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Bootstrap exploration of the duration of surface electromyography sampling 
in relation to the precision of exposure estimation
by Nathan B Fethke,1 PhD, Dan Anton, PhD, 1 Joseph E Cavanaugh, PhD,2 Fred Gerr, MD,1 Thomas M 
Cook, PhD 1

Fethke NB, Anton D, Cavanaugh JE, Gerr F, Cook TM. Bootstrap exploration of the duration of surface electromyog-
raphy sampling in relation to the precision of exposure estimation. Scand J Work Environ Health 2007;33(5):358–
367.

Objectives   This study examined the effect of sampling duration, in units of work cycles, on the precision of 
estimates of exposure to forceful exertion obtained with surface electromyography (EMG). 
Methods   Recordings of the activity of the flexor digitorum superficialis, extensor digitorum, and upper trapezius 
muscles over 30 consecutive work cycles were obtained for a random sample of 25 manufacturing workers, each 
of whom was performing a unique production task representing a portion of the whole job. The mean root-mean-
square amplitude and the 10th, 50th, and 90th percentiles of the distribution function of the amplitude probability 
were calculated for each cycle. Bootstrap analyses were used to examine the precision of the summary measures 
as the sampling duration increased incrementally from 1 to 30 work cycles. Precision was estimated by calculat-
ing the coefficient of variation (CV) of the bootstrap distributions at each sampling duration increment. 
Results   The average minimum sampling duration for a bootstrap distribution CV of 15% ranged from 2.0 
(SD 1.5) cycles to 7.5 (SD 9.6) cycles, depending on muscle and summary measure. For a 5% CV, the average 
minimum sampling duration ranged from 11.9 (SD 9.0) to 20.9 (SD 10.5) cycles. 
Conclusions   The results suggest that sampling as few as three work cycles was sufficient to obtain a bootstrap 
distribution CV of 15% for some of the muscles and summary measures examined in this study. While limited 
to machine-paced, cyclic manufacturing work, these results will assist the development of exposure assessment 
strategies in future epidemiologic studies of physical risk factors and musculoskeletal disorders.

Key terms   exposure assessment; muscle activity; variability.

1 Department of Environmental Health, East Tennessee State University, Johnson City, Tennessee, United States.
2 Biostatistics, University of Iowa, Iowa City, Iowa, United States.

Reprint requests to: Dr N Fethke, Department of Environmental Health, East Tennessee State University, Campus Box 70682, 
Johnson City, TN 37614, USA. [E-mail: nathan-fethke@uiowa.edu]

Musculoskeletal disorders of the upper extremities con-
tinue to affect a substantial proportion of manufacturing 
industry workers. Several physical risk factors com-
monly found in the work environment, such as repetitive 
motion, awkward postures, and forceful exertions, have 
been found to be consistently positively associated with 
musculoskeletal disorders of the upper extremities (1, 
2). While the strongest associations appear to exist when 
risk factors are present in combination (3, 4), epide-
miologic studies have reported an independent, positive 
association between forceful exertions and specific mus-
culoskeletal disorders of the upper extremities, such as 
carpal tunnel syndrome and epicondylitis (5–8). Quanti-
tative estimation of the association between exposure to 

specific levels of forceful exertions and musculoskeletal 
disorders of the upper extremities is sparse, however, 
due partly to the use of imprecise self-report or obser-
vational exposure assessment techniques (9–12). 

When collected for an adequate duration, direct 
quantitative measurements of muscle activity with sur-
face electromyography (EMG) can produce precise esti-
mates of exposure to forceful exertions (10, 13). Surface 
EMG has the most commonly been used to describe 
muscle activity patterns in laboratory and small-scale 
field settings to characterize exposure to forceful exer-
tion or to compare exposure levels pre- and postinterven-
tion. The upper trapezius is among the most commonly 
studied muscles with respect to forceful exertions of the 
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 shoulder (14), while the flexor digitorum superficialis 
and extensor digitorum are commonly studied with 
respect to the distal upper extremities (15, 16). 

For several reasons, few large-scale epidemiologic 
studies have used EMG to estimate exposure to force-
ful exertion (4, 17–20). The cost of the instrumenta-
tion can be prohibitive, and equipment operation and 
maintenance may require specialized training. In addi-
tion, conventional electromyographic (EMG) systems 
are either not portable or use limited-range telemetry, 
requiring the subject to be near the data collection and 
storage location. Newer portable systems are available 
(21–23), but they have been used in only a limited num-
ber of field studies. 

In addition to operational limitations, the sampling 
duration, in units of work cycles, required to obtain 
estimates of exposure to forceful exertion of adequate 
precision is not well characterized and has been selected 
arbitrarily in previous investigations. Reported EMG 
sampling durations in field studies of cyclic manufac-
turing work range from about 20 minutes per task (24) 
to more than 60 minutes per task (25). If multiple tasks 
are sampled, then the total EMG sampling duration can 
exceed several hours per study participant. Prolonged 
sampling periods may result in unacceptable levels of 
interference with workplace production, especially in 
epidemiologic studies capturing exposure information 
for multiple physical risk factors and for which hun-
dreds of persons may be needed for adequate statistical 
power. 

Previous studies have investigated the reliability of 
surface EMG summary measurements repeated during 
the same experimental day or measurements repeated on 
different days (26, 27). The precision of EMG measure-
ments has been examined in several studies in the form 
of the within-persons components of exposure variance 
generated from modeling techniques using a random-
effects analysis of variance (ANOVA) (25, 28–30). In 
general, the precision of an EMG measurement improves 
as the sampling duration increases (29). Traditionally, 
sampling duration is specified in terms of time and is 
held constant for each study participant. However, for 
repetitive tasks, a fixed sampling duration will result in 
exposure estimates based on different numbers of work 
cycles when study participants are drawn from a popu-
lation with a wide range of cycle times. It is unknown 
whether, and by how much, the precision of EMG sum-
mary measures varies when computed over a range of 
work cycles.

A better characterization of the relationship between 
sampling duration and exposure estimate precision 
would allow researchers to optimize sampling dura-
tions in light of their resources, the number of study 
participants available, workplace constraints, and antici-
pated effect size. To address this issue in our study, we 

 evaluated the effect of varying the sampling duration, 
in units of work cycles, on the precision of exposure 
estimates derived from EMG data.

Study population and methods

Study population

We report the results of an analysis of EMG data col-
lected during a prospective cohort study designed to 
examine the association between physical risk factors 
and musculoskeletal disorders of the upper extremities 
among household appliance manufacturing workers. 
All of the participants were 18 years of age or older and 
were employed in production jobs at a single facility. 
Altogether 232 persons were enrolled in the cohort at 
the time of this analysis. Of these, 198 performed cyclic 
production jobs and were eligible for inclusion in our 
study; the remaining 34 performed noncyclic work and 
were excluded. A random sample of 25 eligible cohort 
members was selected for participation in this study 
[12 female, 13 male, average age 47.7 (SD 7.2) years]. 
The median number of tasks comprising the whole job 
for each participant was three (range 1–6 tasks). For the 
participants performing multiple tasks, we randomly 
selected one for inclusion in this study. Thus 25 unique 
tasks were obtained from among the 25 participants, 
with an average cycle time of 26.6 (range 14.4–49.9) 
seconds.

Source electromyographic data

The EMG data collected for each participant was a 
continuous recording of the activity of the dominant-
side upper trapezius, the flexor digitorum superficials 
(flexors), and the extensor digitorum communis (exten-
sors) muscles over 30 consecutive work cycles. Bipolar, 
silver–silver chloride surface electrodes with an inter-
electrode distance of 20 millimeters and preamplified 
with a gain of 30 were used for all of the recordings. 
Standard placement procedures were used to position the 
electrodes over the three muscle groups (31). 

The EMG data were collected with a portable data 
logger system. Within the data logger unit, the raw, 
analog EMG signals were bandpass-filtered between 10 
and 4000 hertz, further amplified with a gain of 2000, 
root-mean-square (RMS) processed in realtime with a 
100-millisecond time constant and sampled at 100 hertz 
with a 12-bit analog-to-digital converter. The digitized 
signals were then streamed to compact flash memory for 
later analysis in the laboratory.

The EMG data were normalized with submaximal 
reference voluntary exertions (RVE) for each muscle. A 
rapid normalization procedure was used (32), such that 
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the reference exertions for all three muscle groups were 
performed simultaneously. The participants grasped a 
hand dynamometer (Commander Grip Track, JTECH 
Medical, Salt Lake City, UT, USA) with a power grip 
while standing with the dominant arm abducted in the 
scapular plane, the elbow fully extended and forearm 
pronated. A 2-kilogram weight was then placed over 
the dorsum of the hand to elicit a contractile response 
in both the extensors and upper trapezius. At the same 
time, the participants maintained a grip force of 88.94 
newtons for 15 seconds. 

The average RMS amplitude, in millivolts, of the 
middle 10 seconds of the 15-second reference contrac-
tions was calculated for each muscle group. Three refer-
ence contractions were performed for each person, and 
measures of resting muscle activity were also obtained. 
For each muscle, the EMG voltage values sampled dur-
ing the worktask (EMGtask) were expressed in terms of 
the percentage of the RVE (%RVE) using equation 1, 
where EMGRVE is the average of the three reference con-
traction voltages and EMGrest is the baseline voltage:

100
)(
)(% ×

−
−

=
restRVE

resttask

EMGEMG
EMGEMGRVE  equation 1

Data analysis procedures

After the normalization, all of the EMG signals from the 
worktasks were analyzed with a custom-signal process-
ing package written in LabVIEW 7.1 (National Instru-
ments, Austin, TX, USA) (33). The continuous signals 
from each participant were parsed into 30 discrete work 
cycles with the aid of digital video recordings obtained 
at the time of the measurement (figure 1). For each cycle 
and muscle group, the mean RMS amplitude and the 
10th, 50th, and 90th percentile values of the amplitude 
probability distribution function (APDF) were calcu-
lated (in %RVE). The effect of varying the number of 

Figure 1. Example EMG signal from the flexors. Dotted vertical lines indicate cycle 

start/stop points. EMG summary measure calculated for each cycle is mean RMS 

amplitude, in %RVE, and cycle time is noted. 

 Figure 2. Block diagram of bootstrap procedure for hypothetical observed 

parent data set of five values and resample sizes of one through four cycles. 

Figure 1. Example of the electromyographic 
(EMG) signal from the flexors. The broken verti-
cal lines indicate cycle start and stop points. The 
EMG summary measure calculated for each cycle 
is the mean root-mean-square (RMS) amplitude, 
in %RVE, and the cycle time is noted. (RVE = 
reference voluntary exertion)

work cycles sampled on the precision of these four EMG 
summary measures was then evaluated with a bootstrap-
ping procedure.

Statistical methods

Bootstrapping is a statistical technique whereby the 
precision of a parameter estimate, such as mean RMS 
amplitude, can be evaluated empirically by simulating 
the process of sampling population data using observed 
sample data (34). The chief advantage of the bootstrap 
procedure is that assumptions about the distribution of 
the population data (eg, normality) are not required in 
order to make inferences about the parameter of inter-
est (35). 

The bootstrap procedure begins with an observed 
parent data set of sample size N, from which a popula-
tion parameter q is to be estimated with the statistic q. 
A resample of size n is randomly drawn with replace-
ment from the original N, such that each value has a 
probability 1/N of being chosen for inclusion in the 
resample each time a value is selected from the original 
sample of size N. The resampling process is repeated a 
large number of times (eg, 1000) in order to simulate 
the process of repeated sampling from the population 
(36). Then q is recalculated for each iteration based on 
the n resampled values. The distribution of the bootstrap 
replicates of q, called the bootstrap distribution, serves 
as an estimate of the sampling distribution of q. If, for 
example, 1000 resampling iterations are executed, then 
1000 estimates of q would be produced. The precision 
of q can be estimated by either constructing percentile 
ranges (36, 37) or calculating the coefficient of variation 
(CV) of the 1000 estimates (38). The latter method was 
chosen for this study. For each of the 25 participants, 
12 bootstrap parent samples of 30 observations each 
were obtained from the 30 work cycles of EMG data 
(three muscle groups by four EMG summary measures). 

^

^

^

^

^

^
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Families of bootstrap distribution CV were obtained 
from each parent sample by incrementally increasing the 
resample size from 1 cycle to 30 cycles and generating 
1000 estimates of the EMG summary measure at each 
resample size (figure 2).

A fundamental assumption of the bootstrap is that 
the data values within the parent sample are statisti-
cally independent (36). Since the parent samples in this 
study consisted of time series data, there was concern 
that EMG summary measures from successive cycles 
may not satisfy the independence criterion. Therefore, 
we conducted standard autocorrelation analyses on each 
parent sample as a test for independence prior to per-
forming the bootstrap procedure (39, 40). Parent samples 
exhibiting significant autocorrelation at lags of one and 
two cycles were excluded from further analysis.

The effect of sampling duration on the precision of 
an EMG summary measure was estimated by calcu-
lating the CV for each bootstrap distribution of 1000 
estimates at each resample size for each muscle group. 
For each participant, muscle group, and EMG summary 
measure, the minimum resample size needed to obtain 
bootstrap distribution CV values of 15%, 10%, and 5% 
was determined. A value of 30 cycles was assigned in 
cases in which a particular CV level was not achieved. 
A one-way repeated-measures analysis of variance 
(ANOVA) was used to explore the differences between 
the muscle groups in the average minimum resample 
size needed to achieve a desired precision level. The 
Greenhouse-Geisser correction was used to adjust the 
degrees-of-freedom of the models to compensate for 
sphericity violations (41), and the Tukey procedure was 
used for posthoc pairwise comparisons between the 
muscle groups. Separate analyses were conducted at 
each precision level for each EMG summary measure.

The total sampling duration of the 30 parent work 
cycles, in terms of time, varied among the study par-
ticipants due to the cycle time variation between the 
selected tasks. To explore the possibility that cycle time 
differences between the participants may have affected 
the precision of the bootstrap distributions, we calcu-
lated the Pearson correlation between the average cycle 
time and the bootstrap distribution CV associated with a 

resample size of 10 cycles. Altogether, we conducted 12 
separate analyses, one for each combination of the EMG 
parameters and muscle groups. The data eliminated from 
the bootstrap analyses on the basis of the autocorrelation 
results were also excluded from the Pearson correlation 
analyses.

Results

Due to the presence of auotcorrelation, the number 
of participants within each bootstrap analysis set was 
reduced slightly. For the mean RMS amplitude and 
50th percentile APDF summary measures, the number 
of participants was reduced from 25 to 23. For the 90th 
and 10th percentile APDF measures, the number of 
participants was reduced from 25 to 22. Across all of 
the summary measures and muscle groups, 10% of the 
overall data set was excluded from the bootstrap analy-
ses due to the presence of autocorrelation at lags of one 
and two cycles.

For all of the participants remaining in the analyses 
after the autocorrelation procedures, the precision of the 
bootstrap distributions for each summary measure and 
muscle group increased as the resample size increased 
(an example from a typical participant is displayed in 
figure 3). Accordingly, for all of the EMG summary 
measures and muscle groups, the average bootstrap 
distribution CV, the parameter selected as our estimate 
of precision, decreased as the resample size increased 
(figure 4). 

Shown in table 1 are the results of both the bootstrap 
analyses and the repeated-measures ANOVA conducted 
at the three precision levels for each EMG summary 
measure. The average minimum resample size increased 
with increasing levels of the bootstrap distribution pre-
cision (ie, a reduction in CV) for all of the summary 
measures and muscle groups. At CV levels of 15% and 
10%, the 90th percentile of the APDF for the flexors re-
quired the largest average minimum resample sizes [7.5 
(SD=9.6) cycles for a CV of 15% and 11.5 (SD=10.2) 
cycles for a CV of 10%]. However, for the 5% CV level, 

Figure 1. Example EMG signal from the flexors. Dotted vertical lines indicate cycle 

start/stop points. EMG summary measure calculated for each cycle is mean RMS 

amplitude, in %RVE, and cycle time is noted. 

 Figure 2. Block diagram of bootstrap procedure for hypothetical observed 

parent data set of five values and resample sizes of one through four cycles. 

Figure 2. Block diagram of the bootstrap procedure for 
a hypothetical observed parent dataset of five values 
and the resample sizes of one through four cycles. (CV 
= coefficient of variation

CV

CV

CV

CV
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the 10th percentile of the APDF for the extensors re-
quired the largest average minimum resample size [20.9 
(SD=10.5) cycles]. The smallest average minimum re-
sample sizes at each of the three precision levels were all 
found for the extensors [2.0 (SD 1.5) cycles for the 90th 
percentile of the APDF and a CV of 15%, 3.6 (SD 3.0) 
cycles for the mean RMS amplitude and a CV of 10%, 

and 11.9 (SD 9.0) cycles for the mean RMS amplitude 
and a CV of 5%].

The results of the repeated measures ANOVA models 
were mixed. For the mean RMS amplitude and the 50th 
percentile of the APDF, no significant differences were 
found in the average minimum resample size between 
the muscle groups at any of the three precision levels. 
However, significant differences between the muscle 
groups were found for the 90th and 10th percentiles of 
the APDF. For the 90th percentile APDF summary mea-
sure, the Tukey posthoc pairwise comparisons indicated 
no difference in the average minimum resample size be-
tween the extensors and upper trapezius muscle groups 
at any of the three CV levels. The flexors, however, 
needed a larger average minimum resample size than 
the extensors to obtain each of the three CV levels and 
a larger resample size than the upper trapezius for the 
15% and 10% CV levels. For the 10th percentile APDF 
metric, the upper trapezius muscle required a larger re-
sample size than the flexors at each of the CV levels.

The correlation between the average cycle time 
and the bootstrap distribution CV at a resample size 
of 10 cycles was statistically significant only for the 
90th percentile APDF of the flexor muscle (r 0.48, 
P=0.01). The direction of the correlation was positive 
and therefore indicated that, as the average cycle time 
increased, the bootstrap distribution became less precise. 

   1

Figure 3. Bootstrap results from Subject #9 for the extensor muscle 

group and the 10th percentile APDF summary measure. Shown are the 

97.5th percentile, mean and 2.5th percentile values of the bootstrap 

distribution at each resample size. 

Figure 3. Bootstrap results from participant number 9 for the extensor 
muscle group and the 10th percentile amplitude probability distribution 
function (APDF) summary measure. Shown are the 97.5th percentile, 
the mean, and 2.5th percentile values of the bootstrap distribution at 
each resample size. (RVE = reference voluntary exertion)

Figure 4. Average bootstrap distribution coefficient of variation (CV) by resample size. [A: Mean root-mean-square (RMS) amplitude (N=23), B: 
10th percentile amplitude probability distribution function (APDF) (N=22), C: 50th percentile APDF (N=23), D: 90th percentile APDF (N=22).

   2

Figure 4. Average bootstrap distribution CoV by resample size. A: Mean RMS 

amplitude (N=23); B: 10th percentile APDF (N = 22); C: 50th percentile APDF (N = 

23); D: 90th percentile APDF (N = 22).
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The correlation between the average cycle time and 
the estimated precision associated with the mean RMS 
amplitude of the flexors was also positive, although it 
was not statistically significant. The correlations for 
the remaining 10 analyses were both negative and not 
statistically significant.

Discussion

Several investigators have sought to quantify the contri-
butions of the different sources of variability affecting 
estimates of exposure to physical risk factors obtained 
with both observational and direct quantitative measures, 
including surface EMG (29, 42–47). Understanding the 
nature of exposure variance is essential when exposure 
assessment strategies are being developed, especially in 
field studies with large numbers of participants perform-
ing multiple and varied tasks. Still, formulations of the 
magnitude of different exposure variance components 
are dependent at least partially on an adequate preci-
sion of the individual measurements on which they are 
based. While previous studies have used bootstrapping 
to explore several exposure assessment issues (28, 35, 
37, 38, 48), this is the first study using the technique to 
examine the effect of sampling duration on the precision 
of an individual EMG measurement. 

Overall exposure variability in occupational epi-
demiology has been broadly partitioned into between-
participant and within-participant components (49). If 
an individual exposure assessment strategy is used, the 
components of variance can help estimate the degree of 

attenuation of risk estimates resulting from measurement 
error (50–53). Attenuation can be substantial if the with-
in-participants variability is large when compared with 
the between-participant variability. Our study, however, 
cannot be used to estimate attenuation, since within-par-
ticipant variability also included a between-day compo-
nent (28). Similarly, estimates of the within-participant 
(within-day) variability could not be generated since, for 
each participant, we considered the precision of an EMG 
measurement obtained for only one of several tasks 
comprising the entire job. Capturing 30 cycles of EMG 
across multiple tasks and multiple days was beyond the 
scope of our study. In addition, the selection of partici-
pants and tasks was systematic and not representative of 
the actual exposure distribution within the facility. As 
a result, formulations of between-participant variance 
using the current data are also not appropriate. 

Aside from showing the general expected finding 
of increased precision with increasing resample size, 
figure 3 also illustrates the fact that the bootstrap dis-
tributions were asymmetric, especially at low resample 
sizes. Although figure 3 indicates positive asymmetry, 
negative asymmetry was observed for some persons. The 
nonsymmetric bootstrap distributions at low resample 
sizes suggest that analytical procedures for estimating 
precision which assume normality, such as the classical 
confidence interval for the mean, are likely to be error 
prone. 

Few studies have computed EMG summary mea-
sures of occupational tasks on a cycle-by-cycle basis, 
regarding each cycle as a distinct measurement period. 
In a controlled laboratory experiment of a 4-second 

Table 1. Means and standard deviations of the minimum resample size needed to obtain a bootstrap distribution coefficient of variation 
(CV) of 15%, 10%, and 5% with the use of the electromyographic summary measure and muscle group. (RMS = root-mean-square, APDF 
= amplitude probability distribution function)

  Flexors Extensors Upper trapezius F

  Mean SD Mean SD Mean  SD

Mean RMS (N=23)

 15% CV 3.5 5.5 2.1 1.3 2.5 1.6 1.23 0.30 0.28
 10% CV 5.8 7.1 3.6 3.0 4.8 3.9 2.37 0.10 0.13
 5% CV 14.8 11.3 11.9 9.0 15.1 9.2 1.72 0.19 0.20

90% APDF (N=22)

 15% CV 7.5 9.6 2.0 1.5 2.9 2.2 6.32 <0.01 <0.01
 10% CV 11.5 10.2 3.8 3.4 5.7 4.7 9.51 <0.01 <0.01
 5% CV 19.6 11.2 12.4 9.0 16.6 10.8 5.40 <0.01 <0.01

50% APDF (N=23)

 15% CV 5.1 6.1 3.3 3.0 4.4 4.4 1.70 0.19 0.20
 10% CV 9.5 9.9 6.8 6.9 8.7 8.0 1.87 0.17 0.17
 5% CV 18.2 11.5 16.5 11.0 20.5 9.7 1.66 0.20 0.20

10% APDF (N=22)

 15% CV 2.8 3.2 4.1 3.2 6.4 7.0 4.21 0.02 0.03
 10% CV 5.7 7.5 8.5 7.4 11.4 10.5 3.58 0.04 0.05
 5% CV 13.4 9.8 20.9 10.5 20.7 11.0 4.59 0.02 0.02

a P-value after Greenhouse-Geisser correction for violation of sphericity assumption.

Summary     P- Adjusted 
measure     value P-value a
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fastening task, Mathiassen et al (29) computed between-
cycle CV levels of 16% for the trapezius muscles and 
23% for the extensors by dividing the square root of the 
within-participant component of variance (via random-
effects ANOVA models) by the overall mean exposure 
level. Using similar random-effects ANOVA techniques, 
Moëller et al (25) reported between-cycle CV levels 
of 11% to 19% for the trapezius and 4% to 14% for 
the extensors in a small field study of three electronics 
assembly tasks with cycle times ranging from 3 to 4 
minutes. In our study, the between-cycle CV levels in the 
bootstrap parent samples obtained with random-effects 
ANOVA models ranged from 19% to 43%, depending on 
the muscle and summary measure (analyses not shown). 
The between-cycle CV levels were higher in our data 
set for two reasons. First, unlike Mathiassen et al (29), 
we collected our data in an uncontrolled field setting. 
Second, unlike Moëller et al (25), we did not exclude 
work cycles with unexpected periods of rest (eg, a short 
delay in production) from the analyses.

The assignment of 30 cycles as the minimum re-
sample size necessary to achieve a specific level of 
precision occurred for less than 1% of the participants 
at a CV of 15% and less than 5% of the participants at 
a CV of 10%. However, the parent samples from nearly 
30% of the participants failed to achieve a CV of 5% 
within a resample size of 30 cycles. While it is unlikely 
that the assignment of 30 cycles for the 15% and 10% 
CV levels affected the results, the average minimum 
resample size needed to achieve a bootstrap distribution 
CV of 5% is probably underestimated. Therefore, cau-
tion is needed before the results from the 5% CV level 
are used as a guideline for determining the number of 
cycles to sample. 

The autocorrelation analyses were critical to the 
development of this work. Significant autocorrelation, 
especially at small lag values such as one cycle, are 
possible indicators of phenomena such as the onset of 
localized muscle fatigue, equipment drift, or nonrandom 
changes in the work environment occurring during the 
original data collection period. While autocorrelation 
appeared to be an issue for a small percentage of the 
data set, excluding the autocorrelated data did not af-
fect the overall results. If autocorrelation were more 
pervasive within the bootstrap parent samples, the EMG 
information contained within one work cycle could not 
be considered statistically independent of the EMG in-
formation contained within other work cycles. 

The independence of work cycles in terms of EMG 
information also had an operational benefit regarding the 
bootstrap procedure. In field EMG data collection situ-
ations, random work cycles are typically not recorded. 
Rather, as was the case with the source data used in 
this study, work cycles are sampled as a consecutive 
sequence. Ideally, the bootstrap procedure would have 

been performed by randomly selecting blocks of con-
secutive work cycles, rather than by using individual 
cycles, during the resampling process to better reproduce 
the reality of field data collection. However, selecting 
blocks of consecutive work cycles would have reduced 
the size of the parent sample available at each resample 
size. To maintain a bootstrap parent sample of 30 ob-
servations with a resample size of 30 consecutive work 
cycles, EMG data for 59 work cycles would have been 
required. Therefore, establishing the independence of 
the individual cycles within each parent sample of 30 
cycles allowed for a maximum analysis of the available 
data.

The average cycle time of the tasks performed by the 
25 study participants was consistent with assembly tasks 
in both field (54) and laboratory (30) studies. A reason-
able concern was a possible effect of cycle time on the 
resample size required to obtain the different levels of 
precision, since EMG summary measures computed 
over short time periods are more sensitive to transient 
changes in muscle activity than measures computed 
over long time periods. As a consequence, a low level 
of precision (high CV) in the bootstrapped distributions 
of exposure estimates may be observed. However, the 
correlations between the average cycle time and the 
estimated precision revealed a modest effect only for 
the 90th percentile APDF of the flexors. The positive 
direction of the correlation was somewhat surprising; 
however, the decreased precision with increasing av-
erage cycle time may be a consequence of increased 
between-cycle exposure variability. Longer cycle times 
may give workers more opportunity to vary motion and 
effort patterns, so that each cycle has a unique exposure 
profile. In general, differences in the average cycle times 
of the tasks did not meaningfully influence the results 
of the bootstrap analyses. Thus precision of the EMG 
summary measures appeared to be more strongly related 
to the number of work cycles sampled than to the actual 
time duration of the sampling period. 

The results of the repeated-measures ANOVA models 
imply that different sampling requirements are needed 
for different muscle groups, depending on the summary 
measure. Obviously, when EMG is carried out with 
multiple muscles, a sufficient number of cycles should 
be sampled to ensure the desired level of precision for 
the muscle group with the greatest degree of exposure 
variability. As figure 5 shows, a sampling duration based 
on a specific number of work cycles results in exposure 
estimates that are more precise for some persons than 
for others. However, in epidemiologic studies involving 
large numbers of participants performing multiple and 
varied tasks, such as the longitudinal study for which 
our data were collected, adjusting the sampling dura-
tion based on a priori knowledge of each person’s EMG 
profile is not possible. Therefore, applying the bootstrap 
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procedures outlined by us to a pilot sample of people 
with varied exposure can serve to guide the overall expo-
sure assessment effort. If, for example, sampling seven 
work cycles per task was adequate, on the average, to 
achieve a desired precision level in the pilot data, then 
researchers would have a target minimum requirement 
to apply to the entire study population. 

Mean RMS amplitude and the APDF are common 
EMG summary measures found in the ergonomics litera-
ture (55). In terms of exposure to forceful exertion, mean 
RMS amplitude is strictly an estimate of average inten-
sity, while the APDF presents the probabilities associ-
ated with different intensity levels over the duration of 
the recording. Other EMG analysis techniques, such as 
exposure variation analysis (56) and gap analysis (57), 
provide insight into different aspects of overall exposure. 
Gap analysis, for instance, quantifies the frequency and 
duration of periods of muscular rest. Therefore, apply-
ing the methods used by us to additional EMG summary 
measures may provide different results.

Cyclic manufacturing work is an ideal scenario for 
the use of the bootstrap procedure described in this 
study. The video recordings obtained at the time of the 
EMG measurement allowed for a straightforward demar-
cation of the work-cycle end points. However, the EMG 
data in this study represent a subsample obtained from 
a larger population of manufacturing workers employed 
within a single facility. Thus the results may not be ap-
plicable to repetitive work with different exposure and 
cycle time features. Highly variable noncyclic work is 
a characteristic of many industries with high rates for 
upper-extremity musculoskeletal disorders, such as con-
struction and agriculture (23, 48, 58, 59). In such cases, 
work is not machine-paced and exposure to physical risk 
factors has little or no periodicity. 

Adapting the bootstrap procedure to study the effect 
of sampling duration on exposure estimate precision for 
noncyclic work may prove problematic. First, rather than 
originating from well-defined work cycles, the bootstrap 
parent samples would need to be based on periods of 
EMG activity of equal lengths of time (eg, 1-minute 
segments). In addition, since noncyclic work may be 
composed of long periods in tasks with differing mean 
exposure levels, autocorrelation of the EMG information 
is more likely to be an issue than in cyclic work (60). In 
this case, wholeday EMG recordings may be the most 
viable solution for obtaining precise exposure estimates. 
However, even EMG summary measures obtained from 
wholeday recordings may not accurately capture aggre-
gate exposure since the nature of the work conditions 
may change on a day-to-day basis.

In conclusion, the asymmetry about the mean of the 
bootstrap distributions at small resample sizes suggests 
that bootstrapping, which does not require normally dis-
tributed data, was an appropriate strategy for exploring 

the effect of the number of work cycles sampled on 
exposure estimate precision in this study. Autocorrela-
tion, while present to a small extent, did not invalidate 
the bootstrap assumption of independence of the EMG 
information between adjacent work cycles for most of 
the study participants. 

Depending on the desired precision level, the dif-
ference in sampling requirements between the least 
and most variable muscle group ranged from three to 
eight work cycles. Intuitively, when EMG is carried out 
for multiple muscles, the number of work cycles to be 
sampled simultaneously should be specified according 
to the muscle group with the greatest degree of expected 
between-cycle variability. For some of the summary 
measures and muscle groups examined in this study, 
sampling as few as three work cycles was sufficient to 
achieve a 15% coefficient of variation of the empirically 
derived sampling distribution of exposure estimates. 
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Figure 5: Bootstrap distribution CoV by resample size for the mean RMS 

amplitude EMG summary measure, flexors only (N = 23). Each trace represents 

one subject. A line corresponding to CoV = 15% is added for reference. 

Figure 5. Bootstrap distribution coefficient of variation (CV) by the 
resample size for the mean root-mean-square (RMS) amplitude elec-
tromyographic (EMG) summary measure, flexors only (N=23). Each 
trace represents one participant. A line corresponding to the 15% CV 
has been added for reference.
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