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RESEARCH ARTICLE Open Access

Determining detection limits of aqueous
anions using electrochemical impedance
spectroscopy
Dane W. Scott* and Yahya Alseiha

Abstract

Background: Pulsed amperometric detection is a relatively new method for detection of ions and especially non-
electrolytes such as carbohydrates in aqueous solutions. Pulsed amperometric detection relies on a redox reaction
while electrochemical impedance simply measures the real and capacitive resistant of the solution. There is a
correlation between the real impedance of a solution and the ionic strength of the solution.

Method: This work explores measuring real impedance of pure water as a function of temperature from 25.0 to 60.0 °
C to determine the relationship between impedance and temperature. Maintaining temperature at 25.0 °C, solutions of
sodium chloride, potassium carbonate, sodium sulfate acetate and bicarbonate have been measured using impedance
spectroscopy.

Results: Regression analysis shows that measuring anions using impedance spectroscopy and simple stainless steel
cylinders that detection limits at the parts per trillion (ppt) level are possible. There was no statistical difference when
comparing impedance values of the same concentration of acetate and chloride in solution, showing real impedance
is not dependent on ion size. However, ions with higher charge do result in lower impedance measurements.

Conclusions: This work establishes the use of simple, small, robust stainless steel cylinders and impedance
measurements following separation for the identification and quantification of ions in solution.

Keywords: Impedance Spectroscopy, Anions, Stainless Steel Cylinders, Detection Limit

Background
Electrochemical techniques such as conductivity, pulsed
amperometry, and impedance have been used to quan-
tify metal ions and even non-electrolytes (Bansod et al.,
2017; Mefteh et al., 2015; Shervedani and Seyed, 2006;
Zazoua et al., 2008; Gabrielli et al., 2004). Conductivity
measures the resistance across two parallel plates using
an alternating voltage with a frequency of 1–3 kHz. In
pulsed amperometric detection, the analyte is oxidized
and reduced at an electrode with a fixed potential and
the current is measured. This detection technique in-
volves using a silver/silver chloride reference electrode
that is recommended to be replaced every 6 months
(Rohrer, 2013). Pulsed amperometric detection has been
used following ion exchange to find the concentration of

compounds such as aldehydes and common sugars with
detection limits ranging from 1 to 3 parts per million
(ppm) (Rocklin, 1985). EIS is a technique in which a
voltage sine wave is applied with known amplitude over
a frequency range. The impedance (Z) can then be de-
termined by Eq. (1) (Huang et al., 2009):

Z ¼ R1

1þ j2πfR1C1
ð1Þ

where R1 is the resistance of the solution, j is imaginary
number i, f is the frequency and C is capacitance. Solv-
ing this equation results in an imaginary impedance
(−Z”) which can be plotted vs. the real impedance (Z’)
resulting in a semicircle referred to as a Nyquist plot.
Sample data available by downloading and using the EIS
Spectrum Analyzer Software is plotted and shown in
Fig. 1 (Bondarenko and Ragoisha, 2005).
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A circuit composed of a resistor and capacitor in series
parallel will result in a semicircle Nyquist Plot. For the
example, in Fig. 1, the circuit is best fit using a resistor
and capacitor in parallel (RC circuit) as shown in the
center of Fig. 1. Both a resistor and capacitor in parallel
are required to obtain a real impedance measurement.
Using EIS Spectrum Analyzer software, the imaginary
and real impedance can be determined as shown in Fig. 2
resulting in values of 9.8574 × 10−8 F and 14,008 Ω for

capacitance and resistance with absolute errors of 5.1
and 4.7%, respectively.
The use of co-axial electrodes with simple Electrochem-

ical Impedance Spectroscopy (EIS) measurements is a
method that has been developed as a sensor (Szypłowska et
al., 2013). However, the detection limit was not determined.
This method using stainless steel plates has been applied in
determining lithium (Adriana and Vannucci, 2008). Heavy
metals such as mercury ions have been determined by EIS
with a reported 20 parts per trillion (ppt) detection limit
using nanoparticle modified electrodes including DNA
(Bansod et al., 2017; Zhang et al., 2017). Silver ions have
also been determined using modified electrodes and have
detection limits ranging from 0.01 to 170 nM (Yang et al.,
2015). Thin films have been developed that are even select-
ive for calcium (Aicher et al., 2017). In these cases, modified
electrodes or stainless steel parallel plates with precisely
known dimensions are used as a measuring cell that con-
tains the liquid.
This work uses real impedance to quantify how the

real impedance of pure water changes as a function of
temperature. Solutions having low ionic strengths were
measured experimentally to determine the detection
limit of anions in water using impedance spectroscopy.
Acetate, chloride, cyanide, carbonate, sulfate, and bicar-
bonate were measured experimentally to determine the
effect of ion charge and size on the impedance measure-
ment at 25.0 °C. This data is useful in the development
of a simple robust method using stainless steel cylinders
and impedance measurements being applicable to water-
quality-monitoring technologies with detection limits at
the parts per trillion (ppt) level.

Methods
Deionized water was routed to a Millipore Direct QUV 3
system resulting in 18.2 MΩ water and used to prepare
and measure all solutions. Temperature was measured
using a Vernier temperature probe. Salts were used as re-
ceived. A stock solution of each salt solution was prepared
and serial dilution was carried out to obtain the desired

Fig. 1 Nyquist plot using sample data from EIS Spectrum Analyzer
Software (Bondarenko and Ragoisha, 2005).

Fig. 2 Nyquist plots of pure water from 25.0 °C (black outer curve) to
60.0 °C (gray inner curve)

Table 1 Real impedance values (Ω) of pure water as a function
of temperature (°C)

Temperature (°C) Real impedance (Ω) Error (±Ω)

25.0 3482 139

30.0 3070 92

35.0 2694 81

40.0 2359 71

45.0 1947 58

50.0 1753 53

55.0 1237 37

60.0 1092 33
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molarity. Molarity values were converted to ppm. A sim-
ple stainless steel probe from Brookhaven Instruments of
proprietary dimensions was utilized for impedance spec-
troscopy of the solutions. The probe consists of an inner
and outer cylinder separated by Teflon posts. The testing
probe is put directly into the test solution in a glass cell.
AC impedance spectroscopy was then conducted using an
initial voltage of 0.2 and 0.7 V amplitude. Real and imagin-
ary impedance data was collected over a range of 1 to
100 kHz generating a Nyquist plot. Pure water was used
to collect Nyquist plots over a temperature range of 25.0
to 60.0 °C. Each spectrum was converted to a text file and
imported into the EIS Spectrum Analyzer Software to fit
the Nyquist plot to find the real impedance values and
error for the equivalent circuit shown in Fig. 1. AC imped-
ance spectroscopy was used to measure standard solutions
of chloride, acetate, bicarbonate, carbonate, and sulfate
ranging from 0.06 to 6000 parts per billion (ppb) depend-
ing on the anion. Solutions of 0.6 ppm acetate, chloride,
sulfate, carbonate, and bicarbonate were measured at
25.0 °C to compare the effect of ion size and charge on
impedance measurements.

Results and discussion
Pure water and temperature dependence
The impedance spectroscopy of pure water was measured
from 25.0 to 60.0 °C. Figure 2 below shows the resulting
Nyquist plots. Data for every Nyquist plot was fit using
EIS software which performed regression analysis result-
ing in the real resistance, error and R2 of the fit. Attempts
were made to use other circuit configurations. The best R2

values were obtained using one resistor and one capacitor
in parallel to represent the solution and two stainless steel
cylinders as shown in Fig. 1. Measurements of pure water
from 25.0 to 60.0 °C resulted in typical semi-circular
Nyquist plots shown in Fig. 2.
Table 1 below shows the real resistance values and error

obtained measuring pure water from 25.0 to 60.0 °C.
Interestingly, the change in real impedance as a func-

tion of temperature is not linear as one might expect.
Real impedance plotted as a function of temperature re-
sults in a cubic polynomial as shown in Fig. 3.
The polynomial fit for plot of Ω vs. T (°C) is:

Ω ¼ ‐0:0287 �Cð Þ3 þ 5:423 �Cð Þ2‐367:45 �Cð Þ
þ 10; 223 ð2Þ

where y is real impedance (Ω) and x is temperature in
degrees celsius. The polynomial fit results in an R2 value
of 0.9993. Interestingly, permittivity of pure water as a
function temperature is also a third order polynomial
(Malmberg and Maryott, 1956). This is not unexpected
as permittivity is an extensive property that is dependent
on resistance. Because impedance is a function of
temperature and ionic strength, varying concentrations
of sodium chloride, sodium acetate, sodium sulfate, and
sodium cyanide were measured at 25.0 °C separately to
calibrate the impedance measurement for quantifying
anions. The effect of ion charge and size were also ex-
plored. The detection limit was calculated to determine
the feasibility of using impedance spectroscopy as a de-
tector at ppt levels following separation by methods such
as ion exchange.

Fig. 3 Real impedance (Ω) vs. temperature (°C) for pure water

Table 2 The ppb amounts of prepared standard anion solutions, real resistance determined by fitting the Nyquist plot and error
measured at 25.0 °C

Chloride
ppb

Ω Bicarbonate
ppb

Ω Carbonate
ppb

Ω Acetate
ppb

Ω Sulfate
ppb

Ω

3545 68.4 ± 0.3 6102 237 ± 5 600 574 ± 31 590.4 699 ± 8 5960 72 ± 1

354.5 656 ± 19 610.2 907 ± 103 60 906 ± 40 59.04 1219 ± 21 596.0 577 ± 34

35.45 1431 ± 131 61.02 2177 ± 78 6 1181 ± 27 5.904 2203 ± 28 59.60 1689 ± 89

3.545 1977 ± 219 6.102 2363 ± 52 0.6 2000 ± 26 0.5904 2401 ± 119 5.960 2165 ± 48

0.3545 2697 ± 87 0.06 2695 ± 83 0.5960 2518 ± 52
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Detection limit for anions
As expected, when an ionic compound is dissolved in
water, the resistance of the solution decreases. Resistance
increases with decreasing concentration of the dissolved
salt eventually reaching a value similar to pure water.
Serial dilutions of standard stock solutions of anions were

prepared, and the real resistance from the fit of Nyquist
plots were determined at 25.0 °C. Table 2 shows the real re-
sistance values determined from fitting the Nyquist plots
and error for ppb solutions of anions at 25.0 °C.
A plot of the real resistance in ohms against concen-

tration results in a log plot. To make the data linear, the
real impedance (Ω) is plotted against the negative nat-
ural logarithm of ppm according to Eq. (3):

Ω ¼ ‐ ln ppmð Þ þ b ð3Þ

The calibration plot for chloride at 25.0 °C is shown in
Fig. 4.
Within error, all calibration plots are linear. Very low

concentrations correspond to –ln values that are not
zero. In other words, solutions with low ppm chloride
result in high impedance values in this plot. The text
book method for determining the detection limit must
be modified to subtract three times the standard

deviation (3 s) from the impedance of pure water and
take the negative antinatural logarithm of this value to
obtain the detection limit in ppt. Eq. 4 shows this
calculation:

Detection limit ¼ e
‐ 3;853Ω‐3s

mð Þ 1 x 106
� �

ppt ð4Þ
This equation takes three times the standard deviation,

s, of impedance measurements using a 355 ppb solution
of chloride (321 Ω), subtracts this from the real resistance
of pure water (3853 Ω), subtracts the intercept, divides by
the slope and taking the negative anti-natural logarithm
and multiplies by 1 × 106 resulting in a detection limit of
13 ppt for chloride. The detection limit for chloride and
other anions are below the maximum contaminant levels
established by the EPA. The detection limits, slopes, and
errors for anions determined are listed in Table 3.

Effect of ion charge and size
One possible impact on the real resistance of the solution
is size of ions and ionic charge. To determine if there is an
effect of ion size and charge on real impedance, 0.6 ppm
solutions of different anions were measured at 25.0 °C.
Table 4 shows the real impedance for these solutions.
Using Table 4 and comparing chloride and acetate, there

is only a statistical difference of 21 Ω, making the imped-
ance response to chloride and acetate nearly identical.
Both sulfate and carbonate having a charge of (2-) resulted
in real impedance values less than ions with a charge of
(1-). Bicarbonate has the same charge as chloride and
acetate, (1-), and has a real impedance 150 Ω higher. This
is attributed to bicarbonate behaving as an ampholyte in
pure water. This table clearly shows that charge of ion in
solution has a much greater influence on impedance.

Advantages and disadvantages of impedance detection
and future work
This work shows that impedance measurements are cap-
able of detecting ions with similar detection limits as
pulsed amperometry. The main advantage to using imped-
ance spectroscopy is detection of ions at the ppb level
without using a reference electrode. Thermoscientific note
21 recommends replacing the silver/silver chloride refer-
ence electrode every 6 months (Rohrer, 2013). Using

Fig. 4 Real resistance (Ω) vs. –ln ppm chloride

Table 3 Detection limit, calibration and goodness of fit for anions measured at 25.0 °C

Ion Detection
limit (ppt)

Detection limit (nM) Slope
(Ω−1)

Error
(± Ω−1)

Intercept
(Ω)

Error
(±Ω)

R2

correlation

Carbonate 16 0.02 232 18 362 111 0.9942

Bicarbonate 129 2.1 309 6 779 19 0.9998

Chloride 13 0.4 296 6 330 29 0.9996

Acetate 128 2.1 325 35 583 118 0.9943

Sulfate 2.0 0.02 180 15 1201 83 0.9965
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impedance measurements requires no reference electrode,
thus reducing the instrument and maintenance costs for
detection of ions in solution. The obvious disadvantages
to this method are the ability to distinguish between dif-
ferent ions, software required to determine the real im-
pedance of the sample, and finally using that information
to determine concentration in parts per million. Work is
currently underway to circumvent these disadvantages by
developing inner and outer cylinders in a microfluidic de-
vice in line with anion or cation exchange resin for separ-
ation. Circuitry is also being developed to provide stand
alone output values in ppb using an LCD screen. Once
the circuitry is developed the system will be calibrated and
is expected to be published or patented.

Conclusions
Impedance spectroscopy was utilized to determine the
temperature dependence of impedance measurements.
As such, 25.0 °C was chosen for measurements of elec-
trolytes and non-electrolytes in solution. Anions were
used to calibrate the detection method and found that
detection limits to be at the ppb level. Comparing the
impedance of similar concentrations of chloride and
acetate, ion size had little to no effect on impedance
measurements. However, when comparing chloride to
carbonate or sulfate, impedance measurements are
clearly lower for ions of higher charge. This work shows
the promise and possibility of detecting and quantifying
ions using retention time and impedance measurements
at ppt levels following separation by ion exchange. This
can be accomplished using simple robust stainless steel
cylinders and electrochemical impedance measurements.

Abbreviations
EIS: Electrochemical Impedance Spectroscopy; Z: Impedance; PPB: Parts per
billion; PPT: Parts per trillion; PPM: Parts per million
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