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Brain–computer interfaces

Brain–computer interfaces (BCIs) involve the measurement of 
neural signals produced by the electrical activity of the brain, a 
method or algorithm applied to decode these signals, and a sys-
tematic method for applying the decoded signals to a behavior 
(Sajda et  al 2008). The uses of these recorded signals to 
operate BCIs can range from controlling external devices such 
as a robotic arm to creating works of art (Velliste et al 2008, 
Münßinger et al 2010). These systems can be useful methods 
of communication for individuals who lose their ability to 
communicate due to amyotrophic lateral sclerosis (ALS), 
brainstem stroke (Sellers et al 2014), or severe traumatic brain 
injury (Sellers et  al 2006). The P300 Speller BCI has been 
shown to be a promising non-invasive method of alternative 
communication, however there is still room for improvement 
to make the P300 Speller more accessible and functional for 
in-home use (Vaughn et al 2006). Speed and accuracy of word 

selection, as well as making the system more user friendly con-
tinue to be the focus of numerous research efforts.

The P300 Speller is a modified oddball task that displays a 
matrix of letters, numbers, and computer commands, like that 
of a computer keyboard. Groups of characters in the matrix 
are intensified or ‘flash’ at random intervals. In most standard 
P300 Spellers, the ‘flash’ can consist of changing from grey 
to white, change from a different color to white, or will dis-
appear and reappear. To make a character selection from the 
matrix, the participant attends to the letter or character he 
or she wishes to select. Each time the character of interest 
flashes, the participant keeps a mental count of the character 
flash. When the participant attends to each individual flash of 
the desired character, a P300 ERP is elicited. The P300 Speller 
detects these P300 responses, and then discriminates between 
target characters versus non-target characters (i.e. letters the 
participant is trying to select versus letters the participant is 
not trying to select).
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Abstract
Objective. Brain computer interface (BCI) technology can be important for those unable to 
communicate due to loss of muscle control. Given that the P300 Speller provides a relatively slow 
rate of communication, highly accurate classification is of great importance. Previous studies 
have shown that alternative stimuli (e.g. faces) can improve BCI speed and accuracy. The present 
study uses two new alternative stimuli, locations and graspable tools. Functional MRI studies 
have shown that images of familiar locations produce brain responses in the parahippocampal 
place area and graspable tools produce brain responses in premotor cortex. Approach. The current 
studies show that location and tool stimuli produce unique and discriminable brain responses 
that can be used to improve offline classification accuracy. Experiment 1 presented face stimuli 
and location stimuli and Experiment 2 presented location and tool stimuli. Main results. In both 
experiments, offline results showed that a stimulus specific classifier provided higher accuracy, 
speed, and bit rate. Significance. This study was used to provide preliminary offline support for 
using unique stimuli to improve speed and accuracy of the P300 Speller. Additional experiments 
should be conducted to examine the online efficacy of this novel paradigm.
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In recent years there has been research investigating the 
flashing of alternative stimuli, such as images of familiar 
faces, instead of matrix characters themselves (Kaufmann 
et al 2011, Zhang et al 2012, Kaufmann et al 2013, Kaufmann 
and Kubler 2014, Geronimo and Simmons 2017, Kellicut-
Jones and Sellers 2018). This method of altering stimulus 
presentation is used to evoke different ERPs in addition to 
the P300 component. For example, two negative components, 
N170 and N400, have been shown to occur when participants 
recognize and process facial information. The N170 occurs 
in response to observing faces at lateral temporal electrode 
positions and occurs approximately 170 ms following stim-
ulus presentation (Bentin 1996, Eimer 2000). The N400 
occurs approximately between 200 ms and 600 ms (Kutas and 
Federmeier 2011) over the right hemisphere electrode posi-
tions. Both of these components have been observed using 
unaltered facial images, inverted facial images, and even line 
drawings of faces (Jin et al 2014, Chen et al 2015, Geronimo 
and Simmons 2017).

Kaufmann et  al (2011) first implemented faces as P300 
Speller stimuli. It was proposed that components elicited by 
facial stimuli provide additional ERP information to augment 
the P300 ERP. Thus, the paradigm should increase signal-to-
noise ratio through the addition of the N170 and N400 ERP 
components. The additional information would create a more 
robust and detectable response, resulting in improved overall 
P300 Speller performance. Kaufmann et al (2011) superim-
posed the familiar, famous image of Albert Einstein sticking 
his tongue out over characters within the BCI matrix. In each 
sequence of character flashes, the image itself would flash 
over the characters in the matrix, as opposed to the matrix 
characters themselves flashing.

Kaufmann and Kubler (2014) introduced a paradigm that 
implemented a simultaneous presentation of two very dif-
ferent stimuli in the four quadrants of the matrix. The image of 
Einstein was presented in the top left and bottom right quad-
rants, and a yin-yang symbol was presented in the top right 
and bottom left quadrants. The two-stimulus presentation was 
compared to the standard row-column. The results showed that 
the two-stimulus paradigm was able to make selections more 
quickly than the one stimulus paradigm, despite a decrease in 
accuracy. This suggests that a two-stimulus paradigm could 
increase speed compared to the more common single stimulus 
paradigm.

Facial fusiform area and parahippocampal place 
area (PPA)

In addition to EEG research, several different neuroimaging 
techniques, such as positron emission tomography (PET) and 
functional magnetic resonance imaging (fMRI), have sup-
ported the idea that recognition and perception of different 
types of stimuli elicit different cognitive responses. There 
has been sufficient evidence to indicate that the processing of 
facial stimuli and object stimuli, activate distinct brain regions 
(Kanwisher et al 1997). The fusiform face area (FFA), which 
is comprised of the region in the mid-fusiform gyrus, is shown 
to be strongly activated by the viewing of faces compared to 

the viewing of objects (Haxby et al 1991, Sergent et al 1992, 
Kanwisher et al 1997, McCarthy et al 1997, Tong et al 1998).

While neuroimaging studies indicate that the FFA responds 
selectively to facial stimuli, research has also demonstrated 
activation to images of buildings and scenes depicting loca-
tions in space in the parahippocampal gyrus referred to as the 
PPA (Agguire et  al 1998, Epstein et  al 1999, Malach et  al 
2002). The PPA, located in the ventromedial surface of the 
temporal lobe, has been shown to respond selectively to houses 
and places, but not to objects or faces (Epstein and Kanwisher 
1998). The strongest activation of the PPA was shown to occur 
in response to the viewing of complete images or photographs 
of scenes that depicted places, or even in images that showed 
empty landscapes with few discrete objects. Epstein et  al 
(1999) suggests that the spatial layout information of a scene 
may be itself be enough to activate the PPA, as the PPA may 
play a role in perceptual coding.

Present study

The current study was used to determine if two-stimulus 
paradigms can increase P300 Speller performance. In a two 
-stimulus paradigm, it could be beneficial to utilize a classi-
fier for each stimulus type. For example, one classifier would 
be specific to one type of stimulus (e.g. face) and another 
classifier would be specific to another type of stimulus (e.g. 
location). The classifiers would compete in a ‘race’ to deter-
mine which stimulus type is the desired choice. Having two 
stimulus-specific classifiers operating simultaneously could 
potentially discriminate the distinct features produced by each 
unique stimulus. Presently, a simultaneous two -classifier  
paradigm has not been developed and the current study uses 
an offline analysis conducted on data collected from an able-
bodied sample to provide evidence to support the need for the 
development of a simultaneous two-classifier system.

The study consisted of two experiments. In Experiment 
1, faces and locations were used as stimuli. We hypothesized 
that a facial classifier would produce higher performance 
when applied to the facial stimuli, and a location classifier 
would produce higher performance to the location stimuli. In 
contrast, when each classifier is applied to the different class 
of stimuli performance would be reduced. In Experiment 2, 
locations and graspable object stimuli were used as stimuli. In 
this case it was hypothesized that the unique spatially distant 
locations activated by the two types of stimuli would result in 
more distinct ERPs, which could further increase performance 
over the performance observed in the face-location stimuli 
used in Experiment 1.

These experiments may provide a rationale for how and 
why a two-stimulus paradigm may be effective, and may also 
provide further evidence that the P300 Speller may detect fea-
tures that are specific to very different types of stimuli. Both 
experiments consisted of two phases. Phase I was used to 
obtain training data. Phase II was conducted online and the 
stimulus specific classifiers were applied. In other words, the 
classifier for the face stimuli was only used to classify face 
stimuli and the location classifier was only used to classify 
location stimuli. Subsequent offline analyses applied each 
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classifier to the opposite type of stimulus (e.g. face clas-
sifier/location stimuli and location classifier/face stimuli). 
Accuracy, selections per minute, and bit rate were calculated 
to indicate whether each stimulus specific classifier would 
lead to increased performance when presenting corresponding 
stimuli on the P300 Speller matrix.

Experiment 1

Two stimuli producing distinct ERPs could be used to improve 
upon current BCI classification methods. For example, a 
matrix presenting two types of images, which convey different 
types of information could be created for each stimulus. If 
simultaneous dual-classifiers were created and implemented, 
unique classifiers could potentially be used to identify target 
characters, based on the notion that these images produce dif-
ferent enough ERPs for the BCI to detect. By superimposing 
an image of a face on half of the matrix characters, and an 
image of a location on the other half of the characters, two 
different classifiers could be made specifically for each image 
type. One classifier could detect the face-specific ERPs and 
the other classifier could detect location-specific ERPs. If such 
a simultaneous dual-classifier was developed, the BCI system 
could potentially discriminate targets from non-targets more 
quickly by eliminating half of the characters in the matrix as 
potential targets. This is the first step in providing a rationale 
for developing a simultaneous dual-classifier.

Experiment 1 methods

Participants

Ten able-bodied participants (four men, six women; age range 
19–31) were recruited from East Tennessee State University. 
Four of the participants had prior BCI experience; all of the 
other participants were naïve to BCI use. The study was 
approved by the East Tennessee State Institutional Review 
Board and each participant gave informed consent.

Data acquisition and processing

Electroencephalograph (EEG) was recorded using a cap 
(Electro-Cap International, Inc.) embedded with 32 tin elec-
trodes. Only eight electrodes were used for online classifica-
tion. The eight electrodes were subject-specific and determined 
by the jumpwise algorithm (Colwell et  al 2014). The EEG 
was digitized at 256 Hz and bandpass-filtered to [0.5 Hz, 30 
Hz] by two 16-channel g.tec g.USBamp amplifiers, before the 
classification coefficients were derived the data were down-
sampled to 20 Hz. Data collection and stimulus presentation 
was performed by the BCI2000 open-source software suite 
(Schalk et al 2004). Before the session, the impedance of each 
channel was reduced to below 40 kΩ. Participants were seated 
approximately 90 cm away from a computer monitor that dis-
played an 8  ×  9 matrix of letters and numbers.

Classification

The classification technique known as Stepwise Linear 
Discriminate Analysis (SWLDA) as described by Draper 
and Smith (1981) is a commonly used method to determine 
classification coefficients, which has been shown to be an 
efficient method of classification for BCI research (Farwell 
and Donchin 1988, Krusienski et al 2006, 2008, Sellers and 
Donchin 2006, Colwell et al 2014).

To improve upon classification performance, multiple 
electrodes at various locations distributed over the scalp are 
used. A filter method known as jumpwise selection is used 
to improve upon classification through optimal channel selec-
tion (Colwell et al 2014). Jumpwise selection uses a variant 
of SWLDA that selects electrodes instead of electrode spe-
cific features. The advantage of jumpwise selection is that it 
reduces to the feature space to a unique set of electrode loca-
tions that are optimized for each individual participant. Once 
the eight electrodes that account for the most variance are 
selected, a SWLDA analysis is conducted on the eight elec-
trodes to determine the spatio-temporal features that account 
for the most unique variance.

Experiment stimuli, procedure, and design

Two types of images were used. The face stimulus was the 
famous image of Albert Einstein sticking out his tongue; the 
image has been used in previous BCI studies (Kaufmann 
et al 2011, 2013, Kaufmann and Kubler 2014). The location 
stimulus was an image of the White House. The White House 
image was used because it includes a familiar famous land-
mark and additional landscape information.

Each participant completed one experimental session con-
sisting of two calibration phases and one copy spelling phase. 
Participants were fitted for an electrode cap, then an 8  ×  9 
matrix of letters and characters was presented on the comp-
uter monitor. For the calibration phase, participants were 
asked to focus their attention on a specific character in the 
matrix and count how many times it changed to one of the two 
images. For example, as shown in figure 1, the top left side of 
the display would show a word (e.g. WORDS) and the letter 
they should attend to is shown in parentheses at the end of the 
word. After a predetermined amount of flashes of each char-
acter (in this case 14) the matrix would stop flashing. After a 
4 s pause the letter in parentheses would change to the next 
letter in the word (e.g. (O)).

The session consisted of two calibration phases, 
counter-balanced, in which the participant made selections 
from a matrix presenting only the face image (figure 1(a)) 
or only the location image (figure 1(b)). Each participant 
spelled three six-letter words, 18 total characters, for each 
calibration. Following each calibration phase (i.e. training 
data collection), the jumpwise channel selection algorithm 
and a subsequent SWLDA analysis were conducted to 
derive channel specific classification coefficients for each 
stimulus.

J. Neural Eng. 16 (2019) 036026
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Following calibration, participants completed an online 
copy-spelling task. The matrix presented face images over 
half of the matrix characters and location images over the 
other half of the matrix characters (figure 1(c)). In the online 
phase, 14 flashes of each character in the matrix were pre-
sented, corre sponding to the calibration phase of the experi-
ment. There were two conditions, counter-balanced. In each 
condition, 18 character selections were made. In one condi-
tion, the face classifier was applied and the 18 targets were 
facial stimuli. In the other condition, the location classifier 
was applied and the 18 targets were location stimuli. Although 
we were primarily interested in the offline performance, it was 
necessary to provide the participants with feedback; thus, we 
used the congruent stimulus classifier in phase II of the experi-
ment. Afterward, offline analyses were conducted to examine 
how well the face classifier performed when applied to the 
location data, and how well the location classifier performed 
when applied to the face data.

Offline analysis

The offline analysis was used to determine how many flashes 
would be necessary for classification. In the online phase of 
the experiment 14 flashes of each target were presented before 
the classification decision was made. This number of flashes 
is sufficiently high to produce a ceiling effect for accuracy. 
The offline analysis simulated the number of flashes neces-
sary to make an accurate response. The SWLDA classification 
coefficients were applied to every character after each flash 
of the matrix and the number of flashes necessary to make an 
accurate selection was calculated. If an accurate selection was 
not made after 14 flashes, the selection was marked as inac-
curate. There was not a cross-validation procedure; in contrast 
to a cross-validation procedure, the coefficients were applied 
to each flash as it was presented in the online phase of the 
experiment. With each flash of a stimulus, the mean ERP for 
each specific stimulus was updated. Therefore, the number of 
flashes varied from one character selection to the next.

Experiment 1 results

Statistical analyses

A two-way repeated measures analysis of variance (ANOVA) 
was used to examine the effects of classifier type (Face or 
Location) and the effects of stimulus type (Face or Location). 
Analyses were performed on predicted accuracy, target 
flashes, selections per minute, and bitrate. Offline accuracy 
is expressed as the percentage of correctly selected charac-
ters. Offline selections per minute are the estimated number of 
correct character selections made in 1 min. Offline, predicted 
bitrate is calculated using the formula described by Wolpaw 
et al (2002):

Bitrate = log2N + Plog2P + (1 − P)log2[(1 − P)/ (N − 1)].

Paired sampled t-tests were used to examine the differences in 
waveforms between the face and location stimuli. To control the 
false positive error rate for performing multiple compariso ns, 
the Benjamini–Hochberg (B–H) procedure was used to deter-
mine the critical p  value (Benjamini and Hochberg 1995). 
Waveform analyses were conducted on the calibration data to 
maintain a consistent amount of data in each condition.

Results

Offline performance

The means and standard deviations examining offline acc-
uracy, target flashes, selections per minute, and bitrate pro-
duced by each classifier type applied to each stimulus type 
are shown in table 1. Electrode locations used in the jump-
wise-SWLDA classification algorithm are shown in table 2. 
The table shows the locations that were used by at least fifty 
percent of the participants. The ANOVA examining offline 
accuracy indicated no significant differences between the four 
conditions F (3, 27)  =  1.48, p   =  .240. The interactions for the 
ANOVAs examining offline target flashes produced by each 

Figure 1. (a) (left), (b) (middle), and (c) (right). Examples of matrices of the three stimulus presentation conditions. (The picture of 
Einstein was used as the stimulus in the face conditions. The picture is not used in the present figure due to copyright restrictions. The 
White House image used was available in the public domain and not subject to copyright.) This ‘North Façade White House‘ has been 
obtained by the author(s) from the Wikimedia website, where it is stated to have been released into the public domain. It is included within 
this article on that basis.

J. Neural Eng. 16 (2019) 036026
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classifier type applied to each stimulus type, offline selections 
per minute, and bit rate were all significant (F (3, 27)  =  3.059, 
p   =  .045; F (3, 27)  =  3.619, p   =  .026; and, F (3, 27)  =  3.992, 
p   =  .018, respectively). Post hoc tests indicated no significant 
simple effects in any of the three ANOVAs. Thus, indicating 
cross-over interactions where the face classifier performed 
better on face stimuli than it performed on location stimuli 
and the location classifier performed better on location stimuli 
than on face stimuli.

Waveforms

To determine whether differences in performance may be due 
to differences in ERPs produced by the two different stimulus 
types, a paired samples-t-test was used to examine ERPs. 
Figure 2 represents the waveforms averaged across all partici-
pants for each of the four conditions. The specified time win-
dows examined for positive amplitudes and latencies were set 
to 150–320 ms and 350–550 ms, as well as 128–195 ms for the 
N170 component, and 191–300 ms for the N400 component. 
The time windows were determined by examination of the 
grand mean waveforms. Four electrode locations Cz, Pz, PO7, 
and PO8 were examined. Before producing the waveforms 
data were down-sampled to 20 Hz and a moving average of 
12 samples was applied. The waveforms were not baseline 
corrected.

In the positive time window of 150–320 ms, the amplitude 
at electrode Cz was significantly higher in response to the face 
stimulus (M  =  5.9, SD  =  1.2) than to the location stimulus 
(M  =  2.0, Sd  =  1.6), t(9)  =  7.642, p   <  .001 (B–H critical 
value 0.001 315 789). Comparison of responses at electrode 
location Pz also indicated significantly higher amplitude in 
response to the face stimulus (M  =  5.9, SD  =  1.6) than to 
the location stimulus (M  =  2.2, SD  =  0.3), t(9)  =  6.059, 
p   <  .001 (B–H critical value 0.002 631 579). No significant 
differences in amplitude were observed in the time window of 
150–300 ms at electrode locations PO7 and PO8.

Comparison of latency in the positive time window of 
150–320 ms showed a significantly earlier response at elec-
trode location PO7 in response to the face stimulus (M  =  243, 
SD  =  42), than to the location stimulus (M  =  288, SD  =  42), 
t(9)  =  −3.259, p   =  0.009 85 (B–Hochberg critical value 
0.022 37). No significant differences in latencies were 
observed at the remaining electrode locations.

The Comparison of the second positive time window 350–
550 ms amplitude at electrode location Cz indicated signifi-
cantly higher amplitude in response to the location stimulus 

(M  =  4.9, SD  =  2.3) than to the face stimulus (M  =  3.6, 
SD  =  1.7), t(9)  =  −3.476, p   =  0.006 98 (B–H critical value 
0.023 68). The remaining comparisons of second positive 
time window 350–550 ms amplitudes and latencies indicated 
no significant differences between the two conditions at Pz, 
PO7, or PO8.

Comparison of amplitude in the negative time window 
of 191–300 ms at electrode location PO8 indicated signifi-
cantly higher amplitude in response to the location stimulus 
(M  =  −2.4, SD  =  1.2) than to the face stimulus (M  =  −1.4, 
SD  =  0.8), t(9)  =  2.511, p   =  0.009 58 (B–H critical value 
0.021 05). The remaining comparisons of amplitudes and 
latencies indicated no significant differences between the two 
conditions in the negative 191–300 ms time window.

Statistical analyses indicated no significant differences 
between amplitudes or latencies produced by either condition 
during time window 128–195 ms at any of the four electrode 
locations.

Experiment 1 discussion

Offline analyses were used to provide evidence that a stimulus 
specific classifier for each stimulus type results in better offline 
BCI performance. The interactions between classifier type 
(Location versus Face) and data type (Location versus Face) 
were significant for number of target flashes, number of selec-
tions, and bit rate. Thus, evidence indicates that using two inde-
pendent classifiers, one for each stimulus type, could eliminate 
half of characters in the matrix as potential selections.

The ERPs produced by the two stimuli differed in the 
amplitudes at the first positive window for electrodes Pz and 
Cz. The only significant difference in negative amplitude 
was at the second negative time window at electrode location 
PO8. These findings are consistent with our previous findings 
(Kellicut-Jones et al 2018) and the findings of Kaufmann et al 
(2011, 2013, 2014).

Table 1. Offline means and standard deviations (in parentheses) for performance measures for each classifier applied to each stimulus type 
for Experiment 2.

Accuracy Target flashes Selections per minute Bitrate

Face classifier
  Face 99.4 (1.89) 2.50 (0.70) 4.31 (0.77) 28.30 (7.88)
  Location 96.6 (8.4) 2.70 (0.67) 4.06 (0.74) 21.53 (7.87)
Location classifier
  Face 100 (0) 3.10 (0.87) 3.71 (0.87) 20.07 (7.67)
  Location 100 (0) 2.10 (0.87) 5.10 (1.6) 33.39 (11.02)

Table 2. Experiment 1 jumpwise channels used by 50% or more of 
the participants.

Experiment 1

Face jumpwise 
channels

Po8 Po7 P8 O1

Participants 7 7 7 5
Location jumpwise 
channels

Po8 Po7 P8 Oz O2 Cp6 Pz

Participants 8 7 7 7 7 6 5

J. Neural Eng. 16 (2019) 036026
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Experiment 2

Experiment 1 examined the use of two types of stimuli, 
face and location, which have been shown to produce dis-
tinct ERPs. This was done with the intent to provide a ratio-
nale for the development of classifiers that identify specific 
stimuli in a two-stimulus matrix presentation. To further 
investigate two-stimulus paradigms, Experiment 2 examined 
a third type of stimuli (i.e. graspable objects) to determine if 
they would produce distinctly different ERPs from location 
stimuli.

Graspable objects as stimuli: tools

The results of Experiment 1 provide support for using a two-
stimulus, two-classifier paradigm. The main hypothesis was 
that these stimuli would produce significantly different N170 
and N400 components. However, this result was not observed. 
The observed differences were in the P300 component. The 
rationale behind using face stimuli was based on previous 
EEG studies, as well as neuroimaging evidence identifying 
facial processing in the FFA. Similarly, location stimuli were 
chosen due to neuroimaging evidence showing distinct activa-
tion in the PPA.

Functional MRI studies can discriminate the FFA from the 
PPA due to the high spatial resolution produced by MRI. In 
our study, we hypothesized that these differences would also 
be observed in the scalp recorded EEG. We expect this result 
was not observed due to the close proximity of the PPA and 
FFA. The PPA is located at the medial portion of the fusiform 
gyrus, whereas the FFA is located at a nearby cortical region 
in the mid-fusiform gyrus. Therefore, Experiment 2 examined 

another possible stimulus, images of tools, which activate 
more frontal areas such as the premotor and motor cortex.

Neuroimaging studies have shown a unique cognitive 
response to graspable objects such as tools (Creem-Regehr and 
Lee 2005). Tools are considered a unique class of objects, due 
to the relationship between object recognition as well as the 
potential actions that can be performed with the object (Handy 
et al 2003). Viewing images of tools has been shown to acti-
vate the premotor cortex, and research has suggested that the 
priming of visual systems by viewing tools also primes motor 
systems (Grafton et al 1997, Tucker and Ellis 2004).

Experiment 2 methods

Participants

Twenty-four able-bodied participants (10 men, 14 women; 
age range 19–42) were recruited from East Tennessee State 
University. Seven of the participants had prior BCI experi-
ence, the remainder of participants were naïve to BCI use. The 
study was approved by the East Tennessee State Institutional 
Review Board and each participant gave informed consent.

Data acquisition, processing, and classification

Data acquisition, processing, and classification were identical 
to Experiment 1.

Experimental stimuli, procedure, and design

The experimental protocol used in Experiment 1 was also 
used in Experiment 2. The two experiments differed in the 

Figure 2. Average waveforms for all ten participants for the two types of images, Face (blue line) and Location (red line) used in the BCI 
task for electrode locations Cz, Pz. PO7, and PO8.
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images presented to participants, and the instructions given 
to participants for ‘attending’ to the stimuli used. The images 
were those of the location image (i.e. the White House) and 
a hammer. The experimental task for the location image was 
to focus attention on a specific character in the matrix and to 
count how many times the image appeared, while ignoring the 
images flashing over the other characters in the matrix. For the 
tool stimuli, the experimental task was to focus attention on a 
specific character in the matrix and imagine themselves using 
the object each time the image of the object flashes (i.e. swing 
a hammer). This was done to elicit a stronger response in the 
premotor cortex than simply counting the number of character 
flashes. Following each calibration phase, a SWLDA analysis 
derived classification coefficients specific to each stimulus 
type. Following calibration, participants completed an online 
copy-spelling task similar to the online-copy spelling task in 
Experiment 1 using the stimuli shown in figure 3.

Experiment 2 results

Statistical analyses

A two-way repeated measures analysis of variance (ANOVA) 
was used to examine the effects of classifier type (Location or 
Tool) and stimulus type (Location or Tool) on acc uracy, number 

of flashes, selections per minute, and bit rate. Waveform anal-
yses were conducted on the calibration data to maintain a con-
sistent amount of data in each condition. Paired sampled t-tests 
were used to examine the differences in waveforms between 
the tool and location stimuli. To control the false positive error 
rate for performing multiple comparisons, the Benjamini–
Hochberg (B–H) procedure was used to determine the critical 
p  value (Benjamini and Hochberg 1995).

Results

Offline performance

The means and standard deviations examining offline acc-
uracy, target flashes, selections per minute, and bitrate pro-
duced by each classifier type applied to each stimulus type are 
shown in table 3. Electrode locations used in the jumpwise-
SWLDA classification algorithm are shown in table  4. The 
table shows the locations that were used by at least fifty percent 
of the participants. The ANOVAs examining offline accuracy, 
number of target flashes, selections per minute, and bit rate all 
yielded significant differences (F (3, 33)  =  8.42, p   <  .001; F 
(3, 33)  =  22.21, p   <  .001; F (3, 33)  =  19.93, p   <  .001; and, 
F (3, 33)  =  26.094, p   <  .001, respectively). Table  2 shows 
a summary of the means and standard deviations for each 

Figure 3. Example of one-stimulus matrix displaying the image of the location only (left) and one-stimulus matrix displaying the image of 
the tool only (right). This ‘North Façade White House‘ has been obtained by the author(s) from the Wikimedia website, where it is stated to 
have been released into the public domain. It is included within this article on that basis.

Table 3. Offline means and standard deviations (in parentheses) for performance measures for each classifier applied to each stimulus type 
for Experiment 2.

Accuracy Target flashes Selections per minute Bitrate

Tool classifier
  Tool 97.79(3.34)a 3.04(1.12)a 4.74(1.13)b 28.30(7.88)c

  Location 93.42(8.9)  4.00(1.10) 3.83(0.98) 21.53(7.87)
Location classifier
  Tool 89.79(14.5) 4.04 (0.99)a 3.74(0.80) 20.07(7.67)
  Location 99.08(3.1)a 2.58(1.13) 5.46(1.7)c 33.39(11.02)c

a Significant at p   <  0.05. 
b Significant at p   <  0.005. 
c Significant at p   <  0.001.
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measure. In all cases, the stimulus specific classifier provided 
higher performance. For example, the tool classifier applied 
to the tool data resulted in higher accuracy than the tool clas-
sifier applied to the location data. Pairwise comparisons indi-
cated there was no significant difference in the comparisons of 
each stimulus specific classifier applied to the corresponding 
stimulus.

Waveform analysis

The specified time windows examined for positive amplitudes 
and latencies were 150–320 ms and 350–550 ms. The speci-
fied time windows to examine N170 and N400 amplitudes 
and latencies were sets to 128–195 for the N170 component, 
and 191–300 for the N400 component. Eight electrode loca-
tions Pz, Cz, PO7, PO8, F3, F4, FC5, and FC6 were examined 
(figure 4). Paired samples t-tests were used to compare differ-
ences between the two types of stimuli.

Across all eight electrode locations no significant dif-
ferences in latency were observed in any of the four time 
windows.

In the positive time window 350–550 ms significantly 
larger amplitude was observed at electrode location PO7 to 
the tool stimulus (M  =  3.8, SD  =  2.6) than to the location 
stimulus (M  =  3.0, SD  =  1.5), t(23)  =  2.403, p   =  0.024 72 
(B–H critical value 0.025). At the seven remaining electrode 
locations, the location stimulus elicited a larger amplitude: 
Pz (t(23)  =  −4.813, p   <  .001; B–H critical value 0.018 42); 
Cz (t(23)  =  −4.858, p   <  .001; B–H critical value 0.017 11); 
PO8 (t(23)  =  −5.946, p   <  001; B–H critical value 0.015 79); 
F3, (t(23)  =  −2.931, 0.007 51, p   =  .008; B–H critical value 
0.023 68); F4, (t(23)  =  −3.57, p   =  0.001 63; B–H critical 
value 0.021 05); FC3, (t(23)  =  −3.285, p   =  0.003 25; B–H 
critical value 0.022 37); and, FC4, (t(23)  =  −4.375, p   <  001; 
B–H critical value 0.019 74).

In the negative time window of 128–195 ms, amplitudes 
were significantly higher for the location stimulus than to 
the tool stimulus at: Cz (t (23)  =  3.253, p   =  0.001 75; B–H 
critical value 0.018 421 053); Pz (t(23)  =  3.265, p   =  0.0017; 
B–H critical value 0.017 105 263); and, PO8 (t(23)  =  4.486, 
p   =  8.4  ×  10−5; B–H critical value 0.015 789 474).

Except for electrode location PO7, all amplitude 
compariso ns in the negative time window of 191–300 ms 
were significantly larger for the location stimulus than the 
tool stimulus: Pz (t(23)  =  4.51, p   <  .001; B–H critical value 
0.015 79); Cz (t(23)  =  2.348, p   <  001; B–H critical value 
0.021 05); F3 (t(23)  =  2.939, p   =  0.003 69; B–H critical value 
0.023 68); PO8 (t(23)  =  3.886, p   <  .001; B–H critical value 
0.017 11); F4 (t(23)  =  3.043, p   =  .002 89; B–H critical value 
0.022 37); FC3 (t(23)  =  3.619, p   <  .001; B–H critical value 

0.019 74); and, FC4 (t(23)  =  3.86, p   =  0.0004; B–H critical 
value 0.018 42).

Experiment 2 discussion

Experiment 2 provided offline evidence that a stimulus-
specific classifier could produce superior BCI performance 
in terms of accuracy, selections per minute, and bitrate. The 
classifier applied to the same stimulus type (i.e. location-
to-location or tool-to-tool) yielded better performance than 
either classifier applied to the other stimulus type. These find-
ings support our hypothesis that a stimulus specific classifier 
applied to the corre sponding stimulus can result in improved 
BCI performance. By having two stimulus specific classi-
fiers operating simultaneously, using a two stimulus paradigm 
could potentially lead to increases in online BCI performance. 
In addition, several differences in ERP components were 
observed (discussed below).

General discussion

Recent studies have shown that ERP components associ-
ated with facial stimuli can improve BCI performance in a 
two-stimulus presentation paradigm (Kaufmann et al 2014). 
The present work extends these findings and incorporated 
two additional types of novel stimuli, location and graspable 
objects. Prior to this study, ERPs produced by location and 
graspable objects have not been examined; however, fMRI 
data has provided evidence that these stimuli activate different 
brain regions. Thus, the purpose of the present study was to 
determine if location and graspable objects produce differ-
ential ERPs that can subsequently lead to an improvement in 
BCI speed and accuracy.

Experiment 1, using facial and location stimuli, showed 
no differences in face specific components; nonetheless, 
other ERP differences were observed and the location stimuli 
produced slightly better performance than facial stimuli. 
Kaufmann et  al (2011) first examine facial stimuli in able-
bodied subjects, based on their positive results, they extended 
the paradigm to people with severe speech and communication 
disorders and confirmed that facial stimuli produced higher 
speed and accuracy in this population as well (Kaufmann 
et al 2011). The findings of our project indicate that location 
stimuli produce comparable performance to facial stimuli. 
Thus, we suggest that location stimuli may be beneficial for 
people with severe speech and communication disorders. This 
hypothesis should be tested in future studies.

Functional MRI research indicating activation in the PPA 
in response to visual processing of location stimuli (Agguire 

Table 4. Experiment 2 jumpwise channels used by 50% or more of the participants.

Experiment 2

Tool jumpwise channels O2 Po8 Po7 Oz Cp6 Cp5 P8 O1
Participants 18 16 16 16 15 15 13 12
Location jumpwise channels Po8 Oz P8 O2 Po7 O1
Participants 21 18 16 16 15 15
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et al 1998, Epstein et al 1999, Malach et al 2002), as well as 
activation in the premotor cortex in response to stimuli such 
as graspable objects (Tucker and Ellis 2004, Creem-Regehr 
and Lee 2005, Grafton et  al 1997), prompted the examina-
tion of parietal locations (PO7 and PO8) and frontal loca-
tions (F3, F4, FC5, and FC6) in addition to locations Pz and 
Cz. Due to lack of EEG research on the ERPs produced by 
these stimulus types, exploratory analyses were conducted. In 
Experiment 2, location stimuli were compared to graspable 
object stimuli. Our working hypothesis was that higher P300 
amplitudes would be observed for the location stimuli than for 
the tool stimuli. The rationale for this hypothesis was due to 
the fact that participants were instructed to imagine swinging 
a hammer each time the target item appeared. The added cog-
nitive demands of the task were, therefore, expected to reduce 
P300 amplitude and maximize the difference between the 
ERPs produced by each stimulus type. Waveform analyses 
comparing the ERPs produced by the two stimulus types 
showed higher amplitude produced by the location image than 
the tool image at each of the examined electrode locations, 
except for PO7 in positive time window 350–550 ms.

Similar to Experiment 1, BCI performance was higher in 
the location stimulus condition. These results support our 
hypothesis that stimulus-specific classifiers may provide 
higher performance, as compared to the current method-
ologies that rely on a single classifier. Future research will 

develop stimulus specific classifiers to be tested online in a 
two-stimulus presentation paradigm. The development of 
simultaneous, dual stimulus-specific classifiers could poten-
tially allow the BCI to quickly eliminate half of the characters 
in the matrix as potential targets. Thus, having the potential 
to increase the speed with which selections can be made and 
decreasing the number of selection errors. The utility of two 
classifiers will be determined by the amount of variation in the 
ERPs produced by each class of stimuli. Thus, it is important 
to select stimuli that elicit significantly different ERPs.

Conclusion

P300 BCI technology has shown to be an effective method of 
communication; however, due to the relatively slow rate of 
communication improvements are necessary. The first online 
P300-based BCI study resulted in accuracy of 35 percent 
(Donchin et al 2000). Since this time, online accuracy is con-
sistently near 100 percent. Nonetheless, further improvements 
are needed for the technology to rival assistive communica-
tion devices that rely on muscle movement. Therefore, novel 
classification techniques and paradigm modifications are 
necessary to provide people with severe speech and physical 
impairments more efficient BCI communication options after 
muscle control is lost.

Figure 4. Average waveforms for all 24 participants for the two types of images, Tool (blue line) and Location (red line) used in the BCI 
task for electrode locations Cz, Pz, PO7, PO8, F3, F4, FC5, and FC6.
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The goal of the current study, however, was to use offline 
analyses to investigate the efficacy of using unique catego-
ries of stimuli. Nonetheless, due to the early stages of this 
line of research, it would not be appropriate to test the current 
paradigm with people who have severe speech and physical 
impairments. As with most P300 BCI research conducted in 
laboratory settings, an inherent limitation to our study design 
is the use of able-bodied participants as our sample. Another 
limitation of the study design is that it did not afford us the 
opportunity to compare graspable object stimuli to facial 
stimuli. Further investigation comparing graspable object 
stimuli to facial stimuli may be beneficial to determine which 
would be more useful in the two-stimulus paradigm. In both 
experiments, the offline results suggest a two-stimulus dual-
classifier paradigm can improve BCI performance. An online 
adaptation of the paradigm should be tested in future work.
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