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The 72-kDa nuclear lamina protein lamin A is synthe-
sized as a 74-kDa farnesylated precursor. Conversion of
this precursor tomature lamin A appears to bemediated
by a specific endoprotease. Prior studies of overex-
pressed wild-type and mutant lamin A proteins in cul-
tured cells have indicated that the precursor possesses
the typical carboxyl-terminal S-farnesylated, cysteine
methyl ester and that farnesylation is required for en-
doproteolysis to occur. In this report, we describe the
synthesis of an S-farnesyl, cysteinyl methyl ester pep-
tide corresponding to the carboxyl-terminal 18 amino
acid residues of human prelamin A. This peptide acts as
a substrate for the prelamin A endoprotease in vitro,
with cleavage of the synthetic peptide at the expected
site between Tyr657 and Leu658. Endoproteolytic cleav-
age requires the S-prenylated cysteine methyl ester and,
in agreement with transfection studies, is more active
with the farnesylated than geranylgeranylated cystei-
nyl substrate. N-Acetyl farnesyl methyl cysteine is
shown to be a noncompetitive inhibitor of the enzyme.
Taken together, these observations suggest that there is
a specific farnesyl binding site on the enzyme which is
not at the active site.

Proteins with a CAAX consensus sequence at their carboxyl
terminus undergo serial post-translational modifications of the
cysteinyl residue (1, 2). These modifications include derivitiza-
tion of the cysteine sulfhydryl with an isoprenoid moiety fol-
lowed by the endoproteolytic removal of the -AAX tripeptide
and methylation of the cysteine a-carboxyl group. When the X
amino acid is S, C, Q, or M, a 15-carbon farnesyl residue is
attached in thioether linkage to the cysteine (3), whereas when
X is a leucine, a 20-carbon geranylgeranyl residue is found
instead (4).
The nuclear lamina is a thin, fibrous structure that lines the

inner nuclear membrane and is believed to function in main-
taining nuclear shape and volume (5) and may also be involved
in the organization of chromatin in the interphase nucleus (6).
In most mammalian cells, it consists of three class V interme-
diate filament proteins, lamins A, B, and C (5, 6). Prelamin A is
the 74-kDa precursor of the 72-kDa nuclear lamin A protein (7).

It possesses a CAAX box sequence (CSIM) (8, 9) and has been
shown to be farnesylated in vitro (10) and in vivo (11). Despite
the loss of the carboxyl-terminal 18 amino acids of prelamin A
in its proteolytic conversion to lamin A, it nevertheless under-
goes all of the reactions characteristic of other CAAX proteins
(11). Experiments with mutants, in which the cysteine of the
CAAX box is replaced by another amino acid, demonstrate that
farnesylation is required for the maturation of prelamin A (12).
These nonprenylated CAAX box mutants of prelamin A enter
the nucleus, yet are not proteolytically processed and are not
incorporated into the nuclear lamina. Similar results have been
obtained with nonprenylated prelamin A produced by treating
cultured mammalian cells with mevinolin (13, 14) or inhibitors
of protein farnesylation (15).
Prelamin A is quantitatively converted to mature lamin A in

mammalian cell nuclei, consistent with a direct precursor-prod-
uct relationship and, hence, with a second endoproteolytic
cleavage after the canonical CAAX box modifications (13).
Based on a comparison of the predicted sequence for human
prelamin A from its cDNA, and direct sequencing of the car-
boxyl terminus of the mature lamin A molecule, this second
endoproteolysis is expected to be between a tyrosine (Tyr657)
and a leucine (Leu658) 18 amino acid residues upstream from
the carboxyl terminus of the prelamin A molecule (16). Con-
sistent with this expectation, mutation of Leu658 to arginine
prevents conversion of prelamin A to mature lamin A (17).
These observations argue against the sequential action of mul-
tiple proteolytic cleavages in conversion of the methylated and
farnesylated intermediate to mature lamin A. Rather, they
support the hypothesis that there is a single endoprotease that
cleaves this intermediate between Tyr657 and Leu658. We refer
to this activity as the “prelamin A endoprotease.” A schematic
diagram of the prelamin A processing pathway concluding with
the reaction catalyzed by the prelamin A endoprotease is
shown in Fig. 1.
In this report, we describe a cell-free assay for the prelamin

A endoprotease and use this assay to characterize its specificity
for various substrates. The results indicate that the prelamin A
endoprotease has a specific binding site for the farnesyl group
and, therefore, is somewhat analogous to the previously de-
scribed isoprenylated protein “-AAX” endoprotease (18, 19),
whose activity is also shown in Fig. 1. It will be seen that these
two enzymes differ significantly, however, in that the prelamin
A endoprotease is competitively inhibited by nonprenylated
peptides, whereas the isoprenylated protein endoprotease is
not (18).

EXPERIMENTAL PROCEDURES

Cell Culture, Antibodies, and Radioimmunoprecipitation—HeLa
cells were cultured in Ham’s F-12 medium supplemented with 10% fetal
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calf serum (v/v) 100 units/ml penicillin, 100 mg/ml streptomycin, and 1
mg/ml amphotericin B. Chinese hamster ovary (CHO)-K1 cells with an
up-regulated carboxylate transporter, Met-18b-2 (20, 21), were cultured
in Ham’s F-12 medium supplemented with 5% fetal calf serum plus
antibiotics as for the HeLa cells.
Labeling of cells with [3H]mevalonate and [35S]methionine, radioim-

munoprecipitation of prelamin A, and mature lamin A and treatment of
cells with the farnesyl protein transferase inhibitor, BZA-5B, have all
been described elsewhere (15). As in the previous study, prelamin A was
immunoprecipitated with the human species specific prelamin A anti-
body a-PA (14), whereas total lamin A was immunoprecipitated with a
panspecies-specific lamin A antibody (a kind gift of Dr. Nilabh
Chaudhary, Triplex Pharmaceuticals).
PeptideSynthesis—ThepolypeptideH2N-RSYLLGNSSPRTQSPQNC-

OCH3 (prelamin A peptide) was synthesized by stepwise solid phase,
Fmoc1/tert-butyl-based chemistry. An ABI-431-A synthesizer (Perkin-
Elmer) programmed with the manufacturer’s standard single coupling
protocol was used to assemble the sequence. The synthesis was initiated
with Fmoc-Cyss(Trt)-Wang derivatized polystyrene resin, and all sub-
sequent couplings were carried out with preformed HOBt esters. Fol-
lowing removal of the N-terminal Fmoc group, the peptide resin was
cleaved and deprotected by treatment with a mixture of trifluoroacetic
acid:thioanisole:b-mercaptoethanol:water:phenol (80:5:5:5) for 4 h. The
suspension was filtered and the resulting filtrate was concentrated
under reduced pressure. The crude ether precipitate was applied to a
preparative Vydac C-4 column and eluted with a linear 0.1% trifluoro-
acetic acid, acetonitrile gradient system, and the fractions with the best
analytical profile were pooled and lyophilized. Conversion to the methyl
ester was accomplished in 50% yield by stirring the free peptide in a 5%
HCl, methanol solution for 4 h at room temperature. The product was
then isolated by utilizing the same HPLC conditions as for the free
peptide. Results of amino acid and electrospray mass spectrometry
analyses corresponded closely with expected values.
The S-all-trans-farnesyl peptide derivative was synthesized (22) by a

base catalyzed reaction with farnesyl bromide (Aldrich). The prelamin
A peptide (4.33 mmol) was dissolved in 15 ml of dimethylformamide,
H2O, 0.5 M KHCO3 (5:1:1), and then 6.5 mmol of farnesyl bromide were
added in 1.85 ml of dimethylformamide. The reaction was in the dark at
room temperature for 20 min and was terminated by the addition of

0.67 ml of 1 M HCl. After the solvent was removed, the residue was
redissolved in acetonitrile:water; 1:1, and the product was purified by
reverse-phase HPLC on a C-18, 10 3 150 mm, Econosphere column
(Alltech/Applied Science, Deerfield, IL). The mobile phase was a linear
gradient of 0–30% solvent B in solvent A (solvent A: 0.1% trifluoroacetic
acid in H2O; solvent B: 0.1% trifluoroacetic acid, 99% CH3CN, 0.9%
H2O). With a flow rate of 1 ml/min, the farnesylated prelamin A peptide
eluted at 30 min. Synthesis of the expected product was confirmed by
electrospray mass spectrometry (molecular mass 5 2227 Da). Demeth-
ylation was by base hydrolysis in methanol:water as described previ-
ously (23), and purification of the demethylated peptide was by reverse-
phase HPLC on the same system used for the methylated peptide
(retention time 5 27 min).
The S-all-trans-geranylgeranylated peptide was synthesized (22) by

reacting 180 nmol of all-trans-geranylgeranyl bromide (American Ra-
diochemical, St. Louis, MO) dissolved in 50 ml of dimethylformamide
with 190 nmol of prelamin A peptide dissolved in 350 ml of NaI-
saturated triethylamine:dimethylformamide; 1:150. The reaction was
for 15 min at room temperature in the dark and stopped by the addition
of 16 ml of 1 M HCl. The geranylgeranylated prelamin A peptide was
purified on reverse-phase HPLC as for the farnesylated peptide; reten-
tion time 5 35 min. Electrospray mass spectrometry of the product gave
the expected molecular mass of 2296 Da.
N-Acetyl farnesyl methyl cysteine was prepared by acid catalyzed

methylation of commercial N-acetyl farnesyl cysteine (Calbiochem) as
described previously (24). Purification was on normal phase HPLC
(250 3 4.6 silica gel column) with a mobile phase of hexane/isopropanol
(85:15) and a flow rate of 1.5 ml/min (retention time 5 4.5 min).
Radioiodinated Polypeptides—Radioiodination of substrate peptides

was by the IODO-GEN (Pierce) method as described by Fraker and
Speck (25). Briefly, a 1 mg/ml solution of peptide was prepared in a
borate buffer: pH 8.2, 6.25 mM borate, 145 mM NaCl, 0.1 mM EDTA. One
hundred microliters of this peptide solution was mixed with 300 mCi of
Na125I (Amersham Corp.) and incubated in IODO-GEN-lined tubes on
ice for 30 min. The reaction was stopped by the addition of 2 ml of 1 M

dithiothreitol. The product was separated from unreacted iodine by
elution from a P2 desalting column with 10 mM MES (pH 5 6.0) buffer
containing 2 mM KI and 0.2 mM EDTA. Typical specific activity of the
isolated iodinated peptide was around 0.5 mCi/mmol.
Endoprotease Assay—Nuclei were prepared from HeLa cells as a

source of enzyme activity. Cells were harvested by trypsinization and
then washed two times with ice-cold phosphate-buffered saline. All
subsequent steps were carried out at 4 °C. The cell pellet was resus-
pended to a final density of 4 3 108 cells/ml in a lysis buffer (0.01 M

Tris-HCl, pH 7.0, 0.01 M NaCl, 3 mM MgCl2, 0.4% Nonidet P-40) re-
ported to leave nuclei intact (26). Nuclei were isolated after two more
washes, in the same buffer, and pelleting by centrifugation in a Sorvall
HB-4 rotor for 10 min at 365 3 g. The nuclei were resuspended in the
same buffer without Nonidet P-40. Protein concentration was obtained
by means of the Micro BCA protein assay reagent kit (Pierce).
The endoprotease reaction was initiated by the addition of 125I-

labeled peptide (Vmax at 5 mM for farnesylated peptide) to the nuclear
preparation in a final volume of 150 ml in 10 mM MES, pH 5 6.0. The
reaction was run for various periods of time (linear to 90 min) at 37 °C.
The reaction was stopped by the addition of 10 ml of glacial acetic acid
and chilling on ice for 10 min. The reaction mix was then cleared by
centrifugation at 2,000 rpm for 10 min in an Eppendorf centrifuge. The
supernatant was collected and lyophilized, the residue resuspended in
25 ml of water and applied to reverse phase thin layer chromatography
plates (Analtech, Inc. Newark, DE). TLC plates were developed in 10%
acetonitrile in water, and the spots were visualized by autoradiography.
A synthetic, iodinated RSY peptide standard was run on each plate to
aid in the identification of the expected product. The amount of labeled
RSY formed in the assay was determined by scraping the appropriate
spots into tubes and quantitation of radioactivity with a g counter.
Constructs—Wild-type and nonfarnesylatable mutant (MSIM) pre-

lamin A cDNAs cloned into the EcoRI(59)-BamHI(39) of the SV-40 based
expression vector, pECE, were kind gifts of Dr. F. McKeon (Harvard
Medical School) and have been previously described (10, 27). The pre-
lamin A mutant terminating in the CAAX sequence CVLL was a kind
gift of Dr. Paul Kirschmeier (Schering-Plough Research Institute). This
mutant was prepared by means of the pAltered sites mutagnesis kit
(Promega, Madison. WI). Wild-type prelamin A cDNA was cloned into
pAlter between the EcoRI and XbaI sites. The mutagnesis protocol was
that described by Kramer et al. (28) as modified by Promega and carried
out according to the manufacturer. Sequence verification in the mutant
was by the Sequenase (U. S. Biochemical Corp., Cleveland, OH) dideoxy
sequencing method. The mutant cDNA was subcloned into the cytomeg-

1 The abbreviations used are: Fmoc, N-(9-fluorenyl)methoxycarbonyl;
HPLC, high pressure liquid chromatography; MES, 4-morpholine-
ethanesulfonic acid.

FIG. 1. The processing pathway of prelamin A. The last reaction
in the sequence is catalyzed by the putative prelamin A endoprotease.
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alovirus promotor-based expression vector pcDNA3 (InVitrogen, San
Diego, CA) between the EcoRI and XbaI sites within the polylinker.
Transient transfections were by the Lipofectin method (Life Technolo-
gies, Inc.) as described previously (10).

RESULTS

Design of a Peptide Substrate for the Prelamin A Endopro-
tease—As described above, experiments in other laboratories
(16, 17) indicate that human prelamin A is endoproteolytically
cleaved between Tyr657 and Leu658. In an effort to determine
what other features of the prelamin A primary sequence might
play a role in substrate determination, we compared the pre-
lamin A sequences reported for several vertebrate species. The
results of such a comparison (Table I) suggest that at least
three amino acid residues on either side of the cleavage site, the
amino acid sequence RSYLLG, may be conserved across species
lines. A search on the Swiss-Prot data base (release 33) for the
sequence RSYLLG did not reveal this sequence in any protein
except prelamin A. This observation reinforced the proposition
that this sequence is important for recognition by the prelamin
A endoprotease.
Our prior studies (11) identifying intermediates in the pre-

lamin A processing pathway (Fig. 1), also suggested that the
endoproteolysis substrate possessed a farnesylated and meth-
ylated cysteine at the carboxyl terminus. We thus predicted
that peptide I (Structure 1) would be a suitable substrate for
the human prelamin A endoprotease where Y* is a radioiodi-
nated tyrosine. If this were an appropriate substrate for the
prelamin A endoprotease, the tripeptide RSY* would be re-
leased. Synthesis of the methylated apopeptide was achieved
by solid state methods followed by carboxyl-terminal methyla-
tion with 5% HCl, MeOH as described under “Experimental
Procedures.” After HPLC purification of the apopeptide, the
cysteine was farnesylated by reaction with farnesyl bromide
under mildly basic conditions and repurified by reverse phase
HPLC. Synthesis of the farnesylated peptide was confirmed by
electrospray mass spectrometry (data not shown), and the pep-
tide was then radioiodinated by the IODO-GEN method.
The radioiodination was expected to permit quantitative

monitoring of product formation for in vitro enzyme assay.
Utilizing crude nuclear extracts from HeLa cells as a source of
enzyme, formation of the expected RSY* product was detected
by reverse phase thin layer chromatography. No product was
formed when heat treated nuclear extracts were used (Fig. 2).
The co-migration of the proteolytic product with synthetic ra-
dioiodinated RSY on thin layer was also confirmed by HPLC.
The putative RSY* was eluted from the TLC plate and mixed
with unlabeled RSY. These samples were subjected to reverse
phase HPLC and co-migration of the radiolabeled proteolysis
product and the mass standard was demonstrated (Fig. 3).
These observations indicated that an assay for the prelamin A
endoprotease utilizing I as a substrate was feasible. Release of
RSY* was time dependent (Fig. 4). We examined the temper-
ature (optimum 5 37 °C) and pH dependence (optimum 5 6) of
the reaction as well, leading to the standard assay conditions
described under “Experimental Procedures.”

Kinetic Behavior of the Prelamin A Endoprotease—We now
sought to determine whether the proteolytic release of RSY
from I was well behaved kinetically and correlated with in vivo
observations on prelamin A endoproteolysis. Examination of
the substrate dependence of the reaction (Fig. 5A) indicated
that the reaction exhibited classical Michaelis-Menten kinetics
with a Km of 0.67 mM and a Vmax of 6.5 pmol/min/mg of protein.
Under Vmax conditions, with crude nuclear extract as a source
of enzyme, the assay was linear with enzyme protein from 20 to
175 mg/assay (Fig. 5B). These results indicate that the enzyme
assay for the putative prelamin A endoprotease is well behaved
and is suitable for further study of the activity.
To examine the specificity of the protease for the isoprenoid

moiety, we synthesized the geranylgeranylated analogue of I
from the prelamin A apopeptide and geranylgeranyl bromide,
as described under “Experimental Procedures.” Preliminary
experiments demonstrated that the radioiodinated, gera-
nylgeranylated prelamin A peptide gave rise to RSY in endo-
protease assays. That these two substrates were being proteo-
lyzed by the same enzyme was demonstrated by determining
that the geranylgeranylated peptide is a competitive inhibitor
for cleavage of the farnesylated peptide substrate (Fig. 6).
We then examined the activity of radioiodinated gera-

nylgeranyl prelamin A peptide as a substrate in detail. A com-
parison of the kinetic parameters of the farnesylated and gera-
nylgeranylated peptides is shown in Table II. Since these
assays are performed with identical amounts of the same crude
enzyme preparation, the ratio Vmax/Km gives a measure of the
relative efficiency with which the endoprotease can utilize the
two substrates. It thus appears that the farnesylated substrate
is approximately 19-fold more reactive with the prelamin A
endoprotease than the geranylgeranylated substrate.
Lower reactivity with the geranylgeranylated substrate was

also demonstrated in whole cells by transfection studies. Chi-
nese hamster (CHO-K1) cells were transiently transfected with
CAAX box mutant (MSIM or CVLL) or wild-type (CSIM) hu-
man prelamin A constructs. The MSIM sequence cannot be

TABLE I
Carboxyl-terminal prelamin A sequences of various species

Sequences homologous to the putative endoprotease site (2) between
Tyr657 and Leu658 of human prelamin A were obtained from the Swiss-
Prot data base. In this data base, the sequence RSYLLG is found only
in the proteins shown below.

Species Sequence

Human LVTRSY2LLGNSSPRTQSPQNCSIMCOOH
Rat LVTRSY LLGNSSPRTQ{
Mouse LVTRSY LLGNSSPRSQ{
Chick LLGRSY VLGGAGPRRQ{

STRUCTURE 1

FIG. 2. Enzyme catalyzed formation of RSY from synthetic
substrate (Structure 1). Lane 1, Synthetic radioiodinated RSY; lane
2, boiled (5 min) nuclei are assayed for activity as described under
“Experimental Procedures”; lane 3, nuclei are assayed for endoprotease
activity by formation of radioiodinated RSY (arrow), as described under
“Experimental Procedures.” The radiolabeled material at the solvent
front co-migrates with iodotyrosine. The nuclei used in these assays
corresponded to 175 mg of protein.
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prenylated, whereas the CVLL sequence has been shown to
produce geranylgeranylation of other proteins (29). Gera-
nylgeranylation of the CVLL-prelamin A was confirmed by
demonstrating efficient [3H]mevalonate labeling of the protein
(Fig. 7) in the presence of the farnesyl protein transferase
inhibitor, BZA-5B (30). We have previously reported that
BZA-5B effectively inhibits the incorporation of [3H]meval-
onate into the farnesyl substituent of wild-type prelamin A
(15).
We next compared the proteolytic conversion of the wild-type

and mutant prelamin A. As expected, there was no prelamin A
detected in cells transfected with the wild-type construct
whereas, as previously reported (10), the nonprenylated pre-

lamin A cannot be processed to the mature protein. In contrast
to these proteins, the geranylgeranylated mutant could be con-
verted to mature lamin A, but less efficiently than the wild-
type protein, as indicated by the large amount of prelamin A
which accumulates in these cells (Fig. 8). The accumulation of
prelamin A in cells transfected with the CVLL mutant was also
confirmed by immunoprecipitation and indirect immunoflu-
oresence with a prelamin A-specific antibody (data not shown).
In order to further evaluate the biological relevance of the in

vitro results, the activity of the nonfarnesylated analogue of
Structure 1 was examined as a substrate. Transfection studies
from our laboratory (10) and others (12), with nonfarnesylat-
able prelamin A mutants, have demonstrated that conversion
of prelamin A to mature lamin A will not occur in such mu-
tants. Consistent with these results, our standard assay did not
indicate any formation of the RSY product from the nonfarne-
sylated substrate(data not shown). We also examined the ac-
tivity of base-demethylated I as a substrate and again observed
no formation of RSY (data not shown). This finding demon-
strates that in addition to farnesylation, the substrate cysteine
must be methylated to be active as a substrate. This result is
consistent with a prior report from our laboratory demonstrat-
ing that the maturation of prelamin A proceeds through a
farnesylated and methylated cysteine intermediate (11).
Inhibitor Studies—The studies, described above, indicate at

least two critical chemical features of the prelamin A peptide
which render it active as a substrate: the putative RSYLLG
endoprotease cleavage site and a carboxyl-terminal farnesy-
lated methylated cysteine. Therefore, we examined the effect of
acetyl farnesyl cysteine methyl ester (N-acetyl farnesyl methyl
cysteine) (Fig. 9A) and RSYLLG (Fig. 9B) on the in vitro for-
mation of RSY from I. The results indicate that both com-
pounds can inhibit formation of RSY.
N-Acetyl farnesyl methyl cysteine inhibits the prelamin A

endoprotease, noncompetitively, with an apparentKi of approx-
imately 17 mM. We interpret this result to be consistent with a
farnesyl cysteine recognition domain in the prelamin A endo-
protease which is distinct from the endoproteolysis site. On the
other hand, RSYLLG exhibits competitive inhibition of the
prelamin A endoprotease as would be expected if this sequence
binds to the active site of the enzyme. The observed Ki for
RSYLLG is 0.9 mM, which is quite similar to the Km of the
farnesylated prelamin A peptide.
Since RSYLLG can act as an efficient competitive inhibitor,

FIG. 3. Co-migration of iodinated cleavage product of pre-
lamin A peptide endoproteolysis with synthetic RSY. Material
comigrating with RSY on TLC was eluted with CH3CN (99%), H2O
(0.9%), trifluoroacetic acid (0.1%). To this was added bona fide synthetic
RSY mass standard (0.3 mg). The sample was then analyzed by reverse
phase HPLC on the same system used for the prenylated peptides at a
flow rate of 1 ml/min. The radioactive material was monitored by
collecting fractions every minute and counting them in a g-counter
(panel A), whereas the mass RSY standard was monitored by in-line
absorbance measurement at 210 nm (panel B).

FIG. 4. Time dependence of prelamin A peptide endoproteoly-
sis. Radioiodinated RSY formed in the prelamin A endoprotease assay
described under “Experimental Procedures” was monitored by reverse
phase TLC and g-counting as a function of incubation time. The results
shown are the average of two determinations. There were 175 mg of
protein used per assay. I was used as substrate at a concentration of
5 mM.
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we also examined the activity of radioiodinated RSYLLG as a
substrate in the endoprotease reaction. In contrast to the non-
farnesylated prelamin A peptide, RSYLLG is, indeed, effi-
ciently hydrolyzed by the endoprotease (Km 5 0.27 mM; Vmax 5
14.2 pmol/min/mg of protein).
In order to get preliminary information on the catalytic na-

ture of the prelamin A endoprotease we examined class inhib-
itors of aspartic proteinases (pepstatin), metalloproteases
(EDTA, EGTA), cysteine proteases (leupeptin, E-64), and ser-
ine proteases (aprotinin, 3,4-dichloroisocoumarin, chymosta-
tin, phenylmethylsulfonyl fluoride). Inhibition was only ob-
tained with the serine protease inhibitors (Fig. 10). The
negative results for the other classes of protease inhibitors
tested are not shown.

DISCUSSION

We (10, 13) and others (12) have reported that prelamin A
does not undergo processing or assembly into the nuclear lam-
ina in the absence of farnesylation. Farnesylated prelamin A
mutated in the endoprotease site (RSYLLG 3 RSYRLG) has
been reported by Hennekes and Nigg (17) to localize to the

nuclear periphery but not undergo endoproteolysis to mature
lamin A. Based on this finding, these workers suggested that
one function of farnesylation of prelamin A is localization to the
nuclear envelope.
The studies presented in this report are consistent with the

hypothesis that another possible function for farnesylation is
binding of the farnesylated and methylated prelamin A to the
prelamin A endoprotease. Several observations particularly
pertain to this point. The specificity of the endoprotease for
farnesylation over geranylgeranylation in vitro and in whole
cells is consistent with recognition of the prenyl substituent by
the enzyme. Noncompetitive inhibition by N-acetyl farnesyl

FIG. 5. Substrate and protein dependence of the prelamin A
peptide endoprotease activity. Assays were done at various sub-
strate and protein concentrations as shown, otherwise following the
protocol described under “Experimental Procedures.” Each point is the
average of two determinations. A, substrate dependence. The inset
shows an Eadie-Hofstee plot of the data from which the kinetic con-
stants were derived. There were 175 mg of protein used per assay. B,
protein dependence.

FIG. 6. Geranylgeranylated prelamin A peptide is a competi-
tive inhibitor of the endoproteolysis of farnesylated prelamin A.
The endoproteolysis of I (0.3, 0.6, 0.9, 1.2, and 1.5 mM) was assayed in
the absence (l) or presence of 2 mM (å) or 4 mM (f) geranylgeranylated
peptide and the data analyzed as an Eadie-Hofstee plot. The intersec-
tion of the lines on the y axis is diagnostic of competitive inhibition.

FIG. 7. The CVLL-prelamin A mutant is geranylgeranylated in
vivo. Met-18b-2 cells (1 3 106) were transiently transfected with wild-
type human prelamin A (lanes 1 and 2) or the CVLL- prelamin A
mutant (lanes 3 and 4) and then treated with or without BZA-5B (50
mM) for 2 h prior to labeling with 100 mCi/ml [3H]mevalonate. The cells
were then incubated for an additional 16 h. The transgenic prelamin A
was immunoprecipitated with human species specific anti-prelamin A
and analyzed by SDS-polyacrylamide gel electrophoresis and flourog-
raphy. Molecular mass markers (in kDa) are on the right. The upper
band in these immunoprecipitations migrates at 74 kDa, corresponding
to prelamin A.

TABLE II
Comparison of the kinetic parameters of the farnesylated and

geranylgeranylated prelamin A peptide substrates
Km and Vmax for each substrate was determined by Eadie-Hofstee

analysis.

Substratea Km Vmax Vmax/Km

mM pmol/min/mg protein min21

Farnesylated peptide 0.67 6.5 9.7
Geranylgeranylated peptide 2.0 1.0 0.5

a These substrates are iodinated. Therefore, it is possible that the
kinetic parameters of the natural substrates could be different. How-
ever, it is the relative values of these parameters for the two substrates
that are of interest.
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methyl cysteine is also consistent with a binding site on the
endoprotease for the prenyl group, albeit at a site other than
the active site.
The lack of cleavage of the nonfarnesylated prelamin A pep-

tide substrate in vitro, and the similar lack of cleavage of the

prelamin A molecule in whole cells, stands in contrast to the
efficient cleavage of the hexapeptide substrate, RSYLLG. We
would speculate the basis of these observations is that the
RSYLLG sequence, as a part of the prelamin A molecule, can-
not be presented to the active site of the endoprotease, perhaps
because of secondary structural constraints. Specific binding of
the farnesylated and methylated cysteine would, thus, direct
the RSYLLG sequence to the proteolytic cleavage site. That
methylation is also important for substrate reactivity is indi-
cated by the lack of cleavage of the demethylated prelamin A
peptide. Higher order structure in the C terminus of nonfarne-
sylated prelamin is consistent with the previous finding from
our laboratory that the prelamin A peptide domain is inhibitory
for prelamin A assembly into the lamina (10). An illustration of
our hypothesis for the role of farnesylation in prelamin A
endoproteolysis is shown in Fig. 11.
An important feature of this hypothesis is that we are sug-

gesting the existence of a farnesyl cysteinyl methyl ester bind-
ing site on the prelamin A endoprotease. Studies of other en-
zymes are also consistent with binding sites for farnesyl
cysteine methyl ester. The Ki for noncompetitive inhibition of
the prelamin A endoprotease by N-acetyl farnesyl methyl cys-
teine (17 mM) is essentially identical to that reported for the
apparent Ki for the noncompetitive inhibition of the P-glyco-
protein ATPase (31) by N-acetyl farnesyl methyl cysteine. It is
also comparable to to the Km values for two other farnesylated
substrates for other enzymes. These are the “prenyl cysteine-
directed a-carboxymethyl transferase (32),” which has a Km of

FIG. 8. The CVLL prelamin A mutant is processed to mature
lamin A but less efficiently than wild-type prelamin A. CHO-K1
cells (1 3 106) were transfected with human prelamin A (CSIM) (lanes
1 and 2), a nonprenylatable prelamin A mutant (MSIM) (lanes 3 and 4)
and the CVLL prelamin A mutant (lanes 5 and 6) and then labeled with
35 mCi/ml [35S]methionine for 16 h. The transgenic prelamin A (Ao) and
mature lamin A (A) proteins were immunoprecipitated with the human
species specific lamin A antibody 1E4 and analyzed by SDS-polyacryl-
amide gel electrophoresis and flourography. Molecular mass markers
(in kDa) are indicated on the right.

FIG. 9. Eadie-Hofstee analysis of inhibition of the prelamin A
peptide endoprotease by N-acetyl farnesyl methyl cysteine (A)
or RSYLLG (B). A, the endoprotease assay was performed in the
absence (lOOl) or presence of 1 mM (3OO3) or 2 mM (MOOM)
N-acetyl farnesyl methyl cysteine and various concentrations of the
prelamin A peptide substrate. The parallel lines observed for the two
concentrations of inhibitor are diagnostic for noncompetitive inhibition.
B, the endoprotease reaction was performed in the absence (l) or
presence of 1 mM (å) or 2 mM (f) RSYLLG and various concentrations of
the prelamin A peptide substrate. The intersection of the lines on the y
axis is diagnostic of competitive inhibition.

FIG. 10. Inhibition of prelamin A peptide endoproteolysis by
serine protease inhibitors. Nuclei were taken up in assay buffer,
preincubated for 10 min with various serine protease inhibitors (0.8
mM) and then the radioiodinated prelamin A peptide was added. Incu-
bation was continued for an additional hour and labeled RSY formed
(arrow) detected by reverse phase thin layer chromatography followed
by autoradiography. Lane 1, radioiodinated RSY standard; lane 2, apro-
tinin; lane 3, 3,4-dichloroisocoumarin; lane 4, chymostatin; lane 5,
phenylmethylsulfonyl flouride; lane 6, untreated control.

FIG. 11. Amodel for the prelamin A endoprotease. The RSYLLG
endoprotease site in prelamin A is hypothesized to be masked in a
higher order structure making it inaccessible to the endoprotease active
site (panel A). Farnesylation is then suggested to result in binding of the
substrate by an allosteric site on the endoprotease facilitating recogni-
tion of the RSYLLG sequence at the active site (panel B).
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11.6 mM forN-acetyl, S-farnesyl cysteine and the “isoprenylated
protein endoprotease (19, 33),” which has a Km of 6 mM for its
farnesylated oligopeptide substrate. Prenylation is required for
substrate activity with these enzymes consistent with a poly-
isoprenyl binding site. Extensive structure-activity studies of
inhibitors of the isoprenylated protein endoprotease have par-
ticularly been interpreted as consistent with a farnesyl cys-
teine binding site (34). However, this enzyme differs signifi-
cantly from the prelamin A endoprotease in that nonprenylated
peptides do not act as competitive inhibitors (18). It should also
be noted that the “isoprenylated protein endoprotease” is not
affected by serine protease inhibitors (34) and is, therefore,
almost certainly distinct from the enzyme described in this
report.
It has been postulated (35) that protein prenylation serves as

“a mediator of protein-protein interactions” rather than acting
as a hydrophobic anchor to lipid bilayer membranes. The data
presented here for the prelamin A endoprotease, as well as the
prior studies of the S-prenylcysteine a-carboxymethyl transfer-
ase and isoprenylated protein endoprotease, are clearly sup-
portive of this hypothesis.
The existence of such a polyisoprenoid recognition domain in

various enzymes is also consistent with a discrimination be-
tween polyisoprenoid substituents in biological processes. We
observe in our current studies a difference in the rate of endo-
proteolytic cleavage of farnesylated and geranylgeranylated
substrates both in whole cells and in vitro. Such dependence of
substrate activity on the isoprenoid substituent has also been
reported for the S-prenylcysteine a-carboxymethyl transferase
(22, 32) and the isoprenylated protein endoprotease (33).
Similarly, functional specificity of farnesylation relative to

geranylgeranylation has been demonstrated for mammalian
p21ras in cell growth (29), yeast RAS2 activation of adenylate
cyclase (36), light-regulated association of rhodopsin kinase
with ROS membranes (37) and yeast a-factor induction of mat-
ing (38). It is, therefore, intriguing to speculate that a general
function of the farnesyl residue is to bind to specific sites on
other proteins.
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