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Abstract: The relative contributions of PM2.5 and ozone precursor emissions to air 

pollution-related premature mortality modulated by climate change are estimated for the 

U.S. using sensitivities of air pollutants to precursor emissions and health outcomes for 

2001 and 2050. Result suggests that states with high emission rates and significant 

premature mortality increases induced by PM2.5 will substantially benefit in the future from 

SO2, anthropogenic NOX and NH3 emissions reductions while states with premature 

mortality increases induced by O3 will benefit mainly from anthropogenic NOX emissions 

reduction. Much of the increase in premature mortality expected from climate change-

induced pollutant increases can be offset by targeting a specific precursor emission in most 

states based on the modeling approach followed here. 
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1. Introduction 

Air pollution can affect human health, having both short-term (e.g., irritation to the eyes, headaches 

and coughing) and long-term (e.g., chronic respiratory disease and heart disease) effects [1]. Individual 

reactions to air pollutants depend on the pollutant type, the exposure duration and health status. 

Mildest effects include increased medication use and subclinical effects while more severe effects 

include emergency room visits, hospital admissions, and premature mortality. The young, the elderly, 

diabetics and those with cardiopulmonary disease, such as asthma or severe bronchitis, are the most 

vulnerable to air pollution exposure. The World Health Organization using population exposure 

estimates of PM10 (particulate matter with aerodynamic diameter less than 10 μm) concentrations in 

the year 2002 estimates that 865,000 people die prematurely each year from causes directly 

attributable to outdoor air pollution [2]. The U.S. has the third highest levels worldwide with an 

estimated 41,200 premature deaths per year, following China (275,600) and India (120,600). In a 

recent estimate of global burden of disease, outdoor air pollution was estimated to account for about 

2% of all cardiopulmonary disease and 1.4% of total premature mortality [3]. Much of the concern 

stems from ozone (O3) and particulate matter (PM). O3 exposure decreases lung function, increases 

airway reactivity, causes lung inflammation, and decreases exercise capacity. Similarly, PM exposure 

leads to increased rates of respiratory symptoms and illness, decreased lung function, increased asthma 

exacerbation and also contributes to impaired cardiovascular responses and altered blood coagulation 

which may precipitate leg and chest pain, heart attacks, stroke, and ultimately premature  

mortality [e.g., 4-7]. A recent study [8] examining the long-term ozone exposure and mortality found 

that ozone and PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) contributed 

independently to increased annual mortality in U.S. However, there is no significant effect of exposure 

to ozone on the risk of premature mortality from cardiovascular causes when particulates were taken 

into account, but there is a significant effect of exposure to ozone on the risk of death from  

respiratory causes. 

Due to their suspected human health effects, significant effort has been made to investigate climate 

change impacts on O3 and PM concentrations [9-11]. Increases in ground-level O3 concentrations are 

expected in the future due, in part, to higher temperatures and more frequent stagnation events, while 

changes in precipitation will modify PM2.5 levels [12]. Further, higher ambient temperatures lead to 

higher biogenic VOC emissions, so future climate induced emission changes are expected to affect 

both pollutants’ formation [13]. Mickley et al. [14] suggest that the reduced cyclone frequency in a 

future warmer climate could increase the severity of summertime pollution in the northeastern and 

Midwestern United States, although the increase of hurricane strength and precipitation might 

counteract seasonal pollution in some regions [15]. Hogrefe et al. [16] estimate that regional climate 

change alone will increase the summertime daily maximum 8-hour average O3 concentration over the 

eastern United States by 4 ppb in the 2050s. Their results are based on the IPCC A2 emission  

scenario [17], which is one of the highest future emissions scenarios. Across a number of modeling 
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experiments carried out by different groups, absent accounting for emission decreases to controls, 

simulated global climate change causes increases of a few to several parts per billion (ppb) in 

summertime mean maximum daily 8-hour average O3 concentrations over substantial regions of the 

U.S. [18]. The different modeling experiments in general do not, however, simulate the same regional 

patterns of change. These differences seem to result largely from variations in the simulated patterns of 

changes in key meteorological drivers, such as temperature and surface insolation. 

Bell et al. [9] estimated that elevated O3 levels would increase daily premature mortality  

0.11%–0.27% across 50 U.S. cities in 2050 compared to 2001 based on the IPCC-A2 emissions 

scenario whereas Knowlton et al. found a 4.5% O3-related mortality increase [19] in the 31 counties of 

the New York metropolitan area. It has been also suggested [20] that climate change driven air  

quality-related health effects will be adversely affected in more than 2/3 of the continental U.S. in 

2050 compared to 2001 based on the IPCC-A1B emissions scenario [17]. The IPCC-A1B emissions 

scenario is one of the business-as-usual emission scenarios which is generally viewed as a midrange 

case that assumes a future world of rapid economic growth with a balance between fossil and nonfossil 

energy sources. Although these approaches are used to examine the hypothetical situation of what 

would happen if the predicted future climate conditions occurred when holding the anthropogenic 

emission inventory and population constant, the information provided enhances the ability of air 

quality managers to consider global change in their decisions quantifying the controls that will be 

needed to meet a given air quality standard (climate penalty). Extending the study by  

Tagaris et al. [20] where the potential health impact of ambient O3 and PM2.5 concentrations modulated 

by climate change over the United States has been investigated, in this study we assess the relative 

contribution of O3 and PM2.5 precursor emissions in premature mortality change, estimating the 

sensitivities of premature mortality to emissions and providing an estimate for the emission reductions 

needed to offset the related mortalities. 

2. Methods 

Results of the Goddard Institute for Space Studies (GISS) Global Climate Model (GCM) [21], and 

components of the Models-3 atmospheric modeling system [22,23] were used to simulate the impact of 

climate and emissions changes on air quality. The U.S. EPA’s BENMAP (http://www.epa.gov/ 

air/benmap) is used to translate those air quality changes to health impacts. Details of the modeling 

approach have been reported elsewhere [13,20,24] and summarized here. 

2.1. Meteorology 

The Fifth-Generation NCAR/Penn State Mesoscale meteorological Model (MM5) [22] is used to 

downscale (i.e., increase the spatial and temporal resolution over the chosen modeling domain) 

NASA’s Goddard Institute for Space Studies (GISS) Global Climate Model (GCM) [21] outputs for 

years 2001 and 2050 [14,25]. The simulation followed the Intergovernmental Panel on Climate 

Change (IPCC) A1B emission scenario [17] for greenhouse gases. The GISS GCM was applied at a 

horizontal resolution of 4° latitude by 5° longitude to simulate current and future climate at global 

scale [14] while the MM5 is applied in a nested configuration with 108 km horizontal resolution for 
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the outer domain and 36 km for the inner one [25]. The inner domain covers the continental 

United States, part of Canada, Mexico and nearby oceans.  

2.2. Air Quality Modeling 

The Community Multiscale Air Quality model (CMAQ) [23] with the SAPRC-99 [26] chemical 

mechanism is used to simulate pollutant concentrations (i.e., O3 and PM2.5) for both historic and future 

periods keeping constant boundary conditions for 2001 and 2050 simulations [24]. A uniform grid of 

36 km × 36 km horizontal cells with 9 vertical layers is employed in the simulations. Although the 

emission inventory is kept the same (i.e., emission sources, population, activity levels and pollution 

controls) emissions are not since some pollutant emissions (e.g., biogenic and mobile sources) depend 

on meteorology. Higher ambient temperatures lead to higher biogenic VOC emissions, suggesting that 

climate induced emission changes in a warmer environment will affect pollutant formation. The 

Decoupled Direct Method 3D (DDM-3D) [27-30] is incorporated in the CMAQ to quantify 

sensitivities of air pollutants to precursor emissions [13]. These sensitivities represent how pollutant 

concentrations respond to precursor emission changes as if the systems were linear [13]. Although the 

system is not linear, extensive testing suggests the linear (first-order) response is accurate up to 

emission changes of the order of 30% for O3 and 20-50% for PM2.5 (depending on species) [31-33]. 

2.3. Health Effects  

The U.S. EPA’s Environmental Benefits Mapping and Analysis Program (BenMAP) ver. 2.4.8 

(http://www.epa.gov/air/benmap) was employed to estimate the potential health impact of ambient O3 

and PM2.5 concentration changes due to climate change over the U.S. [20]. BenMAP includes a 

database of age-specific population and disease incidence rates, and a concentration-response functions 

library for use in analyzing the health effects driven by changes in air quality. The concentration-

response functions used are consistent with those in recent regulatory analyses [34-37]. The O3 

mortality toxicity factor is 0.00052, (i.e., a 1 ppbv change in O3 concentrations would lead to a 0.052% 

change in the expected number of premature deaths) [38] while the PM2.5 mortality toxicity factor is 

0.0058 (i.e., a 1 μgm-3 change in PM2.5 concentrations would lead to a 0.58% change in the expected 

number of premature deaths) [39]. BenMAP does not account for the potential variability in the 

impacts of different components of PM2.5, and the exposure-response estimates are viewed as uncertain 

and may vary between parts of the country. Here, the default BenMAP ozone-premature mortality 

relationship is used and is based on 24-hour averaged ozone levels [20]. Since population, mortality 

rates and disease incidence rates obtained from 2000 are used the anticipated changes in the population 

(increasing by 2050) and age-specific mortality rates (expected to continue to decrease) would affect 

future health estimates. 
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2.4. Premature Mortality Sensitivity 

In order to estimate, here, the relative contribution of PM2.5 and O3 precursor emissions in 

premature mortality changes for each state in the continental U.S. the following formula is used: 
 

 

where:  

 EX(Y) is the mortality change induced by changes in pollutant X concentration due to a 1% 

reduction in precursor Y emissions over the domain  

 ΔCX is the pollutant X concentration change due to climate change 

 ΔMX is the premature mortality change induced by ΔCX 

 SX(Y) is the sensitivity of pollutant X to precursor emissions Y (i.e., concentration responses to a 

1% emissions reduction) 

 X: PM2.5 or O3 concentrations 

 Y: SO2, anthropogenic NOX, NH3, biogenic or anthropogenic VOC emissions. 

Linear responses of the pollutant concentrations, and the resulting changes in premature mortality, 

to precursor emissions (i.e., how premature mortality would change to a 1% reduction in SO2, NOx, 

NH3 or VOC emissions) can be used for emission reductions of up to 25–50%, depending on pollutant 

and environment, as mentioned above. In this way, the reduction needed in precursor emissions to 

offset air pollution-induced mortality due to climate change could be estimated for each state. This is 

the first time, to our knowledge, that an analysis of premature mortality sensitivity to air pollutant 

precursor emissions is performed.  

3. Results and Discussion 

A detailed discussion of climate change impact modeling results on meteorology and air quality as 

well as air pollution related health effects have been presented elsewhere [13,14,20,24,25] and key 

outputs are presented below.  

3.1. Baseline Meteorology  

Temperatures in 2050s are modeled to be higher over the U.S. with an average increase between 1 

and 3 degrees [24]. During winter and spring warming is between 0 and 3 degrees. Throughout 

summer warming between 2 and 4 degrees is simulated over the southwestern U.S. [25]. Warming 

over the midwestern U.S. is found to be less, while in some regions a small cooling is related to 

changes in cloud cover. During fall, warming of up to 4 degrees occurs over much of the western U.S. 

Daily rainfall intensity increases in most regions across the continental U.S., but the change in daily 

rainfall frequency is more spatially variable. As modeled, changes in rainfall frequency are small 

during winter and spring [25]. Regional changes in precipitation up to ±5 cm yr-1 are simulated for the 

majority of the states, while in a few states the changes will be higher than ±20 cm yr-1 (more rain is 

simulated in the southeastern states). Extreme positive changes (higher than 50 cm yr-1) are simulated 

over the Atlantic Ocean and Gulf of Mexico [40]. During winter and spring the changes in downward 

solar radiation is about 8 W/m2 in the U.S. [25]. During summer, it reaches 30 W/m2 over Texas. In the 

Midwest, cloud cover changes reduce solar radiation by up to 30 W/m2. During fall, the change is 
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positive everywhere, with a maximum over the western U.S. of 15 W/m2. The changes in the 

number of stagnation days during winter and spring are much smaller compared to summer and fall, 

where the percentage change in stagnation occurrence is very significant [25]. 

3.2. Baseline Air Quality 

Climate change modifies mean summer daily maximum 8-hour average O3 concentration levels by 

±3% and mean annual PM2.5 concentrations by −3% to 6% [24]. The lengthening of stagnation events 

tends to increase summer O3 concentrations particularly during intense episodes near cities while a 

spatially mixed impact on annual PM2.5 levels is simulated. The latter effect is mainly due to a variable 

change in precipitation. Stagnation events are predicted to have the most impact in the west, northeast 

and plains and a small impact is anticipated in the southeast. Climate change alone leads to increasing 

O3 concentrations in all the examined cities (i.e., Los Angeles, Houston, Chicago, New York, and 

Atlanta) and more days with daily maximum 8-hour average O3 concentration over the air quality 

standard are predicted in Los Angeles, New York and Houston. First-order (linear) sensitivities 

suggest [13] that a 10% reduction in anthropogenic NOX emissions causes 2–4% decreases in 

maximum ozone concentrations. Reductions in VOC emissions are also beneficial for decreasing O3 

levels. Overall, O3 sensitivities to anthropogenic NOX, biogenic VOC, and anthropogenic VOC 

emissions are predicted to increase only slightly in 2050 compared to 2001 due to climate change. SO2, 

NH3, anthropogenic NOx and biogenic VOCs were found to be important precursors for PM2.5 

formation, with climate change modeled to affect slightly these sensitivities.  

3.3. Baseline Health Effects 

Air pollution-related premature mortality will be higher in the future in more than 2/3 of the states 

due to climate changes. Model results find that New York, along with the states in the Great Lakes and 

the northeastern U.S. will be affected more. Conversely, Texas and the southeastern states will 

experience a smaller effect [20]. The PM2.5-related health effects dominate the O3-related health effects 

but the geographic pattern of changes in O3 concentrations is significantly different than the patterns 

observed for PM2.5. About 4,000 more PM2.5-related premature deaths are projected nationally for 

2050 compared to 2001 with more incidents in the Great Lakes area and the northeastern U.S. and less 

in the southern states. In addition, about 300 more O3-related premature deaths are projected nationally 

for 2050 compared to 2001. Climate change-related increased O3 health effects are less pronounced in 

the Great Lakes area and more pronounced for the southern states.  

3.4. State Specific PM2.5, O3 and Premature Mortality Sensitivities to Emissions 

PM2.5 concentrations are more sensitive to SO2, NOX and NH3 emissions (Figure 1) than other 

species (e.g., VOCs). Atmospheric SO2 is oxidized to sulfuric acid which reacts with ammonia to form 

ammonium sulfate while gas-phase NOX, oxidizes to nitric acid which reacts with ammonia to form 

ammonium nitrate [41]. States which are simulated to be more sensitive to SO2 emissions are those 

with elevated SO2 emissions such as the eastern states [42] (decreases up to 0.035 μgm-3 in daily state 

average PM2.5 concentration for a 1% reduction in SO2 emissions), while the western states are less 

sensitive (decrease between 0.003 and 0.008 μgm-3 in daily state average PM2.5 concentration for a 1% 
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reduction in SO2 emissions). Midwest states are simulated to be more sensitive to anthropogenic 

NOX emissions since this sub-region experiences relatively large NOX and NH3 emissions [42] 

(decrease up to 0.026 μgm-3 in daily state average PM2.5 concentration for a 1% reduction in 

anthropogenic NOX emissions). The sensitivity of PM2.5 to NH3 emissions follows SO2 and NOX 

spatial distributions and contributes to a decrease of up to 0.04 μgm-3 in daily state average PM2.5 

concentration for a 1% reduction in NH3 emissions. The impact of both biogenic and anthropogenic 

VOC emissions changes to PM2.5 concentration is less important. A 1% reduction in VOC emissions 

decreases daily state average PM2.5 concentration in few states (up to 0.01 μgm-3 and 0.004 μgm-3 for 

biogenic and anthropogenic emissions, respectively) and increases daily state average PM2.5 

concentration in other states (up to 0.003 μgm-3 and 0.001μgm-3 for biogenic and anthropogenic 

emissions, respectively). 
When NOX and VOCs mix in the presence of sunlight, ground level O3 is formed [41]. The 

response of ambient O3 formation to reductions in NOx and VOC emissions depends on the relative 

abundance of NOX and VOCs, as well as meteorological factors. The majority of the states have a 

positive response to anthropogenic NOX emissions, with a decrease of up to 0.067 ppb in daily state 

average O3 concentration for a 1% emissions reduction. A few states located in the Midwest and 

Northeast sub-regions have a negative response, with an increase of up to 0.044 ppb in daily state 

average O3 concentration for a 1% reduction in anthropogenic NOX emissions. VOC emissions are also 

important to O3 responses. A 1% reduction in anthropogenic and biogenic VOC emissions are 

simulated to reduce O3 concentrations up to 0.021 ppb in the eastern states while a minor negative 

response to biogenic VOC emissions is noticed for the northwestern states (an increase of up to 0.005 

ppb in daily state average O3 concentration for a 1% reduction in biogenic VOC emissions). SO2 and 

NH3 emissions are simulated to have a minor impact (a decrease of up to 0.004 ppb and increase of up 

to 0.006 ppb in daily state average O3 concentrations for a 1% reduction in SO2 and NH3 emissions, 

respectively). 
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Figure 1. Daily average PM2.5 and O3 sensitivities* per 1% reduction in domain-wide SO2, anthropogenic NOX, NH3, biogenic or 

anthropogenic VOC emissions in 2050. 

 

 

 

 

 

 

 

 

 

 

 

 

* Positive sensitivity (+): Reductions in precursor emissions decrease pollutant concentrations. 
 Negative sensitivity (−): Reductions in precursor emissions increase pollutant concentrations. 
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States with high emission rates [42] and significant premature mortality increases induced by 

PM2.5 concentrations modulated by climate change (i.e., midwestern and northeastern U.S. sub-regions) 

are estimated to substantially benefit from SO2, anthropogenic NOX or NH3 emissions reduction (Table 1). 

Illinois is simulated to be the state where emissions reduction will most significantly decrease  

PM2.5-induced premature mortality: a 1% reduction in SO2, anthropogenic NOX or NH3 emissions results 

in 28, 27 and 40 less incidents, respectively. States with fewer related incidents in the future (e.g., Texas, 

Florida) will also benefit from emissions reduction. In general, reduction in both anthropogenic and 

biogenic VOC emissions plays a minor role compared to SO2, anthropogenic NOX and NH3  

emissions reduction. 

States with premature mortality increases induced by O3 concentrations modulated by climate change 

are estimated to benefit mainly from anthropogenic NOX emissions reduction. In the majority of the states, 

anthropogenic NOX emissions reduction will reduce premature death, however, in a few states where 

VOCs are the limiting precursor for O3 formation, NOX emissions reductions are found to result in an 

increase (e.g., NJ, IL, OH, PA, IN). This is partly an artifact of using the exposure-response relationship 

for O3 based on a 24-hour average. 24-hour average O3 levels can respond negatively to NOX emissions 

when 8-hour maximum levels would respond positively. Texas and California are simulated to be the 

states that will benefit most: a 1% reduction in anthropogenic NOX emissions results in about 4 less 

premature deaths. Reduction in both anthropogenic and biogenic VOC emissions are also simulated to be 

beneficial for the states with high premature mortality increase induced by O3 concentrations modulated 

by climate change (between 0.6 and 1.7 fewer incidents for a 1% reduction of VOCs). Northwestern states 

are simulated to have a small increase in premature mortality due to biogenic VOC emissions reduction. 

As anticipated, SO2 or NH3 emissions reductions only slightly modify O3-related premature mortality 

since these two pollutants do not have a large impact on ozone formation. 

Generally, the effect of emissions reduction in cumulative (total) premature mortality induced by both 

PM2.5 and O3 changes follows the PM2.5 trend since PM2.5 related mortality has been found higher than 

that due to O3 [20]. In a few states O3 related premature mortality modulated by anthropogenic NOX and 

VOC emissions reduction play an important role in the cumulative results (e.g., NJ and RI for NOX, IL, 

AR, KY and TN for biogenic VOCs, AZ and AL for anthropogenic VOCs) (Table 1).  



Int. J. Environ. Res. Public Health 2010, 7  

 

2231

Table 1. State specific PM2.5, O3, and total premature mortality change in 2050 compared to 2001 and the sensitivity per 1% 

reduction in SO2, anthropogenic NOX, NH3, anthropogenic VOC or biogenic VOC emissions.   

  Mortality Change (number of incidents) 

  
Caused by changes in 

concentrations* 
Caused by 1% decrease in  

SO2 emissions 
Caused by 1% decrease in 

anthropogenic NOx emissions 
Caused by 1% decrease in 

 NH3 emissions 
Caused by 1% decrease in 
biogenic VOC emissions 

Caused by 1% decrease in 
anthropogenic VOC emissions 

 PM2.5 O3 Total PM2.5 O3 Total PM2.5 O3 Total PM2.5 O3 Total PM2.5 O3 Total PM2.5 O3 Total 

AL −84 23 −61 −6.55 −0.01 −6.56 −3.26 −1.05 −4.32 −4.70 0.02 −4.68 −1.19 −0.21 −1.40 0.00 −0.30 −0.30 

AZ 60 19 79 −3.67 −0.01 −3.67 −2.18 −1.08 −3.25 −2.15 0.01 −2.14 −2.28 −0.18 −2.47 0.00 −0.17 −0.17 

AR −72 21 −51 −6.34 −0.01 −6.35 −4.86 −0.62 −5.47 −5.02 0.02 −5.00 0.12 −0.18 −0.06 0.21 −0.19 0.03 

CA −186 82 −104 −7.44 −0.02 −7.46 −11.35 −4.77 −16.13 −8.42 0.07 −8.35 −13.50 −1.15 −14.64 −0.93 −1.70 −2.63 

CO 58 −4 54 −1.40 −0.01 −1.41 −1.07 −1.09 −2.16 −1.45 0.02 −1.43 −0.53 −0.11 −0.64 0.03 −0.09 −0.06 

CT 232 −3 229 −2.71 0.00 −2.71 −1.40 0.18 −1.22 −4.25 0.01 −4.24 −0.75 −0.05 −0.80 −0.39 −0.10 −0.48 

DE 8 −1 7 −0.87 0.00 −0.87 −0.58 0.03 −0.55 −1.02 0.00 −1.02 −0.04 −0.02 −0.06 −0.09 −0.03 −0.12 

DC 2 0 2 −0.09 0.00 −0.09 −0.04 0.00 −0.04 −0.11 0.00 −0.11 −0.01 0.00 −0.01 −0.01 0.00 −0.01 

FL −396 30 −366 −21.96 0.00 −21.96 −5.41 −2.41 −7.81 −10.57 0.03 −10.55 −3.77 −0.50 −4.26 0.18 −0.56 −0.38 

GA −163 34 −129 −8.65 0.00 −8.65 −4.38 −1.24 −5.62 −6.70 0.03 −6.68 −2.10 −0.34 −2.44 −0.10 −0.48 −0.58 

ID 23 −5 18 −0.36 0.00 −0.36 −0.50 −0.12 −0.62 −0.49 0.00 −0.49 −1.18 0.02 −1.16 −0.02 −0.01 −0.02 

IL 396 −17 379 −28.29 −0.31 −28.60 −27.34 1.19 −26.16 −40.12 0.41 −39.71 1.65 −3.48 −1.83 −1.21 −4.29 −5.50 

IN 275 −5 270 −8.94 −0.01 −8.96 −8.05 0.25 −7.80 −13.98 0.02 −13.97 0.28 −0.20 0.07 −0.68 −0.26 −0.94 

IA 32 −8 24 −1.98 −0.03 −2.01 −3.39 −0.15 −3.55 −3.56 0.05 −3.51 0.34 −0.12 0.23 0.01 −0.15 −0.14 

KS 6 1 7 −0.87 −0.03 −0.90 −0.87 −0.97 −1.84 −0.82 0.05 −0.77 0.11 −0.28 −0.17 0.04 −0.23 −0.19 

KY 52 8 60 −15.51 −0.02 −15.54 −7.59 −0.07 −7.66 −18.20 0.02 −18.18 −0.03 −0.31 −0.34 −0.49 −0.36 −0.86 

LA 57 32 89 −9.58 −0.01 −9.59 −4.13 −1.01 −5.14 −5.93 0.02 −5.91 −0.95 −0.28 −1.24 0.11 −0.24 −0.13 

ME 46 −4 42 −0.67 0.00 −0.67 −0.30 −0.04 −0.34 −0.87 0.00 −0.86 −0.59 0.01 −0.58 −0.05 −0.02 −0.07 

MD 90 −3 87 −5.56 0.00 −5.56 −2.79 0.09 −2.70 −6.75 0.00 −6.75 −0.39 −0.05 −0.44 −0.54 −0.08 −0.62 

MA 328 −6 322 −4.36 0.00 −4.36 −1.75 0.19 −1.56 −6.22 0.01 −6.20 −1.36 −0.09 −1.45 −0.43 −0.20 −0.63 

MI 624 −43 581 −11.81 −0.04 −11.85 −8.71 −0.01 −8.72 −17.20 0.05 −17.15 −2.47 −0.17 −2.64 −0.72 −0.60 −1.32 

MN 218 −26 192 −4.75 −0.06 −4.81 −7.58 −0.16 −7.74 −9.78 0.09 −9.70 −1.89 −0.04 −1.93 −0.37 −0.12 −0.49 
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Table 1. Cont. 

MS 33 14 47 −11.89 −0.01 −11.90 −6.37 −0.66 −7.02 −8.38 0.01 −8.37 −1.63 −0.12 −1.75 0.15 −0.16 −0.02 

MO −78 19 −59 −25.81 −0.03 −25.83 −24.07 −0.59 −24.66 −28.34 0.04 −28.30 2.38 −0.27 2.10 0.41 −0.32 0.08 

MT 16 −4 12 −0.28 0.00 −0.28 −0.22 −0.08 −0.30 −0.40 0.00 −0.40 −0.29 0.01 −0.28 0.00 −0.01 −0.01 

NE −19 −6 −25 −2.08 −0.01 −2.09 −2.40 −0.20 −2.59 −2.71 0.02 −2.69 0.37 −0.05 0.32 0.14 −0.04 0.10 

NV 12 1 13 −0.44 0.00 −0.44 −0.38 −0.05 −0.43 −0.45 0.00 −0.45 −0.97 0.00 −0.97 −0.02 0.00 −0.02 

NH 60 −2 58 −0.90 0.00 −0.90 −0.46 −0.01 −0.47 −1.43 0.00 −1.43 −0.57 0.00 −0.57 −0.08 −0.03 −0.10 

NJ 497 16 513 −11.61 −0.02 −11.63 −6.07 3.94 −2.13 −15.75 0.07 −15.68 −1.72 −1.13 −2.85 −1.75 −1.73 −3.48 

NM 16 4 20 −1.91 0.00 −1.92 −1.01 −0.19 −1.20 −1.16 0.00 −1.16 −0.44 −0.02 −0.46 0.06 −0.01 0.05 

NY 846 −3 843 −15.07 0.00 −15.07 −10.77 0.02 −10.75 −24.77 0.00 −24.77 −3.50 −0.02 −3.52 −1.15 −0.05 −1.21 

NC −95 9 −86 −8.22 −0.02 −8.24 −4.66 −0.79 −5.45 −7.67 0.05 −7.62 −0.90 −0.66 −1.56 −0.30 −0.92 −1.21 

ND −4 −4 −8 −0.59 0.00 −0.60 −0.79 −0.03 −0.83 −0.95 0.01 −0.94 −0.04 0.00 −0.05 0.01 −0.01 0.00 

OH 566 −28 538 −12.55 −0.02 −12.57 −7.73 0.85 −6.87 −20.36 0.04 −20.33 −0.40 −0.48 −0.88 −0.93 −0.70 −1.63 

OK −43 16 −27 −7.82 −0.01 −7.84 −5.97 −0.75 −6.73 −6.00 0.02 −5.98 0.69 −0.18 0.51 0.28 −0.16 0.12 

OR 79 −13 66 −1.01 0.00 −1.01 −0.95 −0.26 −1.22 −0.95 0.00 −0.95 −2.78 0.04 −2.74 −0.06 −0.02 −0.08 

PA 464 −20 444 −12.56 0.00 −12.56 −7.07 0.38 −6.69 −18.85 0.02 −18.83 −1.30 −0.22 −1.53 −1.08 −0.41 −1.49 

RI 43 −1 42 −0.63 0.00 −0.63 −0.22 0.12 −0.11 −0.84 0.00 −0.84 −0.14 −0.04 −0.19 −0.07 −0.08 −0.15 

SC −35 13 −22 −3.56 0.00 −3.56 −2.04 −0.51 −2.55 −3.15 0.02 −3.13 −0.63 −0.26 −0.90 −0.11 −0.35 −0.46 

SD −18 −3 −21 −1.00 −0.01 −1.01 −1.28 −0.08 −1.36 −1.82 0.01 −1.81 0.11 −0.01 0.10 −0.02 −0.01 −0.03 

TN −85 21 −64 −8.33 −0.02 −8.35 −4.11 −0.58 −4.69 −8.08 0.02 −8.06 −0.17 −0.35 −0.52 −0.11 −0.41 −0.52 

TX −536 161 −375 −25.23 −0.05 −25.27 −12.13 −4.03 −16.16 −14.12 0.07 −14.05 1.16 −0.93 0.22 0.88 −0.59 0.28 

UT 1 −2 −1 −0.05 0.00 −0.05 −0.05 −0.10 −0.15 −0.06 0.00 −0.06 −0.06 0.00 −0.06 0.00 −0.01 −0.01 

VT 7 −2 5 −0.37 0.00 −0.37 −0.32 −0.01 −0.34 −0.71 0.00 −0.70 −0.22 0.00 −0.23 −0.04 −0.02 −0.07 

VA −2 1 −1 −2.88 0.00 −2.88 −1.05 −0.02 −1.07 −3.10 0.00 −3.09 −0.28 −0.06 −0.35 −0.14 −0.10 −0.24 

WA 139 −11 128 −1.93 0.00 −1.93 −2.17 −0.18 −2.36 −2.28 0.01 −2.27 −4.42 0.03 −4.39 −0.12 −0.04 −0.16 

WV 43 −2 41 −2.73 0.00 −2.73 −0.74 0.01 −0.73 −2.98 0.00 −2.98 −0.20 −0.06 −0.25 −0.11 −0.09 −0.19 

WI 196 −18 178 −4.04 −0.02 −4.06 −4.73 −0.05 −4.77 −5.79 0.04 −5.75 −0.69 −0.08 −0.77 −0.19 −0.18 −0.37 

WY 2 −2 0 −0.14 0.00 −0.14 −0.07 −0.07 −0.14 −0.17 0.00 −0.17 −0.10 0.00 −0.10 0.00 0.00 −0.01 

*Mortality change caused by changes in concentrations has been published in Tagaris et al., 2009 [20]. 
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Reduction in one precursor emission class (i.e., SO2, anthropogenic NOX, NH3, or VOCs) is 

estimated to be able to offset premature mortality induced by PM2.5 and O3 changes modulated by 

climate change in most of the states (Table 2). States with increases of more than 400 premature deaths 

will be able to offset those incidents by reducing SO2 or NH3 emissions. For the majority of the states 

with less than 400 deaths, the reduction in anthropogenic NOX emissions is estimated to be another 

feasible option to offset the increased premature mortality from climate-related air pollution increases. 

Reduction in VOC emissions works best in a few states. Nine states (i.e., IL, LA, KY, MS, IA, NM, 

DE, KS and VT) will be able to offset premature mortality by reducing 17% or less of their SO2, 

anthropogenic NOX or NH3 emissions while seven states (i.e., MA, CT, WA, OR, NH, ME, and RI) 

need reductions in more than one precursor emission class. Although in this study a domain wide 

emissions reduction has been applied, impacts of precursor emissions on air quality drop quickly with 

increasing distance between receptor and emission sources [43]. This suggests that emission controls 

in a specific state will have the major impact in air quality and the induced health effects within that 

state, except for some of the smaller, downwind states.  
 

Table 2. Individual precursor emissions reduction needed relative to 2001 emissions to 

offset cumulative premature mortality induced by PM2.5 and O3 changes modulated by  

climate change. 

  

State* 

Premature 

mortality** 

Domain−wide emissions change (%)  

SO2 
anthropogenic 

NOX 
NH3 

biogenic 
VOCs 

anthropogenic 
VOCs 

1 NY 843 −56 >60 −34 >60 >60 
2 MI 581 −49 >60 −34 >60 >60 
3 OH 538 −43 >60 −26 >60 >60 
4 NJ 513 −44 >60 −33 >60 >60 
5 PA 444 −35 >60 −24 >60 >60 
6 IL 379 −13 −14 −10 >60 >60 
7 MA 322 >60 >60 −52 >60 >60 
8 IN 270 −30 −35 −19 − >60 
9 CT 229 >60 >60 −54 >60 >60 
10 MN 192 −40 −25 −20 >60 >60 
11 WI 178 −44 −37 −31 >60 >60 
12 WA 128 >60 −54 −56 −29 >60 
13 LA 89 −9 −17 −15 >60 >60 
14 MD 87 −16 −32 −13 >60 >60 
15 AZ 79 −22 −24 −37 −32 >60 
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Table 2. Cont. 

16 OR 66 >60 −54 >60 −24 >60 
17 KY 60 −4 −8 −3 >60 >60 
18 NH 58 >60 >60 −41 >60 >60 
19 CO 54 −38 −25 −38 >60 >60 
20 MS 47 −4 −7 −6 −27 >60 
21 ME 42 >60 >60 −49 >60 >60 
22 RI 42 >60 >60 −50 >60 >60 
23 WV 41 −15 −56 −14 >60 >60 
24 IA 24 −12 −7 −7 − >60 
25 NM 20 −10 −17 −17 −43 − 
26 ID 18 −50 −29 −37 −16 >60 
27 NV 13 −29 −30 −29 −13 >60 
28 MT 12 −43 −40 −30 −42 >60 
29 DE 7 −8 −13 −7 >60 −57 
30 KS 7 −8 −4 −9 −40 −36 
31 VT 5 −14 −15 −7 −22 >60 
32 DC 2 −23 −49 −18 >60 >60 

*States with premature mortality increase; 
**Premature mortality change has been published in Tagaris et al., 2009 [20]. 

4. Conclusions 

PM2.5 and O3 induced premature mortality modulated by climate change can be offset in most of the 

states by reducing only a single precursor emission class (e.g., NOX, SO2) based on the modeling 

approach followed here. Reduction in SO2 or anthropogenic NOX or NH3 emissions is found to be 

effective in most of the states although in few states VOC emission reductions can be most effective 

on a percent basis. Combining reductions in more than one pollutant precursor emission class will give 

synergistic results. As such, the information provided here will enhance the ability of air quality and 

public health managers to consider global change in their planning, combining the potential impact of 

climate change on PM2.5 and O3 - related premature mortalities with PM2.5 and O3 precursor emissions 

reduction strategies.  
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