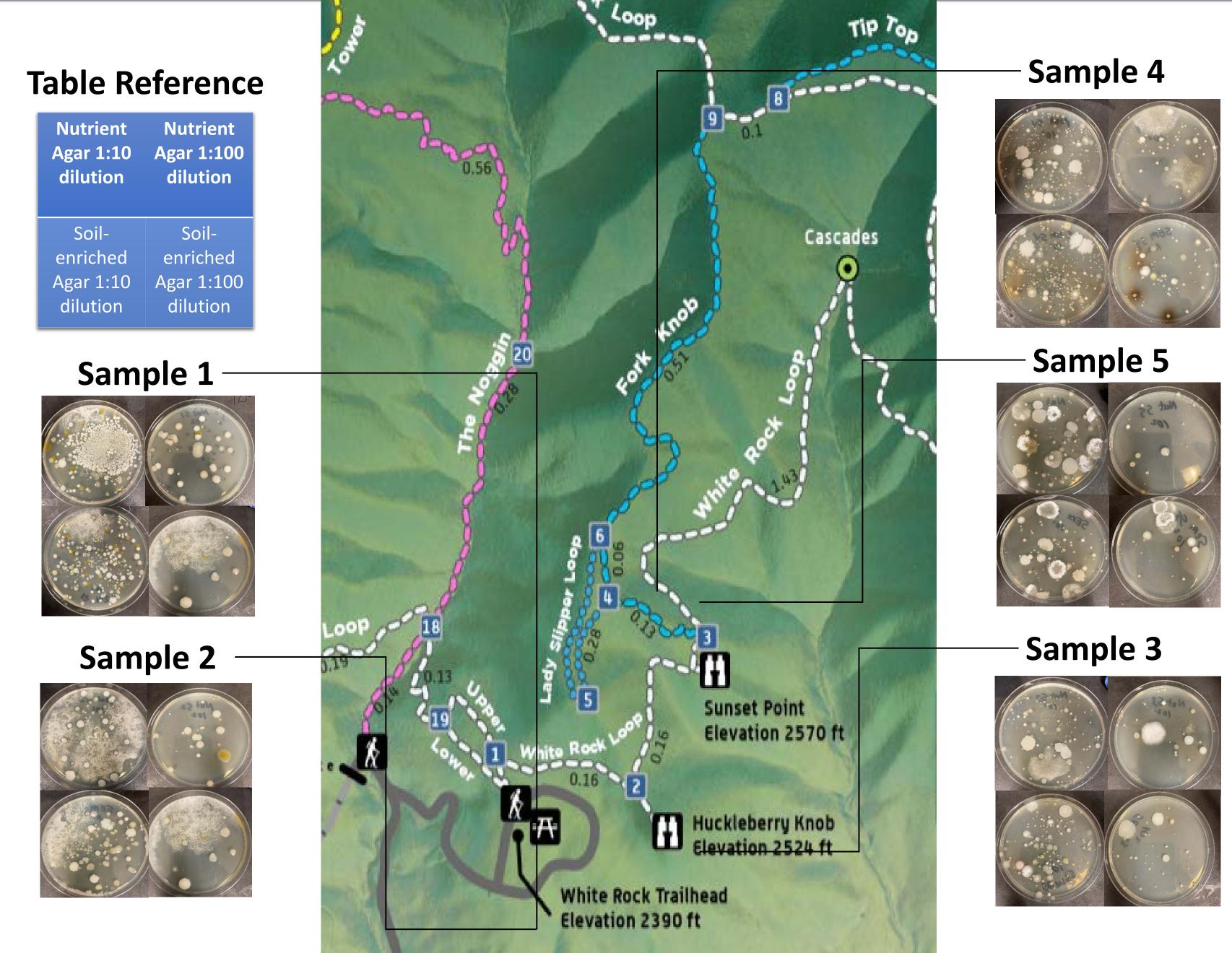
A Pilot Research Project to Enhance Inquiry-Based Learning by Mapping The Microbiome of the Southern Appalachian Region

> Shivam Patel, Sean Fox Department of Health Sciences, East Tennessee State University


Abstract

As humans continue to advance healthcare resources, we face a growing threat of nosocomial multidrug-resistant bacteria. The rise of these antibiotic-resistant microorganisms has been placed on the World Health Organization's watchlist as one of the biggest threats to global health. We continue to have a shortage of effective antibiotics with the rise of these "superbugs". With the growing number of deadly pathogens, the future of medicine relies on scientific findings to combat multidrug-resistant bacteria. Appalachia could be the answer to combat this new health threat. As the most biodiverse temperate forest region in North America, our beautiful backyard in the Smoky Mountains contains a plethora of microorganisms that have become genetically diversified over billions of years. Many of these soil bacteria naturally produce their own antibiotics. With the wide variation of natural bacteria, Appalachia serves as a testing ground to harness the power of natural antibiotics. A gram of soil contains more than 10,000 different species of bacteria. The biodiversity of these microbes is largely unknown, as almost 99% of these species cannot be cultured in a normal lab setting. This pilot project will lay the foundations of discovering Appalachia's microbiota which has, thus far, never been cataloged.

Result – Figure 1

Nutrient Nutrient dilution dilution

enriched dilution dilution

Background

This pilot project encompasses traveling across the southern Appalachian region to collect soil samples, developing techniques to grow these unique microbes, as well as conducting biological assays of soil microbes to test for potential novel microbial interactions and antimicrobial properties with priority of discovering new treatments for human pathogens.

The purpose of this novel project is to find optimal growth conditions for soil bacteria in a laboratory setting. It will serve as a pilot study to eventually compare the difference between lab-grown cultures and the true diversity of microbes in soil through direct soil DNA extraction and sequencing.

After culturing soil bacteria, samples will be further analyzed in the laboratory to attempt to determine their diversity (microbial fingerprint) through 16S ribosomal RNA sequencing and tested for the presence of novel antimicrobial compounds. The main goals of this study are to 1) Characterize & catalogue the microbiome of the southern Appalachian Mountains; 2) Characterize the interactions of the microbiome in this unique region.

Results – Figure 2

		erium sp. HP3M KM187454.1 Len	Representative				
Range	1: 161	L to 667 GenBank	BLAST alignment				
Score 876 bit	ts(474)	Expect) 0.0	Identities 503/516(97%)	Gaps 9/516(1%)	Strand Plus/Pl	us	from the Nationa
Query	184	AAAGTATAGAGCATGC	GTCCTCATTAGTCTAGT	CTGGTAAGGTAACGGCAT	ACCAAGGCA	243	Center for
Sbjct	161	AAAG-AT-GAGCATGC	GTCC-CATTAG-CTAGT	-TGGTAAGGTAACGGCTT	ACCAAGGCA	215	Biotechnology
Query	244	ACGTATGGGTAGGGGT	CCTGAGAGGGAGATCCC	CCACACTGGTACTGAGAC	ACGGACCAG	303	Information's
Sbjct	216	ÁCG-ÁTGGGTÁGGGT	cctgagagggagatccc	ĊĊĂĊĂĊŦĠĠŦĂĊŦĠĂĠĂĊ	ACGGACCAG	274	
Query	304			ACAATGGGCGCAAGCCTG		363	database, indicat
5bjct	275			ACAATGGGCGCAAGCCTG		334	the genus of this
Query Sbjct	364 335		ACGGTCCTATGGATTGT/ 			423 394	bacteria is
Query	424			ATAAGGATCGGCTAACTC	CGTGCCAGC	483	Flavobacterium.
Sbjct	395					454	The16S region o
Query	484	AGCCGCGGTAATACGG	AGGATCCAAGCGTTATC	CGGAATCATTGGGTTTAA	AGGGTCCGT	543	Ŭ
5bjct	455	AGCCGCGGTAATACGG	AGGATCCAAGCGTTATC	LIIIIIIIIIIIIIIIIII CGGAATCATTGGGTTTAA	AGGGTCCGT	514	20 samples were
Query	544	AAGCGGTTTAGTAAGT	CAGTGGTGAAAGCCCAT	CGCTCAACGGTGGAACGG	CCATNGATA	603	amplified by PC
5bjct	515	AGGCGGTTTAGTAAGT	CAGTGGTGAAAGCCCAT	CGCTCAACGGTGGAACGG	CCATTGATA	574	and successful
Query	604	CTGCTGAACTTGAATT	ATTAGGAAGTAACTAGA	ATATGTAGTGTAGCGGTG	AAATGCTTA	663	samples were ser
Sbjct	575	CTGCTGAACTTGAATT	ATTAGGAAGTAACTAGA	ATATGTAGTGTAGCGGTG	AAATGĊŤŤÁ	634	*
Query	664						in for Sanger
Sbjct	635	GAGATTACATGG-AAT	ACCAATT-GCGAAGG-C	AGG 667			Sequencing.

Conclusion

• When culturing soil microbes, Soil Enriched Media (SEM) grew microbes in both greater numbers of microbes and the diversity of microbes present vs standard nutrient agar

Methods

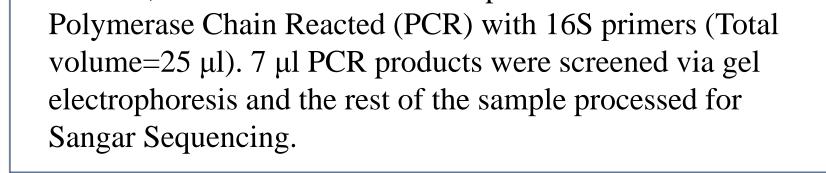
Topsoil was collected on different elevations and locations on Buffalo Mountain located in Johnson City, TN. Samples were then processed in the laboratory. First, 1 gram of soil was taken from each stock soil and put in individual test tubes. The original soil stocks were volumized to 50mL with phosphate-buffered solution (PBS) and vortexed to homogenize the mixture, then filtered to collect liquid nutrients excluding the bacteria.

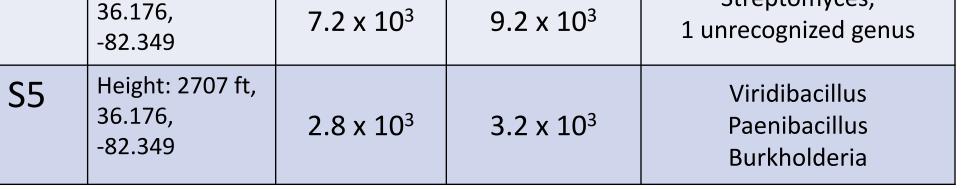
Filtered liquid nutrient from their respective tubes were mixed with nutrient agar in 1:10 ratios to create petri plates that are 90% agar and 10% soil nutrient.

To grow the soil microbes, 25mL of PBS was added to each 1g of soil and vortexed. After letting the soil settle, 100µL of the soil slurry was taken and plated on nutrient agar and 10% soil-enriched nutrient agar. These conditions allow the comparison of growth and whether infusing petri plates with native nutrients increased the diversity of laboratorygrown cultures.

Cultures were monitored over the next week to observe growth, diversity, and microbial interactions. Colonies were counted, and 2 colonies from each plate were used for

Results – Figure 3


	Coordinates	Nutrient Agar Colony	Soil-Infused Agar Colony	Sequenced Bacteria Data
		Count	Count	
S1	Height: 2271 ft, 36.278, -82.345	4.7 x 10 ³	6.7 x 10 ³	Pedobacter. Flavobacteriuam. 1 unrecognized genus
S2	Height: 2271, 36.278, -82.345	2.5 x 1.0 ³	1.5 x 10 ³	Flavobacterium
S3	Height 2520, 36.277 -82.352	3.5 x 10 ³	3.8 x 10 ³	Paraburkholderia, Chitinophaga
S4	Height: 2707 ft,			Streptomyces,


media

- The populations from each of the 5 sources of soil from Buffalo Mountain produced unique microbial populations and profiles specific to their location.
- 16S amplification by PCR directly from bacterial colonies grown on SEM proved to be a successful and efficient method as high quality DNA amplification was produced in both quantity and quality.
- Sequencing data in Figure 2 and 3 show that 16S sequencing allows a qualitative understanding of soil samples.

Acknowledgements

- Special thank you to the East Tennessee State University Honor's College for supplying the resources needed for this presentation
- Thank you to Johnson City Parks and Recreation for permission to collect sample from Buffalo Mountain.

