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XPA-Mediated Regulation of Global Nucleotide Excision
Repair by ATR Is p53-Dependent and Occurs Primarily in
S-Phase
Zhengke Li, Phillip R. Musich, Moises A. Serrano, Zhiping Dong, Yue Zou*

Department of Biochemistry and Molecular Biology, East Tennessee State University, J. H. Quillen College of Medicine, Johnson City, Tennessee, United States of America

Abstract

Cell cycle checkpoints play an important role in regulation of DNA repair pathways. However, how the regulation occurs
throughout the cell cycle remains largely unknown. Here we demonstrate that nucleotide excision repair (NER) is regulated
by the ATR/p53 checkpoint via modulation of XPA nuclear import and that this regulation occurs in a cell cycle-dependent
manner. We show that depletion of p53 abrogated the UV-induced nuclear translocation of XPA, while silencing of Chk1 or
MAPKAP Kinase-2 (MK2) had no effect. Inhibition of p53 transcriptional activities and silencing of p53-Ser15 phosphorylation
also reduced the damage-induced XPA nuclear import. Furthermore, in G1-phase cells the majority of XPA remained in the
cytoplasm even after UV treatment. By contrast, while most of the XPA in S-phase cells was initially located in the cytoplasm
before DNA damage, UV irradiation stimulated bulk import of XPA into the nucleus. Interestingly, the majority of XPA
molecules always were located in the nucleus in G2-phase cells no matter whether the DNA was damaged or not.
Consistently, the UV-induced Ser15 phosphorylation of p53 occurred mainly in S-phase cells, and removal of cyclobutane
pyrimidine dimers (CPDs) was much more efficient in S-phase cells than in G1-phase cells. Our results suggest that upon
DNA damage in S phase, NER could be regulated by the ATR/p53-dependent checkpoint via modulation of the XPA nuclear
import process. In contrast, the nuclear import of XPA in G1 or G2 phase appears to be largely independent of DNA damage
and p53.
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Introduction

The human genome is under constant threat of damage from

exogenous genotoxic pollutants and carcinogens. Removal of

DNA damage requires the dual action and coordination of cell

cycle checkpoints and DNA repair machineries in each phase of

the cell cycle [1]. The nucleotide excision repair (NER) pathway is

the primary mechanism in cells for the removal of helix-distorting,

replication-blocking DNA adducts induced by exogenous agents

such as UV radiation and a variety of genotoxic chemicals [2]. In

humans, defects of NER lead to the clinical disorder Xeroderma

pigmentosum (XP) which is characterized by an increased sensitivity

to UV radiation and a predisposition to the development of skin

cancers [3,4]. It remains elusive how NER is regulated by DNA

damage checkpoints throughout the cell cycle.

The Xeroderma pigmentosum group A protein (XPA) is one of

eight factors that were found to be deficient in XP disorders [5,6],

and the XPA-deficient cells exhibit the highest UV sensitivity

among the XP cells [7]. XPA is an indispensable factor for both

the transcription-coupled NER (TC-NER) and global genome

NER (GG-NER) [8,9]. NER can be regulated by transcriptional

and post-transcriptional control of the XPA protein [10,11,12].

Functionally, XPA is believed to play roles in verifying DNA

damage, stabilizing repair intermediates, and recruiting other

NER factors to the damage site [13,14,15].

The DNA damage checkpoints survey the structural integrity of

genomic DNA and coordinate multiple cellular pathways to

ensure timely and efficient removal of DNA damage. The ATM

(ataxia telangiectasia mutated)- and ATR (ATM- and RAD3-

related)-mediated checkpoint pathways are two major genome

surveillance systems in human cells. Both ATM and ATR are

protein kinases belonging to the phosphoinositide 3-kinase-like

kinase (PIKK) family. These pathways are comprised of a series of

DNA damage sensors, signal mediators and transducers, and

downstream effectors [1,2,16]. Checkpoint kinase-1 (Chk1), p53,

and MAPKAP Kinase-2 (MK2) are the three main downstream

checkpoint proteins that can be directly or indirectly activated by

ATR following UV irradiation [17,18,19].

ATR can be activated by genotoxic agents that cause replication

stress associated with accumulated RPA (Replication Protein A)-

coated ssDNA [20]. In our previous studies, we found ATR and its

kinase activity to be required for modulating translocation of

cytoplasmic XPA into the nucleus upon UV-DNA damage [21].

Consistently, ATR was reported to be required for maintaining

NER activity primarily during S phase in human cells [22]. When

XPA translocation is inhibited by disruption of the ATR-XPA

interaction in the nucleus, DNA repair efficiency is significantly

reduced [23]. Regulation of nuclear import is necessary for timely

localization of the repair proteins that participate in DNA repair

[24]. These findings lead us to propose that ATR regulation of the
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XPA nuclear import may directly coordinate the ATR checkpoint

activity with NER. However, the question as to whether the ATR-

regulated nuclear import of XPA upon DNA damage is cell-cycle

specific remains to be addressed.

In the current work, we demonstrate that UV-induced XPA

nuclear import is cell cycle dependent and happens primarily in

the S-phase, which may contribute to the ATR-regulated NER

process. We also identified p53 as the ATR-regulated downstream

protein required for the UV-induced XPA nuclear import and the

removal of UV-DNA damage.

Methods

Tissue culture, drugs and antibodies
The A549/LXSN (p53+) and A549/E6 (p532) cells were gifts

from Dr. Jeffrey L. Schwartz [25]. Cells were maintained in D-

MEM supplemented with 10% FBS and 1% penicillin-streptomy-

cin. All cell lines were grown at 37uC, 5% CO2. UV-C irradiation

was performed using a 254 nm lamp at a flounce of 0.83 J/m2/

sec. For time course analysis cells, were incubated at 37uC, 5%

CO2 for the indicated amounts of time. For inhibition of p53

transcriptional activities, pifithrin-a (Sigma Chemical Co.) was

added into the culture medium at 30 mM and the cells incubated

for 20 hours. For Western blotting, primary rabbit polyclonal

antibody against XPA, mouse monoclonal antibody against

PARP, rabbit polyclonal antibody against p53, mouse monoclonal

antibody against Chk1, and goat anti-MK2 antibody were

purchased from Santa Cruz Biotechnology Co. A FITC-

conjugated primary mouse anti-actin antibody was obtained from

Sigma Chemical Co. The anti-actin and anti-PARP antibodies

were used in Western blots to confirm successful subcellular

fractionations and protein loadings.

RNAi and transfection
p53 and XPA siRNA duplexes were purchased from Santa

Cruz. MK2 siRNA and Chk1 siRNA duplexes were synthesized

by Genepharam using the following sequences: MK2 siRNA,

sense strand 59-UGACCAUCACCGAGUUUAUdTdT-39 and

antisense strand 59-AUAAACUCGGUGAUGGUCAdTdT-39;

Chk1 siRNA, sense strand 59-ACAGUAUUUCGGUAUAA-

UATT-39 and antisense strand 59-UAUUAUACCGAAAUACU-

GUTG-39. The p53 39-UTR siRNA duplexes were purchased

from QIAGEN Corporation. Plasmids of human wild-type p53 and

the Ser15Ala p53 mutant were gifts from Dr. Karen Vousden at the

Beatson Institute for Cancer Research, United Kingdom. The co-

transfection of p53 39-UTR siRNA and p53 plasmids was done with

LipofectamineTM 2000 (Invitrogen) by following the company’s

instructions. The siRNA transfection reagent was purchased from

Polyplus Transfection and were used following their instructions.

Briefly, cells were grown to 30–40% confluence and washed with

FBS- and antibiotic-free medium. siRNA duplexes were added to a

small volume of FBS- and antibiotic-free medium and incubated

with transfection reagent for 10 min. This siRNA/reagent mixture

then was added to cells in FBS- and antibiotic-free medium at a final

siRNA concentration of 5–10 nM. After 5–7 hours incubation,

concentrated FBS and antibiotic medium were added into the

transfection medium for further incubation. The cells were UV-

irradiated at either 48 or 72 hrs of post-transfection. For time course

experiments, siRNA-containing medium was removed for UV

irradiation and added back for further cell growth.

Immunoblotting
Cells were harvested by scraping or trypsin digestion, and re-

suspended in lysis buffer (50 mM Tris-HCl, pH 7.8, 150 mM

NaCl, 1 mM EDTA, 1% Triton X-100, 16 protease inhibitor

cocktail [Roche]). Then 26SDS loading buffer was added to the

lysates and the mixtures were heated at 90uC for 10 min to

denature proteins. After running the samples in SDS-PAGE,

proteins were transferred from the gel onto a PVDF membrane.

The membranes then were blocked with 5% nonfat milk in TBST

and probed with specific primary and secondary antibodies.

Chemiluminescence signal was captured with a Fuji Film LAS-

4000 camera, and Western blot images were processed with Multi-

Gauge 3.0 software.

Cell synchronization, flow cytometry and BrdU
incorporation assay

Cells were synchronized by mitotic ‘‘shake off’’ as described

previously [26]. A549 cells were synchronized by seeding cells into

four 300 cm2 flasks and grown to ,70% confluence. Mitotic cells

were collected by physically shaking the flasks to dislodge the

loosely attached cells with monitoring by phase contrast

microscopy at 206 magnification. For synchronizing HeLa cells,

the cells were cultured in four 300 cm2 flasks and treated with

nocodazole at 100 ng/ml for 8 hours (to enrich the mitotic cells)

before shaking off. Collected mitotic cells then were seeded into

12-well or 6-well plates at 30–40% confluence and left to grow in

standard culture condition. The synchronization was confirmed

using BrdU labeling at each 4-hr time point after ‘‘shake off’’ and

by flow cytometric cell cycle analysis after propidium iodide

staining of the nuclear DNA.

For propidium iodide staining, cells were fixed in 70% cold

ethanol for 1- to 16-hrs at 4uC. Fixed cells were centrifuged at

10,0006g for 10 sec to pellet the cells, and propidium iodide

solution (PBS with 20 ug/mL propidium iodide and 100 ug/mL

RNase (Invitrogen)) was added to re-suspend the cell pellet. The

resuspended cells were incubated for another 30 min at 37uC.

Stained cells then were analyzed using an Accuri C6 flow

cytometer or a BD Biosciences flow cytometer to assess the

DNA content. The cell synchronization results were processed by

FCS software.

BrdU incorporation was performed following the company’s

instructions (Cellomics) with a few modifications. Briefly, cells were

grown on coverslips and labeled with BrdU by adding the

nucleoside to a final concentration of 160 mM; the cells were

grown for an additional 15 min to label those in S phase. Cells

then were fixed with 4% paraformaldehyde solution before

treatment with permeabilization buffer. After blocking with 15%

BSA for 1 hr at room temperature, primary mouse anti-BrdU

antibody and fluorescence-conjugated secondary antibodies (In-

vitrogen) were used to detect BrdU incorporation. Stained cells

were visualized using 1006 magnification with fluorescence

microscopy.

Subcellular fractionation
Subcellular fractionation was performed using the Proteo

JETTM cytoplasmic and nuclear protein extraction kit (Fermentas)

by following the procedures suggested by the manufacturer.

Briefly, 10 volumes of cell lysis buffer (with 16protease inhibitors)

were added to 1 volume of packed cells. After a short vortexing

and incubation on ice for 10 min, cytoplasm was separated from

nuclei by centrifugation at 5006g for 7 min at 4uC. Isolated nuclei

were washed with 500 mL of the nuclei washing buffer and

collected by centrifugation. The collected nuclear pellets were re-

suspended in ice-cold nuclear storage buffer, and 1/10 volume of

the nuclear lysis reagents was added to lyse the nuclei with rotation

for 15 min at 4uC. Nuclear lysate was collected by centrifugation

at 20,0006g for 15 min at 4uC. In all of the fractionation

Cell Cycle-Dependent Regulation of NER
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experiments, Western blotting of b-actin and PARP were assessed

to check cytoplasmic and nuclear protein loading, respectively.

Immunofluorescence microscopy
For immunofluorescence microscopy of proteins, cells were

grown on coverslips before the initiation of experimental

treatments. After UV-C irradiation and specified recovery times,

the cells were fixed with 100% cold methanol and blocked with

15% BSA for 1 hr at room temperature. Proteins were detected

with primary antibodies and fluorescence-conjugated secondary

antibodies (Invitrogen). Cells on coverslips were coated with

prolong gold antifade reagent containing DAPI (Invitrogen) before

microscopic examination using 1006magnification.

Slot-blot DNA Repair Assay
Cells were seeded at 16106 cells per 10 cm tissue culture dish

and allowed to grow for the indicated periods prior to UV-C

irradiation. After irradiation, cells were allowed to recover for the

indicated periods, followed by genomic DNA purification using

the QIAGEN DNA Mini Kit. The purified DNA was quantified

by measuring the light absorbance at 260 nm and diluted to

0.2 mg/mL in a final volume of 200 uL TE buffer. The DNA was

denatured by incubating at 90uC for 10 minutes, followed by

rapid chilling on ice water before adding an equal volume of 2 M

ammonium acetate. Samples were immobilized on a nylon

membrane and probed using monoclonal mouse anti-CPD or

anti-(6-4)PP antibodies (Kamiya Biomedical Co.).

Statistical analysis
The statistical analysis of samples was performed with a two-

tailed student’s t-Test, and a p-value of less than 0.05 was

considered as significant.

Results

UV-induced XPA nuclear import depends on p53
We previously demonstrated that UV-induced XPA nuclear

translocation is dependent on ATR [21]. Since p53 is a major

downstream substrate of ATR, it is of interest to determine if p53

is required for XPA nuclear import. Thus, cells were transfected

with p53 siRNAs. As shown in Figure 1A, the p53 silencing

inhibited the UV-induced nuclear import of XPA. In the control

siRNA-transfected cells, most of XPA molecules were imported

into the nucleus after DNA damage (compare the nuclear XPA-to-

cytoplasmic XPA (nXPA/cXPA) ratio in lanes 6 and 2 with the

ratio in lanes 5 and 1; also see the adjacent plot). By contrast, the

nXPA/cXPA ratio was significantly reduced in the cells with p53

depletion (Figure 1A). b-actin and PARP are cytoplasmic and

nuclear proteins, respectively, and were probed as controls to

indicate the quality of the cytoplasmic/nuclear protein fraction-

ation. An immunofluorescence microscopy assay also was

performed and the same effect of p53 on the XPA nuclear import

in the cells was observed (Figure 1B). In the absence of DNA

damage, most XPA molecules were located in the cytosol of the

cells transfected with control siRNA, but were translocated into

the nucleus following UV irradiation. However, only a small

portion of cytosolic XPA was translocated into the nucleus in the

p53-silenced cells even after UV irradiation. To further confirm

these results, A549/E6 (p532) and A549/LXSN (p53+) cells were

employed. In A549/E6 (p532) cells, p53 is abrogated due to

overexpression of human papillomavirus type 16 E6 protein [25],

while in A549/LXSN (p53+) cells wild-type p53 is expressed. As

shown in Figure 1C, the UV-induced XPA nuclear translocation

was disrupted in the p53-deficient cells as compared to the p53-

proficient cells.

We next examined the effect of transcriptional function of p53

on XPA nuclear import. A549 cells were pre-incubated with

pifithrin-a, a p53 transcriptional activation inhibitor, before the

UV treatment. As shown in Figure 1D, the presence of pifithrin-a
significantly reduced the UV-induced XPA nuclear import (the

nXPA/cXPA ratio) as compared to the DMSO-treated cells. The

data suggest that p53 may regulate the UV-induced nuclear

import of XPA through its transcriptional activity.

Neither Chk1 nor MK2 is required for UV-induced XPA
nuclear import

Chk1 is a downstream kinase substrate of ATR and may play an

important role in transducing damage signals in the ATR pathway

by phosphorylating p53. MAP kinase-activated protein kinase 2

(MAPKAPK2 or MK2) is another downstream kinase of ATR.

The p38-MK2 pathway recently was identified as an alternative

checkpoint in p53-deficient cancer cells [18]. It is of interest to

investigate whether Chk1 and/or MK2 are involved in the UV-

induced nuclear translocation of XPA. To this end, A549 cells

were transfected with Chk1 or MK2 siRNA followed by

subcellular fractionation. The results in Figures 2A and 2B

indicate that neither Chk1 nor MK2 is required for the UV-

induced XPA nuclear import as no difference of the import was

observed between the control siRNA- and the Chk1 or MK2

siRNA-transfected cells. Similar results also were obtained for cells

depleted of both Chk1 and MK2 (Figure 2C). By contrast, siRNA

knockdown of ATR in the A549 cells did significantly reduce the

UV-induced nuclear import of XPA (Figure 2C), confirming the

involvement of ATR/p53 checkpoint pathway in the regulation of

XPA nuclear import.

UV-damage induced XPA nuclear import occurs primarily
in S-phase

Next we addressed the question of whether the ATR-

dependent XPA nuclear import following DNA damage is cell-

cycle specific as is the ATR checkpoint [27]. To avoid any

physiological perturbation associated with drug treatments, A549

cells were synchronized by mitotic ‘‘shake off’’ as described

previously [26]. The collected mitotic cells were seeded into cell

culture dishes and maintained at standard culture condition to

generate a synchronized cell population for subsequent analysis.

The synchronization efficiency was assessed by propidium iodide

(PI) staining followed by flow cytometric analysis and by

assessing the BrdU-labeled cells under fluorescence microscopy

(Figure 3A). Based on the results, the 4-hour post-‘‘shake off’’

time point was selected as the G1 cell population (most cells with

a 2C DNA content and the lowest level of BrdU labeling); the

14-hour time point was selected as the S-phase cell population

(DNA content between 2C and 4C and highest BrdU labeling);

the 18-hour post ‘‘shake off’’ time point was selected as the G2

cell population (4C DNA content and low BrdU labeling). The

location of XPA molecules in the synchronized cell populations

was assessed using immunofluorescence [23]. Figure 3B shows

that in the G1 cells most of the XPA molecules were located in

the cytosol, and there was only a slight accumulation of XPA in

the nucleus after UV irradiation. By contrast, although most of

the XPA molecules were located in the cytosol in S-phase before

UV irradiation, they were imported into the nucleus after UV

treatment. Interestingly, in the G2 cell population most cells

showed significant levels of XPA in the nucleus either with or

without UV irradiation.

Cell Cycle-Dependent Regulation of NER
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To determine whether this cell phase-specific translocation of

XPA is a general response, synchronized HeLa cells (Figure 3C,

left) were treated with or without UV and then subjected to

subcellular fractionation for analysis of subcellular localization of

XPA in each phase of cell cycle. Consistent with the observation in

the A549 cells, we found that in HeLa cells, the UV-induced XPA

nuclear translocation also occurs primarily in the S-phase (20 hrs

post ‘‘shake off’’) (Figure 3C, right). Similarly, in the G1 phase cells

(6 hrs post ‘‘shake off’’), most XPA remained in the cytoplasm

even after UV treatment, while in the G2 phase cells (28 hrs post

‘‘shake off’’), a large amount of XPA was found in the nucleus even

without UV damage.

Repair of CPDs is significantly slower in G1 than in S
phase

As described above, the UV-induced XPA import occurs primarily

in S-phase cells, particularly in comparison with that in G1 phase

(Most of the XPA is located in the nucleus in G2 phase even in the

absence of DNA damage). Thus, it was expected that repair of the

UV-induced DNA damage could be more efficient in S phase cells

than in G1 phase cells. To confirm this, HeLa cells were mitotically

synchronized and the cells in either G1 or S phase were UV-

irradiated at a dose of 10 J/m2, followed by the indicated periods of

recovery (Figure 4A). As shown in Figure 4B, more CPDs were

generated in S phase than G1 phase cells following UV irradiation,

likely due to the more open chromatin structures in S phase than in

G1 phase (thus less protection of DNA from UV damage). As

expected, the repair rate of CPDs was much higher in S phase than in

G1 phase cells. In contrast, no difference in repair efficiency for 6-

4PPs was observed between G1 and S phase cells (Figure 4B). It is well

known that 6-4PPs can be removed in cells within a few hours while

CPDs are the much persistent DNA damage that is responsible for

the UV-induced cell death in NER proficient cells [28]. It also is

known that 6-4PPs are the minor lesions induced by UV in cells as

compared with CPDs [29,30]. Since the repair of 6-4PPs is generally

so efficient, it is possible that the relatively low level of XPA in the

nuclei of G1 phase cells is adequate for efficient removal of the

relatively small quantity of 6-4PPs.

Figure 1. p53 is required for the XPA nuclear import upon UV irradiation. A, p53 was transiently knocked down with siRNA duplexes in
HeLa cells. After treatment with or without 20 J/m2 UV followed by a 2-hr recovery, subcellular fractionation and Western blotting were performed to
assess the re-distribution of XPA. b-actin and PARP were probed as cytoplasmic and nuclear protein controls, respectively. The quantitative data were
obtained from at least three independent experiments. nXPA/cXPA represents the ratio of nuclear XPA to cytoplasmic XPA. B, Immunofluorescence
microscopic analysis of cells transfected with control or p53 siRNA and with or without UV irradiation. C, A549/LXSN(p53+) and A549/E6(p532) cells
were mock- or UV-irradiated. Cytosol and nuclear fractions were collected and analyzed by Western blotting. D, A459 cells were pre-treated with
pifithrin-a (30 uM), an inhibitor of p53 transcriptional activity, for 20 hrs. After UV irradiation and a 2-hr recovery, the cells were analyzed for
subcellular localization of XPA. The * in the plots indicates a statistically significant (p,0.05) difference between the groups being compared.
doi:10.1371/journal.pone.0028326.g001

Cell Cycle-Dependent Regulation of NER
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Phosphorylation of p53 on serine15 is required for the
UV-induced XPA nuclear import

Although our results showed that p53 is required for the XPA

nuclear import (Figure 1), it is unclear whether the requirement

involves the checkpoint activity of p53. Therefore, we examined

the effect of the phosphorylation of p53 at Ser15 on XPA nuclear

import. The p53 phosphorylation at Ser15 plays an important role

in ATR-dependent checkpoint signaling [2,19]. Consistent with

the observed cell phase-specific nuclear import of XPA induced by

UV, the UV-induced phosphorylation of p53 on Ser15 was found

to occur predominantly in the S-phase cell population (Figure 5A).

We next assessed the requirement of p53 serine15 for the UV-

induced XPA nuclear import. For this purpose, the endogenous

p53 in A549 cells was depleted using 39UTR siRNA while the cells

transiently expressed recombinant siRNA-resistant wild-type p53

or S15A-mutant p53. The deficiency of the Ser15 phosphorylation

in the p53-S15A construct-transfected cells was confirmed by

Western blotting (Figure 5B). Also shown in Figure 5B, the UV-

induced XPA nuclear import in the cells expressing p53-S15A was

significantly lower than in the cells expressing wild-type p53.

Discussion

A precise regulation of DNA repair is essential for cells to

function normally in response to DNA damage. Given the key role

Figure 2. Cell cycle checkpoint proteins Chk1 and MK2 are not required in the UV-induced nuclear import of XPA. A. siRNA duplexes
targeting Chk1 were transiently transfected into A549 cells, followed by mock or 20 J/m2 UV irradiation and a 2-hr recovery. The localization of XPA
was assessed using subcellular fractionation followed by Western blot analysis. PARP and b-actin proteins were probed as nuclear and cytoplasmic
protein controls, respectively. B. A549 cells were treated with MK2 or control siRNA, followed by UV irradiation. After a 2-hr recovery period, irradiated
cells were fractioned and analyzed by Western blotting. C. Chk1 and MK2 were simultaneously knocked down by Chk1 and MK2 siRNAs, or ATR was
knocked down by ATR siRNA. Then, the UV-induced XPA nuclear import in these cells was assessed by fractionation and Western blotting.
doi:10.1371/journal.pone.0028326.g002

Cell Cycle-Dependent Regulation of NER
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of XPA in NER, results from our previous [21,23] and current

studies suggest that the ATR-dependent regulation of the damage-

induced XPA nuclear import may represent a novel mechanism

by which NER activity can be regulated by DNA damage

checkpoints. Here we found that this regulation occurs primarily

in S-phase, which well reflects the fact that DNA is most

vulnerable to insult in S-phase in terms of maintaining genome

integrity. This also is consistent with the recent report that ATR

kinase is required for GG-NER exclusively during S phase [22].

We also examined whether any of the major downstream

checkpoint substrates of ATR such as p53, Chk1 or MK2, is

involved in the regulation of the UV-induced XPA nuclear import.

Our results indicate that the XPA nuclear import is dependent on

p53 in cells responding to UV damage, but neither Chk1 nor

MK2 are required for this XPA nuclear translocation (Figure 2).

The results suggest a regulatory role of p53 in NER, which is in

agreement with previous studies [31,32,33,34,35,36]. We found

that not only is the p53 protein itself necessary (as shown in the

siRNA knockdown experiments), but also the transcriptional

function of p53 and the damage signaling via p53-ser15

phosphorylation are required for the UV-induced XPA nuclear

import (Figures 1 and 5). In fact, the Ser15 phosphorylation of p53

has been shown to stimulate the transcriptional functions of p53

through its increased association with p300 co-activator [37,38,39]

and stabilization via disruption of binding to MDM2 [40]. Thus,

the effect of p53-ser15 phosphorylation appears to converge with

that of the p53 transcriptional activation inhibitor pifithrin-a. The

Ser15 of p53 can be phosphorylated either directly by ATR or by

ATR-activated Chk1 in response to UV irradiation [2,17,19,41].

Since Chk1 was not required for UV-induced XPA nuclear import

(Figure 2), ATR kinase may directly phosphorylate p53 for

transcriptional activation of the XPA nuclear translocation. Given

that p53 activates transcription of multiple genes involved in

numerous cellular processes [42], it is possible that p53 may

enhance the transcription of the genes involved in XPA trafficking

from cytoplasm to nucleus [43,44]. More recently, studies have

showed that the transcription factor E2F1 plays a role in

facilitating the recruitment of XPA and other NER factors to

the UV-induced DNA damage sites and this appears to be

mediated by ATM- and ATR-dependent phosphorylation of E2F1

Figure 3. DNA damage-induced XPA nuclear accumulation occurs primarily in S-phase. A. Mitotically-synchronized A549 cells grown for
the indicated time periods were stained with propidium iodide for analysis of the cell cycle distribution (Panel A, left) or labeled with BrdU to identify
synchronized S-phase cells (panel A, right). B. Immunofluorescence microscopic analysis of the subcellular localization of XPA in the synchronized
cells. Synchronized A549 cells were mock- or UV-treated (20 J/m2) and left to recover for 2 hrs. Cells were fixed and stained with primary and
fluorescence–conjugated secondary antibodies to determine the localization of XPA. At least 100 cells were examined, and the representative data is
shown. C. Left: Mitotically-synchronized HeLa cells were stained with propidium iodide followed by flow cytometric analysis. Right: Subcellular
fractionation followed by Western blotting was performed to analyze the subcellular localization of XPA in each phase of the cell cycle after UV
irradiation of synchronized HeLa cells. PARP and b-actin were probed as nuclear and cytoplasmic protein controls, respectively. At least three
independent experiments were performed and representative data is presented.
doi:10.1371/journal.pone.0028326.g003
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Figure 4. Removal of UV-induced DNA damage in G1- and S-phase cells. A. Mitotically-synchronized HeLa cells were fixed and stained with
propidium iodide at the indicated time points following the mitotic ‘‘shake off’’. The cell cycle distribution then was analyzed by flow cytometry. Cells
at G1 (at the 6 hours post-‘‘shake off’’) or S (20 hours post-‘‘shake off’’) phase, were UV irradiated at 10 J/m2, followed by a recovery of 24 hours. B.
Cells at G1 or S phase were UV irradiated at 10 J/m2, followed by the indicated periods of repair. Cellular DNA were isolated and the removal of CPDs
and 6-4PPs was measured by slot-blot assay. The amounts of CPDs or 6-4PPs were normalized to the values at zero hour and quantified based on
three independent measurements.
doi:10.1371/journal.pone.0028326.g004
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at Ser31 [45,46]. Evidently, future investigation is needed to

identify the p53-regulated transcriptional targets involved in the

protein nuclear import process.

In contrast to the case in S phase, most of the XPA molecules

remained in the cytoplasm of G1-phase cells after UV irradiation,

while XPA normally accumulated in the nucleus in G2 phase cells

even without DNA damage. In addition, the level of UV-induced

Ser15-phosphorylation of p53 was much lower in G1- and G2-

phase cells than in S-phase cells (Figure 5A). These results suggest

that the UV-induced XPA nuclear import happens predominately

in S phase (Table 1), while the XPA nuclear import in G1 and G2

phases is largely, if not fully, independent of UV irradiation and

p53. Consistently, DNA repair of UV-induced CPDs was much

more efficient in S phase than in G1 phase (Figure 4). Also

interestingly, it was previously demonstrated that p53 deficiency

had a negative impact on GG-NER but not on TC-NER [31,33].

Given the indispensable role of XPA in both GG-NER and TC-

NER, the observation of a p53 requirement for the UV-induced

XPA nuclear import in S-phase cells implies that the TC-NER

may predominately occur in other cell cycle phases in a p53-

independent manner. Consistently, the rate of transcription is

generally low during S phase except the transcription for histone

production.

Compared to the UV-induced XPA nuclear translocation in S

phase, the subcellular distributions of XPA in the absence and

presence of UV are very different in G1 and G2 phases. In typical

human cells, G1 phase lasts much longer than S phase and the G1-

phase cells do not experience a replication pressure requiring a fast

repair of DNA damage. Thus, it is possible that the relatively lower

rate of NER could be sufficient for timely removal of DNA

damage by the end of G1 phase. In addition, the G1/S DNA

damage checkpoint also could prevent cells from entering S phase

Figure 5. Phosphorylation of p53 is required for the UV-induced XPA nuclear import. A. Mitotically synchronized A549 cells were mock-
treated or irradiated with 20 J/m2 of UV-C, and allowed a 2-hr recovery before accessing the phosphorylation of p53 at Ser15 by Western blotting. B.
Constructs for expressing human wild-type p53 or the S15A mutant of p53 were co-transfected with p53 39-UTR siRNA into A549 cells. 72 hours after
transfection, the A549 cells were mock- or UV (20 J/m2)-treated and allowed a 2-hr recovery. The UV-induced phosphorylation of p53 and the XPA in
the nuclear fraction then were analyzed by Western blotting. The right panel shows the efficiency of siRNA knockdown of endogenous p53 and the
level of recombinant p53 in the cells co-transfected with p53 39-UTR siRNA and p53-WT constructs.
doi:10.1371/journal.pone.0028326.g005

Cell Cycle-Dependent Regulation of NER

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e28326



before the damage has been removed. In the case of G2 phase,

since XPA nuclear accumulation occurs even in the absence of

DNA damage, the accumulation is not a residual effect of an S

phase accumulation. This may imply a quick removal of DNA

damage in G2. It may also implicate a possible role of XPA in G2

maintenance or G2/M checkpoint regulation of the normal cell

cycle. Indeed, depletion of XPA protein in cells changed the

population distribution of cells in the cell cycles (data not shown).

Although the potential role of XPA in normal cell cycle is of

interest, it is out of scope of this study and deserves further

investigations.
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