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Abstract
Induction of apoptosis in cancer cells has increasingly been

the focus of many therapeutic approaches in oncology field. Since
its identification as a TNF family member, TRAIL (TNF-related
apoptosis-inducing ligand) paved a new path in apoptosis induc-
ing cancer therapies. Its selective ability to activate extrinsic and
intrinsic cell death pathways in cancer cells only, independently
from p53 mutations responsible for conventional therapeutics
resistance, spotted TRAIL as a potent cancer apoptotic agent.
Many recombinant preparations of TRAIL and death receptor tar-
geting monoclonal antibodies have been developed and being test-
ed pre-clinically and clinically both as a single agent and in com-
binations. Of note, the monoclonal antibodies were not the only
type of antibodies developed to target TRAIL receptors. Recent
technology has brought forth several single chain variable
domains (scFv) designs fused recombinantly to TRAIL as well.
Also, it is becoming progressively more understandable that field
of nanotechnology has revolutionized cancer diagnosis and thera-
py. The recent breakthroughs in materials science and protein
engineering have helped considerably in strategically loading
drugs into nanoparticles or conjugating drugs to their surface. In

this review we aim to comprehensively highlight the molecular
knowledge of TRAIL in the context of its pathway, receptors and
resistance factors. We also aim to review the clinical trials that
have been done using TRAIL based therapies and to review vari-
ous scFv designs, the arsenal of nano-carriers and molecules avail-
able to selectively target tumor cells with TRAIL.

Introduction
Despite the current advances in medicine, the cancer field

remains one of the not fully conquered fields in medicine.
Thousands of researches have been dedicated to better understand
the complex biology of that disease and to achieve a magic bullet
treatment. Resection of the tumor mass, along with irradiation and
chemotherapy aiming to killing mutant cells were and remain con-
siderable treatment options. Unfortunately, these options have
been encountered by many obstacles including partial response,
poor quality of life, and even resistance leading sometimes to
metastasis. These facts, along with complex molecular pathways
implicated in cancer development, urged scientists to search for
alternative precise treatment options. In this regard, targeting only
genetic mutations, responsible for many cancers, may not be an
ultimate cure. Therefore selectively inducing apoptosis in cancer
cells appeal as a promising approach.1 Apoptosis is a complex
process controlled by multiple signaling pathways and molecules.
In mid 1990’s, a new 281-amino acid type II trans-membrane pro-
tein coined TRAIL (tumor necrosis factor-related apoptosis-induc-
ing ligand or Apo 2 ligand, was identified as a member of TNF
family based on extracellular domain sequence homology with
TNF (23% identical) and CD95L (28% identical).2 The major bio-
logical role of TRAIL is apoptosis induction after interacting with
its receptors to activate the extrinsic and intrinsic pathways of cell
death.3-5 Of note, a suitable apoptosis inducer agent should pos-
sess a selective nature in order to spare normal tissues. The
advances in molecular biology field has led to better understand-
ing and characterizing TRAIL nature and properties, including a
selective nature to cancer cells. Since then, the emergence of
TRAIL as a promising apoptotic molecule, encouraged many
translational laboratories to create the optimum preparation of that
molecule to be used clinically. 

Indeed many TRAIL based therapies have been created and
tested in clinical field. However, the search for an optimum
TRAIL preparation using many advanced technologies is still
undergoing.

Also better understanding of the tumor microenvironment
sparked the so-called immune modulating therapies aiming to
enhance the innate immune system response against malignant
cells. The role of TRAIL in such approach should not be belittled,
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as many recent studies, which will be discussed later in this review,
found links between immunomodulation and TRAIL. 

In this review we aim to comprehensively discuss the journey
of TRAIL from bench to bedside; Focusing on the complex TRAIL
molecular biology, its role in cancer and the clinical trials that have
tested its clinical benefits. We also aim to discuss the role of differ-
ent advanced technologies as single chain antibodies and nan-
otechnologies in creating an optimum TRAIL preparation

TRAIL molecular biology
The TNF family members in general are known for their major

role in various biological and immune processes. TNFα, one of the
first characterized members of this family, is known for its tight
transient expression by immune cells mainly in certain circum-
stances.6 Two main receptors for TNFα have been classified;7
TNFR-1 containing an intracellular death domain capable of acti-
vating the extrinsic apoptosis pathway through caspases. TNFR-2
is the other TNF receptor, lacking this death domain, able to induce
both cell proliferation through NFkB activation and cell apoptosis
in a very complex balanced process.7,8 Unlike TNF, TRAIL mRNA
is widely expressed in variable tissues normally not under specific
immunological circumstances.2 Also, none of TRAIL receptors
were found to induce cell proliferation like the controversial
TNFR-2 for TNF. In the following part we are going to discuss
TRAIL receptors and their downstream signaling. 

TRAIL receptors
TRAIL transduced the signals intracellularly through different

receptors. These are: DR4/TRAIL-R1, DR5/TRAIL-R2,
DcR1/TRAIL-R3, and DcR2/TRAIL-R4.9-12 The death receptors
DR4 (TRAIL-R1) and DR5 (TRAIL-R2), contained a death
domain motif and played an important role in transduction of the
signals to induce apoptosis in cancer cells.13,14 The other receptors
are TRAIL-R3/DcR1 (glycosyl-phosphatidyl-inositol-anchored
receptor lacking an intracellular domain), and a truncated TRAIL-
R4/DcR2 (containing non-functional DD in its intracellular
domain). Out of the 76 amino acids coding for TRAIL-R1 and
TRAIL-R2 death domains, the non-functional domain of TRAIL-
R4/DcR2 contain only 24 plus additional 22 residues at the end of
coding sequence. The only part missing in DcR2 intracellular
domain in comparison to DR4 and DR5 is the part responsible for
apoptosis induction. The extracellular homology of DcR1 and
DcR2 to the DR4 and DR5 allow them to act as decoy receptors
binding to TRAIL but not able to induce apoptosis due to their dis-
rupted intracellular domain as described.13,15 Despite the fact, that
TRAIL receptors mRNA expression is widely extended in both
normal and malignant tissues,16,17 normal cells were found to be
less responsive to TRAIL due to the abundancy of DcR1 and DcR2
in comparison to cancer cells.18

Many types of cancer cells showed to be more sensitive and
responsive to TRAIL apoptotic effects.17 It was found that DR4
and/or DR5 are present and expressed in pancreatic cancer, colon
cancer, breast cancer, glioblastoma multiforme, primary and
metastatic head and neck squamous cell carcinoma, cervical and
ovarian cancer, non-small cell lung carcinoma and finally bladder
cancer.19-27

The binding of TRAIL to its death receptor, leads to the activa-
tion of two main signaling cascades for cell death; extrinsic and
intrinsic pathways.28

Extrinsic pathway of apoptosis
Cell extrinsic pathway initiated upon binding of TRAIL to either

DR4 or DR5 that resulted in the formation of homotrimers.29,30 This
trimeric ligand needs a Zn atom bound by cysteines for its stability
and optimum biological activity.31 This trimerization of receptors
resulted in formation of a macromolecular complex, known as DISC
(Death-inducing signaling complex). In this complex, an adaptor
molecule known as FADD (Fas associated death domain protein), is
recruited and interacted with caspase-8 and -10 to activate these
molecules. 

For stabilization of activated caspase-8, the E3 ligase Cullin3
induces poly-ubiquitination of caspase-8 and subsequent recruitment
of the ubiquitin-binding protein p62, which stabilizes activated cas-
pase-8, thereby ensuring DISC activation and functioning.32 The
caspase-8 and -10, when activated, triggered pro-caspase-3 conver-
sion into its functionally active form. 

Interestingly, it was found that both of the apoptotic pathways
the extrinsic and the intrinsic communicate with each other33,34 as
shown in Figure 1A.

Intrinsinc pathway of apoptosis
Upon death stimulus, active caspase-8 cleaves Bid (a member the

proapoptotic Bcl-2 family). This cleavage leads to the formation of a
proteolytically processed form of Bid known as truncated Bid (tBid)
which interacts with Bak and Bax in mitochondria to destabilize its
outer membrane and induce cytosolic accumulation of cytochrome c.
In the cytoplasm, cytochrome c interacted with pro-caspase-9 and
APAF-1 as shown in Figure 1A, that consequently formed a signalo-
some known as an apoptosome. Apoptosome mediated activation of
Caspase-9 further activated ‘executioner’ caspases. 

This connection mechanistically played a critical role in ampli-
fication of the response to activation of death receptors and diverse
types of cells have been studied to be dependent on this amplifica-
tion pathway.35 Therefore based on the apoptotic pathway that the
cell employs after DISC activation, cells have been classified in two
categories.36,37 The two categories are type-I and type-II cells.

Type-I cells, depends mainly on extrinsic apoptotic pathway as
activation of DISC in these cells is stable enough to trigger robust
activation of caspase-8, which further activates its downstream
effector caspase-3, resulting in cell death. In type-II cells, the DISC
signaling leading to caspase-3 activation is inadequate to trigger
apoptotic cell death, therefore these cells rely more on mitochondrial
intrinsic pathway for cell death. However, more recently it was
reported that the cell’s ability to form efficient DISC is not the only
distinguishing factor between type-1 and type-2 cells. Another cru-
cial element for making this distinction, is the anti-apoptotic factor
XIAPs (X-linked inhibitor of apoptosis proteins).38

XIAP reverses induction of apoptosis via direct inhibition of
caspase-3.39 In type-II cells higher ratio of XIAP/caspase-3 resulted
in an incomplete activation of caspase-3 by caspase-8. Data clearly
suggested that ratio of XIAP to caspase-3 and the DISC’s capacity to
cleave caspase-3 were decisive for differentiation between type-II
and type-I cells. 

In addition to above-mentioned mechanism for induction of
apoptosis, it was demonstrated that TNF, CD95L and TRAIL are
able to induce programmed cell death by necrosis or “Necroptosis”.

TRAIL and necroptosis
Necroptosis is a pathological term that is used to describe pro-

grammed necrotic cell death dependent on receptor-interacting
protein kinase-3 (RIPK3).40

Necroptosis occurs when cellular death receptors activate the
apoptotic machinery reflecting an intricate network of signals that
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operate and that can ‘switch’ between different patterns of respons-
es.41,42 Activated caspase 8, by TRAIL receptors signaling, inacti-
vates RIP1 and RIP3 by proteolytic cleavage and initiates the pro-
apoptotic caspase activation cascade. However in absence or inhi-
bition of caspase 8 by pharmacological agents, RIP1 and RIP3
become phosphorylated and thus able to initiate necroptosis.43

Activation of RIPK1 and RIPK3 subsequently results in phospho-
rylation of mixed lineage kinase domain-like protein (MLKL),
then they contribute to its trimerization. Cai et al. suggested that
trimerized MLKL locates at the plasma membrane and causes
TRPM7-mediated calcium influx initiating process of
necroptosis.44

Figure 2 shows different proteins, which trigger necroptosis.

Mechanisms attenuating TRAIL apoptotic effects
Several mechanisms and molecules have been suggested to

alter the cytotoxic effects induced by TRAIL. These exhibit their
action by interfering with the induction of either the extrinsic or
intrinsic apoptotic pathways activated through TRAIL.

Attenuating TRAIL induced extrinsic pathway
It was found, that neuroblastoma cell lines (NB) are resistant

to TRAIL induced apoptosis. This finding can be attributed to the
fact that large subset of these cell lines lack caspase-8 and -10
expression.45 However, the same study by Eggert et al. showed
that; there are also other factors than the lack of caspase-8 and/or -
10 expression in NB cells that might be responsible for TRAIL-
induced apoptosis resistance. 

Among these factors is c-FLIP (cellular FLICE inhibitory pro-

tein). The inhibitory effects of this protein, comes from the fact
that it shares homologous sequence with caspase 8. This similarity
might leads to competitive binding between caspase-8 and FADD
on the binding sites in DISC, as shown in Figure 1B. Also, in the
presence of c-FLIP, DISC forms a secondary complex with
TRADD (TNFR1-associated death domain), receptor-interacting
protein (RIP), NFκB kinase, and TNF receptor-associated factor 2
(TRAF2). TRAF2 mediates the attachment of K48-linked ubiqui-
tin chains to caspase-8, allowing its proteosomal degradation and,
hence, limitation of DISC activity in this secondary complex.46

Moreover, this multi-protein complex activated proliferative sig-
nals initiated through the MAPK (mitogen-activated protein
kinase) pathways, phosphoinositide 3-kinase (PI3K)/Akt and
nuclear factor κB. 

Interleukine 8 (IL-8) was found to inhibit TRAIL-induced
apoptosis.47,48 It was concluded that IL-8 induce the expression of
two isoforms of c-FLIP, the c-FLIP(L) and c-FLIP(S), and its inhi-
bition lead to a significant decrease in the mRNA transcript levels
of c-FLIP.48

Attenuating TRAIL induced intrinsic pathway
Another factor identified for TRAIL resistance was the

inhibitor of apoptosis (IAP) family, which included survivin, X-
linked IAP, cellular IAP-1 and -2. These molecules - as described
earlier - inhibit the activity of caspases 3, 7 and/or9 and hence con-
tributing to TRAIL resistance. 

Nevertheless, during apoptosis, Bax leads to the release of
Smac (second mitochondria-derived activator of caspases) from
mitochondria, these two can antagonize (IAPs) effect.(49) This
role explained why mutation or inactivation of Bax in mismatch-
repair (MMR)- deficient tumors resulted in development of
TRAIL resistance. TRAIL responsiveness of cancer cells reconsti-

                                Review

Figure 1. Showing the TRAIL signalling pathway: A) the apoptotic pathway induced by TRAIL; and B) the resistance to TRAIL induced
apoptosis. Binding of TRAIL and trimerisation of TRAIL death receptors leads to recruitment of FADD, an adaptor molecule that is
capable of caspase-8 recruitment and activation. Apoptosis is either induced through direct caspase-8-mediated caspase-3 activation or
through an amplification loop involving the mitochondria and the cleavage of the BH3-only protein Bid by caspase-8, cFLIP interferes
with the generation of active caspase-8, attenuating the role of DISC. Adapted from Naoum et al., 2016.34
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tuted with Bax was markedly higher.49 It has been reported that
combining TRAIL with radiation or chemotherapy can overcome
TRAIL resistance by Bax overexpression.4,50,51

NF-κB another factor that may exert protection against cell
death through upregulation of XIAP, FLIP and Bcl-XL. In addition,
TRAIL sensitivity can be significantly restored by specific down-
regulation of NFκB through inactivation of I-κB kinase.52

Interestingly the downstream target of the NF-κB pathway, the
transcription factor SNAIL, can play a role in TRAIL sensitivity. It
was shown that silencing the expression of SNAIL can potentiates
the TRAIL induced apoptosis by p53 upregulation and downregu-
lation of Bcl-XL, survivin and Raf-1 of the NF-κB pathway.53

Translation of the molecular biology to cancer
clinical therapy

Why trail for cancer
Since the identification of chemotherapy and radiotherapy as

efficacious implements for cancer treatment, the two main quan-
daries were the resistance of malignant cells to these implements
and the toxicity to normal body cells. This explicates the medical
society excitement upon revelation of TRAIL mechanism and the
high expectations scientists had for it. 

TRAIL pathway raised as an attractive therapeutic target for
cancer due to its ability to target tumor cells with no/minimal
effects on normal cells, this principle was tested by Walczak et al.
when histological examination of tumors from mice treated with
LZ-huTRAIL demonstrated clear areas of apoptotic necrosis with-
in 9-12 hours of injection with no toxicity to normal tissues.54 The
safety of TRAIL preparations was further attested by consequential
number of phase I trials as shown later.

One of the proposed mechanisms for this selective cytotoxicity
and the resistance of normal cells to TRAIL induced apoptosis is
that TRAIL death receptors (TRAILR- 1/DR4 and R-2/DR5) are
strongly expressed in malignant cells, as mentioned earlier, while
its decoy receptors (TRAILR-3/DcR1, TRAILR-4/DcR2) are
strongly expressed in normal cells. 

In 2006 a study assessed TRAIL-R1 and TRAIL-R2 expres-
sion patterns in a large cohort of melanomas in comparison to
benign nevi concluded that TRAIL-R1 and TRAIL-R2 expression
was higher in malignant melanocytes than in their benign counter-
parts.55

Another advantage of TRAIL over chemotherapy or radiother-
apy is its ability to induce apoptosis regardless of the tumor protein
p53 status. Mutation of p53 gene is known to be one of the initial
events in oncogenesis and one of mechanism in chemotherapy
resistance56 as most conventional chemotherapy and radiotherapy
induce their antitumor activity through p53 dependent manner.
Inactivation of p53, either directly through TP53 mutations or indi-
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Figure 2. Summary of proteins and molecules involved in TRAIL induced necroptosis. Activation of RIPK1 and RIPK3 subsequently
results in phosphorylation of mixed lineage kinase domain-like protein (MLKL), then they contribute to its trimerization, leading to
necroptosis. 
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rectly through p53 modulators such as the MDM2 protein, occurs
in many human cancers. Without proper p53 function, tumor cells
escape apoptosis and continue to proliferate, despite the genetic
instabilities induced by chemotherapy or irradiation.28

TRAIL on the other hand circumvents this problem by induc-
ing both the extrinsic and the intrinsic cell death pathways upon
binding to his receptors without dependence on p53. Thus serving
as a useful agent particularly in cells in which p53-responsive
pathway has been inactivated. 

Adding to that many preclinical studies have shown that
adding TRAIL to chemotherapy or ionizing irradiation increased
apoptosis in cancer cells.57-59 This combinatorial approach induced
synergism will help in decreasing the dose of chemoradiotherapy
and their off-target effects in clinical field. Many studies have pro-
posed different molecular mechanisms for this synergism. Among
these mechanisms; Direct Inhibition of anti apoptotic factors like
surviving and NF-κB, upregulating of DR-5 and downregulation
of decoy receptors expression DcR2, increasing the activity of
Caspase-8 and Caspase-9, and finally increasing the pro apoptotic
proteins like Bax.60-68

The role of TRAIL in necroptosis, described earlier, opens the
door for development of TRAIL based medications, to activate
such pathway especially in cancer cells resistant to apoptosis. 

Last but not least TRAIL was found to affect Cancer stem cells
(CSCs). Higher expression of death receptors was noted in
glioblastoma and lung CSCs69 and responsiveness of colon CSCs
to TRAIL was much better.70 These facts highlighted TRAIL as a
potent anticancer agent against CSCs. Adding to that it was
demonstrated that TRAIL could interfere and interrupt with CSCs
self renewal pathways; Wnt, Hedgehog and Notch.34,71-74

The interest for use of TRAIL as cancer cytotoxic agent was
initially met with careful optimism. This was due to previous expe-
rience with usage of systemic TNF that resulted in significant tox-
icities.75,76 This was followed by the discovery of agonistic anti-
bodies targeting DR FAS/APO-1 (CD95) but unfortunately the
systemic treatment with recombinant CD95L or CD95-agonistic
antibodies resulted in fulminant and lethal hepatotoxicity.77,78

On the contrary TRAIL preparations have proved excellent
safety profile through phase I trials and were generally well toler-
ated by most of the patients.79,80 All these advantages highlight the
unique features of TRAIL as a cancer cytotoxic agent and propose
it as the future molecule in eliminating recurrence and metastasis
through the necroptosis properties and interactions with cancer
stem cells. Therefore many preparations have been designed for
introduction in clinical field.

TRAIL preparation for clinical usages  
A variety of forms of human recombinant soluble TRAIL have

been developed. They are known to exhibit their actions by encod-
ing the extracellular domain of human TRAIL. Some preparations
are fused on their amino-terminal sequence to different tags such
as the polyhistidine tag,81 FLAG epitope82 and IZ (isoleucine zip-
per) trimerisation domains.83 Some studies showed that TRAIL
could be a cytotoxic agent due to its ability to kill in vitro normal
cells including primary hepatocytes, keratinocytes and astro-
cytes.84-86 A preparation of TRAIL lacking sequence modifications
to amino acids 114-281 and with the addition of a modified leucine
zipper produced tumor cytotoxicity in vitro and tumor growth inhi-
bition in vivo without hepatotoxicity and significant tumor penetra-
tion as well.79,87 This version of TRAIL, also known as (AMG-
951) or APO2L/TRAIL or dulanermin was produced by Genentech
as the first the first human recombinant TRAIL preparation. 

Another TRAIL preparation named CPT,88 has been used in
clinical trials. Its unique structure lies in fusing human TRAIL

amino acid residues 135-280 (C terminus) to residues 122-135 (N
terminus) by a flexible linker. Like TRAIL, the anti-tumoral effects
of CPT on several tumour types was demonstrated either alone or
with chemotherapeutic agents in preclinical studies testing CPT
demonstrated its anti-tumoral characteristics alone and in associa-
tion with chemotherapy.89-91

In addition to the fact that previous versions of TRAIL were
found to have short half-life, it was suggested that if some tumor
cells are protected from rTRAIL-induced apoptosis through
expression of decoy receptors. Therefore, specific targeting of
death receptors by agonistic antibodies may be more effective to
eliminate these tumor cells. 

Griffith et al., immunized BALB/c mice with several soluble
fusion proteins containing the extracellular portion of each human
TRAIL receptor (TRAIL-R1/DR4, -R2/DR5, -R3/DcR1, or -
R4/DcR2) coupled to the Fc domain of human IgG1. Using the
generated murine MoABs, they have demonstrated that either anti-
DR4 or anti-DR5 can promote apoptosis in TRAIL-sensitive
melanoma cell lines, while anti-TRAIL-R3/R4 could not.92

Other than their killing ability, Takeda et al. were able to
demonstrate the capability of DR5 MoAb (MD5-1) to trigger FcR
dependent cytolysis of tumor cells in vitro. This cytotoxic effect
was not mediated only through DR5 mediated caspase cell death
but also through caspase independent antibody-dependent cell-
mediated pathway. MD5-1 was able to induce apoptosis by recruit-
ing FcR-expressing macrophages and was also capable of targeting
the apoptotic tumor cells to the antigen presenting cells via FcR.
Then, the APCs cross-present tumor antigens and induce tumor-
specific cytotoxic T lymphocytes. 

Testing the above mechanism, MD5-1 administration afforded
complete rejection of low doses of mammary carcinoma cells (4T1
cells) in wild-type BALB/c mice. When mice were rechalenged
with 4T1 cells complete rejection was noticed. 

The transfer of splenic T cells isolated from wild-type BALB/c
mice that had rejected cells after MD5-1 treatment, protected
another strain of mice from a lethal dose of 4T1 tumor challenge. 

These results suggested that DR5 might be a potential potent
anticancerous agent that can be used not only to eliminate TRAIL-
sensitive tumor cells temporarily, but will be able to offer protec-
tion against tumor recurrence as well.93,94

Ichikawa et al. have reported a murine MoAb targeting human
DR5 (TRA-8).95 This was generated by immunizing BALB/c mice
with DR5-IgG1 fusion protein containing the extracellular domain
of human DR5 (aa 1-180) and the Fc portion of human IgG1. TRA-
8 induced apoptosis in most rTRAIL-sensitive tumor cell lines and
effectively reduced tumor growth in xenografted mice. Also this
anti-DR5 MoAb did not react with, or induce apoptosis in, freshly
prepared normal human hepatocytes in vitro.95 Other DR5 MoAB
than TRA-8 have been developed, these include the Human
Genome Science (HGS) fully human antibodies (HGS-ETR2 and
HGS-TR2J anti-DR5), the Novartis LBY135 anti-DR5 antibodies,
Genentech Apomab fully human anti-DR5 antibody, and the
Amgen AMG 655. 

It has been experimentally verified that murine MoAbs against
human DR4 could induced apoptosis in rTRAIL-sensitive tumor
cell lines, however TRAIL treated DR4-expressing normal human
endothelial cells did not undergo apoptosis.96 Many preclinical
studies have reported different types of anti DR-4. However, the
only one that was available for clinical usage was the Human
Genome Science (HGS) fully human antibody HGS-ETR197 later
on known as Mapatumumab. 

In the following part we are going to discuss the clinical trials
that have tested these preparations targeting TRAIL.
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Clinical trials: soluble TRAIL
Dulanermin was tested on patients having metastatic or

advanced solid tumors in phase Ia studies and reported that it can
be safely administered intravenously up to 30 mg·kg−1 with a 1 h
elimination half-life.98 The peak plasmatic concentrations at 0.5
and 30 mg·kg−1 administration doses was found to be varying from
5 to 220 μg·mL−1 respectively. The reported side effects included
nausea, fatigue, fever, vomiting, constipation and anemia.
However, 33 patients showed stable disease, 5 showed partial
response 2 of them are patients with chondrosarcoma who showed
clinical anti-tumor activity after being treated with dulanermin for
2-3 years. Xin et al. reported in 2008 that pharmacokinetic param-
eters of dulanermin are not affected by gender, race or even enzy-
matic activities such as AST or ALP from phase Ia trial on 67
patients. 

Cytotoxic effects of TRAIL in combination with either con-
ventional or targeted anticancer therapeutics with dulanermin are
currently being tested in clinical trials as depicted in (Table 1).99-

105 However, the results of these combinations, despite being well
tolerated, did not meet the expectations in improving overall sur-
vival and response. 

Chen et al. in 2012 used CPT on 27 patients with refractory or
relapsed multiple myeloma.106 They have reported from the phase
Ib of their study that it is safe and tolerated up to 15 mg·kg−1 intra-

venously with a 1h half-life like dulanermin. Also complete
response was noted in one patient while four patients achieved par-
tial responses. However, 33% overall response rate was reported in
the phase II of this study with complete response achieved in one
patient and partial response in eight patients.107 Also, they reported
three patients experiencing severe side effects (one of them with
CPT-related liver injury). However, a combination of CPT with
thalidomide, was reported to be well tolerated and with superior
tumoral cytotoxic effects in patients suffering refractory or
relapsed multiple myeloma who failed to respond to thalidomide
alone.108

Monoclonal antibody targeting TRAIL receptors

Anti-DR4 agonistic monoclonal antibody
Mapatumumab, also called HGS-ETR1 or TRM1 is so far the

only monoclonal antibody tested for efficacy in clinical trials.
Pucak et al.97 were the first to clone Mapatumumab through single
chain variable fragment (scFv) technology as a fully human anti
DR4 antibody. They successfully showed high cytotoxic efficiency
of HGS-ETR1 to various cancer cell lines expressing DR4,
through high biding affinity to this receptor, with no cross binding
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Table 1. Summary of clinical trials using dulanermin in combination with chemotherapy.

Combination of                Study population                         Safety                                          Best response         Reference or Trial number
Dulanermin or 
AMG951 with                   

Rituximab                                   7 patients with                                          Combination appears safe                   Complete response (2),               NCT00400764 
                                                      Low-grade non-Hodgkin                         and shows evidence of activity            partial response (1),
                                                      lymphoma                                                                                                                     stable disease (1)                                       
                                                      48 patients with                                        Not better than                                       
                                                      Low-grade                                                  rituximab alone
                                                      non-Hodgkin lymphoma
Carboplatin, paclitaxel            24 patients with                                        Dulanermin plus paclitaxel,                 Complete response (1),                         99
and bevacizumab                      Advanced tumours                                   carboplatin, bevacizumab                     partial response (13), 
                                                                                                                            was well tolerated with no                   stable disease (9)
                                                                                                                            occurrence of dose-limiting 
                                                                                                                            toxicity                                                                                                                                
                                                      213 patients with Untreated                  Not better than paclitaxel,                   -                                                                    100 
                                                      advanced stage IIIb/IV                            carboplatin, or paclitaxel,                                                                                  NCT00508625
                                                      non-small cell lung                                  carboplatin, bevacizumab
                                                      carcinoma                                                  pharmacokinetics appeared 
                                                                                                                            unaltered                                                  
FOLFOX bevacuzimab             23 patients with Untreated,                   No adverse interactions                       Partial response (12±3*),            NCT00873756 
                                                      locally advanced, recurrent,                                                                                      Stable disease (7)
                                                      or metastatic colorectal cancer                                                                               
AMG479 (anti-IGFR1)              89 patients with Advanced                     Not reported                                           Terminated                                       NCT00819169
                                                      refractory solid tumours 
                                                      (non-small cell lung carcinoma, 
                                                      colorectal cancer, pancreatic 
                                                      ovarian and sarcomas)                           
Irinotecan and cetuximab      30 patients with metastatic                   Safe with irinotecan-regimen              Not reported                                             104
or FOLFIRI                                 colorectal cancer                                    
Camptosar and Erbitux           Previously treated metastatic               Not reported                                           Ongoing, not recruiting                 NCT00671372
or FOLFIRI w/o                         colorectal cancer 
bevacizumab                              (no available data about 
                                                      number of patient)                                 
FOLFIRI with or                        27 patients with Previously                    Safe with FOLFIRI                                  Partial response (6),                               105
without bevacuzimab               treated metastatic colorectal               (±bevacuzimab)                                     stable disease (17)
                                                      cancer                                                         
*Estimation/expected. Clinical trials number listed in this table can be found at: http://www.clinicaltrials.gov 
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to DR5. Interestingly, it was concluded that decoy receptors were
not a resistance factor to Mapatumumab due to this selective bind-
ing properties.97 These results led Human Genome Sciences,
Galaxo SmithKline and Takeda to develop HGS-ETR1 for com-
mercial usages and testing. Mapatumumab has been assessed
against different types of tumors in phase I and II clinical trials
either alone or in combination with chemotherapy as depicted in
(Table 2).103,109-117

Anti-DR5 agonistic monoclonal antibodies  
TRAIL-R2/DR5 agonistic monoclonal antibodies, have been

designed and generated more than the ones targeting TRAIL-
R1/DR4. In the following part of this review we are going to dis-
cuss 5 of these MoAb that have been assessed either alone or with
chemotherapy in clinical trials. These are Tigatuzumab (CS-1008
or TRA-8), Conatumumab (AMG655), LBY135, Drozitumumab
(Apomab or PRO95780) and Lexatumumab (HGS-TR2).

                                Review

Table 2. Showing clinical trials of Mapatumumb either alone or in combinational approaches

Drug used     Phase    Pts No.      Study                                        Safety                                           Best response               Reference or
                                         (=)         population                                                                                                                           Trial number
Combination of Mapatumumab with 

Paclitaxel and          I                 27              Advanced solid                                     Safe with paclitaxel                                 Partial response (5),                       109
carboplatin                                                    tumours                                                 and cisplatin up to 20 mg·kg−1              stable disease (12)                            
                                                                                                                                          with no occurrence of dose
                                                                                                                                          limiting toxicity                                                                                                          
                                   Ib               28              Advanced solid                                     Pharmacokinetic profile                        Partial response (6),                       109
                                                                         tumours                                                 of HGS-ETR1 not affected                     stable disease103
                                                                                                                                          by paclitaxel and carboplatin                                                                               
Paclitaxel and        II R             111             First-line advanced                             The results do not support                   Similar to paclitaxel,                       110
carboplatin                                                    non-small cell lung                             further evaluation                                    carboplatin alone                    NCT00583830
                                                                         carcinoma                                             in combination  with paclitaxel, 
                                                                                                                                          carboplatin in patients with 
                                                                                                                                          advanced non-small cell lung 
                                                                                                                                          carcinoma                                                  
Gemcitabine           Ib               49              Advanced solid tumours                    Safe with gemcitabine and                    Partial response (12),                     112
and cisplatin                                                                                                                   cisplatin at doses up                               stable disease111
                                                                                                                                          to 30 mg·kg−1                                                                                                            
Cisplatin and        Ib/II            42*             Objective is 42                                     Recruiting                                                  Not reported                            NCT01088347
radiotherapy                                                 Patient with first-line                                                                                                                                                                
                                                                         advanced cervical cancer
Sorafenib                 Ib               19              Advanced hepatocellular                   Safe with sorafenib at                            Partial response (2),             NCT00712855 
                                                                         carcinoma and chronic                      doses up to 30 mg·kg−1                                      stable disease (4)                                            
                                                                         viral hepatitis                                       
                                   II              100*            101 patients were randomized;       Overall, the frequency of AEs,              NO clinical or statistical        NCT01258608
                                                                         51 in the placebo–sorafenib            serious AEs (SAEs),                                             significance were                                             
                                                                         arm and 50 patients in the                and severe AEs was comparable         noted between                                    
                                                                         mapatumumab–                                  between the two treatment arms.       the 2 arms in
                                                                         sorafenib arm                                      Only increased lipase was                     terms of median
                                                                                                                                          considered related to                             PFS or median OS
                                                                                                                                          mapatumumab by investigators.                                                                         
                                                                                                                                                                                                                
Bortezomib            II R             104             Relapsed/                                              No adverse effects but no benefit      Similar to                                  NCT00315757 
                                                                         Refractory multiple myeloma                                                                                bortezomib alone                                
Mapatumumab or TRM1 or HGS-ETR1 alone

                                   Ia                49              Advanced solid tumours                    Safe and well tolerated up to               Stable disease (19)                         113
                                                                                                                                          20 mg·kg−1 i.v. 
                                                                                                                                          – half-life 18–21 days                              
                                   Ia                41              Advanced solid tumours                    Peak plasmatic concentrations            Stable disease (12)                         114
                                                                                                                                          compatible with preclinical studies    
                                Ib/ II             40              Relapsed/Refractory                          Three clinical responses out of 15      Complete response (2),                115
                                                                         non-Hodgkin lymphoma                     follicular lymphoma patients.              partial response (1),             NCT00094848
                                                                                                                                                                                                                stable disease (12)                            
                                   II                32              Relapsed/Refractory                         No adverse effects,                                 Stable disease (9)                           116
                                                                         stage IIIb/IV or                                     but no clinical activity                                                                                  NCT00092924
                                                                         recurrent non-small                           demonstrated
                                                                         cell lung carcinoma                                                                                                  
                                   II                38              Refractory colorectal cancer            -                                                                    Stable disease (12)                         117
*Estimation/expected. Clinical trials number listed in this table can be found at: http://www.clinicaltrials.gov 
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Tigatuzumab
In 2010 Forero-Torres et al. reported effectiveness of

Tigatuzumab in patients suffering refractory or relapsed lymphoma
or solid tumors.118 Out of 17 patients previously treated with
chemotherapy enrolled 7 showed stable disease. One progressive
metastatic hepatocellular carcinoma patient, who failed to respond
to different chemotherapy drugs and suffered pain, became pain
free after 6 weeks of Tigatuzumumab therapy onset and remained
asymptomatic for more than 26 months. They also reported
Tigatuzumab to be tolerated up to 8 mg·kg−1/day with no dose lim-
iting toxicity and an approximate T1/2 (half-life) of 6-10 days.
However, it was reported that TR-8 did not improve efficacy of
carboplatin/paclitaxel in systemic therapy-naïve for unselected
advanced NSCLC119 patients in a randomized double blind place-
bo controlled phase 2 study. In this study Tigatuzumab was also
found to be well tolerated in general.120 Anyway, 10 patients devel-
oped grade 3/4 neutropenia in tigatuzumab arm versus 4 patients in
placebo arm. 

Other clinical trials combining TR-8 with different chemother-
apy drugs in different tumor types have been completed but their
results are not yet reported.121

Conatumumab (AMG 655)  
Conatumumab proved to be effective against advanced solid

tumors.122,123 However, the response to combination of chemothera-
py with Conatumumab was found varying according to the combin-
ing agent. Cohn et al. tested the combination of Conatumumab with
FOLFIRI or with ganitumab + FOLFIRI as second line in treatment
of mutant KRAS mCRC.124 They reported that Conatumumab plus
FOLFIRI, but not ganitumab was associated with a progression in
free survival. However, acceptable manageable toxicity of both
combination with neutropenia and diarrhea as the most common
grade ≥3 adverse events was reported. Chawla et al.125 reported its
clinical activity in combination with an anti-IGFR1 MoAB
(Ganitumab) in patients with advanced refractory solid tumors and
to be tolerated up to 15 mg/kg. The addition of conatumumab to
Gemcitabine resulted in trends toward longer Performance Free
Survival, improved 6-months overall survival, and higher rates of
stable disease in patients having metastatic pancreatic cancer.126 On
the other hand a combination of Conatumumab with carboplatin and
paclitaxel as first line for treatment of NSCLC,127 with
Panitumumab in metastatic colorectal cancer128 or with Doxorubicin
in unrespectable soft tissue sarcoma all were found to be not effec-
tive despite being well tolerated. 

Drozitumab
So far, Drozitumab alone failed to show objective response in

patients with advanced solid tumors. However, It was reported
minor responses in three patients with granulosa cell ovarian can-
cers, colorectal and chondrosarcoma.129 Disappointing results were
also reported with combined studies. In association with paclitaxel,
bevacizumab and carboplatin in stage IIIb and IV previously
untreated NSCLC patients130 or with rituximab for patients suffer-
ing from relapsed non-Hodgkin’s lymphoma131 drozitumab failed
to exert any clinical activity. Minor antitumor activity has been
noticed from using drozitumab with Cetuximab and irinotecan or
FOLFIRI with or without bevacuzimab132 or FOLFOX with or
without bevacizumab133 as first-line treatment of metastatic col-
orectal cancer patients. It is also to be noted that at the time of writ-
ing this review no ongoing trials with drozitumab were found. 

LBY135
Sharma et al.134 assessed LBY135 alone or with association

with capecitabin in patients with advanced solid tumors. It was
shown to be tolerated and safe up to 20 mg·kg−1. From this phase
1 trial, minor response was reported on one patient with sarcoma
and two patients with NSCLC and prostate cancer had tumor
markers decrease of 50% and 40% respectively. When combined
with capecitabin, LBY135 induced 60-73% tumor mass reduction
in four patients with ovarian, pancreatic and colorectal cancers and
two ovarian and colorectal cancer patients partially responded.

Lexatumumab
Unlike other members of its family, few clinical studies assess-

ing the toxicity of Lexatumumab either alone or with chemothera-
py combination. However it was found to be effective alone
against advanced solid tumours135 and lymphomas.136 The most
striking effect was reported from a pediatric solid tumours study137

where a teenager with progressive, lung/chest wall osteosarcoma,
achieved complete response and remained symptoms free after 2
years lexatumumab treatment. Minor tumor shrinkage from com-
bining lexatumumab with FOLFIRI and doxorubicin in advanced
solid tumors was reported as well.138

Unfortunately randomized Phase II studies have not demon-
strated strong clinical activity, and no death receptor agonist ther-
apies have advanced into Phase III.

An explanation of such poor clinical efficacy is the crosslink-
ing requirements or pharmacokinetics of these monoclonal anti-
bodies. This is due to the fact that for efficient apoptosis induction
via DRs their trimerization is required.139

Therefore, trials have continued in the past decade to create
more tumoricidal and potent TRAIL based designs. 

Recent advances in TRAIL therapies designs and
potential role in immuno-oncology

Recent drug delivery designs for TRAIL
TR3, a fusion protein formed by 3 covalently linked TRAIL

ectodomains is noted be an effective agent. Furthermore, insertion
of the 64 amino acid mesothelin-encoding cDNA into the 5′-termi-
nal of TR3 expression platform made it more selective.140-142 It is
also to be noted that, mesothelin is a frequently overexpressed
tumor biomarker in different malignancies paving the path towards
more enhanced targeted therapy. TR3 interacted with MUC16-
overexpressing cancer cells and Meso64-TR3 considerably
reduced growth of the tumor in mice inoculated subcutaneously
with ovarian cancer cells.142 Tatzel et al. recently showed an
important piece of evidence in the design of recombinant TR3 ther-
apeutics.143 Using SS-TR3 (a TR3 targeting mesothelin) they
showed that juxtapositioning of TR3-based drug to the membrane
of its intended target triggered a repulsive force between the ligand
and its receptor due to equivalent polarities between TR3 and
DR5.143 Therefore, insertion of a spacer into the Mesothelin target
antigen (Meso/DAF) or into the TR3-cancer drug itself (SS-S-
TR3) leads to restoration of the reciprocal polarities with subse-
quent physical attraction and conversion of SS-TR3 into a cis-act-
ing biologic weapon. This discovery may have a clinical impact on
choosing the suitable drug. For example, if circulating tumor cells
are to be targeted, the cis acting TR3 (spacer-containing TR3)
seemingly proved to be the therapeutic agent of choice. Whereas,
if solid tumors are the target, the spacer-deficient drugs may prove
to be more effective because of smaller size, better penetrance in
tissues and the ability to induce bystander cell death.143

An amazing combinatorial targeted immunotherapy approach,
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was recently achieved through designing a bi-functional fusion
protein containing PD-L1-blocking antibody fragment genetically
fused to the extracellular domain of TRAIL.144 This anti-PD-
L1:TRAIL fusion protein induced cell death in PD-L1 expressing
tumor cells and augmented T cell activity, proliferation and secre-
tion of IFNγ. The increased levels of IFNγ simultaneously
increased PD-L1 expression in cancer cells and sensitized them to
the apoptotic effects induced by anti-PD-L1:TRAIL.144 Such types
of designs offer multifold reinforced anticancer activity. 

Another combinatorial immunotherapy approach with TRAIL
was achieved through designing secretory TRAIL-armed natural
killer (NK) cell. A lentiviral vector consisting of a trimerization
domain, a secretion signal domain, and an extracellular domain of
the TRAIL gene was used to transduce NK cells so they can secrete
glycosylated form of TRAIL. These genetically engineered NK
were able to induce apoptosis when injected intraperitoneally pos-
ing a new potential for peritoneal carcinomatosis treatment.145

Albumin, a protein abundantly found in plasma has a half-life
of 3 weeks mainly by courtesy of its size and escape from intracel-
lular degradation because of FcRn-mediated recycling. Human
serum albumin (HSA) has a longer half-life of 19 days approxi-
mately. Moreover, albumin is intrinsically capable of extravasation
and accumulation in tumor mass. A 46-amino acid albumin-bind-
ing domain (ABD) derived from streptococcal protein G has been
shown to demonstrate higher (femto-molar to nano-molar) affinity
for human albumin. ABD genetically fused to the amino terminal
or Carboxyl-terminal of TRAIL was tested for efficacy and impact
of the ABD-fusion on circulatory half-life and albumin binding.
ABDfused TRAIL was intravenously administered in mice bearing
subcutaneous tumor xenografts and results revealed marked inhi-
bition of tumor growth. Circulating tumor cells (CTC) elimination
notably reduced the chances of secondary lung cancer develop-
ment. Because of the longer circulatory half-life of ABD fused
TRAIL, ABD-TRAIL mediated killing of CTC was significantly
longer as evidenced by remarkably reduced secondary lung cancer
development.146

Exosomes are cell-derived vesicles originating from invagina-
tion of the limiting membrane of endosomes, through pathways
depending on the cell type and cargo. TRAIL-expressing exo-
somes have been generated by initial transduction of K562 cells
with TRAIL expressing lentiviral vector and sequential ultracen-
trifugation. They showed homing to tumor sites and significant
reduction in tumor growth SCID mice.147

Single-chain variable-fragment (scFv) domains target-
ing TRAIL pathway

Another option to target TRAIL receptors is the scFv (Single-
chain variable-fragment) domains. These agents are advantageous
in terms of maintenance of antigen specificity of full immunoglob-
ulins, having a size of 25kDa and can significantly fuse with
TRAIL.148-150

Wang et al. were able to generate an Fc-TRAIL fusion protein
through fusion of TRAIL to the Fc portion of human IgG1 and
were able to demonstrate that its activity was enhanced by approx-
imately 30% compared with rh-TRAIL in two cell lines in vitro,
This enhanced activity is likely due to the homodimeric nature of
Fc because TRAIL activates its signaling by inducing oligomeriza-
tion of TRAIL receptors on the cell surface. Moreover, Fc-TRAIL
displayed higher affinity to DR5 than rh-TRAIL and the cell
killing activity was sustained for more than 12 hours following a
single injection of Fc-TRAIL without significant toxicity.140

One of the promising techniques is the usage of chimeric anti-
gen receptor (CAR) expressing T cells to target TR1 receptors, this
was accomplished using a CAR of a TR1-specific scFv antibody
(TR1-scFv-CAR) with the aim of inducing efficient trimerization
of TR1 with cell surface TR1-scFv-CAR, leading to apoptosis
induction in tumor cells. It was found that the TR1-scFv-
CARexpressing NK cell line and peripheral blood lymphocytes
killed target cells via CAR signal- induced cytolytic activity in
addition to TR1-induced apoptosis.141

A promissing startegy for targeted therapy, is using scFv
loaded with TRAIL that specifically targets surface antigens highly
expressed by cells of certain tumor types. Many constructs of
scFv:TRAIL have been designed to target several of these anti-
gens. 

A scFv425:sTRAIL actively targeting EGFR, has showed
increased drug bioavailability with enhanced cytotoxic activity,
and no remarkable side effects in xenograft models.151,152

Various cluster of differentiation14 have been actively targeted
with scFv loaded with TRAIL as illustrated in Table 3.153-158

Interestingly scFv targeting TRAIL receptors not only showed
apoptotic effects but also induced autophagy in both TRAIL sensi-
tive and resistant cells. HW1 a scFv targeting DR5 induced
autophagy predominantly via caspase-independent JNK activation.
Such approach offers a promising platform for non-apoptotic elim-
ination of TRAIL resistant tumor cells.159

Recently in 2016 Siegemund et al. designed a bioactive

                                Review

Table 3. Showing variable designs of scFv targeting TRAIL receptors.

Designed molecule name            Target                                  Main effects                                                                                           Ref.

scFvCD19:sTRAIL                                       CD19                                                1. Absence of side effects                                                                                                  153
                                                                                                                                  2. Increased antitumor activity against:
                                                                                                                                  A) Hematologic tumor cell lines and B-CLL primary cells in vitro
                                                                                                                                  B) Tumor xenograft model (B-ALL) in vivo                                                                      
scFvCD33:sTRAIL                                       CD33                                                Increased antitumor activity against hematologic tumor                                            154
                                                                                                                                  cell lines and AML primary cells in vitro                                                                            
scFvCD70:TRAILmutRs                             CD70                                                Increased bioactivity with cytotoxic targeting to hematologic                                   155
                                                                                                                                  and solid tumor cell lines in vitro                                                                                       
scFv:G28-TRAIL                                           CD40                                                Bifunctional molecule that not only activates TRAIL                                                    156
                                                                                                                                  pathway but also induces DC maturation leading to immune cells activation. 
                                                                                                                                  This was tested in Fibrosarcoma cell lines in vitro                                                        
MSC.scFvCD20-sTRAIL                             CD20                                                Increased antitumor activity with no side effects against:                                         157
                                                                                                                                  A) Hematologic tumor cell lines and normal primary cells in vitro
                                                                                                                                  B) Tumor xenograft model158 in vivo                                                                                  
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scTRAIL molecules comprising a covalent linkage of the C-termi-
nal Val280 and the N-terminal position 122 by only 2 amino acid
residues. These modified scTRAIL molecules showed increased
thermal stability, which resulted in increased potent antitumor
activity in vivo and in vitro.160

Another novel DR5scFv design, was introduced in early 2016
and could possibly be considered a candidate for cancer treat-
ment.161

In the following part we are going to discuss different nano-
designs delivering TRAIL. 

Nanoparticles: Guided missiles and Trojan horses for
TRAIL

Developments in nanotechnology have opened new horizons
for nanomedicine and regenerative medicine. Field of
Nanomedicine has grown exponentially in the past few years and
substantial fraction of information has been added into the existing
pool of knowledge related to identification of strategies to nan-
otechnologically deliver therapeutic drugs. Figure 3 shows how
nanoparticles deliver the payload to the target sites. 

The physico-chemical properties of nanoparticles such as their
3-D configuration, shape, volume, flexibility, electrostatic proper-

ties, may significantly modify their interactions at sub-molecular
or atomic levels. 

Using high-throughput technologies, it has been shown that
interaction of Nanoparticles with proteins, cells, membranes, DNA
and organelles triggers a series of nanoparticle/biological inter-
faces that is dependent on colloidal forces and bio-physicochemi-
cal interactions. These interactions lead to particle wrapping, for-
mation of protein coronas, cellular uptake and biocatalytic mecha-
nisms, which may have bio-adverse or bio-compatible outcomes. 

Therefore, delivering TRAIL molecule using nanodesigns will
improve the outcome of its cytotoxic effects.

Multifunctional and multilayered micro- or nanoscale struc-
tures by using of Layer-by-Layer assembly have shown potential
as carriers of different drugs. Cross-linked albumin nanoparticles
loaded with doxorubicin111 were fabricated with TRAIL and a
polysaccharide, alginate (ALG), using layer-by-layer technique.
Mechanistically it has been revealed that assembled core/shell
structure of the NPs can be effectively internalized by cancer cells.
TRAIL was located at outer layer of the TRAIL/ALG-BSA NPs, to
selectively target DR overexpressing cancer cells.162

Artificially designed lipid nanoparticles (NPs) coated with
TRAIL have been shown to considerably enhance apoptosis in in
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Figure 3. Nanoparticles loaded with TRAIL can target specific tumor sites. Nanoparticle design target tumors through passive targeting
properties also known as enhanced permeation and retention. In active targeting, the particle is designed to target specific tumor recep-
tors.
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leukemic cells.163 Targeted iron oxide NPs coated with chlorotoxin
(CTX) and chitosan-polyethylene glycol-polyethyleneimine
copolymer effectively delivered TRAIL. Tumor growth was sub-
stantially reduced in xenografted mice systemically administered
with NP-TRAIL-CTX.164

Oxaliplatin immunohybrid NPs effectively delivered anti-
TRAIL and notably inhibited tumor growth in xenografted tumor
models.165

Recently a novel cationic lipid (DOBP) was designed for erad-
ication of tumor.166 This was designed similarly to 1,2-di-(9Z-
octadecenoyl)-3-trimethylammonium-propane (DOTAP, a cationic
lipid) by modifying trimethylammonium of DOTAP and convert-
ing it into biguanide and carrying TRAIL expressing plasmids.
This biguanide group acted similarly to metformin and activated
AMPK signaling pathway.166,167 The cytotoxicity of DOBP-LPD-
TRAIL NPs was tested in vitro in H460 cells and in nude mice
xenografted with H460 cells and showed apoptotic superiority than
DOTAP-LPD-TRAIL NPs. Therefore, DOBP serves as versatile
cationic carrier facilitating TRAIL gene delivery, and enhancing
TRAIL apoptotic effects through biguanide’s anti cancerous
effects and AMPK pathway activation. 

Pulmonary route for gene delivery
Directly delivered anti-cancer agents via pulmonary route has

also shown potential. In accordance with this approach, Inhalable
NPs made of human serum albumin (HSA) conjugated with octyl
aldehyde and doxorubicin and adsorbed with TRAIL (TRAIL/Dox
HAS) revealed notable efficacy mainly because of hydrophobicity
and self-assembly. TRAIL/Dox HSA-NPs had significant deposi-
tion in mouse lungs and Dox-HSA and TRAIL showed sustained
release over 3 days. TRAIL/Dox HSA-NPs administered via pul-
monary route considerably reduced tumor formation in BALB/c
nude mice bearing H226 cell-induced metastatic tumors.168

Dendrimers
Therapeutics conjugated to nanoparticle-forming biodegrad-

able polymers have been engineered to maximize “sustained
release” and avoid ‘burst release’ associated with NPs. To maxi-
mize the efficiency and drug delivery, dendrimers are being used
which are synthetic, symmetrically structured and highly branched
macromolecules. Modifications of terminal functionalities of the
dendrimers (such as PPIs and PAMAMs) enable targeted delivery
of the drugs of choice, while interior cavities can be utilized to load
hydrophilic and hydrophobic drugs. 

Triazine-modified dendrimer G5-DAT66 effectively delivered
TRAIL remarkably inhibited tumor growth in osteosarcoma-bear-
ing mice.169

TRAIL condensed with Transferrin170 - modified polyami-
doamine dendrimer (PAMAM) has been shown to efficiently
enhance median survival time of C6 glioma-bearing rat brain.171

Future directions
Benefiting from TRAIL molecular characteristics as a tumor

cytotoxic agent will definitely lead to a revolution in cancer treat-
ment. The quest for an ultimate TRAIL preparation is still going.
Lessons learned from the past will definitely help paving the road
for future ultimate usage of TRAIL molecule. Future directions
should focus on: 

- Identifications of certain biomarkers predicting responsive-
ness to TRAIL will help clinicians in selecting patients sensitive to
this unique molecule. 

Identification of generalized biomarkers, like GALNT14 the
O-glycosylation enzyme as a predictor to TRAIL sensitivity172 did
not significantly correlate with clinical response to dulanermin in
clinical practice. Therefore, more customized biomarkers should
be considered in the future. 

- Introducing the kinome profiling strategy to gear up the per-
sonalized medicine approach and enhance the knowledge of differ-
ent interactions in TRAIL pathway.173 Personalized medicine, a
promising approach utilizing quantitative genomics, proteomics
and kinomics, could help us better recognizing different targeted
pathways that can enhance TRAIL therapeutics in mono or combi-
natorial approaches.174

- As the poor clinical outcome of TRAIL MoAB preparation
was contributed to their low potency, creating more humanized
anti DR-4/DR-5 will potentiate their tumoral cytotoxicity in vivo.
Inducing mutations in Fc portion will increase affinity of MoAB to
the targeted receptors, hence enhancing its killing ability. Recently,
Wang et al. revealed humanized anti DR-4 and anti DR-5 coined
as HuD114 and HuG4.2 respectively.175 These humanized antibod-
ies have shown more killing ability than conventional TRAIL
MoAB. Also introducing S267E/L328f double mutation in the Fc
portion improved receptor-binding affinity more than S267E single
mutation. 

- To avoid the pitfalls of old TRAIL preparations in achieving
good clinical outcomes, these new preparations need to be tested in
genetically modified mouse models, which carry a tumor microen-
vironment similar to the human spectrum176,177 before proceeding
to clinical field. 

- The advancement in biomolecular technology and drug
designs offer variable options of scFv and fusion protein actively
targeting cancer cells with enhanced TRAIL apoptotic effects.
These novel designs need to be advanced in clinical fields for opti-
mized cancer TRAIL therapy.

- Incorporating nanotechnology will definitely improves the
outcomes of different TRAIL therapeutics. The nano carriers drugs
will help dealing with metastatic disease though selective cancer
targeting and enhanced pharmacokinetics.170,178

- Systemically administered therapeutics using nano-carriers
require strategies to overcome nonspecific uptake by non-targeted
and mononuclear phagocytic cells. To maximize differential target-
ing, frequently overexpressed surface marker (receptors or anti-
gens) should be considered. For an effective liposomal delivery to
B-cell receptors using an anti-CD19 monoclonal antibody, density
of receptors may range from 104 to 105 copies/cell. Those cells
which have low density are not efficiently targeted.179,180 It has
previously been reported that a density of ErbB2 receptors in a
range of 105 copies/cell significantly improved therapeutic effi-
ciency of an anti-ErbB2-targeted liposomally delivered doxoru-
bicin111 as compared to nontargeted counterpart.

- There are some exciting pieces of evidence suggesting that
higher binding affinity may dramatically reduce nanocarrier pene-
tration mainly because of a ‘binding-site barrier’, where the
nanocarriers strongly bind to the targets and cannot penetrate into
tissues.181

Therefore affinity and targeting can be increased by multiva-
lent binding effects (or avidity). The collective binding in multiva-
lently interacting molecules is considerably higher than monova-
lent binding. 

Conclusions and final remarks
Inducing apoptosis in cancer cells, appeal as an effective can-

cer treatment strategy that can work generally in any type of can-
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cer despite the underlying genetic, molecular changes. TRAIL, a
naturally occurring molecule, was proven to successfully achieve
this target of apoptosis induction selectively in cancer cells.
Despite its ability to overcome the frequently observed resistance
against chemotherapeutics and radio-therapeutics, interacting
with CSCs self-renewal pathways as well as many other apoptot-
ic properties, maximum clinical benefits from this molecule have
not yet been achieved. This could be attributed to resistance fac-
tors that are yet to be explored or extensively studied, or to the
efficacy of clinically available TRAIL based therapeutics. It is
also to be noted, that the relation between TRAIL and
immunomodulatory cancer therapies is yet to be fully explored.
Therefore, future approaches should focus on developing an opti-
mum TRAIL preparation to maximize the benefits from such an
extraordinary apoptotic molecule. 
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