for some time [18]. Cate-
cholamines, such as epinephrine, norepinephrine, and
dopamine, are elevated in stress responses, and mediate
vasoconstriction and an increase in blood pressure as a
result of increased peripheral vascular resistance. In disor-
ders such as sepsis, cardiovascular disease, or cocaine
abuse, catecholamines are elaborated in excess. Sustained
increases in circulating catecholamines by infusion of
epinephrine or norepinephrine have been shown to cause
moderate cardiovascular and metabolic effects [19]. Cate-
cholamines induce aggravation of aortic and coronary
atherosclerosis in monkeys [20] and play a direct role in
atherogenesis and cardiovascular disease [21].

Epinephrine and norepinephrine increase the uptake of
low density lipoprotein in atheroscelotic plaques in rab-
bits and rats [22] as well as enhance proliferation of rat
endothelial and smooth muscle cells [23]. It has been
reported that norepinephrine increases adherence and
chemotaxis of macrophages [24]. Epinephrine also upreg-
ulates the surface expression of L-selectin on monocytes in
vitro [25]. Most recently, we have reported that nitric oxide
production from macrophages induced by LPS is
enhanced by catecholamines [26]. Both epinephrine and
IL-1 are involved in acute phase responses seen in stress
and in coronary artery disease. Studies have shown that
norepinephrine can induce IL-1β mRNA in mycocardial
tissue [27] and that infusion of IL-1β in animal models
can induce expression of catecholamines [28,29]. These
data suggest that, in some conditions, both IL-1β and cat-
echolamines can be delivered to tissues that can then
mediate additive or modulatory effects. Moreover, as
reviewed by Gidron Y et al., [30] stress in conjunction
with the release of catecholamines and proinflammatory
cytokines, can potentiate atherogenesis. Hence, studies of
the interactions between catecholamines, monokines and
inflammatory cell activation are especially relevant. The
aim of the study was to determine whether epinephrine
affects IL-1β induced proatherogenic cytokine production
in mast cells, a phenomenon previously not described.
Our results indicated that epinephrine synergized with IL-
1β in the production of proatherogenic cytokines, suggest-
ing a potential role for this interaction in inflammatory
and atherogenic states.

Results
Epinephrine enhances IL-1β-induced IL-6, IL-8, and IL-13 
production in mast cells
Human mast cell line, HMC-1, was incubated with IL-1β
at various concentrations for 24 hours. The cell free super-
natants of the cultures were harvested and subjected to IL-
6 assay. HMC-1 cultured in medium alone produced trace
amounts of IL-6. The IL-6 production from HMC-1
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cultures treated with IL-1β was significantly increased in a
dose-dependent manner (p < 0.0001) (Fig. 1). Since there
was no significant difference in the IL-6 production
induced by IL-1β at concentrations of 10 and 50 ng/ml, 10
ng/ml of IL-1β has been used to induce cytokine produc-
tion in HMC-1 for the rest of the experiments. Epine-
phrine (Epi) alone at a concentration of 10-3 M did not
induce production of IL-6 in HMC-1 (Fig. 2). When epine-
phrine at 10-3 to 10-7 M concentration was added simulta-

IL-1β induces IL-6 production from HMC-1 cellsFigure 1
IL-1β induces IL-6 production from HMC-1 cells. To each 
well of a 6 well culture plate, two ml of HMC-1 mast cells 
(0.75 × 106cells/ml) were cultured with IL-1β (1, 10, and 50 
ng/ml) for 24 hours. The cultures were carried out in tripli-
cate. Supernatants were harvested for measuring IL-6 by 
ELISA. By Student's t-test analysis, * indicates p < 0.0001, 
when compared with the medium alone. + indicates p < 
0.0005, when compared with the IL-1 (1 ng/ml) group.

Enhancing effect of epinephrine on IL-6 production from IL-1β-induced HMC-1 cellsFigure 2
Enhancing effect of epinephrine on IL-6 production from IL-
1β-induced HMC-1 cells. To each well of a 6 well culture 
plate, two ml of HMC-1 mast cells (0.75 × 106 cells/ml) were 
cultured with epinephrine (1 × 10-3 to 1 × 10-7 M) in the 
presence and absence of IL-1β (10 ng/ml) for 24 hrs in tripli-
cate. Supernatants were harvested for measuring IL-6 by 
ELISA. By Student's t-test analysis, * indicates p < 0.05, when 
compared with the IL-1β-treated group.

Effect of propranolol (Pro) and atenolol (Ate) on the enhanc-ing effect of epinephrine (Epi) on production of IL-6 (A), IL-8 (B), and IL-13 (C) from IL-1β-induced HMC-1 cellsFigure 3
Effect of propranolol (Pro) and atenolol (Ate) on the enhanc-
ing effect of epinephrine (Epi) on production of IL-6 (A), IL-8 
(B), and IL-13 (C) from IL-1β-induced HMC-1 cells. To each 
well of a 6 well culture plate, two ml of HMC-1 mast cells 
(0.75 × 106 cells/ml) were cultured alone (Medium), or in the 
presence of IL-1β (10 ng/ml), Epi (1 × 10-5 M), Pro (1 × 10-4 

to 1 × 10-6 M), Ate (1 × 10-4 to 1 × 10-6 M), and the combina-
tions of these reagents for 24 hrs in triplicate. Supernatants 
were harvested for measuring IL-6, IL-8, and IL-13 by ELISA. 
IL-8 and IL-13 production were not detected in the Medium, 
Epi, Pro, and Ate alone groups. In A and B, by Student's t-test 
analysis, * and + indicate p < 0.05, when compared with the 
IL-1β-treated group, and the IL-1β plus Epi group, respec-
tively. In C, * indicates p < 0.01, when compared with the IL-
1β-treated group; p values for ++, +, ##, and # were 
<0.00005, <0.0005, <0.01, and <0.05, when compared with 
the IL-1β plus Epi group.
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neously with IL-1β into the cultures, the production of IL-
6 was enhanced significantly (p < 0.05) compared with
that induced by IL-1β alone (Fig. 2). Since the physiolog-
ical concentration of epinephrine in plasma is 0.11 – 0.27
× 10-6 M [31], we decided to use epinephrine at a
supramaximal concentration of 1 × 10-5 M for the rest of
the experiments. In addition to IL-6, the enhancing effect
of epinephrine was also observed in the production of IL-
8 and IL-13 from IL-1β-induced HMC-1 cells (Fig. 3).

To measure proatherogenic cytokine gene expression,
HMC-1 were treated with IL-1β, epinephrine, and IL-1β
plus epinephrine for 6 hours and harvested for transcrip-
tional analysis via RT-PCR. IL-1β-treated HMC-1 showed
increased IL-6 mRNA transcription as seen with densitom-
etry, while epinephrine alone appeared to have no effect.
When IL-1β and epinephrine were added together to
HMC-1, IL-6 mRNA expression increased over IL-1β treat-
ment alone (Fig. 4). The intensities of the cytokine and
house keeping gene (HPRT) bands were measured by den-
sitometry, and the ratio of the cytokine to the house keep-

ing gene was calculated and assigned as the intensity
index. The intensity indices for IL-6 were 0.36 for the con-
trol, 0.39 for IL-1β alone, 0.33 for epinephrine alone, and
0.54 for IL-1β plus epinephrine. IL-1β activated IL-8
mRNA production but epinephrine had no effect on IL-8
transcripts. IL-1β and epinephrine treatment together fur-
ther increased IL-8 mRNA production (Fig. 4). The inten-
sity indices for IL-8 were 0.17 for the control, 0.52 for IL-
1β alone, 0.20 for epinephrine alone, and 0.64 for IL-1β
plus epinephrine. The results with IL-13 expression
showed the same pattern. IL-1β was a good inducer of IL-
13 transcription while epinephrine alone only minimally
induced IL-13 mRNA. The combined stimulus of IL-1β
and epinephrine significantly increased IL-13 mRNA pro-
duction over that seen with each stimulus alone (Fig 4).
Intensity indices for IL-13 were 0.22 for the control, 0.57
for IL-1β alone, 0.20 for epinephrine alone, and 0.64 for
IL-1β plus epinephrine. To evaluate further the ability of
epinephrine to induce IL-13 transcription at a molecular
level, we transiently transfected HMC-1 cells with mini-
mal promoter sequences as described in the materials and
methods. IL-1β at 10 ng/ml significantly increased IL-13
promotor activity as detected by luciferase expression
(data not shown). Epinephrine did not enhance IL-13
promoter activity suggesting that post-transcriptional
mechanisms may be involved in the IL-13 induction. It is
likely that epinephrine either prolongs IL-13 mRNA half
life and/or enhances IL-13 secretory processes from the
mast cell in response to IL-1-stimulation.

Enhancing effect of epinephrine on proatherogenic 
cytokine production from IL-1β-induced HMC-1 is down 
regulated by adrenoceptor antagonists
Since our previous study has shown that the effect of
epinephrine on nitric oxide synthesis is mediated by β-
adrenoceptors [26], β-adrenergic receptor antagonists
(propranolol and atenolol) were used to block the
enhancing effect of epinephrine on proatherogenic
cytokine production in HMC-1. Propranolol (Pro) and
atenolol (Ate) at a concentration of 1 × 10-4 M did not
affect the cell viability in the cultures (88 and 90%, respec-
tively, while that of the medium control was 85%), nor
induced production of IL-6, IL-8 or IL-13 (Fig. 3). When
propranolol at 1 × 10-4 and 1 × 10-5 M was used in the
culture, it significantly reduced the enhancing effect of
epinephrine on IL-6 production (p < 0.05, Fig. 3A). Pro-
pranolol at 1 × 10-4 M also significantly reduced the
enhancing effect of epinephrine on IL-8 production (p <
0.05, Fig. 3B), and at 1 × 10-4 and 1 × 10-5 M significantly
reduced the enhancing effect of epinephrine on IL-13 pro-
duction (p < 0.00005 and 0.0005, respectively, Fig. 3C).
However, atenolol only significantly reduced the enhanc-
ing effect of epinephrine on IL-13 production (p < 0.05,
Fig. 3C), but not on IL-6 or IL-8 production (Fig. 3A and
3B).

RT-PCR analysis for IL-6, IL-8, and IL-13 in HMC-1 treated with IL-1β and epinephrineFigure 4
RT-PCR analysis for IL-6, IL-8, and IL-13 in HMC-1 treated 
with IL-1β and epinephrine. HMC-1 were treated for 6 hours 
with IL-1β with and without epinephrine and harvested for 
RNA preparation. RNA was subjected to RT-PCR with spe-
cific primers for target genes. HPRT was used as a house 
keeping gene to ensure equal loading. IL-6 gene expression 
was increased with IL-1β treatment and further increased 
with IL-1β plus epinephrine. Epinephrine alone had no effect 
on IL-6 gene expression in HMC-1. IL-8 and IL-13 showed 
similar results with a more robust expression of gene tran-
scripts at this time point.
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Expression of β1 and β2 adrenergic receptors on mast cells
In order to further identify whether the enhancing effect
of epinephrine on proatherogenic cytokine production is
through the β-adrenoceptor, HMC-1 cells were incubated
with rabbit polyclonal antibodies against β1 and β2 adren-
ergic receptors followed by a FITC-labeled second anti-
body. By flow cytometry analysis, β1 and β2 adrenergic
receptors were found in small amounts on HMC-1 (18.6
and 11.7% respectively) (Fig 5).

Enhancing effect of epinephrine on proatherogenic 
cytokine production from IL-1β-induced HMC-1 is down 
regulated by immunosuppressants
Since glucocorticoids are very effective treatment strate-
gies for inflammatory disease, dexamethasone was used to
determine its effect on atherogenic cytokine production in
HMC-1. Dexamethasone (Dex, 1 × 10-7 M) alone did not
induce proatherogenic cytokine production (Fig. 6). How-
ever, Dex significantly inhibited the enhancing effect of
epinephrine on IL-6 production (p < 0.05, Fig. 6A). The
cell viability of the cultures was not different between the

medium control (70%) and Dex (64%) groups. Dex also
significantly inhibited the enhancing effect of epine-
phrine on IL-8 and IL-13 production (p < 0.05, Fig. 6B and
6C). When Dex was included in the IL-1β-treatment, it
slightly decreased the cytokine production when com-
pared to the IL-1β alone, but the decrease was not signifi-
cant (Fig. 6).

Role of NF-κB activation in the enhancing effect of 
epinephrine on proatherogenic cytokine production from 
IL-1β-induced HMC-1
NF-κB is an important transcription factor that mediates
the transcription of many proinflammatory cytokine
genes. To study the role NF-κB plays in the enhancing
effect of epinephrine on proatherogenic cytokine

Detection of β1 and β2 adrenergic receptors on HMC-1 cell by flow cytometry analysisFigure 5
Detection of β1 and β2 adrenergic receptors on HMC-1 cell 
by flow cytometry analysis. Resting HMC-1 were harvested 
and stained with a purified rabbit polyclonal antibody to 
either β1 or β2 adrenergic receptor and counter stained with 
a secondary goat anti-rabbit FITC conjugated antibody. Nor-
mal rabbit serum and the FITC conjugated goat anti-rabbit Ig 
G antibody was used as a staining control.

Effect of dexamethasone (Dex) on the enhancing effect of epinephrine (Epi) on production of IL-6 (A), IL-8 (B), and IL-13 (C) from IL-1β-induced HMC-1 cellsFigure 6
Effect of dexamethasone (Dex) on the enhancing effect of 
epinephrine (Epi) on production of IL-6 (A), IL-8 (B), and IL-
13 (C) from IL-1β-induced HMC-1 cells. To each well of a 6 
well culture plate, two ml of HMC-1 mast cells (0.75 × 106 

cells/ml) were cultured alone (Medium), or in the presence 
of IL-1β (10 ng/ml), Epi (1 × 10-5 M), Dex (1 × 10-7 M), and 
the combinations of these reagents for 24 hrs in triplicate. 
Supernatants were harvested for measuring IL-6, IL-8, and IL-
13 by ELISA. * p < 0.005, when compared with the medium 
control, + p < 0.05 compared to the IL-1β-treated group, 
and ++ p < 0.05 compared to the IL-1β plus Epi group.
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production from IL-1β-induced HMC-1, NF-κB activation
was analyzed in HMC-1 cultures. NF-κB translocation, as
seen by a shift in oligonucleotide binding in EMSA gels,
was not seen in control or epinephrine treated cells (Fig.
7). A marked increase of NF-κB nuclear binding activity
was observed in samples stimulated with IL-1β and IL-1β

plus epinephrine for one hour but started to diminish
after two hours (Fig. 7). Not only did IL-1β plus
epinephrine have no further effects on NF-κB transloca-
tion over IL-1β treatment alone, it seemed to decrease
after one and two hours of stimulation.

Role of p38 MAPK activation in the enhancing effect of 
epinephrine on proatherogenic cytokine production from 
IL-1β-induced HMC-1
Because of its importance in cytokine signaling, phospho-
rylated p38 MAPK was also assayed. After 30 minutes of
activation, the HMC-1 were lysed to be analyzed for p38
activation by Western blot. The presence of phosphor-
ylated p38 was greatly increased in the epinephrine and
IL-1β plus epinephrine samples (Fig. 8). IL-1β alone had
small effects on p38 activation at this time point while
control levels were virtually nonexistent.

Enhancing effect of epinephrine on proatherogenic 
cytokine production from IL-1β-induced HMC-1 is down 
regulated by NF-κB and p38 MAPK inhibitors
To confirm the role of NF-κB and p38 MAPK in the
enhancing effect of epinephrine on proatherogenic
cytokine production from IL-1β-induced HMC-1, Bay 11,
an NF-κB inhibitor [32], and SB203580, a specific inhibi-
tor of p38 MAPK [33], were added to the cultures. By
themselves, neither Bay 11 (1 × 10-5 M) nor SB203580 (1
× 10-5 M) affected the cell viability of the cultures (92 and
87%, respectively, while that of the medium control was
92%), nor did they induce proatherogenic cytokine
production (Fig. 9). However, Bay 11 and SB203580 sig-
nificantly inhibited the enhancing effect of epinephrine
on IL-6 production (p < 0.0005 and p < 0.00005, respec-
tively, Fig. 9A). Bay 11 decreased the IL-1β-epinephrine
induced IL-8 production but not significantly, however
SB203580 did significantly inhibit the enhancing effect of
epinephrine on IL-8 production (p < 0.05, Fig. 9B). Bay 11
and SB203580 significantly inhibited the enhancing effect
of epinephrine on IL-13 production (p < 0.00005 and p <
0.0001, respectively, Fig. 9C).

Discussion
Inflammatory cytokines play an important role in athero-
genesis. Acute phase response (APR) proteins have been
demonstrated as risk factors for atherosclerotic heart dis-
ease [34]. Recent studies also suggest a prominent role for
the APR in cerebrovascular disease and brain ischemia
[35]. The APR culminates in the secretion of inflammatory
cytokines such as IL-6, TNF-α", and IL-1 resulting in the
synthesis of several proteins including C-reactive protein,
fibrinogen, serum amyloid A protein, and ceruloplasmin
[36,37]. These cytokines are intimately involved with the
stress response [38]. These cytokines can also induce tran-
scriptional regulation of complement genes that have
been shown to play a role in cardiovascular disease [39].

Effects of IL-1β and epinephrine on NF-κB translocation in HMC-1Figure 7
Effects of IL-1β and epinephrine on NF-κB translocation in 
HMC-1. HMC-1 were treated for 1 and 2 hours with IL-1β 
and epinephrine. NF-κB translocation was analyzed by a shift 
in oligonucleotide binding in EMSA gels. After one hour of 
treatment, NF-κB translocation is increased in the IL-1β 
treated cells but not in the untreated or epinephrine treated 
cells. Addition of IL-1β plus epinephrine does not further 
enhance NF-κB translocation. After two hours of treatment, 
NF-κB translocation in HMC-1 starts to decrease.

Phosphorylated and total p38 MAPK in HMC-1 cells treated with IL-1β, epinephrine, and IL-1β plus epinephrineFigure 8
Phosphorylated and total p38 MAPK in HMC-1 cells treated 
with IL-1β, epinephrine, and IL-1β plus epinephrine. HMC-1 
were treated for 30 minutes with the indicated reagents and 
harvested for phosphorylated p38 expression by Western 
blot. Unphosphorylated p38 was used as loading control to 
show total MAPK expression. IL-1β treated cells showed a 
small amount of p38 activation while the bulk of p38 was 
activated with epinephrine. IL-1β plus epinephrine had no 
additional effects over epinephrine alone.
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Catecholamines are elaborated in stress responses which
mediate vasoconstriction and elevate systemic vascular
resistance and blood pressure. Catecholamines induce
aggravation of aortic and coronary atherosclerosis in
monkeys [20] and play a direct role in atherogenesis and

cardiovascular disease [21]. Thus, it is important to under-
stand the interaction between epinephrine and IL-1β with
respect to atherogenic cytokine production.

In this study, IL-1β, an acute phase cytokine, activated
mast cells to produce proatherogenic cytokines, IL-6, IL-8,
and IL-13, in a dose-dependent manner (Fig 1, 2, and 3).
These results confirm our previous report that IL-1β
regulates mast cell function [40]. These results also show
that epinephrine significantly up regulated the IL-1β
induction of proatherogenic cytokines in mast cells giving
new insight into neuronal regulation of the immune sys-
tem. The gene expression of these proatherogenic
cytokines was also increased in IL-1β-induced HMC-1
cells by addition of epinephrine, suggesting that the
enhancing effect of proatherogenic cytokine production is
a result of increased cytokine gene transcription (Fig. 4).
These data provide a novel role for epinephrine in inflam-
mation and atherogenesis.

IL-1β signaling probably synergizes with β2-adrenorecep-
tor-mediated signaling pathways in inducing
proatherogenic cytokine production. Several reports have
shown that the effect of catecholamines on immune func-
tion is due to β-adrenoceptors [41-45]. Flow cytometry
data indicated that HMC-1 cells express both β1 and β2
adrenoceptors in small amounts (Fig. 5). The result
showed that the enhancing effect of proatherogenic
cytokine production by epinephrine is down regulated by
β1 and β2 adrenoceptor antagonist, propranolol, but not
by β1 specific adrenoceptor antagonist, atenolol, further
suggesting the enhancing effect involves β2 adrenoceptors
(Fig. 3). The down regulation by propranolol does not
appear to be due to cytotoxicity of the antagonist since
there is no difference in viabilities between the pro-
pranolol-treated and untreated cell cultures. It was inter-
esting to see that propranolol caused a reduction of
production of IL-13 to an amount that was much lower
than that treated with IL-1β only (Fig. 3). It may be that
epinephrine-induced enhancement of IL-13 production is
more sensitive to the propranolol blocking.

Activated NF-κB has been demonstrated in atheromatous
plaques and has been shown to play a role in
atherogenesis [46]. To study the mechanism of the
enhancing effect of epinephrine on proatherogenic
cytokine production from IL-1β-induced mast cells, NF-
κB and p38 MAPK activations were investigated. Control
samples and epinephrine alone samples did not induce
NF-κB activation. However, a marked increase in NF-κB
activation was observed in samples stimulated with IL-1β
and IL-1β plus epinephrine (Fig. 7). NF-κB activation was
seen early at one hour and began to fade by two hours.
NF-κB also was not increased by the addition of epine-
phrine to IL-1β and even seemed to decrease it at both

Effect of Bay 11 and SB203580 on the enhancing effect of epinephrine (Epi) on production of IL-6 (A), IL-8 (B), and IL-13 (C) from IL-1β-induced HMC-1 cellsFigure 9
Effect of Bay 11 and SB203580 on the enhancing effect of 
epinephrine (Epi) on production of IL-6 (A), IL-8 (B), and IL-
13 (C) from IL-1β-induced HMC-1 cells. To each well of a 6 
well culture plate, two ml of HMC-1 mast cells (0.75 × 106 

cells/ml) were cultured alone (Medium), or in the presence 
of IL-1β (10 ng/ml), Epi (1 × 10-5 M), Bay 11 (1 × 10-5 M), SB 
203580 (1 × 10-5 M), and the combinations of these reagents 
for 24 hrs in triplicate. Supernatants were harvested for 
measuring IL-6, IL-8, and IL-13 by ELISA. IL-8 production was 
not detected in the Medium, Epi, Bay 11 alone groups, while 
IL-13 production was not detected in the Bay 11 and SB 
203580 alone groups. In A, by Student's t-test analysis, * indi-
cates p < 0.005, when compared with the IL-1β-treated 
group, and + and ++ indicate p < 0.0005 and <0.00005, when 
compared with the IL-1β plus Epi group. In B, * indicates p < 
0.05, when compared with both the IL-1β-treated group, and 
the IL-1β plus Epi group. In C, * indicates p < 0.005, when 
compared with the IL-1β-treated group, and + and ++ indi-
cate p < 0.00005 and <0.0001, when compared with the IL-
1β plus Epi group.
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time points suggesting that NF-κB is needed for cytokine
induction but not for the enhancing effect. The presence
of phosphorylated p38 MAPK was greatly increased in the
epinephrine and IL-1β plus epinephrine samples but only
minimally activated with IL-1β alone at a 30 minute incu-
bation time point (Fig. 8). SB203580 blocked the IL-1β
and IL-1β plus epinephrine effect on IL-6, IL-8, and IL-13
expression suggesting that p38 plays an important role in
signaling from both IL-1β and epinephrine. The double
stimulation of p38, early by IL-1β and later by epine-
phrine, may explain the enhancing effect on the produc-
tion of IL-6, IL-8, and IL-13 in mast cells.

The enhancing effect of epinephrine on proatherogenic
cytokine production was also down regulated by immu-
nosupressants, such as Dex. Dex at the concentration used
in this study did not affect the cell viability of the culture,
suggesting the down regulation effect of the drugs is not
due to toxic effect. Dex also slightly, but not significantly,

decreased IL-1β-induced cytokine production in mast
cells (Fig. 6). Taken all together, these results indicate that
β2-adrenoceptor antagonists and glucocorticoids may
have clinical potential in stress-mediated disease and
atherogenesis.

All the signaling pathways induced by IL-1β and epine-
phrine in mast cells are complex and beyond the scope of
this manuscript. However, two important inflammatory
pathways, NF-κB and p38 MAPK, have been shown. IL-1β
release from immune challenge and epinephrine elevated
from stress response can jointly stimulate mast cells to
increase IL-6, -8, and -13 production above that which is
seen with either stimulus alone. The exact mechanisms are
unclear, but we have shown that IL-1β is a strong inducer
of NF-κB while epinephrine is a strong inducer of p38
MAPK. Neither NF-κB nor p38 MAPK was activated
further by IL-1β plus epinephrine compared to either
stimulus alone nor was the promotor activity of IL-13
increased by the double stimulus as seen by luciferase
activity of a IL-13 reporter gene construct. These data
would suggest that IL-1β is activating IL-6, IL-8, and IL-13
by NF-κB while p38 MAPK activation is enhancing pro-
tein production by inducing other transcription factors,
stabilizing the gene mRNA, or other forms of post-transla-
tional modification. These mechanisms are summarized
in Fig. 10.

Conclusions
In conclusion, stress related catecholamines, such as
epinephrine, synergized with IL-1β in gene expression and
production of proatherogenic cytokines, IL-6, IL-8, and IL-
13 in mast cells. The enhancing effect of proatherogenic
cytokine production by epinephrine on IL-1β-induced
mast cells was down regulated by β-adrenoceptor antago-
nist, propranolol, and the immunosuppressant Dex.
These data support a novel role for catecholamines in dis-
orders such as inflammation and atherogenesis. These
data also indicate that β-adrenoceptor antagonists and
immunosuppressants may be used preventively and ther-
apeutically for modulation of the catecholamine –
proatherogenic cytokine axis in disease states.

Methods
Mast cell culture and the induction of cytokine production 
in HMC-1 cells
HMC-1 cell line, established from a patient with mast cell
leukemia, were graciously provided by Dr. Butterfield
(Mayo Clinic, Rochester, MN). These cells were main-
tained in RPMI 1640 media (GibcoBRL, Rockville, MD),
supplemented with 5 × 10-5 M 2-mercaptoethanol (Sigma
Chemical Company, St. Louis, MO), 10 mM HEPES (Gib-
coBRL), Gentamycin 50 µg/ml, 5 µg/ml insulin transfer-
rin, 2 mM L-glutamine, and 5% heat inactivated fetal
bovine serum (Atlanta Biologicals, Atlanta, GA), at 37°C

Schematic presentation showing the possible route of IL-6, IL-8, and IL-13 signalingFigure 10
Schematic presentation showing the possible route of IL-6, 
IL-8, and IL-13 signaling. Endogenous IL-1β production may 
occur with immune challenge by cytokines, bacteria, and 
viruses, and any microtrauma in the body while epinephrine 
is released in states of stress or sympathetic nervous system 
activation. The pathways activated by these signals converge 
on IL-6, IL-8, and IL-13 genes to induce cytokine production 
that is greater than either signal alone. IL-1β activates the 
NF-κB pathway which leads to significant amounts of IL-6, IL-
8, and IL-13 production. Epinephrine activates the p38 MAPK 
pathway which may activate other transcription factors or 
stabilize the IL-6, 8, and 13 mRNA. From our data it is evi-
dent that IL-1β and epinephrine do not combine to further 
activate NF-κB or the promotor activity of the IL-13 gene. 
The importance of IL-6, IL-8, and IL-13 are listed in the 
figure.
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and in 5% CO2 mixture [33]. HMC-1 cells were cultured
and maintained in 25 cm2 flasks. To each well of a 6 well
culture plate, two ml of HMC-1 mast cells at 0.75 × 106

cells/ml concentration were cultured with epinephrine at
1 × 10-5 M concentration in the presence and absence of
IL-1β (10 ng/ml) for 24 hrs. The cultures were carried out
in triplicate. Supernatants were harvested for measuring
IL-6, IL-8, and IL-13 by ELISA and cell viability and num-
bers of the culture were analyzed.

ELISA for cytokine proteins
Cytokine ELISA was performed for the following
cytokines: IL-6, IL-8, and IL-13. ELISA was carried out on
cell-free culture supernatants using commercially availa-
ble ELISA kits, according to manufacturers instructions as
earlier described (R&D Systems, Minneapolis, MN;
Immunotech, Westbrook, ME; Genzyme, Cambridge,
MA). Results were analyzed on an ELISA plate reader
(Dynatech MR 5000 with supporting software) [47,48].

Measurement of cell viability of the cultures
At the end of incubation, the cells were subjected to the
viability count by trypan blue (TB) dye exclusion tech-
nique. Two tenths ml of cell cultures were mixed with 0.05
ml of TB, applied to hemocytometer, and counted under
a microscope. The cell viability is calculated by dividing
the number of live cells (unstained cells) by the total
number of all cells (TB-stained and unstained cells) and
expressed as a percent.

Analysis of cytokine gene expression by RT-PCR
HMC-1 were treated with the appropriate reagents and
allowed to incubate at 37°C before being harvested for
RNA. RNA was extracted from HMC-1 (3 × 106 cells) by
the addition of 1 ml of RNAzol B (Tel-Test, Inc., Friends-
wood, Texas) [49]. After shaking for 1 minute the samples
were centrifuged at 12,000 × g for 15 minutes at 4°C. The
aqueous layer was washed twice with 0.8 ml phenol :
chloroform (1:1, v/v), centrifuged at 12,000 × g for 15
minutes at 4°C, washed once with 0.8 ml of chloroform
and centrifuged at 12,000 × g for 15 minutes at 4°C again.
Isopropanol was added to the aqueous phase, and the
preparation was frozen at -20°C overnight. The following
day, the samples were centrifuged at 12,000 × g for 30
minutes at 4°C. The RNA pellet was washed with 1 ml
75% ethanol and allowed to air dry until all moisture was
gone. The pellet was resuspended in DEPC water and
quantitated by optical density readings at 260 nm. cDNA
was synthesized with murine leukemia virus reverse tran-
scriptase (2.5 U/µl), 10 × PCR buffer (500 mM KCl, 100
mM Tris-HCl, pH 8.3), 1 mM each of the nucleotides
dATP, dCTP, dGTP and dTTP; RNase inhibitor (1 U/µl),
MgCl2 (5 mM), and oligo(dT)16 (2.5 µM) as a primer. The
samples were incubated at 42°C for 20 minutes, 99°C for
20 minutes, and 5°C for 5 minutes in a DNA thermocy-

cler (Perkin-Elmer Corp., Norwalk, CT) for reverse tran-
scription. PCR of cDNA was done with MgCl2 (1.8 mM),
each of the dNTPs (0.2 mM), AmpliTaq polymerase (1 U/
50 µl), and paired cytokine-specific primers (0.2 nM of
each primer) to a total volume of 50 µl. Cycles consisted
of 1 cycle of 95°C for 2 min, 35 cycles of 95°C for 45 sec,
60°C for 45 sec, and 72°C for 1 min 30 sec, and lastly, 1
cycle of 72°C for 10 min. Ten microliters of the sample
were electrophoresed on a 2% agarose gel and stained
with ethidium bromide for viewing. Primer sequences
used are as follows: HPRT: 5' CGA GAT GTG ATG AAG
GAG ATG G 3' and 5' GGA TTA TAC TGC CTG ACC AAG
G 3'; IL-6: 5' ATG AAC TCC TTC TCC ACA AGC GC 3' and
5' GAA GAG CCC TCA GGC TGG ACT G 3'; IL-8: 5' ATG
ACT TCC AAG CTG GCC GTG GCT 3' and 5' TCT CAG
CCC TCT TCA AAA ACT TCT C 3'; and IL-13: 5' GGA AGC
TTC TCC TCA ATC CTC TCC TGT T 3' and 5' GCG GAT
TCG TTG AAC CGT CCC TCG CGA AA 3'. Densitometry
was done by normalizing target genes to house keepers
using Un-Scan-It Version 5.1 software (Orem, UT). The
PCR experiment was repeated twice.

NF-κB assay in HMC-1
HMC-1 were stimulated with PMA, IL-1β and/or epine-
phrine and then harvested for EMSA analysis [49,50].
Cells were washed with PBS and mixed with one hundred
microliters of hypotonic buffer which contains: 10 mM
HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA,
1 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfo-
nyl fluoride (PMSF), 1 µM aprotinin, 1 µM pepstatin, 14
µM leupeptin, 50 mM NaF, 30 mM β-glycerophosphate, 1
mM Na3VO4, and 20 mM p-nitrophenyl phosphate. Cells
were incubated over ice for 30 minutes and then vortexed
after the addition of 6.25 µl of 10% of Nonidet P-40. After
2 minutes of centrifugation at 30,000 × g, supernatants
were kept at -80°C while the pellets were collected and
vortexed every 20 minutes for 3 hours in 60 ml of a hyper-
tonic salt solution: 20 mM HEPES pH 7.9, 0.4 M NaCl, 1
mM EDTA, 1 mM EGTA, 12 mM DTT, 1 mM PMSF, 1 µM
aprotinin, 1 µM pepstatin, 14 µM leupeptin, 50 mM NaF,
30 mM β-glycerophosphate, 1 mM Na3VO4, and 20 mM
p-nitrophenyl phosphate. Nuclear translocation of NF-κB
was analyzed by the Electrophoretic Mobility Shift Assay
(EMSA) using the nuclear fraction. Seven micrograms of
nuclear protein were added to 2 ml of binding buffer
(Promega, Madison, WI), and 35 fmol of double stranded
NF-κB consensus oligonucleotide (5' AGT TGA GGG GAC
TTT CCC AGG C 3') (Promega, Madison, WI) end labeled
with γ-P32 ATP (Amersham Biosciences, Piscataway, NJ).
The samples were incubated at room temperature for 20
minutes and run on a 5% nondenaturing polyacrylamide
gel for 2 hours. The gel was then dried on a Gel-Drier (Bio-
Rad Laboratories, Hercules CA) and exposed to Kodak X-
ray film at -80°C.
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Detection of p38 MAPK by Western blot
Cells were treated and lysed in lysis buffer (50 mM Tris
HCL, 150 mM NaCl, 1 mM EDTA, 1% Triton × 100, and
0.1% SDS) to be analyzed for p38 MAPK activation by
Western blot [29]. Briefly, 50 µg of sample protein was
diluted 1:2 with Laemmli buffer (Bio-Rad laboratories,
Hercules, CA) and boiled for 10 minutes in a sand bath.
The resultant sample was then run in a Bio-Rad Modular
Mini Electrophoresis System (Hercules, CA) on a 10%
polyacrylamide gel for 1 hour and then transferred to a 0.2
µm nitrocellulose membrane (Bio-Rad laboratories, Her-
cules, CA) for 1 hour. The blot was then incubated in
blocking buffer (1% BSA and 0.1% Tween in PBS) for 1
hour at room temperature with gentle agitation. Rabbit
anti-human Phospho-p38 MAPK (Thr180/Tyr182) poly-
clonal antibody (Calbiochem, San Diego, CA) was diluted
1:1000 in blocking buffer and incubated on the blot
overnight at 4°C with gentle agitation. After the primary
antibody was removed the blot was washed three times
for 10 minutes each with agitation in the wash buffer
(0.1% Tween in PBS). The blot was then incubated in
horse radish peroxidase conjugated mouse anti-rabbit Ig's
antibody (human adsorbed, Santa Cruz Biotechnology,
Santa Cruz, CA) diluted 1:5000 in blocking buffer. The
blot remained in the secondary antibody for 1 hour at
room temperature. The blot was then washed again and
covered with Super Signal West Pico Chemiluminescent
Substrate (Pierce, Rockford, IL) for 5 minutes. The blot
was then exposed to acetate transparency film (Kodak,
Rochester, NY) and developed. The same protocol was
repeated for total p38 MAPK analysis.

Analysis of β-adrenoceptor by flow cytometry
Resting HMC-1 were centrifuged, washed in PBS at room
temperature, and resuspended in 100 µl of PBS. The cells
were incubated for 20 minutes with rabbit polyclonal anti
β1 or β2 adrenergic receptor antibodies (Santa Cruz, Santa
Cruz, CA) using normal rabbit serum as a control. The
samples were washed with PBS with 0.01% sodium azide
and resuspended in 100 ml PBS. FITC labeled goat anti-
rabbit Ig's antibody was added to the samples and allowed
to bind for 20 minutes. The samples were once again
washed with PBS with 0.01% sodium azide and
resuspended in 100 µl of PBS. In addition, HMC-1 were
pretreated with normal rabbit serum and incubated with
FITC labeled goat anti-rabbit Ig's antibody as a control for
nonspecific binding [51]. Cell suspensions were then
gated and analyzed based on fluorescence using a Becton
Dickinson FACSCalibur 4-color flow cytometer (San
Diego, CA) and histograms generated on WinMDI 2.8
software (kindly provided by Joseph Trotter over the
internet).

IL-13 promotor analysis
HMC-1 were treated with IL-1β (10 ng/ml), epinephrine
(10-5 M), and IL-1β plus epinephrine to investigate IL-13
promotor activity. Untreated cells were used as a control.
Transient transfection assays were performed using a
reporter gene construct containing the minimal promoter
sequence of IL-13. The promoter sequence (-233 to + 50,
relative to the transcription initiation site) of the IL-13
gene was fused to the luciferase coding sequence. Plasmid
DNA was obtained with double-cesium chloride purifica-
tion (BioServe Biotechnologies, Laurel, MD), while Super-
Fect reagent (Qiagen) was used for transient transfections
of HMC-1 cells. Two micrograms of plasmid DNA and 8
µl SuperFect reagent were used for transfection of 1 × 106

HMC-1 cells. Luciferase expression was monitored by
chemiluminescence of cell lysates 24 hrs after transfec-
tions using the Enhanced Luciferase Assay Kit (Analytical
Luminescence Laboratory, Ann Arbor, MI).

Statistical analysis of the data
All experiments were done in triplicate. The data were ana-
lyzed by Student's two-tailed t-test using Statistica soft-
ware (StatSoft, Inc., Tulsa, OK). All data were reported as
means ± SE. A p-value of less than 0.05 was considered
significant.
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