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Abstract
Obesity is one of the most serious public health problems. Peroxisome proliferator-activated receptor γ (PPARγ) plays the
master role in adipocyte differentiation for obesity development. However, optimum anti-obesity drug has yet been
developed, mandating more investigation to identify novel regulator in obesity pathogenesis. Heat shock protein 12A
(HSPA12A) encodes a novel member of the HSP70 family. Here, we report that obese patients showed increased adipose
HSPA12A expression, which was positively correlated with increase of body mass index. Intriguingly, knockout of
HSPA12A (Hspa12a−/−) in mice attenuated high-fat diet (HFD)-induced weight gain, adiposity, hyperlipidemia, and
hyperglycemia compared to their wild type (WT) littermates. Increased insulin sensitivity was observed in Hspa12a−/− mice
compared to WT mice. The HFD-induced upregulation of PPARγ and its target adipogenic genes in white adipose tissues
(WAT) of Hspa12a−/− mice were also attenuated. Loss- and gain-of-function studies revealed that the differentiation of
primary adipocyte precursors, as well as the expression of PPARγ and target adipogenic genes during the differentiation, was
suppressed by HSPA12A deficiency whereas promoted by HSPA12A overexpression. Importantly, PPARγ inhibition by
GW9662 reversed the HSPA12A-mediated adipocyte differentiation. On the other hand, HSPA12A expression was
downregulated by PPARγ inhibition but upregulated by PPARγ activation in primary adipocytes. A direct binding of PPARγ
to the PPAR response element in the Hspa12a promoter region was confirmed by chromatin immunoprecipitation assay, and
this binding was increased after differentiation of primary adipocytes. These findings indicate that HSPA12A is a novel
regulator of adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARγ.
HSPA12A inhibition might represent a viable strategy for the management of obesity in humans.

Introduction

Obesity, a major worldwide epidemic, is characterized by
excessive accumulation of white adipose tissue (WAT),
resulting from both hypertrophy of pre-existing adipocytes
and differentiation of adipocyte precursors into mature adi-
pocytes [1, 2]. Adipose tissue was considered to be purely a
form of connective tissue 80 years ago, but is now known to
be an important endocrine organ, lying at the center of energy
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homeostasis [3]. Indeed, mounting evidence demonstrates that
obesity is closely correlated with abnormalities in important
physiological parameters, such as lipidemia and insulin sen-
sitivity, and is an independent risk factor for stroke, myo-
cardial infarction, type II diabetes, and certain cancers [4].
Unfortunately, no ideal anti-obesity drug has yet been
developed [5], suggesting that a more comprehensive under-
standing of the mechanisms underlying the development of
obesity is urgently required to facilitate the development of
more effective targeted therapies.

Peroxisome proliferator-activated receptor γ (PPARγ), a
member of the nuclear receptor superfamily of ligand-
dependent transcription factors, is considered to be a master
regulator of adipocyte differentiation [4, 6–9]. Numerous
studies have shown that adipogenesis involves the activa-
tion of two waves of transcription factors. The first is
transiently induced by adipogenic stimuli and involves
CCAAT enhancer-binding proteins (C/EBP) β and -ε,
which, in turn, directly induce expression of the second
wave, consisting of PPARγ and C/EBPα [6, 10]. Subse-
quently, PPARγ and C/EBPα positively feeds back to
amplify their own expression, and these transcription factors
are integral to the activation of the downstream target genes
that initiate the adipogenic program. However, although it
works in concert with C/EBPα, PPARγ expression is
necessary and sufficient for adipogenesis [8]. In support of
this, inhibition of PPARγ by antagonists ameliorates high-
fat diet (HFD)-induced obesity and impairments of glucose
and lipid homeostasis [8, 11]. Moreover, dominant-negative
PPARγ mutation in humans and PPARγ deficiency in mice
lead to lipodystrophy, and PPARγ-deficient embryonic
stem cells are unable to differentiate into adipocytes [8, 12].
Therefore, targeting PPARγ may represent a promising
approach for the management of obesity.

Heat shock proteins (HSPs) are an evolutionarily con-
served superfamily of protein chaperones that exhibit diverse
functions, such as the facilitation of protein folding, translo-
cation, trafficking, and the targeted removal of aberrant pro-
teins [13, 14]. Several HSPs, including HSP90, HSPA5
(GRP78), and DNAJB1 (HSP40), are involved in adipogen-
esis; for example, HSP90 promotes and DNAJB1 suppresses
adipocyte differentiation [8, 15–18]. Heat shock protein
A12A (HSPA12A), which was cloned from mouse athero-
sclerotic lesions in 2003, is a novel and distinct member of the
mammalian heat shock protein 70 (HSP70/HSPA) family due
to it containing an atypical Hsp70 ATPase domain [19, 20].
Subsequent studies have shown that Hspa12a mRNA is
expressed at a high level in human brain, and its cerebral
expression was decreased in the patients with schizophrenia
[19, 21, 22]. Recently, we reported that HSPA12A encodes a
novel survival pathway that protects against ischemic stroke
in mice [23]. However, the functional roles of HSPA12A in
adipose tissue remain to be investigated.

In this study, obese patients showed increased HSPA12A
expression in WAT, while deficiency of HSPA12A in
mice ameliorated HFD-induced obesity, hyperlipidemia
and hyperglycemia. Studies of loss-of-function and gain-of-
function demonstrated that HSPA12A was required for
adipocyte differentiation via maintaining PPARγ expres-
sion. Inversely, we also identified the regulation of PPARγ
in HSPA12A expression by directly binding to the peroxi-
some proliferator response element (PPRE) in the Hspa12a
promoter. Our findings imply that HSPA12A is a novel
regulator of adipocyte differentiation and diet-induced
obesity through a positive feedback regulation with
PPARγ. Thus, HSPA12A inhibition might represent a
viable strategy for the therapy of obesity in humans.

Results

HSPA12A is highly expressed in murine adipose
tissues

The expression profile of HSPA12A in adipose tissues has
not been characterized. Immunoblotting revealed a high
level of HSPA12A expression in adipose tissues, including
inguinal WAT (iWAT), visceral WAT (vWAT), peri-renal
WAT (prWAR), and brown adipose tissue (BAT). Although
lower than in brain, HSPA12A expression was much higher
in adipose tissue than in other tissues, such as heart, liver,
pancreas, spleen, lung, skeletal muscle, and bone (Fig. 1).

Fig. 1 HSPA12A expressed at high level in adipose tissues. Fourteen
types of tissues including adipose tissues were collected from adult
C57BL/6 mice. Protein extracts were prepared for immunoblotting
against HSPA12A. Blots against GAPDH served as loading controls.
n= 3/group
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HSPA12A expression is positively correlated with
body mass index in humans

Identification of the high expression level of HSPA12A in
WAT prompted us to investigate its clinical significance in

adipogenesis. Obese patients showed markedly higher
expression of HSPA12A at both mRNA and protein levels
in subcutaneous WAT (sWAT) than lean subjects (Fig. 2a–c
and S1A). Notably, upregulation of HSPA12A positively
correlated with the increase of body mass index (BMI)

Fig. 2 HSPA12A upregulation was positively correlated with the
increase of human BMI. a Hspa12a mRNA expression was examined
in sWAT of obese patients (BMI > 35) and lean subjects (BMI < 24)
using real-time PCR. Data are mean ± SEM, **P < 0.01 by Student’s
two-tailed unpaired t-test. n= 6 human subjects/group. b Hspa12a
mRNA was examined in sWAT of humans. Linear regression was
analyzed. c HSPA12A protein expression was examined in human
sWAT using immunoblotting. Blots against GAPDH served as loading
controls. Data are mean ± SEM, **P < 0.01 by Student’s two-tailed
unpaired t-test. n= 4 subjects/groups. d HSPA12A protein expression
was examined in iWAT of HFD-induced obese mice and chow-fed
control mice. Blots against GAPDH served as loading controls. Data
are mean ± SEM, **P < 0.01 by Student’s two-tailed unpaired t-test. n
= 4 mice/groups. e Immunofluorescence staining for HSPA12A was

examined on cryosections of human sWAT. Hoechst 33342 was used
to counterstain nuclei. Fluorescence intensity of HSPA12A staining
was quantified and expressed as mean ± SEM. **P < 0.01 by Student’s
two-tailed unpaired t-test. n= 6–7 subjects/group. Scale bar= 50 μm. f
Inguinal WAT were collected from obese mice that induced by HFD.
Chow diet-fed mice served as controls. Cryosections were prepared for
immunofluorescence staining against HSPA12A. Hoechst 33342 was
used to counterstain nuclei. Fluorescence intensity of HSPA12A
staining was quantified and expressed as mean ± SEM. **P < 0.01 by
Student’s two-tailed unpaired t-test. n= 6 mice/group. Scale bar= 50
μm. g Hspa12a mRNA was examined in 3T3-L1 cells at the indicated
time points after differentiation induction. Data are mean ± SEM, **P
< 0.01 or *P < 0.05 vs. untreated controls (0 day) by One-way
ANOVA followed by Tukey’s test. n= 3 cultures/group

HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback. . . 2255



(Fig. 2b). Consistent with this, HFD-induced obese mice
also showed significantly higher HSPA12A expression in
iWAT than chow-fed mice did (Fig. 2d and S1B, S2).

Increased HSPA12A expression was visualized in adipo-
cytes of obese humans and mice using immunofluorescence
staining (Fig. 2e, f). In addition, a markedly upregulation of
HSPA12A expression was detected in 3T3-L1 preadipocytes
after differentiation induction (Fig. 2g). Thus, HSPA12A
expression was increased in WAT adipocytes during their
differentiation.

HSPA12A deficiency ameliorates high-fat diet-
induced weight gain and adiposity in mice

To investigate whether HSPA12A is required during
adipogenesis, we generated HSPA12A knockout mice
(Hspa12a−/−) using the Cre-loxP recombination system
[23]. The successful deletion of the Hspa12a gene in WAT
was confirmed by the absence of HSPA12A protein
expression, as indicated by both immunoblotting and
immunostaining (Fig. 3a, b and S3).

After being fed a HFD for 14 weeks, Hspa12a−/− mice
showed less body mass gain than WT mice (Fig. 3c, d).
Accordingly, Hspa12a−/− mice had smaller iWAT, vWAT,
and mesenteric WAT (mWAT) depots than WT controls
after HFD feeding (Fig. 3e, f). Consistent with this,
Hspa12a−/− mice showed smaller adipocytes of iWAT,
both in terms of mean cell size and cell size distribution,
than WT controls after HFD feeding (Fig. 3g). In addition,
in the chow-fed groups, Hspa12a−/− mice showed less body
mass gain and smaller iWAT adipocytes than WT controls
at 16 weeks of age, although no differences in body length
or food intake were observed between the two genotypes
(Fig. 3c–g, and S4A–B).

HSPA12A deficiency attenuates the high-fat diet-
induced abnormalities in serum metabolic
parameters

High serum levels of free fatty acid (FFA), cholesterol
(CHOL), low-density lipoprotein cholesterol (LDL-C), and
glucose are commonly observed in obesity [24]. As shown
in Fig. 4a, the HFD-induced increases in serum FFA,
LDL-C, CHOL, high-density lipoprotein cholesterol
(HDL), and glucose were attenuated in Hspa12a−/− mice
compared with WT controls. Also, lower serum FFA con-
tent was detected in Hspa12a−/− mice than in WT controls
when both were fed a HFD.

Increased insulin sensitivity in Hspa12a−/− mice

Changes in adipose tissue mass are frequently associated
with alterations in glucose homeostasis [25]. We therefore

carried out insulin and glucose tolerance tests (ITT, GTT)
to determine whether insulin and glucose homeostasis
are affected by Hspa12a knockout. Although GTT demon-
strated no difference in glucose concentration or clearance rate
between the two genotypes, ITT showed that Hspa12a−/−

mice have significantly increased insulin sensitivity (Fig. 4b).

Hspa12a−/− mice demonstrate attenuated
expression of PPARγ and its target genes linking to
adipogenesis upon high-fat diet feeding

PPARγ-dependent signaling plays a central role in adipogen-
esis [4, 6]. The HFD-induced upregulation of Pparg mRNA
and that of its target gene Cebpa was attenuated in the iWAT
of Hspa12a−/− mice compared with WT controls (Fig. 5a). In
addition, the HFD-induced upregulation of Ebpb (a regulator
of the early phase of differentiation) and Adipoq (a marker of
mature adipocytes) in iWAT was prevented in Hspa12a−/−

mice. These findings suggest that HSPA12A regulates both
early and late events in adipocyte differentiation.

Next, the expression of genes involved in lipid metabolism
was quantified. When HFD-fed, the iWAT of Hspa12a−/−

mice showed lower expression of the lipogenic transcription
factors Shrebp-1c and Chrebp than that of WT controls
(Fig. 5a). In agreement with this, their target genes that are
involved in lipogenesis, including Fasn, Scd1, Elovl6, and
Acc, showed the same expression profile. In addition, the
HFD-induced upregulation of lipase expression (Lipe and
Atgl) was prevented in Hspa12a−/− iWAT (Fig. 5a and S5).

We next measured the protein levels of PPARγ as a
representative transcription factor, and SCD1, FABP4, ACC,
and C/EBPα as representative adipogenic proteins, in iWAT
of mice. Consistent with the mRNA data, Hspa12a−/− iWAT
showed lower PPARγ1/2 protein expression than WT iWAT
when they had been either HFD-fed or chow-fed (Fig. 5b).
In addition, lower protein expression of SCD1, FABP4,
C/EBPα, and ACC was found in Hspa12a−/− iWAT than in
WT iWAT, after HFD feeding. Moreover, the HFD-induced
upregulation of PPARγ1/2, SCD1, FABP4, C/EBPα, and
ACC, protein levels was attenuated in Hspa12a−/− iWAT
versus iWAT from WT controls (Fig. 5b and S6).

HSPA12A regulates adipocyte differentiation and
PPARγ expression in vitro

To further investigate the regulation of HSPA12A in adi-
pogenesis, we compared the in vitro differentiation of pri-
mary adipocyte precursors from the isolated stromal
vascular fraction (SVF) between two murine genotypes.
Hspa12a−/− SVF clearly exhibited poorer differentiation,
demonstrated by less staining with oil red O (ORO) and
lower expression of mature adipocyte markers (Pparg,
Fabp4, Adipoq, Fasn, and Acc) and other genes involved in

2256 X. Zhang et al.



Fig. 3 Deficiency of HSPA12A attenuated the HFD-induced weight gain
and adiposity. a, b HSPA12A expression. Inguinal WAT were collected
from adult mice. HSPA12A expression was analyzed by immunoblotting
(a) and immunofluorescence staining (b, Scale bar= 20 μm). Note that
HSPA12A expression was absent in Hspa12a-/- mice. n= 10 mice/
group. WT, wild type; Hspa12a-/-, HSPA12A knockout. c, d Body
weights. Mice aged at 5-week old were fed with HFD or normal chow
diet for 14 weeks. Body weight was recorded weekly (c). The repre-
sentative mice size at the end of experiments was also shown (d). Data
are mean ± SEM, *P< 0.01 and #P< 0.05 vs. the age-matched WT
mice, two-way ANOVA followed by Tukey’s test. n= 4–6 mice/Chow

group and n= 6–8 mice /HFD group. e, f Adipose weights. Weights of
the indicated adipose tissues were measured in the mice fed with HFD
for 14 weeks (e). The representative images of iWAT were also shown
(f). Data are mean ± SEM, **P< 0.01 and *P< 0.05 by Student’s two-
tailed unpaired t-test. n= 27 mice /group. BAT, brown adipose tissue;
iWAT, inguinal WAT; vWAT, visceral WAT; prWAT, peri-renal WAT;
mWAT, mesentery WAT. g Adipocyte areas. H&E staining was per-
formed on the paraffin-embedded sections of iWAT from mice fed with
HFD or chow diet for 14 weeks. Adipocyte areas were measured. Data
are mean ± SEM, **P< 0.01 and *P< 0.05 by two-way ANOVA fol-
lowed by Tukey’s test. n= 6–7 mice/group. Scale bar= 50 μm

HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback. . . 2257



differentiation (Cebpa, Cebpb, Scebp-1c, Chrebp, Scd1, and
Cd36) after 6 days of differentiation, compared with WT
SVF (Fig. 6a, b). By striking contrast, HSPA12A over-
expressing (Hspa12ao/e) SVF showed enhanced differ-
entiation, as reflected in greater Nile red staining and
mRNA expression of Pparg, Cebpa, Fabp4, Cebpb, Adi-
poq, Acc, Scebp-1c, Chrebp, Fasn, and Cd36 (Fig. 6c, d).
Consistent with this, the protein levels of PPARγ1/2,
C/EBPα, FABP4, ACC and SCD1 in SVF after differ-
entiation were decreased by HSPA12A deficiency but
increased by HSPA12A overexpression (Fig. 6e, f, S7A-B).
When taken into account that Scd1 mRNA levels were
reduced in Hspa12ao/e SVF (Fig. 6d), the data suggests that
HSPA12A may also regulate SCD1 expression at post-
transcriptional level.

Inhibition of PPARγ attenuates HSPA12A-induced
adipocyte differentiation

PPARγ expression was reduced by HSPA12A deficiency
but increased by HSPA12A overexpression during adipo-
cyte differentiation in both in vivo and in vitro models
(Figs. 5–6). To elucidate whether PPARγ mediates the
regulation of adipogenesis by HSPA12A, we followed the
differentiation of normal control (NC) and HSPA12A-
overexpressing (Hspa12ao/e) 3T3-L1 cells in the presence or
absence of a potent specific PPARγ inhibitor (GW9662)
[26]. Similar to the observations made in primary SVF
(Fig. 6c), HSPA12A overexpression enhanced 3T3-L1
differentiation, demonstrated by greater Nile red staining

after 6 days of differentiation (Fig. 7a). In addition,
HSPA12A overexpression increased PPARγ1/2 expression
in differentiated 3T3-L1 adipocytes (Fig. 7b). Importantly,
PPARγ inhibition with GW9662 suppressed the differ-
entiation of Hspa12ao/e 3T3-L1 cells, demonstrated by less
Nile red staining than that in Hspa12ao/e cells without
GW9662 treatment (Fig. 7a).

Hspa12a is a novel target gene of PPARγ

Unexpectedly, lower HSPA12A expression at both protein
and mRNA levels was found following PPARγ inhibition
(Fig. 7b, c, S8), suggesting a regulatory effect of PPARγ on
HSPA12A expression. To further investigate this, we
determined whether HSPA12A expression would be
increased by the PPARγ activator rosiglitazone, and indeed,
rosiglitazone treatment upregulated HSPA12A expression
in undifferentiated 3T3-L1 cells in a time-dependent man-
ner (Fig. 8a). Moreover, rosiglitazone upregulated
HSPA12A expression at the mRNA and protein levels in
both primary SVF and 3T3-L1 adipocytes after differ-
entiation (Fig. 8b, c). Taken together, these data indicate
that HSPA12A expression is regulated by PPARγ.

Gene promoter analysis (http://gene-regulation.com)
showed the presence of one putative PPRE site within the
Hspa12a promoter at position −1096/−1087 (upper panel
of Fig. 8d). To determine whether PPARγ binds to the
Hspa12a promoter at this site, a Chromatin immunopreci-
pitation (ChIP) assay was performed. This confirmed the
binding of PPARγ to the PPRE in the Hspa12a promoter in

Fig. 4 Deficiency of HSPA12A
attenuated the HFD-induced
hyperlipemia and
hyperglycemia. a Blood
metabolic parameters. Fasting
serum samples were collected
from mice fed with HFD or
chow diet for 14 weeks for
measurements of the indicated
parameters. Data are mean ±
SEM, **P < 0.01 and *P < 0.05
by two-way ANOVA followed
by Tukey’s test. n= 5–9 mice/
group. b GTT and ITT were
performed in 18-week old mice
after fasting for 16 h and 4 h,
respectively. Data are mean ±
SEM, **P < 0.01 and *P < 0.05
vs. the time-matched WT mice
by two-way ANOVA followed
by Tukey’s test. n= 4 mice/
GTT group and n= 7 mice/ITT
group

2258 X. Zhang et al.
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primary SVF cells, and this binding was significantly
greater in differentiated SVF than in undifferentiated control
SVF (lower panel of Fig. 8d).

No direct protein interaction between PPARγ and
HSPA12A

PPARγ protein level has been shown to be increased by
HSP90 through the formation of a HSP90-PPARγ
complex to prevent PPARγ degradation [8, 27]. To
investigate whether HSPA12A increased PPARγ protein
level in the similar way as HSP90 doing, we performed
immunoprecipitation-western blot analysis. The 3T3-L1
cells with or without differentiation were precipitated with
anti-HSPA12A antibody. The cell lysates without immu-
noprecipitation served as positive controls (input), while
the immunoprecipitates with normal IgG served as

negative controls. As shown in Figure S9, PPARγ protein
was not recovered in the HSPA12A immunocomplexes.

Discussion

Our study uncovers a requirement for HSPA12A in adi-
pocyte differentiation and HFD-induced obesity. This
action of HSPA12A was in a PPARγ-depended manner. We
have also identified a positive feedback regulation between
HSAP12A and PPARγ in adipocytes. HSPA12A inhibitory
strategy might represent a novel therapeutic approach for
obese patients.

Heat shock proteins are an evolutionarily conserved
superfamily comprising a group of structurally unrelated
subfamilies, including HSPA/HSP70, HSPB/HSP27, HSPC/
HSP90, HSPH/HSP110, and NDAJ/HSP40 [28]. Of these,

Fig. 5 Deficiency of HSPA12A
suppressed PPARγ and its target
genes linking to adipocyte
differentiation in mice. Inguinal
WAT were collected from mice
that fed with HFD or chow diet
for 14 weeks. The expression of
the indicated mRNA and
proteins was analyzed by Real-
time PCR (a) and
Immunoblotting (b),
respectively. Data are mean ±
SEM, **P < 0.01 and *P < 0.05
by two-way ANOVA followed
by Tukey’s test. n= 5–7 mice/
group

HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback. . . 2259



HSP90, HSPA5/GRP78, and DNAJB1/HSP40 are involved
in adipogenesis [8, 15–17]. As an example, HSP90 regulates
adipocyte differentiation by chaperoning PPARγ to control its
stability, and HSP90 inhibition impedes the differentiation of
3T3-L1 preadipocytes and lipid accumulation [8, 18]. More-
over, HSPA5 is required for adipogenesis because when
absent the differentiation of 3T3-L1 cells is impaired and
mice demonstrate lipoatrophy [15]. By contrast, DNAJB1
overexpression decreases both lipid accumulation and the
expression of adipocyte markers in 3T3-L1 cells, suggesting

that it has an inhibitory role in adipocyte differentiation [17].
In this study, we found that HSPA12A, a novel member of
the HSPA/HSP70 family, is upregulated in the WAT of obese
humans, and that its expression is positively correlated with
BMI, suggesting a possible involvement of HSPA12A in
adipogenesis. Indeed, the differentiation of primary adipocyte
precursors was suppressed by HSPA12A deficiency, whereas
it was enhanced by HSPA12A overexpression. Moreover,
HFD-induced and age-associated weight gain and adiposity
were attenuated in HSPA12A knockout mice. Taken together,

2260 X. Zhang et al.



these results provide strong evidence that HSPA12A is a
novel regulator of adipogenesis.

Obesity is usually associated with metabolic abnormal-
ities, including hyperlipidemia, hyperglycemia, and insulin
resistance [29], and all of these are independent risk factors
for shortened lifespan and the development of athero-
sclerosis, myocardial infarction, stroke, and type II diabetes
[29, 30]. In this study, we observed that the HFD-induced
elevation of serum LDL, cholesterol, and glucose was either
prevented or ameliorated in Hspa12a−/− mice. Moreover,
Hspa12a−/− mice showed higher insulin sensitivity than
control mice at 18 weeks of age. Thus, HSPA12A defi-
ciency ameliorates HFD-induced defects in lipid and glu-
cose homeostasis.

Adipogenesis involves a complex network of regulatory
proteins, but PPARγ is its master regulator. Of its two major
isoforms, PPARγ1 is expressed in various tissues, including
adipose tissue, liver, macrophages, and skeletal muscle,
while PPARγ2 is exclusively present in adipogenic cells,
but both play critical roles in adipogenesis [8, 31]. We
found that PPARγ expression was lower at both the mRNA
and protein level in the WAT of Hspa12a−/− mice than in
WT controls, when both were fed with either a chow or
HFD diet, suggesting a regulatory effect of HSPA12A on
PPARγ expression. This finding was further confirmed by
in vitro experiments, which demonstrated that the expres-
sion of PPARγ was increased by HSPA12A overexpression,
whereas it was decreased by HSPA12A deficiency, in dif-
ferentiated primary adipocytes, suggesting an effect of

HSPA12A on PPARγ expression during adipocyte differ-
entiation. Most importantly, inhibition of PPARγ with
GW9662 reversed the HSPA12A-induced enhancement of
adipocyte differentiation. Collectively, our data suggest that
HSPA12A regulates adipogenesis in a PPARγ-dependent
manner. Previous studies have demonstrated that PPARγ
expression is regulated by HSP90 through the formation of
a HSP90-PPARγ complex, which prevents the proteasomal
degradation of PPARγ [8, 27]. However, we did not found
PPARγ protein in HSPA12A immunocomplexes from
either undifferentiated or differentiated adipocytes (Fig-
ure S9), suggesting that HSPA12A increasing PPARγ
protein expression is not through the direct interaction
between the two proteins. The Pparg mRNA expression
showed increase by HSPA12A overexpression whereas
decrease by HSPA12A knockout, suggesting a regulation of
HSPA12A at Pparg transcription levels. During adipogen-
esis, the transcription of Pparg con be regulated by a group
of factors, such as C/EBPα, SREBP-1, early B-cell factors,
and et al. [32]. Indeed, in this study, we observed that in
WAT and adipocytes, the expression of C/EBPα and
SREBP-1 were both reduced by HSPA12A deficiency while
increased by HSPA12A overexpression, suggesting a pos-
sible involvement of C/EBPα and SREBP-1 in the regula-
tion of HSPA12A on Pparg transcription. It is worthwhile
in further work to clarify the exact mechanism for how
HSPA12A modulates PPARγ transcription.

Unexpectedly, lower HSPA12A expression was also
observed in adipocytes following PPARγ inhibition, sug-
gesting a possible regulatory effect of PPARγ on HSPA12A
expression. This suggestion is supported by the observation
that the PPARγ activator rosiglitazone increases HSPA12A
expression at both the mRNA and protein levels in adipocytes
either before or after differentiation. As a central regulator of
adipogenesis, PPARγ directly drives the expression of a
group of target genes involved in adipocyte differentiation by
binding to PPREs in their promoters. Our ChIP assay con-
firmed the binding of PPARγ to the PPRE located at −1096/
−1087 in the Hspa12a promoter, and this binding was
increased after differentiation. These findings identify
HSPA12A as a novel target gene of PPARγ in adipocytes.
When combined with the regulation of PPARγ expression by
HSPA12A in WAT in vivo and in adipocytes in vitro, the
data collectively suggest a positive feedback regulation
between HSPA12A and PPARγ in adipocytes (Fig. 8e).

In conclusion, this study demonstrates that HSPA12A is
required for adipogenesis, and deficiency of HSPA12A
attenuates the HFD-induced obesity and impairments of
lipid and glucose. The mechanism underlying the effects of
HSPA12A on adipogenesis involves a positive feedback
regulation with PPARγ. Our data strongly suggest that
inhibitors of HSPA12A may be useful for the management
of obesity in humans.

Fig. 6 HSPA12A regulated adipocyte differentiation and PPARγ
expression in vitro. a, b HSPA12A deficiency suppressed adipocyte
differentiation. Differentiation was induced in primary SVF isolated
from WT and Hspa12a-/- mice. Lipid droplets were examined by ORO
staining (a). Expression of mRNA was examined using real-time PCR
(b). Data are mean ± SEM, **P < 0.01 and *P < 0.05 by Student’s
two-tailed unpaired t-test. n= 11/group (ORO) and n= 6/group
(PCR). c, d HSPA12A overexpression promoted adipocyte differ-
entiation. Primary SVF was isolated from WT mice and was over-
expressed with HSPA12A (Hspa12ao/e) by infection with adenovirus-
carried Hspa12a expression sequence. The SVF infected with empty
virus served as normal controls (NC). Six days after differentiation
induction, lipid accumulation was evaluated by Nile red staining (c
Scale bar= 100 μm) and mRNA levels were examined using real-time
PCR (d). Data are mean ± SEM, **P < 0.01 and *P < 0.05 by Stu-
dent’s two-tailed unpaired t-test. n= 8/group (Nile red) and n= 5–6/
group (PCR). e HSPA12A deficiency decreased PPARγ expression.
Primary SVF were isolated from WT and Hspa12a-/- mice. Six days
after differentiation, expression of the indicated proteins was examined
by immunoblotting. Data are mean ± SEM, **P < 0.01 by Student’s
two-tailed unpaired t-test. n= 8/group. f HSPA12A overexpression
increased PPARγ expression. Primary SVF was isolated from WT
mice and was overexpressed with HSPA12A (Hspa12ao/e). The NC
SVF served as controls. Six days after differentiation induction, the
indicated protein expression was examined using immunoblotting.
Data are mean ± SEM, **P < 0.01 and *P < 0.05 by Student’s two-
tailed unpaired t-test. n= 4/group. Note: Endogenous HSPA12A is 75
kDa, exogenous HSPA12A is 78 kDa containing 3 flags
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Materials and methods

Reagents

Collagenase Type II, ORO, Nile red, paraformaldehyde
(PFA), rosiglitazone, 3-isobutyl-1-methylxanthine (IBMX)
and dexamethasone were from Sigma-Aldrich (St. Louis,
MO). GW9662 was from Medchemexpress (Monmouth
Junction, NJ). FFA assay kit was from Wako-chem
(Osaka, Japan). Trizol reagent was from Life Technology
(Carlsbad, CA). Bovine serum albumin (BSA) was
from Roche (Basel, Switzerland). Normal Goat Serum
was from Jackson ImmunoResearch (West Grove, PA).
DMEM medium and fetal bovine serum (FBS) was
from Gibco (Shelton, CT). High-sig ECL western

blotting substrate was from Tanon (Shanghai, China).
Protein A-Agarose was from Santa Cruz Biotechnology
(Dallas, TX).

Human samples

Abdominal subcutaneous white fat specimens and blood
samples were collected from bariatric surgery patients with
obesity and cholecystectomy patients with cholelithiasis in
the First Affiliated Hospital of Nanjing Medical University.
Patients were fasted for 12 h before blood sampling. All the
recruited patients were without infection, cancer or any
other ischemic disorders. Patients gave informed consent at
the time of recruitment. The Ethical Board of First Affiliated
Hospital of Nanjing Medical University approved this study

Fig. 7 PPARγ inhibition suppressed the HSPA12A-induced adipocyte
differentiation. 3T3-L1 preadipocytes were overexpressed with
HSPA12A (Hspa12ao/e) by infected with adenovirus-carried Hspa12a
expression sequence. 3T3-L1 preadipocytes infected with empty virus
served as normal controls (NC). Six days after differentiation induction
in the presence or absence of GW9662, the following experiments
were performed. a Nile red staining was performed to evaluate lipid
accumulation. Data are mean ± SEM, **P < 0.01 and *P < 0.05 by
two-way ANOVA followed by Tukey’s test. n= 6/group. Scale bar=

100μm. b Protein expression was examined using immunoblotting.
Data are mean ± SEM, **P < 0.01 and *P < 0.05 by two-way
ANOVA followed by Tukey’s test. n= 5–6/group. Note: Endogen-
ous HSPA12A is 75 kDa, exogenous HSPA12A is 78 kDa containing
three flags. c The effect of GW9662 on HSPA12A expression in
normal control 3T3-L1 cells was quantified from the blots in Fig. 7b.
Data are mean ± SEM, **P < 0.01 by Student’s two-tailed unpaired
t-test. n= 6/group
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(# 2016-SR-123), and all the human studies were con-
formed to the principles set out in the WMA Declaration of
Helsinki and the Department of Health and Human Services
Belmont Report.

Creation of Hspa12a knockout mice

The Hspa12a targeting vector was constructed using
bacterial artificial chromosome (BAC) retrieval method
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[16, 23, 33]. Briefly, the region of the Hspa12a gene
containing exons 2–4 was retrieved from a 129/sv BAC
clone (BAC/PAC Resources Center, Oakland, CA) using
a retrieval vector containing two homologous arms. Exons 2
and 3 were replaced by loxP sites flanking a PGK-neo
cassette as a positive selection marker (Figure S10).
Embryonic stem cells were electroporated with the
linearized targeting vector, selected, and then expanded
for Southern blot analysis. Chimeric mice (Hspa12aflox/+)
were generated by injecting embryonic stem cells
into C57BL/6 blastocysts, followed by transferring
into pseudo-pregnant mice. To remove the Hspa12a gene,
the chimeric mice were crossed with EIIa-Cre transgenic
mice.

The mice were bred at the Model Animal Research
Center of Nanjing University and were maintained in
the Animal Laboratory Resource Facility of the same
institution. All experiments conformed to the Guide
for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH Publication,
8th Edition, 2011). The animal care and experimental
protocols were approved by Nanjing University’s Com-
mittee on Animal Care. All experiments conformed to
international guidelines on the ethical use of animals.

Mice were randomly assigned to various analyses.
Investigators performing histological analysis were blinded.
Investigators involved in animal handling, sampling, and
raw data collection were not blinded.

HFD feeding protocol

A mouse obesity model was established through chronic
feeding mice with a HFD (60% kcal from fat, D-12492,
Research Diets, New Brunswick, NJ) for 14 weeks starting
at the age of 5 weeks. Normal chow diet-fed WT littermates
were maintained on diet with 6% kcal from fat. Food and
water were provided ad libitum. Mice were housed and kept
on a 12 h light/dark cycle at 23 ± 1 °C.

Histological analysis and immunofluorescence
staining

Hematoxylin/eosin (H&E) was performed on the paraffin-
embedded WAT sections to evaluate the averaged adipocyte
areas and histological changes. The adipocyte areas were
measured in ten randomly areas of each sample using
Cellsens Dimention 1.15 software (Olympus, Tokyo, Japan).

To investigate the expression of HSPA12A, immuno-
fluorescence staining was performed on 4% PFA-fixed frozen
WAT sections according to our previous method [34, 35].
Briefly, after incubation with the primary antibody for
HSPA12A (#AB103030, 1:100, abcam) overnight at 4 °C,
Cy3-conjugated or FITC-conjugated secondary antibody was
applied to the sections to visualize the staining. Hoechst 33342
reagent was used to counterstain the nuclei. The staining was
observed using a fluorescence microscope and quantified using
Cellsens Dimention 1.15 software (Olympus, Tokyo, Japan).

Quantitative real-time PCR

After total mRNA isolation and cDNA synthesis, PCR
amplification was performed with SYBR Green PCR
Master Mix (Roche). Quantitative real-time PCR were
performed as described [36]. The primers used for PCR
were listed in Table S1.

Serum metabolic parameters

After fasting overnight, blood was drawn from humans and
mice. Serum was separated for the analyses of metabolic
parameters including FFA, LDL-C, HDL-C, CHOL, tri-
glyceride (TG), and glucose using a Beckman Coulter
AU5800 Chemistry System analyzer (Brea, CA).

Glucose and insulin tolerance test

Glucose tolerance tests (GTTs) were performed by intra-
peritoneal injection of glucose (1.5 g/kg) to 18-week-old
mice after a 16-h fast according to previous studies [37]. For
insulin tolerance tests (ITTs), mice were intraperitoneal
injected with regular human insulin (Eli Lilly & Company,

Fig. 8 HSPA12A is a novel target gene of PPARγ in adipocytes.
a PPARγ activation increased HSPA12A expression in undiffer-
entiated preadipocytes. 3T3-L1 preadipocytes were treated with rosi-
glitazone for the indicated times. HSPA12A protein levels were
examined by immunoblotting. Data are mean ± SEM, **P < 0.01 and
*P < 0.05 vs. 0 h controls by one-way ANOVA followed by Tukey’s
test. n= 5–8/group. b, c PPARγ activation increased HSPA12A
expression in differentiated adipocytes. Rosiglitazone was admini-
strated to primary SVF and 3T3-L1 adipocyte cultures for six days
since differentiation induction. Levels of mRNA and protein expres-
sion were examined by real-time PCR (b) and immunoblotting protein
(c). Data are mean ± SEM, **P < 0.01 and *P < 0.05 by Student’s
two-tailed unpaired t-test. n= 3/group (PCR) and n= 5–7/group
(immunoblotting). d ChIP analysis. Primary SVF with or without
differentiation were collected for ChIP analysis to examine whether
PPARγ binds to the PPRE site in Hspa12a promoter. Input and IgG-
immunoprecipitated samples served as positive and negative controls,
respectively. Data were collected by real-time PCR assay (down
panel). The PCR products were also visualized by running agarose gel
(middle panel). Data are mean ± SEM, ** P < 0.01 by Student’s two-
tailed unpaired t-test. n= 3/group. e Mechanism scheme. HSPA12A
is upregulated by adipogenic agonists in preadipocyte precursors.
HSPA12A promotes PPARγ expression, which in turn activates
HSPA12A expression through binding to the PPRE in Hspa12a pro-
moter as well as activates a group of other adipogenic genes to initiate
adipocyte differentiation. Therefore, HSPA12A promotes adipogen-
esis through a positive feedback regulation loop with PPARγ
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Indianapolis, IN) at a dose of 1U/kg after a 6-h fast. Glucose
was monitored in tail blood.

Adenovirus construction

The adenoviral vector containing 3 flags-tagged coding
region of mouse Hspa12a (NM_175199) was generated by
GeneChem (Shanghai, China). The scheme of virus con-
struction was shown in Figure S11.

Cell culture, differentiation, and treatment

To prepare the stromal vascular fraction (SVF), inguinal WAT
from 5-week-old mice were minced and digested with col-
lagenase II (1.5mg/mL). Digestions were stopped by adding
ice-cold DMEM plus 10% FBS followed by centrifugation
(1100×g) and filtration on prewet 40-μm cell strainers. SVFs
were plated at 1 × 105 cells in six-well plates or 2.5 × 104 in 24-
well plates and grown in DMEM supplied with 20% FBS.
3T3-L1 cells were from American Type Culture Collection and
maintained in DMEM containing 10% FBS.

After confluence for 2 days, differentiation of primary
SVF or 3T3-L1 cells were induced with 1 μM dex-
amethasone, 0.5 mM IBMX, and 5 μg/mL insulin for 2 days
and then maintained in the medium containing only 5 μg/mL
insulin for 2 days, followed by maintaining in regular med-
ium for 2 days.

For PPARγ activation or inhibition, rosiglitazone (1μM)
or GW9662 (20μM) was introduced to the cell cultures for
the indicated durations according to previous studies [38].

For overexpressing HSPA12A (Hspa12ao/e), primary
SVF or 3T3-L1 cells were infected with adenovirus that
carrying Hspa12a expression sequence 2 days before con-
fluency. The cells infected with empty adenovirus served as
normal controls (NC).

Differentiation capacity

Differential efficiency of adipocytes was evaluated using
ORO or Nile red staining according to previous studies
[39, 40]. Briefly, differentiated adipocytes in 24-well
plates were fixed in 4% PFA (pH 7.4) for 30 min. For
Nile red staining, the fixed cells were incubated with 0.1
μg/mL Nile red for 15 min. Images were observed and
captured using a fluorescence microscope (magnification
200×). The relative fluorescence intensity was measured
using a fluorometer (BioTek Synergy, Winooski, VT) at
an excitation/emission wavelength of 543/598 nm and
used as an indicator of lipid accumulation (surrogate for
differentiation). For ORO staining, the fixed cells were
incubated with ORO (2 mg/mL) for 30 min. After
observation using a microscope (Zeiss Ltd., Germany),
the stained ORO was extracted with isopropanol and

quantified using a spectrophotometry at a wave length of
510 nm.

Chromatin immunoprecipitation assay (ChIP)

Primary SVF with or without differentiation were fixed with
formaldehyde at 37 °C for 10min. The reaction was then
stopped by the addition of 0.125M glycine for 5 min. Cells
were harvested, sonicated, and centrifuged (13,000 rpm). The
soluble chromatin was precleared for 2 h with Protein
A–Sepharose. Precleared chromatin was then incubated for
18 h with 2 μg of anti-mouse PPARγ antibody (#ab41928,
abcam) or equal amount control mouse IgG antibody
(#SC2025, SantaCruz) in the presence of BSA and salmon
sperm DNA. Immune complexes were collected by incuba-
tion of 20 μL of Protein A–Sepharose beads for 2 h. Beads
were extensively washed before reverse cross-linking. DNA
was purified using a QiaQuick PCR purification kit (Qiagen)
and subsequently analyzed by qPCR. The PCR products were
also separated on 2% agarose gel. The amplification of pro-
moter region containing the putative PPRE (−1096/−1087)
was −1111 to −953 upstream of the transcriptional start site,
and primers used were 5′-GGCTTTGGTAGCAGACCTCA-
3′ and 5′-AACTTGGCATGGGAGGTTTA-3′.

Immunoblotting and immunoprecipitation-
immunoblotting analysis

Primary antibodies directly againt SCD1 (#2794, 1:1000),
PPARγ (#2435, 1:1000) and C/EBPα (#8178, 1:1000) were
all from Cell Signaling Technology (Beverly, MA); antibodies
for against ACC (#BS1377, 1:1000), FABP4 (#BS6016,
1:1000) and GAPDH (#AP0063, 1:2000) were from Bioworld
Technology (Louis Park, MN); anti-HSPA12A antibody
(#AB103030, 1:1000) was abcam (Cambridge, MA). Protein
was extracted from WAT or cells for immunoblotting
according to our previous methods [34, 35]. To control for
lane loading, the membranes were probed with anti-GAPDH
antibody. The signals were quantified by scanning densito-
metry and the results from each experimental group were
expressed as relative integrated intensities (compared with
those of controls).

Immunoprecipitation-immunoblotting was performed
according to previous methods [41]. The 3T3-L1 cells with or
without differentiation were precipitated with anti-HSPA12A
antibody. The cell lysates without immunoprecipitation
served as positive controls (input), while the immunopreci-
pitates with normal IgG served as negative controls.

Statistical analysis

Data represent as mean ± standard error. Groups were com-
pared using Student’s two-tailed unpaired t-test, one-way or
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two-way ANOVA followed by Tukey’s test as a post-hoc
test. No statistical methods were used to predetermine sample
sizes. A P value of <0.05 was considered as significant.
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