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Abstract
Purpose of Review To emphasize key gaps in knowledge impacting efforts to control single infection and co-infections with
Chlamydia trachomatis (CT) andNeisseria gonorrhoeae (NG), themost common bacterial sexually transmitted infections (STIs)
worldwide.
Recent Findings Clinical and epidemiological studies describe gaps in understanding about female rectal CT infection, screening
effectiveness, pelvic inflammatory disease, and influence of the microbiome. For NG, gaps in knowledge include factors
increasing incidence in men who have sex with men, correlations between treatment and antibiotic resistance, the role of
pharyngeal infection, and microbiome influence. CT/NG co-infections are poorly understood, and adequate models to explore
pathophysiological consequences of co-infection urgently needed. The sole existing CT/NG co-infection mouse model showed
that CT/NG interactions in vivomodulate host response and NG load/shedding—encouraging further consideration of this model
and potential alternatives.
Summary We stress key challenges in controlling these important STIs. Appropriate, quality-assured animal models are essential
to improve understanding of the pathogenic interplay in CT/NG co-infections.

Keywords Chlamydia trachomatis .Neisseria gonorrhoeae . Co-infection .Mouse model

Introduction

Chlamydia trachomatis (CT) and Neisseria gonorrhoeae
(NG) cause the most commonly reported bacterial sexually
transmitted infections (STIs) in humans worldwide, with an
estimated 127 million new cases of chlamydia and 87 million
of gonorrhea among adults in 2016, according to the World
Health Organization (WHO) [1]. The primary site of infection
for both bacteria is the columnar epithelium of the endocervix
in women and the urethra in men; both also infect the rectum,
pharynx, and conjunctiva and can be transmitted from an in-
fected mother during pregnancy or delivery [2]. CT/NG co-
infections are more frequent than would be expected by
chance, and mathematical modeling studies suggest that bio-
logical interactions between the two increase susceptibility
and/or transmissibility [3•]. In this review, we highlight some
gaps in knowledge that challenge the effective management
and control of these STIs. We focus on clinical or epidemio-
logical studies and data from animal models published from
2014 to 2019, for both single infections and co-infections.
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The Two Most Commonly Reported Bacterial STIs:
Chlamydia and Gonorrhea

Chlamydia

The prevalence of CT, measured in surveys in the general
population in high-income countries, is ~ 3–4% in young
adults [4, 5]. Reported numbers of CT infections are increas-
ing and/or high in many countries. In the United States of
America (USA), more than 1.7 million cases of CT were re-
ported to the Centers for Disease Control and Prevention
(CDC) in 2017, nearly 7%more than in 2016 [6]. The highest
rate of diagnoses is among women aged 15–24 years,
reflecting recommendations for yearly testing in this group
[6]. The majority of women and up to half of men infected
with CT are asymptomatic, so infections often remain undiag-
nosed and unreported [2]. In women, cervical CT infection
can ascend from the endocervix into the endometrium and
fallopian tubes, resulting in pelvic inflammatory disease
(PID), which can then cause tubal factor infertility (TFI) and
ectopic pregnancy (EP). CT is associated with clinical PID in
around 20% of cases; other STI agents, including NG, are also
implicated [7]. In men, urethritis is the most frequent STI
syndrome, with CT causing 15–40% of cases. Among MSM
attending clinics in high-income countries, about 10% have
CT detected in the rectum [8–11].

Doxycycline (a tetracycline) and azithromycin (a
macrolide) are treatments of choice for CT infections
[12–14]. Stable homotypic antibiotic resistance in CT in clin-
ical specimens has not been reported to date [15], in stark
contrast to multidrug-resistant NG strains circulating and in-
creasing worldwide [16]. However, repeated detection of CT
after treatment can be common, resulting from failure to cure
the infection, poor treatment compliance, test of cure per-
formed too early and/or detection of DNA/RNA from non-
viable organisms, or re-infection from an untreated or new
infected partner [17, 18].

Chlamydia—Critical Gaps in Knowledge

Management and control of CT infection remain continuously
challenging [4, 19]. Reasons are likely manifold, but there is
prominent discussion about the potential importance of rectal
CT infection in women in particular [20, 21]. Asymptomatic
rectal CT has been hypothesized to be a reservoir of untreated
infection, hindering chlamydia control [22]. Information is
limited, however, about the clinical relevance of CT in anal
canal swabs in females, when detected by a nucleic acid am-
plification test (NAAT) that do not distinguish between viable
bacteria and CTDNA/RNA from non-viable bacteria. NAATs
are often used as the sole diagnostic tool because of their high
sensitivity [23], but CT-positive results could come from non-
viable nucleic acid transferred from genital secretions on

fingers or toilet paper. A systematic review of studies of anal
canal specimens analyzed by NAAT reported an average of
6% (95% CI 3–9%) CT-positive [23]. The finding that detec-
tion of CT in anal canal swabs is as common in women who
report anal intercourse as those who do not [20, 23] is more
consistent with detection of nucleic acid than with infection.
In mouse models of CT infection and treatment, rectal CT is
more refractory to antibiotic treatment particularly
azithromycin than genital CT [24]. In a systematic review of
observational studies in humans, doxycycline eradicated CT
from anal canal specimens more often than azithromycin, but
very few women were included in the studies [25].
Autoinfection from the female rectum to the cervix has also
been suggested as a reason for presumed treatment failure,
with infection arising through oral ingestion and persisting
in the lower gastrointestinal tract [24]. A 2018 study of human
gastrointestinal biopsy tissue found CT in the appendix of one
female specimen, but this was compatible with sexually trans-
mitted ascending infection [26], and there is no empirical ev-
idence of autoinfection. A prospective cohort study in the
Netherlands (FemCure), which will collect specimens for rou-
tine NAATs, PCR for detection of CT viability, culture, and
genotyping, should help shed light on the potential role of
rectal CT in women [27].

There are still gaps in evidence about the effectiveness
of widespread screening for chlamydia to prevent repro-
ductive tract complications and reduce infection preva-
lence [4]. Public health agencies in many high-income
countries recommend screening all sexually active women
or women and men under age 25–29 [6, 28, 29]. Definitive
evidence about the effects of screening on CT transmission
is absent because there were no randomized controlled tri-
als (RCTs) before screening was first recommended in the
1980s and 1990s in Sweden and the USA, respectively
[30]. Repeated estimates of CT prevalence in the general
population have remained stable during the twenty-first
century in adults in Great Britain [31] and the USA [32].
Two trials of strategies to increase general screening up-
take in women and men aged 15–29 years did not find
reductions in estimated CT prevalence [33, 34]. A study
of CT screening uptake in young adults in Britain indicated
that at least 25% of women and approximately 50% of men
with CT risk factors had not been tested for CT in the last
year [35]. Targeting women at highest risk for complica-
tions has therefore been suggested as a more effective strat-
egy [19]. There is stronger evidence for an effect of screen-
ing for CT in the prevention of PID [4], but identification
of women at highest risk of progression to PID is challeng-
ing [36]. Notably, a correlation between blood transcrip-
tional profiles of CT- and/or NG-infected and uninfected
women and clinical outcome was recently demonstrated
[37], showing progress toward identifying those at risk
for damaging long-term sequelae.
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The interaction between STIs and the vaginal microbiome
has gained attention as a potential factor for infection acquisi-
tion, transmission, and progression. Maintenance of a
lactobacilli-dominant, inflammation-free environment could
advance prevention of STIs and their adverse outcomes. A
systematic review and meta-analysis, published in 2019, indi-
cated that a vaginal microbiota dominated by Lactobacillus
crispatus, L. iners, L. gasseri, and/or L. jensenii might have a
role in protection against CT infection [38]. In line with these
findings, a study that tested stored samples collected for vag-
initis diagnosis found that those with bacterial vaginosis, ei-
ther with or without concomitant Candida species infection,
according to the BD MAX Vaginal Panel test, had an approx-
imately 25% STI positivity rate, while those without bacterial
vaginosis had an approximately 8% STI positivity rate [39].
This research is in its infancy and vaginal health is seldom
routinely evaluated clinically. Thus, the impact of the vaginal
microflora on CT (and NG) infection remains largely unclear
[40]. However, microbiota-mediated defense against patho-
genic intestinal bacterial infection has received considerably
more attention (as reviewed in [41]) and might inform our
future understanding of the potential protective role of the
vaginal microbiome.

Gonorrhea

Though the prevalence of NG in the general population in
high-income countries (< 0.5%) is much lower than that of
CT [42], reports of NG diagnoses are increasing faster than
those for CT. In the USA, in 2017, over 555,000 cases of NG
were reported to CDC, a rate increase of almost 19% from the
previous year and approximately 75% since 2009 [6]. Rates of
reported NG were higher in men than in women, a finding
attributable, in part, to the higher proportion of symptomatic
infection (urethritis) in men and the high prevalence of NG in
MSM [6]. In the European Union/European Economic Area
(EU/EEA), the number of NG cases has increased by more
than 200% since 2008, with the highest number of cases in the
UK, France, the Netherlands, and Spain [43]. In this decade,
substantial increases in NG cases occurred among MSM as
well as among heterosexual men and women [43]. As with
CT, untreated cervical NG infections may progress to the up-
per reproductive tract, contributing to PID, TFI, EP, and
chronic pelvic pain [44].

In contrast to CT, NG antimicrobial resistance is wide-
spread, developing rapidly with each successive treatment
regimen [19]. Dual ceftriaxone/azithromycin therapy, a treat-
ment regimen that should also eradicate concurrent CT infec-
tion, is the recommended regimen for empirical treatment in
many countries [19]. However, ceftriaxone susceptibility is
decreasing in European countries not yet reporting overt cef-
triaxone resistance [16, 45] and high-level azithromycin–
resistant strains have been spreading in some settings [46].

Alarmingly, with the emergence of confirmed ceftriaxone-
resistant NG strains [47], untreatable NGmight be anticipated
in the near future [47–49].

Gonorrhea—Critical Gaps in Knowledge

Antiretroviral drugs, given as treatment for HIV infection and
as pre-exposure prophylaxis (PrEP) to prevent acquisition of
HIV, have been associated with increases in NG inMSM [50].
If drugs, rather than condoms, are the main method that MSM
use to prevent HIV, HIV and STI prevention have been de-
coupled. The resultant reduced condom use and increases in
other risky sexual practices will result in increased transmis-
sion of STIs, including NG, CT, syphilis, and Mycoplasma
genitalium [19, 51, 52]. Sexual network analysis might be a
useful tool in determining factors important in the spread and
prevalence of STIs [53]. Frequent screening for STIs for
MSM on PrEP is recommended, but a systematic review of
observational studies, published in 2018, found no evidence
of reductions in test positivity for either NG or CT [54], indi-
cating that further study of STI screening efficacy to prevent
STIs in MSM on PrEP is needed.

The emergence of highly antimicrobial-resistant NG is one
of the most pressing public health concerns for STI control.
Understanding the factors influencing selection, spread, and
fitness of antimicrobial resistance in NG is critical to inform
our continued efforts to curtail the emergence and global
spread of multidrug-resistant, extensively drug-resistant, and
potentially untreatable NG. Mathematical modeling indicates
that the spread of antimicrobial-resistant NG in some settings
may be explained by higher treatment rates, rather than differ-
ences in numbers of sexual partners, and is more common in
MSM than in heterosexual men [55]. NG antimicrobial resis-
tance, or decreased susceptibility, is also positively correlated
with population-level antibiotic consumption rate [56], a find-
ing that has been shown for other bacteria, such as
Staphylococcus and enteric bacteria [57]. It has been postulat-
ed that “bystander selection” by exposure to antibiotics other
than those specifically targeting NG infection may play a role
in the emergence of antimicrobial-resistant NG, in addition to
the “direct selection” of NG-therapeutic antibiotics. This has
important implications for public health policy dependent on
the degree to which both kinds of selection contribute to NG
antimicrobial resistance [58]. Additionally, the prevalence of
antimicrobial-resistant NG increases with age and is lower in
some black minority ethnic groups than the white population
in high-income groups, indicating that risk factors for
antimicrobial-resistant NG infection are distinct from those
for NG infection in general [59].

There is increasing interest in extra-genital NG infection
sites, particularly the pharynx, as an NG transmission source.
Pharyngeal NG is largely asymptomatic, often undetected and
frequently exposed to anti-NG antibiotics at levels suboptimal
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for clearance [60]. About 6% of MSM have pharyngeal NG
[8, 61], even in the absence of NG positivity at the rectal and
urogenital sites, so lack of pharyngeal NG testing will result in
missed infections in MSM [62]. A 2019 study from a single
STD clinic in the USA found NAAT-detected NG in about 3%
of heterosexual women andmen reporting extra-genital sexual
activity, suggesting a potentially important role in heterosex-
ual NG transmission [63]. In a study of more than 2200 pa-
tients with pharyngeal NG in the Netherlands, almost 90% of
patients remained infected in the time (median 10 days) be-
tween original sampling for NG diagnosis and subsequent
return for therapy [64]. Studies amongMSM in Australia con-
firm the role of pharyngeal NG as a likely source of urethral
NG [65] and suggest a role for tongue kissing/saliva in NG
transmission from pharynx to pharynx [61, 62, 65].
Considering the correlation between pharyngeal carriage with
NG and antimicrobial resistance [59], additional study of pha-
ryngeal NG may be important to understand the development
of NG antibiotic resistance [66].

Chlamydia and Gonorrhea
Co-infection—Potentially Important
Interactions

CT/NG co-infection is common, with around 10–40% of
those with NG infection being concomitantly CT infected
[67]. In most cases, the proportion of people with NG who
have CT co-infection is higher than the proportion of people
with CTwho have NG [68], most likely reflecting higher CT
prevalence. Mathematical modeling suggests that co-infection
occurs too frequently to be random [3•], but the impact of co-
infection on CT and NG epidemiology and pathogenesis is
poorly understood. Pathogen-pathogen and pathogen-host in-
teractions specific to co-infection may also affect interpreta-
tion of studies about transmission, re-infection, treatment fail-
ure, pathogenic immune response, and, importantly, vaccine
development [69]—which may ultimately impact treatment
and vaccine efficacy. There are substantial gaps in our knowl-
edge of factors associated with prevalence of co-infection and
the role co-infection may play in acquisition, pathogenesis,
bacterial load and transmission, and disease course and
severity for these two important bacterial STIs. Although
many studies have examined different aspects of these issues,
the reported findings are often contradictory.

Factors associated with CT/NG co-infection vary across
studies/populations and include sex, age, sex work, and
drug/alcohol use [70–72]. MSM have been reported as more
likely to harbor co-infections than heterosexual males, with
the co-infection rate increasing with age inMSM, but decreas-
ing with age in heterosexual men [73], while others have
found similar co-infection rates for MSM and heterosexual
men [74]. However, MSM have higher overall infection rates

than heterosexual men, which may impact such analyses. Co-
infection has, in most cases, been linked with increased risk of
re-infections. Co-infection increases risk of (i) re-infection
with CT or NG when retested between 6 weeks and 6 months
[70], (ii) NG re-infection in a high NG prevalence population
[71], and (iii) CT re-infection in women [75]. However, a
study that collected daily samples for 28 days after antibiotic
treatment, evaluating 23 patients with NG/CT co-infection for
CT clearance, noted 100% clearance with no re-infections
[17].

CT/NG co-infection might increase NG transmission com-
pared with single infection, owing to increased bacterial load,
but not contribute to increased symptom severity [76•]. In a
study of women aged 14–17 who collected 12 weekly self-
taken vaginal swabs twice per year, 16 women acquired NG
infection, demonstrating variable bacterial load over the ensu-
ing 11 weeks, co-infection (in 6 of 13 cases) associated with
increased NG bacterial load, and largely asymptomatic infec-
tion [76•]. However, studies based on concordance of infec-
tion status in couples have suggested that, though NG was
generally found to be more transmissible than CT, co-
infection had no effect on NG transmission [77], or even re-
duced NG transmission [78]. Genital symptoms were more
common in CT/NG co-infection (16%) than in single infec-
tions (NG 7.7%, CT 5.0%) among 568 high school students in
the USA [68], but not among 382 STD clinic patients in the
UK (CT/NG co-infection, 40% asymptomatic; NG alone,
33% asymptomatic) [79].

Associations between CT/NG co-infection and damaging
long-term sequelae are also variable. A study of CTand NG as
well as Mycoplasma genitalium, Ureaplasma urealyticum/
parvum, Gardnerella vaginalis, Trichomonas vaginalis, and
herpes simplex virus-1/2 found that CTand co-infections with
two or more of the evaluated organisms were associated with
similarly high risk of EP [80]. Similarly, risk of TFI was
shown to be similar for single infection or CT/NG co-
infection [81], while others showed an increased risk of endo-
metrial infection associated with NG co-infection, but not
M. genitalium or T. vaginalis co-infection or bacterial vagino-
sis, in a group of CT-infected women [82]. Most studies only
considered CT/NG infections [68, 76•, 77–79, 81] and did not
consider/exclude other STIs and/or bacterial vaginosis, so
their findings might be affected by unknown co-infections.

The potential for unknown co-infection variables to impact
progress in vaccine development, perhaps the most pressing
need to effectively control CT and NG, is becoming clear. A
study published in 2017 provided the first evidence that a
vaccine might protect against NG infection. A commercial
vaccine for Neisseria meningitidis, used in a campaign in
New Zealand in the early 2000s, had an estimated anti-NG
vaccine efficacy (VE) of 31% [83]. VE was reduced in the
case of CT/NG co-infection [83], emphasizing the need for
greater understanding of CT and NG biology. Basic science
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research plays an important role in informing clinical study
design and helping to explain how one pathogen might affect
the immune response to another. A study published in 2018
found that CT can prevent human neutrophils from producing
neutrophil extracellular traps (NETs) in response to NG [84],
providing interesting insights into the potential for CT/NG
interaction.

In Vivo Infection and Co-infection: Animal
Models of CT, NG, and CT/NG

Animal models of CT and NG infection have been pivotal in
understanding information we have gleaned from clinical and
epidemiological studies. Clinical and mathematical modeling
data demonstrate that human genital and rectal NG/CT co-
infections are frequent and suggest active interplay between
these two pathogens [3•, 85]. As most published experimental
animal studies have focused on each pathogen individually,
CT/NG co-infection models in which the pathophysiological
consequences of co-infection can be explored are needed.
There are several Chlamydia in vivo genital infection models,
including (i) C. muridarum (CM), CT, and C. suis (CS) in
mice; (ii) C. caviae (CC) in guinea pigs; (iii) C. suis in swine;
and (iv) CT in several non-human primate species [86•, 87,
88, 89••]. In contrast, the most well-established animal NG
genital infection models are in mice and chimpanzees [90].
The most widely used NG mouse model, introduced almost
20 years ago and still currently in use, has been valuable in
examining NG colonization kinetics, fitness, vaccine candi-
dates, host immune response, influence of host estrus state
on infection, and pharmacokinetics of gonorrhea therapeutic
antimicrobials [69, 90–92]. To our knowledge, only one CT/
NG co-infection animal model, a modification of the above-
described NG single-infection model, has been published to
date. Vonck et al. vaginally CM-infected BALB/c mice, prior
to subsequent 17-β-estradiol treatment and vaginal NG infec-
tion. Vancomycin (VAN) and streptomycin (STP) injections
were used to suppress normal microflora and promote NG
colonization. Viable NG and CM were recovered in vaginal
swabs for 8–10 days, and significantly more gonococci were
observed in co-infected compared with NG singly infected
mice [93••]. Vaginal neutrophil numbers and leukocyte che-
mokine concentrations also increased in co-infected mice
compared with either CM or NG singly infected mice, which
may explain the more severe symptoms observed in co-
infected women [94].

The murine model established by Vonck et al. has revealed
interesting facets of co-infection, but the authors suggested
two main limitations of the model, both due to specific re-
quirements for robust NG infection. First, estradiol treatment
is immunomodulatory, reducing vaginal cytokine expression
in CM-infected mice [93••]. Second, VAN/STP treatment is

required to suppress growth of vaginal microflora [93••].
Therefore, animal models that require neither exogenous hor-
mone nor antibiotic administration would be advantageous.
Transgenic mice expressing human carcinoembryonic
antigen-related cell adhesion molecule 1 (hCEACAM1), a
receptor for gonococcal Opa proteins, support vaginal NG
colonization in the absence of estradiol treatment for at least
15 days [95]. As in the Vonck et al. study, VAN/STP treatment
was used to suppress vaginal microflora. However, the authors
did not report attempting NG infection without antibiotics
[95], raising the possibility that VAN/STP treatment may not
be required in hCEACAM1-expressing mice. Nonetheless, a
NG mouse model that does not require estradiol treatment
offers advantages, particularly for studying host immune re-
sponses to co-infection, even if VAN/STP treatment is re-
quired. Interestingly, a human NG clinical isolate has been
shown to colonize, grow, and form biofilms on explanted
pig vaginal tissue under aerobic conditions [96]. Given that
epithelial cells within the NG-infected tissue remain viable
despite extensive NG biofilm formation [96] and that CS read-
ily infects explanted pig cervical and uterine luminal and glan-
dular epithelial cells [97], an NG/CS co-infection model using
explanted vaginal tissue seems feasible. These data also sug-
gest that establishing genital co-infections in a female pig
model is feasible because (i) a model of C. suis genital infec-
tion already exists and (ii) the porcine genital immune system
and estrus cycle are more similar to those in humans than to
those in the mouse [88, 89••].

Another approach to modeling co-infection is to use
Neisseria or Neisseriaceae species that naturally colonize
the genital tract of animal species that can also be
Chlamydia infected. Uruburuella suis, a novel species in
the family Neisseriaceae, was isolated from pigs with
pneumonia and pericarditis in 2005 [89••, 98]. A new com-
mensal Neisseria species (N. musculi) has also been recent-
ly identified in the wild house mouse [99, 100]. N. musculi
can be cultured and transformed to produce knockout and
gene-complemented strains and colonizes the gut and oral
mucosa of C57/B6 mice without producing overt disease.
N. musculi colonization in mice requires neither estradiol
or antibiotic treatment nor expression of human-specific
receptors. The N. musculi genome also contains predicted
homologs for several NG and N. meningitidis virulence
factor-encoding genes [100]. Because CM establishes gas-
trointestinal infection in mice via the oral route [101, 102],
co-infecting mice orally with CM and N. musculi should be
relatively straightforward. A significant drawback to de-
veloping a Chlamydia/U. suis or N. musculi co-infection
system is that neither Neisseriaceae species has been
shown to colonize the genital tract of their host species.
More importantly, each lacks key virulence factors present
in NG—though select NG genes could be expressed in
N. musculi. However, it seems likely that interactions
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between these pathogens might be radically different than
those of NG and CT in the human genital tract.

A 2016 study demonstrated that the host nectin-1 protein is
required for efficient murine genital CM infection but not for
rectal infection [103], suggesting that host factors required for
CM infection may vary at different anatomical sites. Thus,
observations from in vivo studies of genital single infection
or co-infection may not be entirely applicable to co-infections
of the rectal mucosa. Interestingly, CM-infected mice exhibit-
ed attenuated tubal fibrosis in the absence of gastrointestinal
CM carriage [104], suggesting that gastrointestinal CM infec-
tion influences distal genital tract pathology, at least in the
context of the murine model. Rectal NG/CT co-infections oc-
cur in humans, and thus, it is desirable to develop experimen-
tal animal models of rectal co-infection. Though there is no
established murine NG rectal infection model, the CM rectal
infection model [103] provides a platform with which to at-
tempt rectal CM/NG co-infection in either male or female
mice. Intestinal hCEACAM1 expression is observed in the
hCEACAM1-transgenic mice described above [95], suggest-
ing that these mice may be susceptible to rectal NG infection
and could be used to establish a relevant co-infection model.
Because significant physiologic differences are observed in
female, versus male, animal models, it is also important to
evaluate sex as a biologic variable during co-infection. Male
mice and guinea pigs can be genitally infected with CM and
CC, respectively, and both models have the additional advan-
tage that natural male to female transmission can be studied
[105, 106]. Though much needed, there is no established an-
imal model for NG genital infection in males and, thus, no
characterized system in which to attempt male genital co-in-
fection. However, a rectal co-infection model in male mice,
such as that discussed above, would inform whether there are
host sex-specific differences in the progression or outcome of
Chlamydia/NG co-infection.

Conclusions

CTandNGare common bacterial sexually transmitted pathogens
andCT/NG co-infections are also common. Both primarily infect
the female endocervix and male urethra and share many clinical
characteristics. Differences in the biology and infection dynamics
of CT and NG, however, contribute to differences in their epide-
miology and to challenges for management and control in high-
income countries. For CT, high prevalence in the general popu-
lation of young heterosexual adults makes screening of asymp-
tomatic people an attractive intervention. However, prevalence
has not, thus far, decreased in high-income countries that recom-
mend screening. Rectal CT infection in women is hypothesized
as a reason for sustained prevalence, but its clinical relevance has
yet to be shown convincingly. NG is uncommon in the general
heterosexual population, but incidence is increasing among

MSM. The spread of antimicrobial resistance in NG is a serious
threat to control, with verified exceedingly difficult-to-treat cases
and untreatable NG cases likely in the near future. Pharyngeal
NG is common in MSM and may be a niche where resistance
development is promoted. There is surprisingly little epidemio-
logical research about CT/NG co-infection. Mathematical
modeling studies suggest that each infection could increase sus-
ceptibility and/or transmissibility of the other, and bacterial load
might be higher in CT/NG co-infection than in NG alone. The
vaginal microbiome probably influences the risks of CTand NG
and hence CT/NG co-infection as well. With increasing interest
in the development of new treatments and vaccines against NG
and CT, it will be important to investigate their effectiveness in
the context of co-infections. Finally, future advances will require
studies in animal models. There are substantial challenges, how-
ever, because both CT and NG are human-specific pathogens.
Appropriate, quality-assured animal models are essential to im-
prove understanding of the pathogenic interplay in CT/NG co-
infections.
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