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PRINCIPAL SUBMATRICES, GEOMETRIC MULTIPLICITIES, AND
STRUCTURED EIGENVECTORS *

CHARLES R. JOHNSONf AND BRENDA K. KROSCHELf

Abstract. It is a straightforward matrix calculation that if A is an eigenvalue of A,x an

associated eigenvector and a the set of positions in which x has nonzero entries, then is also
an eigenvalue of the submatrix of A that lies in the rows and columns indexed by a. A converse

is presented that is the most general possible in terms of the data we use. Several corollaries are

obtained by applying the main result to normal and Hermitian matrices. These corollaries lead to

results concerning the case of equality in the interlacing inequalities for Hermitian matrices, and to
the problem of the relationship among eigenvalue multiplicities in various principal submatrices.

Key words, interlacing inequalities, geometric multiplicity, principal submatrix, structured
eigenvector

AMS subject classifications. 15A18, 15A57

For a C_ N -_- {1, 2,..., n} and A E Mn(F), denote the principal submatrix
of A lying in the rows and columns indexed by a as A[a] and the complementary
principal submatrix, resulting from the deletion of the rows and columns a, as A(a).
It is a straightforward partitioned matrix calculation that if A is an eigenvalue of A, x
an associated eigenvector, and a the set of positions in which x has entries not equal
to zero, then A is also an eigenvalue of A[a]. Converses to this statement are known
in certain special situations. For example, several people have recently noted that if
A e Mn(C) is nermitian, [a n- 1, and A R is an eigenvalue of both A and
A[a], i.e., a case of equality in the interlacing inequalities, then there is an eigenvector
x (Xl,X2,... ,Xn)T of A associated with ), such that if i a then xi 0. For a
general matrix A Mn(F) and A an eigenvalue of A with geometric multiplicity k,
the rank of A- AI is n- k. Then for lal > n- k the rank of A[a]- hi is at most
n- k and A is also an eigenvalue of A[a]. Moreover, it is implicit in the proof of
Theorem 1.4.9 in [HJ] that there is an eigenvector of A associated with all of whose
components indexed by ac are zero. It is our purpose here to give a converse to the
opening statement that is the most general possible in terms of the data we use. A
variety of statements, including those just mentioned, may then be easily recognized
as special cases.

The general converse, as well as some special cases, will be valid over a general field
F. For x Fn and a C_ N, let x[a] be the subvector of x containing the components
of x indexed by a, and let x(a) be the complementary subvector. For A Mn(F), let
o(A) denote the set of all eigenvalues of A, some of which may lie only in an extension
field of F, and for A E a(A), denote the geometric multiplicity of A in A by g,(A).

The most optimistic converse to the opening statement would be that if A is an
eigenvalue of both A and A[a], then there is an eigenvector x (of A associated with
A) in which all components of x(a) are zero. However, this is not always the case.

* Received by the editors April 21, 1994; accepted for publication (in revised form) by T. Ando,
July 22, 1994.
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8795. (kroschel(C)cs. urn. edu) The work of Dr. Johnson was supported, in part, by National Science
Foundation grant DMS-92-00899 and Office of Naval Research contract N00014-90-J-1739.
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Consider
0 0
0 1

1 0
o o

1 0
0 0

0 1
1 0

and the set ( (1, 2). This matrix has zero as an eigenvalue, as does AIr,I, but any
eigenvector of A associated with zero is of the form [a 0 0 -a IT. The converse
cannot, therefore, be as general as one might hope.

Before stating a converse that is as general as it can be, several definitions are
needed. The main result will be stated in terms of the dimensions of special subspaces,
of the left and right eigenspaces of a general matrix A associated with A, in which the
vectors have support among the components indexed by . These special subspaces
(of the eigenspaces) are defined as follows:

LE(A) (y e FnIyTA- ),yT, y()
RE(A) (x e FnlAx Ax, x() 0}.

Similarly, let LN(A) and RN(A) denote the left and right nullspaces of A and define
the special subspaces (of the nullspaces) LN(A) LE(A) and RN(A) RE(A).
It is clear that the dimensions of all these spaces are permutation similarity invari-
ant, and this fact will be exploited repeatedly without further mention. If x is an
eigenvector of A associated with A, then x is an eigenvector of A- AI associated with
the eigenvalue zero. For this reason, results concerning the special nullspaces underlie
observations concerning the special eigenspaces.

For contrast to the main result, we note some preliminary facts that indicate
circumstances under which both the left and right special subspaces are nonempty. It
is first observed that for general matrices, when the rank deficiency (the rank deficiency
of a matrix A is n- rank (A) go(A)) of a principal submatrix is sufficiently large,
then the dimensions of the left and right nullspaces are positive. Suppose that the
submatrix A[] is such that its rank deficiency is greater than the number of rows
or columns deleted from A to obtain A[]. That is, for Icl n- k, g0(A[]) > k. In
this case, the rank of A[a] is n k g0(A[a]) and the rank of A can be at most 2k
more than the rank of A[a]. But then the rank deficiency of A is at least g0(A[a])- k.
Since this number is positive, A is rank deficient and the left and right nullspaces of
A are both nonempty. The lemma below states that, in fact, the left and right special
nullspaces of A are both nonempty.

LEMMA 0. Let A E Mn(F) and let ( c_ N be such that I1 n- k.
(i) /f g0(A[a]) > k, then dim(nNa(A)), dim(RNa(A)) >_ g0(A[a])- k.
(ii) Let 0 <_ go <_ min{k, lal} be given. Then there is a matrix B such that

g0(B[a]) go and dim(nN,(B)) dim(RN(B)) O.
Proof. We assume, without loss of generality, that a {1, 2,..., n- k}. Then A

has the partitioned form

A___[ All A121A21 A2e

in which All A[a]. In this case, if x is in RN(A) it is of the form x [] in which
c Fn-k. Similarly, any vector yT LN(A) is of the form yT [IT 0] in which

F-.



1006 CHARLES R. JOHNSON AND BRENDA K. KROSCHEL

Transformation of A by an appropriate equivalence will not affect

go(A), go(A[a]) go(All),

or the form of the nullvectors of A; so, choose S, T E Mn-k(F) nonsingular matrices
such that

0 I A21 A22 0

0 0

I0]= 0 I

X1 X2 A22

in which the upper left zero block of . is go(A)-by-go(Al), [Y1lye. -n12, and

[X1 X2] A21T. Because of the identity block in ., a vector x in RN,(fi) must be
of the form

0

In addition, x must be in the right nullspace of the submatrix X. Conversely, for
every vector in the right nullspace of X, there is a vector of the form indicated above
in RN,(ft) and dim(Rg()) dim(RN(X1)). Moreover, any vector in RN(.)
corresponds to a vector in RN,(A) of the form

T
0

0 0 0

in which 2 T [1] E Fn-k. Therefore,

dim(RN(A)) dim(RN()) dim(RN(X1)).

By similar arguments for the left nullspace

dim(LN(A)) dim(LNa(ft)) dim(LN(Y)).

A second equivalence will zero out X2 and Y2:

(2)

o z o o

0 -X2 I X1 X

o o
o z o

Xl 0 A22

Y o z -Y

A2 0 0 I

Note that this equivalence does not change the form of the nullvectors discussed above
and the dimensional equalities still hold.
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Now, suppose that go(All) > k, as assumed in part (i) of the lemma. Since
and X1 are go (A11 )-by-k and k-by-g0(A11 ), respectively,

dim(LN(Y1)), dim(RN(X1)) >_ go(All)- k.

But, dim(LN(A)) dim(LN(Y1)) and dim(RN(A)) dim(RN(X1)), so that part
(i) of the lemma is verified.

For part (ii) consider the matrix

(3) B [Bll
o o o o
0 In-k-go 0 0

B 1B.2 Igo 0 * 0
0 0 0

in which Bll is (n- k)-by-(n- k) and g0(Bll) g0. For this matrix, 0 _< go _< k, but
there are no nonzero vectors in either LN(B) or RN(B), and part (ii) of the lemma
is also proved. F1

Replacement of A with A- AI in Lemma 0 gives the following.
THEOREM 0. Let A E Mn(F) and let a C_ N be such that [a[ n- k.
(i) If gx(A[a]) > k, then dim(LE(A)), dim(RE(A)) >_ gx(A[a])- k.
(ii) Let 0 <_ g <_ min{k, lal} be given. Then there is a matrix B such that

g(B[a]) g and dim(LE(B)) dim(RE(B)) O.
Statement (i) in Theorem 0 is best possible when left and right eigenspaces are

considered separately. By considering the left and right eigenspaces simultaneously,
one arrives at a general converse to the opening statement. This main result will first
be stated in terms of the special nullspaces.

LEMMA 1. Let A Mn(F); then for a c_ N with [hi n- k,
(i) dim(LN(A)) + dim(RN(A)) >_ go(A) + go(AIR]) k.
(ii) Let g and g such that 0 <_ g <_ n,O <_ g <_ [hi, and [g- g[ <_ k be given.

Then, if g + g k > 0 there is a matrix B such that go(B) g, go(B[a]) g and

dim(LN(B)) + dim(RN(B)) go(B) + go(B[a]) k.

If g + g k <_ O, then there is a matrix B, with the given parameters, such that

dim(LNa(B)) dim(RNa(B)) O.

Proof. Begin the proof of Lemma 1 by performing the equivalences in (1) and (2)
as in the proof of Lemma 0. The matrices Y1 and X1 are of order go(All)-by-k and
k-by-go(All), respectively. By basic linear algebra dim(LN(Y1)) g0(A11) rank(Y1)
and dim(RN(X1)) g0(A11) rank(X1). Addition of these two equations results in

(4) dim(LN(Y1)) + dim(RN(X1))= 2g0(All)- rank (Y1)- rank (Xl).

The equivalence transformations performed on A in the proof of Lemma 0 do not
change the rank of A and, since

0
rank

Xl
Y1 ] > rank (Y1) + rank (Xl),A22 j
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we have

[orank (A)= rank ()= rank (All)+ rank
Xl 222

_> rank (All) %. rank (Y1) + rank (X1).

Combining (5) and (4) results in

(6)
dim(RN(X1)) + dim(LN(Y1)) >_ 2g0(Al)- rank (A)+ rank (AI)

go(A) + go(A) k.

From the discussion in the proof of Lemma 0 dim(LN(A)) dim(LN(Y)) and
dim(RN(A)) dim(RN(X1)) so that

dim(LN(A)) + dim(RN(A)) dim(LN(Y)) + dim(RN(X))
>_ go(A) + 9o(Ax) k,

and part (i) of Lemma 1 is proved.
There are two cases to consider in proving part (ii) of Lemma 1. To begin, consider

the case in which g + ga k <_ O. Note that for this to be the case, g must be less
than or equal to k. For the matrix B in (3), if g go, then go(B) g and the
submatrix B22 is (k g)-by-(k ga). This submatrix can be chosen so that B has
rank deficiency, g, from 0 to k- g. Thus, B has the appropriate parameters, and, as
mentioned in the proof of Lemma 0, B has dim(LN(B)) dim(RN(B)) O.

For the case in which g + g k > 0, consider

0 0

X 0

The submatrices Y1 and X1 can independently be chosen to have rank from zero to
min(ga,k), inclusive, which gives B a rank deficiency, g, from Ig- kl to g + k,
inclusive. Now, note that in (5) if A22 0, then

rank(A) rank (All)%- rank (Ya)+ rank (Xl)

and there is equality in (6). Because B is of this form, the equality holds and
dim(LN(B)) %. dim(RNa(B)) go(B) + go(B) -k, which proves the
lemma. [1

Our main result, the proof of which follows from Lemma 1 by translation, is then:
THEOREM 1. Let A e Mn(F); then for a C_ N with I1 n k
(i) dim(nE(d)) + dim(RE(A)) >_ g(A) + g(A[a]) k.
(ii) Let g and ga such that 0 <_ g <_ n,O <_ ga <_ I(1, and Ig gal <_ k be given.

Then, if g + g k > 0 there is a matrix B such that g(B) g, g(B[a]) g and

dim(LE(B)) + din(RE(B)) g(B) + g(B[a]) k.

If g + 9 k <_ 0, then there exists a matrix B, with the given parameters, such that

dim(LE(B)) dim(RE(B)) O.
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In each of Lemmas 0 and 1 and Theorems 0 and 1, statement (ii) indicates that
statement (i) is best possible. The restrictions regarding a only avoid logical impos-
sibilities and, otherwise, all situations not covered by statenent (i) are covered in
statement (ii).

At this point we make two general observations that are direct consequences of
Theorem 1.

(i) If A E Mn(F) and Icl n- 1, then A E a(A)Na(A[]) if and only if there
is either a left or a right eigenvector of A (associated with A) whose cc

component is zero.
(ii) If A e Mn(F), e a(A) and C_ N with Icl n- k are such that

dim(nE(A)) dim(RE(A)), then each of

dim(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k
2

In this event, if g(A)+ g(A[a]) > k, then both dim(LE(A)) and
dim(RE(A)) are positive.

Note that statement (i) does not follow from Theorem 0 and that statement (i) cannot
be improved, as it may be that there is not both a left special eigenvector and a right
special eigenvector. For example,

1 -1 0]A= -1 1 0
0 -1 1

does not have the property assumed in (ii) for 0 a(A), and go(A) 1 g0(A[{ 1, 2}]).
Thus, as every right null vector of A is a multiple of (1, 1, 1)T, A has no special right
eigenvector associated with 0, while it, of course, has a left such eigenvector, e.g.,
(1, 1, 0), because of statement (i). Similarly, for many values of g(A) and g(A[a]),
the conclusion of (ii) does not follow from Theorem 0, and, for further values, the
estimates that follow from Theorem 0 are weaker. For example, the statement about
Hermitian matrices in the opening paragraph does not follow from Theorem 0.

We may now give several specific corollaries to Theorem 1. First, note that if
A Mn(C) is normal, then, as UAU* D, with U unitary and D diagonal, any left
eigenspace of A is the conjugate transpose of a right eigenspace. Thus, the hypothesis
of (ii) above is satisfied for each A and c. From this observation we can conclude the
following.

COROLLARY 1. Let A Mn(C) be a normal matrix. For a C_____ N with ial n- k

dlm(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k

Of course Hermitian matrices are normal so the following is a special case of Corol-
lary 1.

COROLLARY 2. Let A e Mn(C) be Hermitian. For C_ N with I1 n- k

dim(LE(A)) dim(RE(A)) > g(A) + g(A[a]) k
2

In the opening paragraph we mentioned that if A is Hermitian, A a(A)o(A[a]),
and lal n- 1, then there is an eigenvector x (of A associated with A) in which
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x(c) 0. But then g(A),g(A[a]) _> 1 which results in a positive right-hand side in
Corollary 2. In this case, both the left and the right special eigenspaces are nonempty,
which proves the following corollary.

COROLLARY 3. Let A E Mn(C) be Hermitian, let c c N be such that I1 n-1,
and let i R be an eigenvalue of A. Then, there is an eigenvector x of A associated
with such that x(() 0 if and only if e a(A[c]).
Thus, the general scheme adopted here provides an algebraic proof to the statement
in the opening paragraph.

In the case that A is Hermitian, the interlacing inequalities [HJ, Thm. 4.3.8] hold
and, since any principal submatrix of an Hermitian matrix is Hermitian, Corollary 3
may be applied at each "level" of interlacing. Sequential application of Corollary 3 will
lead to the corollaries below, but first several definitions are needed. For the following
discussion, let A Mn(C) be Hermitian. Suppose A is an eigenvalue of A, then A
is said to have interlacing equality at of breadth k if there are exactly k distinct
index sets al, o2,..., OZk

_
N in which lail n- 1 and A e a(A[ai]), 1, 2,..., k.

If A is such that g(A) 1, then the breadth of interlacing equality at A is just the
number of zero components in an eigenvector (because of Corollary 3). The matrix A
is said to have interlacing equality at A of depth k if/k G a(A[j]) for some index sets
/0, B1,... ,Bk C_ N such that/y+l C lj,j 0,1,... ,k- 1, Iijl n-j,j 0,1,... ,k
and k is a maximum. If, in addition, g(A[/y+l]) _> g(A[y]),j 0, 1,... ,k- 1, then
A is said to have interlacing equality at ) ofrestricted depth k. Here, k is the number
of principal submatrices in the nested sequence for which the geometric multiplicity
of/X is nondecreasing, so that the depth of interlacing equality may be greater than
the restricted depth. The following corollaries relate these concepts.

COROLLARY 4. Let A Mn(C) be Hermitian and be such that g(A) 1. If A
has interlacing equality at ) of breadth k, then A has interlacing equality at A of depth
at least k.

Proof. If A has interlacing equality at A of breadth k, then there are k distinct
principal submatrices d[ai] such that ,k e a(A[a]) and la[ n- 1. In this case,
g(A[ai]) _> 1 and, by assumption, g(A) 1. Thus, by Corollary 3, for each c
there is an eigenvector y of A associated with A, such that y(ai) 0. However, since
g(A) 1, the (right) eigenspace of A associated with A is one dimensional, so that
each of the y’s may be taken to be the same, x. It follows that x(cl N N ak) 0.
By the partitioned calculation mentioned in the opening paragraph /0 N, and

al .-. a, i 1,... ,k, exhibit that A has interlacing equality at A of depth
at least k. [:]

Corollary 4 is stated in the Hermitian case for parallelism to the corollaries that
follow. However, it should be noted that the argument is equally valid in the normal
case (using Corollary 1 in place of Corollary 3 with an obvious generalization of the
definitions), so that Corollary 4 may be generalized by replacing "Hermitian" in the
hypothesis with "normal." On the other hand, Corollary 4 is not valid for general
matrices, as exhibited by the example

1 1 1]1 1 1
0 1 1

in which 0 is an eigenvalue of breadth 2, while its depth is only 1.
The converse to Corollary 4 does not hold. A counterexample is given by the



STRUCTURED EIGENVECTORS 1011

matrix
0 0 1

110 0 1 1
1 1 1 1
1 1 1 0

which has interlacing equality at 0 of depth 3 (A({4}), A({3, 4}), A({2, 3, 4})), but
interlacing equality at 0 of breadth only 2 (A({3}),A({4})). However, the geometric
multiplicities of the principal submatrices that yield interlacing equality at 0 of depth
3 are

g0(A({4})) 1,

g0(A({3, 4})) 2,

g0(A({2, 3, 4})) 1.

In fact, the restricted depth of interlacing equality at 0 is only 2 and this is exactly
the breadth of interlacing equality at 0. As indicated in the following corollary, the
breadth of interlacing equality at A must be at least that of the restricted depth.

COROLLARY 5. Let A E Mn(C) be Hermitian and suppose a(A). If A has
interlacing equality at of restricted depth k, then A has interlacing equality at of
breadth at least k.

Proof. If g(A) > 1, the breadth at A is n (see discussion later, if necessary)
and the conclusion is automatically valid. Thus, we suppose g(A) 1. If A has
interlacing equMity at A of restricted depth k, then there is some nested sequence of
k + 1 principal submatrices A[/], such that I/1 n- i, e a(A[/]), i 0, 1,..., k,
and g(A[/i+l]) >_ g),(A[i]),i 0,1,...,k- 1. Assume, without loss of generality,
that the rows and columns of A[/i] are numbered 1 to n- i. Note that n- i is the
index of the row and column deleted from A[/] to obtain A[/i+l]. By Corollary 2

dimtL+1(AIr,l)) dimtRE,+l (AIr,l)) >
g(A[/]) + g(A[i+l]) 1

2
1

> (A[Z])

since g),(A[i]) <_ g(A[/i+l]). Both dimensions must be integral; so, the dimensions
of the special eigenspaces must both be at least g (A[/i]). Then, every (left and right)
eigenvector of A[/] associated with A is in the special (left and right) eigenspace and,
thus, component n of each of these vectors is 0.

Let x be an eigenvector (essentially unique) of A associated with A. Since

g(A) gx(A[0])= 1 and gx(A[l])>_ 1,

by Corollary 3, x(/) 0. By the preceding paragraph, if 1, then every eigenvector
of A[] associated with A, including X[l], has a zero in the n- 1 component. Thus,

0.
Continuing in this manner, for each 0, 1,..., k- 1, x[/] is an eigenvector of

A[] associated with A with a zero in the n- component so that

X(I n/. n... r"l/+1) x(/+:l.) O.

Then, x(k) 0 and for each j k,x({j}) is an eigenvector of A({j}) associated
with A. Thus, aj N- {n + 1- j},j 1,...,k, exhibits that A has interlacing
equality at of breadth at least k. 0
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Note that the breadth of interlacing equality can be strictly greater than the
restricted depth of interlacing equality. For example, the matrix

[ ]0 0 1
0 0 0
1 0 0

has interlacing equality at 0 of restricted depth 1, but the breadth of interlacing
equality at 0 is 2.

If the matrix A is such that g(A[a]) _< 1 for every index set c c_ N, and A
has interlacing equality at A of depth k, then A also has interlacing equality at A of
restricted depth k. In this case, by Corollary 5, A has interlacing equality at A of
breadth at least k. Combining Corollaries 4 and 5 then yields the following.

COROLLARY 6. Let A E Mn(C) be Hermitian and suppose for every index set
c C_ N that g(A[]) <_ 1 with g(A) 1. Then, A has interlacing equality at of
breadth k if and only if A has interlacing equality at ) of depth k.

Let A Mn(C) be Hermitian. Due to classical interlacing, when g(A) > 1,
q(A[(]) for any c C_ N such that I1- n- 1. In addition, when g(A) > 1 there is
for each such an eigenvector, z, of A associated with such that z() 0. This
may be seen in an elementary way by noting that, given any two linearly independent
eigenvectors x, y in the eigenspace, there is a linear combination with a zero in any
specified position. Such an A has interlacing equality at of breadth n, but may have
depth at A as little as 1. For example, the matrix

1 1 1]1 1 1
1 1 1

has interlacing equality at 0 of breadth 3, while the depth at 0 is only 1. Thus, the
assumption in Corollaries 4 and 6 that g(A) 1 is necessary.
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