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Abstract: Object-based image analysis (OBIA) has been increasingly used to identify terrain features
of archaeological sites, but only recently to extract subsurface archaeological features from geophysical
data. In this study, we use a semi-automated OBIA to identify Archaic (8000–1000 BC) hearths
from Ground-Penetrating Radar (GPR) data collected at David Crockett Birthplace State Park in
eastern Tennessee in the southeastern United States. The data were preprocessed using GPR-SLICE,
Surfer, and Archaeofusion software, and amplitude depth slices were selected that contained anomalies
ranging from 0.80 to 1.20 m below surface (BS). Next, the data were segmented within ESRI ArcMap
GIS software using a global threshold and, after vectorization, classified using four attributes: area,
perimeter, length-to-width ratio, and Circularity Index. The user-defined parameters were based on
an excavated Archaic circular hearth found at a depth greater than one meter, which consisted of
fire-cracked rock and had a diameter greater than one meter. These observations were in agreement
with previous excavations of hearths at the site. Features that had a high probability of being Archaic
hearths were further delineated by human interpretation from radargrams and then ground-truthed
by auger testing. The semi-automated OBIA successfully predicted 15 probable Archaic hearths at
depths ranging from 0.85 to 1.20 m BS. Observable spatial clustering of hearths may indicate episodes
of seasonal occupation by small mobile groups during the Archaic Period.

Keywords: archaeology; archeological prospection; near-surface geophysics; object-based image
analysis; remote sensing

1. Introduction

Geophysical techniques are a noninvasive way to map and identify buried archaeological features.
Their development has both paralleled and been enhanced by the evolution of geospatial and computer
technologies, including GIS and Global Navigation Satellite Systems (GNSS) [1]. In 1999, Joseph
Puyol-Gruart [2] wrote that ‘Artificial intelligence is especially useful for experience-based knowledge’,
successfully predicting the future importance of digitizing multimedia information in the field of
archaeology. Puyol-Gruart [2] further discussed extracting information from databases containing
preprocessed data and computer models to identify patterns, while emphasizing the need for validation
from a human expert. Semi-automated image analysis has become a multidisciplinary technique that
began with aerial photography in the 1960s and satellite imagery in the 1970s. It has been employed
in such fields as environmental science, microbiology, and medical imagery using pixel-based and
object-based classification algorithms [3–5]. Pixel-based image analysis (PBIA) groups pixels based on
spectral data values and was first implemented in the 1970s, predating object-based image analysis
(OBIA) [3–5]. The OBIA approach utilizes both spectral and spatial data, using a two-step process to
segment data based on the spectral values of pixels and then to classify objects based on user-defined
spatial attributes [3]. This can be accomplished within geospatial software using computer-implemented
algorithms [3]. Case studies comparing the two imagery analysis methods have shown significant

Remote Sens. 2020, 12, 2539; doi:10.3390/rs12162539 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0190-4688
http://dx.doi.org/10.3390/rs12162539
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/16/2539?type=check_update&version=2


Remote Sens. 2020, 12, 2539 2 of 20

advantages of using OBIA over PBIA, as OBIA allows for the addition of multi-parameter classifications,
while additionally performing better with higher resolution data [4,6–11].

Archaeologists have been using aerial photography to identify archaeological sites and features
for over a century and now have access to high-resolution multispectral, light detection and
ranging (LiDAR), and synthetic aperture radar (SAR) data from a variety of aerial and spaceborne
platforms [10,12,13]. Many recent studies have implemented semi-automated shape factor analysis
(object-based) to identify natural terrain features such as sinkholes from LiDAR-derived Digital
Elevation Models (DEM) by using ‘form-defining properties’ [14] such as perimeter, area, circularity
index, and length-to-width (L2W) ratios (e.g., [15–20]). This technique has been applied in the field of
archaeology to detect subtle terrain features such as earthen mounds using semi-automated OBIA with
similar parameters (e.g., [10,12,21–24]). OBIA has also been used to map and delineate archaeological
features based on their surface expression in multispectral satellite imagery [25]. Davis [21] presents
a detailed history of the use of OBIA (coined as ‘GEOBIA’ by Hay and Castilla [26] when applied
to remote sensing in the field of geosciences), noting that this method has only been employed in
archaeology relatively recently and very rarely in North America. By using semi-automated OBIA to
examine remote sensing data, unknown archaeological sites and features can be identified from large
datasets, saving time, resources, and possibly the sites themselves from destructive anthropogenic and
natural events [12,22].

Several studies have implemented an automated exploration of subsurface features using
geophysical data to delineate homogenous objects, including archaeological features. Neural network
classification, normalized cross-correlation, clustering, edge-detection segmentation, and supervised
and unsupervised classification have been explored (e.g., [3,27–32]).there are few examples in the
literature, however, that apply a semi-automated OBIA approach to geophysical data in the field of
archaeology. A handful of studies have successfully implemented OBIA using magnetometry data to
identify archaeological features (e.g., [3,33–35]), while fewer have applied this to Ground-Penetrating
Radar (GPR) data (e.g., [3,36,37]).

In this study, we show that GPR data is highly suited for semi-automated OBIA due to the
ability to record features at high spatial resolution and a range of depths. We demonstrate this at
a prehistoric site in the southeastern United States where the deepest archaeological features were
Archaic (8000–1000 BC) hearths detected with GPR, but out of reach for magnetometry. We also
demonstrate the importance of human interpretation in the OBIA process, in agreement with several
others [10,38,39], and stress that successful outcomes depend on data quality, the scale and homogeneity
of features, and the nature of the site itself [10].

1.1. Study Area

David Crockett Birthplace State Park (Figure 1) is named for the famous Tennessee statesman and
frontiersman, and is home to a multicomponent archaeological site whose Native American occupancy
dates back to at least the Archaic Period [40,41]. The property rests on two alluvial terraces and a narrow
floodplain containing natural springs and is located at the confluence of the Nolichucky River and Big
Limestone Creek in Greene County, Tennessee (TN). The park is located in the Middle Nolichucky River
Valley of the Valley and Ridge physiographic province, formed by erosion of Cambrian and Ordovician
aged dolomite, limestone, and shale bedrock [42,43]. The headwaters of the Nolichucky River are
found in the adjacent Blue Ridge physiographic region of North Carolina. The river carries sediments
eroding from quartzite, sandstone, basalt, arkose, greywacke, and micaceous shale, which make up
the Appalachian Mountains of this region that were formed during the Cambrian and Pre-Cambrian
Periods [42,43]. The elevation of the park ranges from 407 to 426 m AMSL (1335-1400 ft AMSL), and
the soil type within the survey area consists of a micaceous Congaree fine sandy loam [44].
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Figure 1. Location of study area, showing David Crockett Birthplace State Park in Greene County,
Tennessee (TN), USA, and a photo depicting a portion of the geophysical survey area.

1.2. Archaic Period in the Southeastern United States

Indigenous populations have been in the southeastern US for at least 15,000 years, and
archaeologists have divided this time into specific periods based on technological advances and
cultural changes as follows: Paleoindian (before 8000 BC), Archaic (8000–1000 BC), Woodland (1000
BC to AD 1000), Mississippian (AD 1000–1570), and Protohistoric (AD 1570–1700) [45–47]. The
Archaic Period in the southeastern US is characterized by cultural adaptations to both climate and
landscape changes during the early and middle Holocene epoch [48]. It is further delineated into Early
(8000–6000 BC), Middle (6000–3000 BC), and Late (3000–1000 BC) Archaic Periods [46,47]. Expanding
deciduous forests created an ecosystem rich with nut-bearing trees, seed-bearing plants, and small
game, while riverine and marine environments provided an abundance of fish and shellfish [46,47].
The archaeological record has shown that populations increased and that groups were highly mobile
across the landscape with a focus on seasonal resource procurement [47]. Major technological changes
included smaller projectile points, more expedient stone tools, steatite carved vessels, and domestic
plant cultivation [46,47]. Certain cultural traits of the southeastern Archaic Period seem to be regionally
localized such as earthen mounds, coastal shell middens, fiber-tempered pottery, and mortuary
sites [48–51]. Seven additional Archaic sites have been recorded within a one-mile radius of the study
area [52,53].

1.3. Ground-Penetrating Radar for Archaeology

GPR is an active geophysical technique that propagates electromagnetic waves into the subsurface
and records reflections from buried interfaces and objects [54,55]. The GPR unit measures the reflection
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of returning waves from buried features and anomalies that can be metallic or non-metallic [54].
Reflection magnitude is measured in decibels (db), while velocity is measured in nanoseconds per
meter (ns/m) [56]. GPR can also detect changes in soil and sediment properties including areas that have
been disturbed by human occupation, making it highly suitable for archaeology [54,55]. Archaeologists
utilize GPR to detect the remnants of architectural features, hearths, middens, graves, and even subtle
features such as compaction that might not be detected during an excavation [54]. Depth range is
potentially increased with lower antenna frequency, which can range from 12.5 to 2600 MHz [57,58].
Ground moisture and sediment type also affect signal penetration [54,55]. Dryer sediments and low
conductivity sediment types such as sand allow the signal to penetrate up to 30 m below surface (BS),
while wetter sediments and materials with a higher conductivity can decrease signal depth to less
than one meter [57–59]. Most archaeological GPR studies use antennas ranging from 100 to 900 MHz,
typically penetrating up to 5 m below the ground surface. The quality of results varies as ground
moisture can change daily, while sediment characteristics are based on geological morphology that
may drastically change across a small area [54].

GPR and other geophysical techniques have become essential and often primary methods for
mapping, investigating, and understanding archaeological sites [60–62]). L.T. Dolphin and colleagues
were the first to use GPR in the field of archeology in 1977 to explore underground caves in New
Mexico [63]. In 1982, C. J. Vaughn identified 16th century features at a Basque whaling site in Canada
using GPR [56]. Software advances in the 1990s and 2000s led to the development of processing
tools that allow for horizontal depth slicing and 3D imaging of GPR data [64]. In the southeastern
United States, research-driven geoarchaeological investigations employing GPR (along with other
remote sensing techniques) have been focused mainly on historic (e.g., [65–69]), Mississippian and/or
Protohistoric (e.g., [70–76]), and Woodland (e.g., [70,72,77,78]) sites. Geophysical investigations in the
southeast have rarely been focused solely on Archaic sites ([79] is a notable exception). This is partially
because robust features such as structures, villages, and palisades are rarely present at Archaic (and
Paleoindian) sites. Fortunately, many of these locations, including David Crockett Birthplace State
Park, contain evidence of thousands of years of indigenous occupation (including Archaic) due to
the suitability of the landscape for human habitation (e.g., [70,80]). One major advantage of using
GPR at these sites is that the GPR signal can penetrate deep enough to reach older layers that may be
out of reach for other geophysical methods. Even if these layers are not targeted for excavation, they
are still recorded in the geophysical data. Another advantage of geophysical techniques in general
is that known sites can be revisited and explored without breaking ground. When used in tandem,
archaeological excavations and geophysical investigations enhance both the archaeological record and
knowledge of geophysical practice, allowing investigators to not only pinpoint features, but answer
research questions and develop new ones [60–62,77,81–83].

2. Materials and Methods

2.1. Geophysical Survey

A geophysical survey of the park was completed in an area encompassing 2 hectares, which was
being reconstructed into a historically accurate late 18th-century homestead. This was performed using
a GSSI SIR-4000 unit with a 400 MHz antenna. The parameters were as follows: meters per mark = 1,
ns time window = 50, sample/scan = 512, and scans/m = 100. The magnetometry survey was conducted
with a Bartington Grad 601-2 Magnetic Gradiometer System containing two Grad-01-1000L sensors and
a DL601 data logger. A grid network was created using a Real-Time Kinematic (RTK) GNSS, a Spectra
Precision SP80 survey kit with a positional accuracy level of ± 0.05 m. Grids measured 30 × 30 m
where possible and were surveyed north to south in a zig-zag pattern, starting in the southwest corner,
and with survey lines spaced 0.5 m apart. Survey grid coordinates were recorded with a handheld data
collector using SurveyPro software. A high-resolution digital orthomosaic created from Unmanned
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Aerial Vehicle (UAV) photos within Agisoft PhotoScan was used as an additional basemap. A workflow
chart of the GPR data processing and OBIA steps is presented in Figure 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 22 
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Figure 2. Workflow chart showing steps of Ground-Penetrating Radar (GPR) data processing and
object-based image analysis (OBIA) GIS model.

2.2. Ground-Penetrating Radar Data Processing

GPR-SLICE 7.0 was used to process and display the GPR data. Transects were displayed as
radargrams showing profiles of depth levels starting at ground surface and ending at less than 2 m.
Background removal and bandpass frequency filters were applied to all radargrams and the first
break was used to set time zero. Slices and radargrams were examined at varying depth levels for
reflections (see Figure 3) that had the potential to be archaeological features. A few of these (see
Figure 4) were selected for ground truthing through both augering and excavation test units. Feature
depth measurements made during excavation were used to calculate an average velocity of 0.78 m/ns
for the archaeological layers, and this was used to export 22 horizontal amplitude depth slices with
a thickness of 2.05 ns. Slices were gridded in Surfer software using the nearest neighbor method to
avoid interpolation errors. Archaeofusion software was used to mosaic the surfer ASCII grid slices
by matching adjacent grids based on regional statistical means. Slice mosaics were georeferenced in
Archaeofusion using the geodetic coordinates of the local site datum and applying an azimuth rotation.
Slice mosaics were further processed in Archaeofusion to remove spikes by using a standard deviation
threshold moving window filter and a mean profile filter. Lastly, these mosaics were resampled to a
pixel size of 0.125 m × 0.125 m and standardized with a mean of zero and a standard deviation of one.
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Figure 3. (a) Horizontal GPR Slice 15 of Grid C13 showing an excavated Archaic hearth at 1.02 m
below surface (BS); (b) A portion of Radargram 33 showing the hearth’s reflection pattern. Smaller
hyperbolas representing multiple stacks of fire-cracked rock can be seen below the large flat hyperbola
that represents the circular hearth as a whole.

2.3. Archaeological Excavation

The deep anomaly discovered in Radargram 33 of Grid C13 was pinpointed for archaeological
testing, and a 1 × 1 m unit was placed above the feature. At 1.02 m BS, a large circular hearth (Figure 5)
consisting of fire-cracked rock (FCR) was uncovered with a diameter greater than one meter. Chert
and quartzite lithic debris were recovered through wet screening of sediment located within the
hearth layer using a 1/16th inch mesh screen. Ash and wood charcoal were also recovered, and one
wood charcoal sample from this level was analyzed by Direct AMS laboratories. The results of the
Accelerator Mass Spectrometry (AMS) radiocarbon dating gives an uncalibrated mean (1-sigma)
of > 8083 ± 40 BP (D-AMS 033192) with a 2-sigma calibrated age range of 7019–6832 cal BC.
The calibration range was generated using OxCal 4.3 online software [84] with the IntCal 13 curve for
the Northern Hemisphere [85]. Several cultural levels were examined within the geophysical data
and identified during the archaeological investigations, including Woodland features and artifacts
encountered at depth levels ranging from 0.36 to 0.55 m BS. The remnants of a partially burned
Mississippian/Protohistoric structure were uncovered at 0.30 m BS at the base of the plowzone.
Diagnostic artifacts from the house floor included broken vessel fragments and three European glass
trade beads. AMS radiocarbon dates (Table 1) were obtained from organic material at all cultural levels.

Table 1. Summary of Accelerator Mass Spectrometry (AMS) Radiocarbon Dates.

Sample ID Charcoal Test Unit Feature Depth
m BS

Uncalibrated
(σ = 1)

Calibrated Range
(σ = 2)

D-AMS 033192 Wood 5 3 1.02–1.20 8083 BP ± 40 7019–6832 cal BC
D-AMS 033776 Wood 36 10 0.30–0.36 1646 BP ± 31 cal AD 272–534
D-AMS 033773 Wood 46 13 0.35–0.73 1568 BP ± 26 cal AD 420–550
D-AMS 033775 Wood ET4 8 0.34–0.45 1534 BP ± 27 cal AD 460–594
D-AMS 033772 River Cane 7 floor 0.32 282 BP ± 27 cal AD 1502–1792
D-AMS 033190 Hickory Nut 20 6 0.32 280 BP ± 27 cal AD 1599–1794
D-AMS 033774 Hickory Nut 20 6 0.32 260 BP ± 24 cal AD 1572–1799
D-AMS 033191 Wood 4 2 0.55 242 BP ± 27 cal AD 1555–1800
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Figure 4. GPR slice mosaics showing the hearth excavation area: (a) Slice 15; (b) Slice 16; (c) Close-up
of anomaly in Slice 15 with the red polygon representing the excavated hearth extent recorded by the
Real-Time Kinematic (RTK) Global Navigation Satellite Systems (GNSS). GPR slice resolution is 0.125 ×
0.125 m.
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Figure 5. (a) Planar view of Test Unit 5, showing the top of the Archaic hearth; (b) Profile view of the
hearth, which continued into the unit walls and was not fully excavated. A sterile layer was reached
at 1.20 m BS. Dark organic bands can be seen at the hearth level and at 0.55 m BS, which contained
probable Woodland remnant hearths in adjacent test units.

2.4. Object-Based Image Analysis

ESRI ArcMap software (version 10.6.1) was used to conduct the OBIA on the final processed
GPR slice mosaics. Three slice mosaics (Slices 14, 15, and 16) were chosen with a depth range of
approximately 0.20 m above and below the level of the excavated hearth. The raster datasets were
imported in their original plane coordinates in order to retain exact pixel values that can be slightly
altered due to automatic resampling associated with georeferencing. Each slice mosaic was reclassified
into a binary image using a global threshold of two standard deviations. Next, a raster to vector
conversion was performed to create polygons of the anomalies that had a reflectance value of 2σ or
greater. Geometric attributes of the Archaic hearth excavated by the East Tennessee State University
(ETSU) team, and hearths previously excavated and recorded by Benthall [40] were used to define
probable hearth metrics and extract similar polygons. The OBIA used the following attributes: area,
perimeter, L2W ratio, and circularity index. Perimeter and area values were automatically generated
through the vector conversion tool. All documented Archaic hearths had diameters ranging from one
to two meters, which corresponds to areas between 0.8 and 3.5 m2 (see Equation (1)).

Area Selection Formula:
(Area > = 0.8) AND (Area < = 3.5) (1)

The L2W ratio was created using the major and minor axis of the polygons with a minimum of 1.0
representing a perfect circle. Polygons were selected with an L2W ratio of less than 2.5 (Equation (2))
to allow room for potential hearths that may be more elliptical in shape, as was seen in Woodland
layers during the ETSU excavation and Archaic hearths that were recorded by Benthall [40].

Length-to-Width Ratio:
(L/W) < = 2.5 (2)

Several Circularity Index formulas have been developed to calculate a mathematical value
indicating deviation from a perfect circle [16,18]. The circularity formula used in this study was
obtained from a GEOBIA sinkhole study conducted by Doctor and Young [15]. In this formula, Po
represents the observed or known perimeter of the shape, while Pe represents the expected perimeter
value if the shape was a perfect circle (Equation (3), where A = area). The Circularity Index of a perfect
circle would be 1.0; all other shapes have a ratio greater than 1.0. A final classification of the polygons
was selected using a Circularity Index of less than and equal to 2.0.
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Circularity Index:
Circ i < = 2.0 (3)

Circ i = ((Po − Pe)/Pe) + 1 (4)

Pe = 2π (
√

A/π) (5)

All polygons were evaluated by human interpretation to eliminate false positives and clutter from
modern features such as utility lines, roads, gardens, and tree roots. Next, they were matched to their
location in radargrams, and probable Archaic hearths were identified using expert judgment. Some
features had ambiguous GPR reflections indicating possible prehistoric burials and modern utility
lines, so these were excluded at this stage.

3. Results

3.1. GIS Model

Incremental model results are presented in Table 2. A combined total of 8344 objects were created
from Slices 14, 15, and 16 after segmentation by the global threshold. The OBIA steps radically reduced
clutter from modern features by removing polygons outside the prescribed geometric ranges. The area
metric reduced the number of polygons by 95%, eliminating many unwanted features such as small
reflections created from the recently tilled gardens. The L2W ratio eliminated linear polygons, many of
which were reflections from utility lines, ditch lines, and roads. The Circularity Index extracted features
that were closer to the shape of a circle, eliminating irregular features such as tree roots. Overall, the
automated OBIA steps reduced the total number of polygons by 98%. Further manual elimination
of 31 objects was necessary to remove remaining clutter. The remaining 106 objects were matched to
corresponding radargrams and expert judgment was employed to identify 18 polygons as probable
Archaic hearths containing FCR. Two of the polygons in Slices 15 and 16 were identified as the hearth
excavated by the ETSU team, while two more anomalies had overlapping polygons in Slices 14 and 15.
Combining these reduced the number of probable hearths to 14. Expert judgment of radargrams also
identified four additional reflection patterns as probable hearths, even though they had previously
been eliminated. Two were too small, one too large, and the fourth was located at 1.40 m BS—deeper
than allowed in the model. The final number of probable Archaic hearths was therefore 17, which is
inclusive of the slightly under- and over-sized candidates but excluding the deep one because that
GPR slice (Slice 18) was not used in the model. Figures 6–8 show examples of probable Archaic hearths
at varying depth levels of Slices 14, 15, and 16 as they appear in (a) radargrams and (b) amplitude
depth slices, along with (c) maps of objects extracted by global threshold segmentation, and (d) after
OBIA metrics and manual elimination.

Table 2. Anomaly Reduction Steps by Order.

GPR
Slice

Mosaic

1. Polygons by
Reclassification
Threshold of 2σ

2. Polygons by Area
(> = 0.8 m2)

& (< = 3.5 m2)

3. Polygons by
L2W Ratio
(< = 2.5)

4. Polygons by
Circularity Index

(< = 2)

5. Modern
Feature

Elimination

6. Radargram
Interpretation for

Auger Tests

14 2270 91 68 40 31 7
15 2862 107 71 44 36 5
16 3212 199 91 53 39 6

Total 8344 397 230 137 106 16
(2 overlapping)



Remote Sens. 2020, 12, 2539 10 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 22 

 

in Slices 15 and 16 were identified as the hearth excavated by the ETSU team, while two more 

anomalies had overlapping polygons in Slices 14 and 15. Combining these reduced the number of 

probable hearths to 14. Expert judgment of radargrams also identified four additional reflection 

patterns as probable hearths, even though they had previously been eliminated. Two were too small, 

one too large, and the fourth was located at 1.40 m BS—deeper than allowed in the model. The final 

number of probable Archaic hearths was therefore 17, which is inclusive of the slightly under- and 

over-sized candidates but excluding the deep one because that GPR slice (Slice 18) was not used in 

the model. Figures 6–8 show examples of probable Archaic hearths at varying depth levels of Slices 

14, 15, and 16 as they appear in (a) radargrams and (b) amplitude depth slices, along with (c) maps 

of objects extracted by global threshold segmentation, and (d) after OBIA metrics and manual 

elimination. 

Table 2. Anomaly Reduction Steps by Order. 

GPR 

Slice 

Mosaic 

1. Polygons by 

Reclassification 

Threshold of 

2σ 

2. Polygons by 

Area 

(> = 0.8 m2) 

& (< = 3.5 m2) 

3. Polygons 

by 

L2W Ratio 

(< = 2.5) 

4. Polygons by 

Circularity 

Index 

(< = 2) 

5. Modern 

Feature 

Elimination 

6. Radargram 

Interpretation 

for Auger 

Tests 

14 2270 91 68 40 31 7 

15 2862 107 71 44 36 5 

16 3212 199 91 53 39 6 

Total 8344 397 230 137 106 
16 

(2 overlapping) 
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Figure 6. Four views of a probable Archaic hearth (circled in red) in Grid E17 extracted by the
semi-automated OBIA model: (a) The reflection pattern in a portion of Radargram 44; (b) GPR Slice
14; (c) Map of objects extracted by global threshold segmentation; (d) Map of objects remaining after
manual elimination of noise. Another probable hearth (circled in green) was identified and confirmed
at a depth of 1.02 m BS during the auger testing.

3.2. Auger Testing

The 17 probable Archaic hearths were tested with a four-inch (0.1-m) bucket auger. FCR was
reached at the approximate predicted depths in 16 of the tests. Radargrams for probable hearths
are shown in Figure 9, and corresponding auger test results in Table 3. Probable Hearth 8 did not
contain FCR but was interpreted as a prehistoric pit based on the presence of ash, charcoal, and a lithic
flake from 0.90 to 1.30 m BS. The pit feature had been previously excluded from the model based on
area values greater than the metrics allowed, but it was added back during expert interpretation of
radargrams. When obstructions were reached in three of the auger tests, they were moved 0.30 m grid
north. Control tests were performed to depths of 1.40 m, at a range of 0.50 to 4 m outside of five of the
test feature locations. There was no evidence of FCR in four of the control tests. FCR was reached at
0.99 m BS in one control test placed 0.5 m outside a probable hearth found at 0.92 m BS, which was
likely a continuation of the same hearth. The automated OBIA model successfully predicted 15 out of
the 17 probable hearths identified by geometry attributes. Probable hearths 4 and 12 had been added
based on expert judgment and tested positive for FCR—both were slightly smaller than allowed by
the area metric. Figure 10 uses Slice 14 to illustrate how the semi-automated OBIA approach selected
thousands of objects and reduced them to 10 probable hearths for that depth interval. Figure 11 shows
the location of all Archaic hearths confirmed by the presence of FCR, showing that they occur in a
clustered arrangement across the survey area.
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Figure 7. Four views of a probable Archaic hearth (circled in red) in Grid E14, which was confirmed by
fire-cracked rock (FCR) in the auger at 1.05 m BS: (a) Reflection pattern in a portion of Radargram 12; (b)
GPR Slice 15, where linear features from an electrical line and ditch are also visible; (c) Map of objects
after global threshold segmentation; (d) Map of objects remaining after OBIA and manual elimination.

Table 3. Auger and Excavation Test Results

Probable
Hearth

Test
Number

Predicted
m BS

Actual
m BS

Predicted
in Model

Tested Positive
for FCR

1 Excavated Hearth 1.10 1.02 Yes Yes
2 C13.S14.2/S15.1 0.95 0.92 Yes Yes
3 C13.S14.3/S15.2 1.02 0.92 Yes Yes
4 C14.S14.NM1 1.02 0.91 No Yes
5 D15.S16.1 1.20 1.10 Yes Yes
6 D15.S16.5 1.15 1.20 Yes Yes
7 E14.S15.1 1.00 1.05 Yes Yes
8 E15.S14.NM2 0.95 0.90–1.30 No No
9 E17.S14.2 0.90 1.02 Yes Yes

10 E17.S14.6 0.90 0.85 Yes Yes
11 E17.S16.1 1.12 1.18 Yes Yes
12 E17.S16.NM3 1.25 1.08 No Yes
13 E18.S14.2 0.95 1.02 Yes Yes
14 E18.S14.4 0.85 0.92 Yes Yes
15 E18.S15.5 0.90 0.94 Yes Yes
16 F14.S14.4 0.98 1.10 Yes Yes
17 F14.S16.3 1.20 1.20 Yes Yes
18 F18.S16.1 0.95 0.87 Yes Yes
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Figure 8. Four views of a probable hearth (circled in red) in Grid E17, which was confirmed by FCR in
the auger at 1.18 m BS: (a) Reflection pattern in a portion of Radargram 8; (b) GPR Slice 16, where linear
features from a known electrical line are also clearly visible; (c) Map of objects after global threshold
segmentation; (d) Map of objects remaining after the OBIA and manual elimination.
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Figure 10. Example of the semi-automated OBIA approach applied to GPR Slice 14. (a) Processed
sitewide slice mosaic; (b) Map of objects isolated by global threshold segmentation; (c) Map of 31 objects
remaining after applying OBIA metrics and manual elimination; (d) Anomalies tested after human
interpretation of radargrams where seven (green circles) were selected by OBIA and tested positive for
FCR, two (red circles) were originally excluded due to size but identified as probable hearths during
the human interpretation, and one (blue square) represents the top of the excavated archaic hearth and
was selected by OBIA in Slice 15 and Slice 16.
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Figure 11. Probable Archaic hearths consisting of FCR confirmed by auger testing or excavation. The
basemap is a digital orthomosaic created from Unmanned Aerial Vehicle (UAV) imagery. Noticeable
patterns of clustering by depth and proximity are visible.

4. Discussion

The results of geophysical surveys vary due to site conditions and feature characteristics. In this
case study, deep features were identified within the GPR data that were not found with magnetometry.
This was more than likely due to soil conditions and interference from modern noise within the survey
area. A micaceous sandy loam was found at all levels of auger testing that reached a depth of 1.40 m.
The low conductivity of sandy sediments likely allowed for greater GPR depth penetration, and this
seems to have played a role in the ability of the GPR survey to receive strong reflections from features
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found at levels below one meter. Modern features affected both the magnetometry and GPR data,
especially at levels closer to the ground surface. The survey area contained metallic debris, electrical
utility boxes, and a large metal pylon supporting high-powered electrical lines, all of which masked
magnetometry readings from more subtle archaeological features. Still, in limited regions with little to
no modern magnetic interference, hearths identified by GPR were not detected by magnetometry. This
suggests that the hearths do not have magnetic fields strong enough to be detected at these depths.

The OBIA model radically reduced clutter in the GPR data and successfully extracted probable
archaeological features. Human interpretation and expert judgment were imperative to delineate
all possible Archaic hearths from the GPR data, while excluding features such as utility lines and
possible prehistoric burials. Manual examination of radargrams and auger testing also proved that the
OBIA excluded some probable hearths; however, this could be corrected by expanding the metrics
of the model. Further examination of the radargrams and amplitude depth slices also showed that
one probable hearth (Probable Hearth 12 in Figure 9) not included by the OBIA had been separated
into smaller polygons due to gaps in the reflectance of the anomalies, reinforcing the need for human
interpretation. This problem could also be solved by adding a buffer or proximity analysis to the OBIA
steps. All features that were selected by the OBIA and expert judgment tested positive for evidence
of human occupation, with many containing charcoal and ash. The success of the OBIA was in part
due to the size, shape, and depth of the Archaic features, along with knowledge of the attributes of
previously excavated hearths. It is important to note that this type of analysis may not be suitable for
all data. As stated by Verdonck et al. [3], ‘Where the archaeological features belong to one class with a
simple shape (e.g., circular structures), relatively simple algorithms can be used.’

The map of the auger-tested probable hearths (Figure 11) shows noticeable patterns of clustering
by depth and proximity, which may indicate seasonal occupation of small groups. Resources such as
nearby springs were more than likely utilized, along with a local abundance of small and large game
and freshwater species from the adjacent creek and river [40]. The quartzite and chert debris found
during the excavation of the Archaic hearth suggests stone tool production and possible local raw
material procurement, an idea previously proposed about this site by Benthall [40]. Additional AMS
radiocarbon dating of charcoal samples may help determine a more robust occupation range. However,
it is impossible to know the true nature of the occupation without a more extensive archaeological
investigation. The FCR of the ETSU-excavated Archaic hearth was stacked at a height of greater than
0.10 m and was mounded in the center. Overall, the tested features were reached at depth levels ranging
from 0.85 to 1.20 m BS, and exact occupation levels cannot be determined from auger testing alone.
The survey area of the park is relatively flat due to decades of plowing and grading associated with
modern construction. The slope and elevation of the prehistoric landscape and river terrace may have
been dramatically different during the Archaic Period. Landscape changes and feature disturbance are
particularly likely given the proximity to the meandering Nolichucky River and associated flooding.

5. Conclusions

Semi-automated OBIA can be utilized to quickly delineate homogenous subsurface archaeological
features from preprocessed geophysical data. This method was successfully applied to extract Archaic
hearths from a large GPR dataset using parameters of known Archaic hearths. A logical sequence
was constructed employing computer-generated algorithms within GIS software to eliminate clutter.
The result was a time-saving approach that reduced the number of anomalies by over 98% and
eliminated some of the subjectivity and inconsistency associated with manual interpretation. Expert
judgment, excavation, and auger tests were used to validate the model, resulting in the identification
of 17 probable Archaic hearths, of which 15 were successfully predicted by OBIA. This method could
be beneficial in processing large datasets where homogeneous features are expected to be found within
geophysical data. OBIA could also be enhanced by future software development that would allow
the technique to be implemented on anomalies found within GPR radargrams and 3D geophysical
data. OBIA was implemented to target deep Archaic features that are sometimes overlooked, ignored,
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or not identified with geophysical techniques having more limited depth capabilities. The OBIA of
the preprocessed data was completed for one mosaic dataset in under 20 min, and while additional
time was needed for human interpretation, the selected anomalies were quickly pinpointed within
GPR radargrams. Auger testing was a fast and suitable method, as FCR could be felt and heard (and
sometimes retrieved) without the need for a full excavation, while still collecting sediment samples and
cultural material. Possible occupation patterns were seen through GIS mapping of the probable Archaic
hearth locations, adding to the archaeological record of the park and region. By combining GPR,
GIS, OBIA, expert judgment, limited excavation, and auger testing, a cost-effective and labor-efficient
method was developed that could be utilized to discover similar cultural components at local and
regional prehistoric sites and adapted for other feature types and sites worldwide.
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