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ELA

CONDITIONS FOR A TOTALLY POSITIVE COMPLETION IN THE

CASE OF A SYMMETRICALLY PLACED CYCLE∗

CHARLES R. JOHNSON† AND BRENDA K. KROSCHEL‡

Abstract. In earlier work, the labelled graphs G for which every combinatorially symmetric

totally nonnegative matrix, the graph of whose specified entries is G, has a totally nonnegative

completion were identified. For other graphs, additional conditions on the specified data must hold.

Here, necessary and sufficient conditions on the specified data, when G is a cycle, are given for both

the totally nonnegative and the totally positive completion problems.

Key words. Totally nonnegative matrices, Totally positive matrices, Partial matrix, Matrix

completion problem, Cycles.

AMS subject classifications. 15A48, 15A37.

1. Introduction. A matrix is totally positive (nonnegative) if all of its minors,

principal or otherwise, are positive (respectively, nonnegative). Totally positive (TP)

matrices and totally nonnegative (TN) matrices arise in a variety of applications

including splines, statistics, and dynamical systems. A partial matrix is a rectangular

array, in which some entries are specified while the remainder are free to be chosen

from a relevant set of possibilities. A completion of a partial matrix is a matrix that

results from some choice for the specified entries. A matrix completion problem asks

when is there a completion of a desired type? A partial matrix is called partial TN

(partial TP) if each of its fully specified minors is nonnegative (positive). Matrices

that are TN satisfy the inheritance property in that every submatrix of a TN matrix

is TN which gives the necessary condition that every fully specified submatrix of a

partial TN matrix must be TN in order for there to be a TN completion. Matrices

that are TP also satisfy the inheritance property.

For an n-by-n matrix A and index sets α, β ⊆ {1, 2, . . . , n}, let A[α|β] be the

submatrix of A lying in the rows indexed by α and the columns indexed by β. For

brevity let A[α] denote the principal submatrix of A whose rows and columns are

both indexed by α.
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The pattern of specified/unspecified entries in a partial matrix can be described

by a graph. For an n-by-n partial matrix A, the usual graph is G = (V,E) with

V = N = {1, 2, . . . , n} in which the edge {i, j} = ij is in E if and only if aij is

specified. Only combinatorially symmetric partial matrices, that is matrices in which

aji is specified if and only if aij is specified, are considered here. We also assume that

the diagonal entries are specified and nonzero. As a result we consider only undirected

graphs with loops omitted. A (simple) cycle is a sequence of vertices vi, vi+1, . . . , vk, vi

for which vjvj+1 ∈ E and vj 6= vt for j 6= t, and j, t = i, i + 1, . . . , k. Here, we are

interested in both the TN and the TP completion problems in the case in which

the specified entries form a symmetrically placed cycle and the diagonal entries are

specified and positive. An analogous situation in the positive definite case has been

studied in [1] and [2]. In the positive definite case, and this case as well, there must

be conditions, in addition to partial positive definiteness (TP or TN), on the data.

These obvious conditions, of course, are inherited by (partial) principal submatrices.

The graphs for which the inheritance property is sufficient to ensure the TN

(TP) completion of a partial TN (TP) matrix were identified in [8] in the TN case

and [9] in the TP case. Necessary additional conditions on the data for a number

of patterns not included in [8] and [9] are developed in [4]. As cycles are not among

any of these patterns, different conditions on the data are necessary to obtain a TN

(or TP) completion in the case of a cycle. Since TN matrices are not permutation

similarity invariant, the labeling of the cycle is important, unlike the positive definite

case. Here we concentrate upon the most natural labeling, in which the i, j entry is

specified when j = i − 1, i or, i + 1 (mod n), i = 1, 2, . . . , n. The general case of

an arbitrarily labeled cycle is more difficult, and is an open question both for TN

and TP completions. Since the diagonal entries are positive and the TN matrices are

invariant under multiplication by a diagonal matrix with positive diagonal entries, we

may suppose that our partial matrix appears as

A =



















1 s1 tn
t1 1 s2 ?

t2
. . .

. . .

?
. . .

. . . sn−1

sn tn−1 1



















. (1.1)

Note that TP matrices are TN and the above comments apply in the TP case as well.

We first develop necessary and sufficient conditions for a TN completion on a

cycle with natural labelling in Section 2. In Section 3, we develop conditions for a TP

completion in the case of a cycle with natural labelling. In this case, extra care must

be taken since many minors of the completion in the TN case are zero and this must

be avoided when finding a TP completion. This requires use of a different completion
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strategy, although the idea of building the completion by induction is similar to that

of the TN case. Some closing observations are made in Section 4.

2. The totally nonnegative cycle completion. We note that the initial ob-

servations of this section were also made in [10], along different lines, and in [3] (where

in particular, the interesting completion (2.3) is displayed and its implications given).

We first derive the necessity of the additional conditions for A to have a TN

completion. Of course, A is partial TN if and only if s1, . . . , sn ≥ 0, t1, . . . , tn ≥ 0

and siti ≤ 1, i = 1, . . . , n, which we assume throughout. Consider now an n-by-n

TN matrix B = (bij), with bii = 1, i = 1, . . . , n. Assume, for the moment, that

b23, . . . , bn−2,n−1 > 0. We show, by induction on n, that

b1n ≤ b12b23 · · · bn−1,n

(and note that only the nonnegativity of 2-by-2 minors is used in the proof). In case

n = 3, this is just the statement that the upper right 2-by-2 minor is nonnegative.

Now, suppose that n ≥ 4 and that we have the above statement valid when n is

replaced by any smaller value. In particular, we have

b2n ≤ b23b34 · · · bn−1,n

because the lower (n − 1)-by-(n − 1) submatrix is TN, and

b13 ≤ b12b23,

as the upper left 3-by-3 submatrix is TN. But, since B is TN, the 2-by-2 submatrix
[

b13 b1n

b23 b2n

]

has nonnegative determinant. Thus,

b1nb23 ≤ b13b2n ≤ b12b
2
23b34 · · · bn−1,n.

For b23 > 0, this implies the claimed inequality. If B is TN with positive diagonal,

then, for any j > i, if bij = 0 all entries above and/or to the right of bij are also 0.

Thus, if our temporary assumption about positivity of super-diagonal entries is false,

the desired inequality is still valid, as b1n = 0.

We conclude that, in order for A to have a TN completion, the additional condi-

tions

tn ≤ s1s2 · · · sn−1 (2.1)

and (by transposition)

sn ≤ t1t2 · · · tn−1 (2.2)
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are necessary.

We next verify the sufficiency of the above conditions, also by induction, beginning

with n = 4. When n = 4 our partial TN matrix may be written as

B =









1 s1 ? t4
t1 1 s2 ?

? t2 1 s3

s4 ? t3 1









.

If s1, t3 6= 0, then one completion that is TN is the following:

B̂ =











1 s1 s1s2 t4
t1 1 s2

t4
s1

s4

t3
t2 1 s3

s4 t2t3 t3 1











. (2.3)

The fact that this matrix is TN, given that the data meets the necessary conditions,

may be verified directly. For example, the {2, 3}, {1, 2} minor is nonnegative because

s4 ≤ t1t2t3. It is interesting that, even if the data were symmetric, this completion

would not (and could not) be. A symmetric partial TN matrix, whose graph is a

cycle, need not have a symmetric TN completion, even when the conditions for a TN

completion are met.

If either s1 (or t3) is zero, then the entries in row one (row four) to the right of

s1 (to the left of t3) must also be zero (see [5]). To complete the rest of the matrix,

transpose and use the completion strategy above.

For the induction step in the proof that the conditions are sufficient for completion

in the n-by-n case, we partition the partial matrix meeting the necessary conditions

into two overlapping blocks: the upper left 2-by-2 and the lower right (n−1)-by-(n−1).

Given a completion of the lower right, we then try to arrange that the entries outside

these blocks be what the monotonically labelled block-clique completion would have

been for these two blocks [8], i.e., the 1, j entry should equal the 1, 2 entry times the

2, j entry for j ≥ 3, and similarly for the first column. If this can be arranged, we

know from [8] that the result is TN (if the lower right block is). Choose the 2, n

entry as tn

s1

, and the n, 2 entry as sn

t1
. Then the lower right block meets the necessary

conditions and, thus, has a TN completion by induction. Now, note that in the 1, n

position tn = s1(
tn

s1

), and in the n, 1 position sn = t1(
sn

t1
). No other entries, after the

second, in the first row or column are specified. Thus, the above program may be

carried out. For example, to complete in case n = 5, given the completion for n = 4,
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the sequence of steps is as follows:

(1)















1 s1 ? ? t5
t1 1 s2 ? ?

? t2 1 s3 ?

? ? t3 1 s4

s5 ? ? t4 1















, (2)















1 s1 ? ? t5
t1 1 s2 ? t5

s1

? t2 1 s3 ?

? ? t3 1 s4

s5
s5

t1
? t4 1















,

(3)















1 s1 ? ? t5
t1 1 s2 s2s3

t5
s1

? t2 1 s3
t5

s1s2

? s5

t1t4
t3 1 s4

s5
s5

t1
t3t4 t4 1















, (4)















1 s1 s1s2 s1s2s3 t5
t1 1 s2 s2s3

t5
s1

t1t2 t2 1 s3
t5

s1s2

s5

t4

s5

t1t4
t3 1 s4

s5
s5

t1
t3t4 t4 1















.

This completes the proof and the general theorem is:

Theorem 2.1. Suppose that

A =



















a11 a12 a1n

a21 a22 a23 ?

a32

. . .
. . .

?
. . .

. . . an−1,n

an1 an,n−1 ann



















is a partial TN matrix with positive diagonal entries. Then A has a TN completion

if and only if:

a1na22 · · · an−1,n−1 ≤ a12a23 · · · an−1,n (2.4)

and

an1a22 · · · an−1,n−1 ≤ a21a32 · · · an,n−1. (2.5)

Proof. Left multiply A by diag(1/a11, . . . , 1/ann) and apply the above discus-

sion.

Note that the entries a11 and ann are unconstrained by (2.4) and (2.5) and if

either of these entries is unspecified they may be chosen as large as necessary to get

a partial TN matrix of the form in Theorem 2.1. However, if an interior diagonal is

unspecified, the values must be chosen to satisfy (2.4) and (2.5).
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3. The totally positive cycle completion. The completion used in [8] and the

completion used here for the symmetrically placed cycle both have several minors that

are zero. These completions are inherently TN and, although the same completions

can be used to complete a partial TP matrix, the resulting completion would then be

TN, not TP. As a result, a TP completion is more difficult to achieve.

In the case of a partial TP matrix, the graph of whose specified entries is a sym-

metrically placed cycle, as given in (1.1), the necessary conditions for a TP completion

are the same as in (2.1) and (2.2) with strict inequalities. That is,

tn < s1s2 · · · sn−1

and

sn < t1t2 · · · tn−1.

As in the TN case, we begin by finding a TP completion in the case of a partial TP

matrix, the graph of whose specified entries is a 4-cycle. To find a TP completion,

begin by using the same completion as in the TN case and scale the completed entries

pushing the minors away from zero as in Lemma 3.1.

Lemma 3.1. Let

A =









1 s1 ? t4
t1 1 s2 ?

? t2 1 s3

s4 ? t3 1









be partial TP. Then the matrix

Â =











1 s1 s1s2
1

r
t4

t1 1 s2
t4
s1

s
r

s4

t3

q

p
t2 1 s3

s4 t2t3
1

p
t3 1











with p, q, r, s > 1, t4 < s1s2s3, s4 < t1t2t3,

r2 < s < r2 + (αr − r2)
r − 1

r − s2t2
(3.1)

and

p2 < q < p2 + (βp − p2)
p − 1

p − s2t2
(3.2)

for α = s1s2s3

t4
and β = t1t2t3

s4

is TP.
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Proof. The choices for p, q, r, s ensure that all necessary 2-by-2 minors are pos-

itive. In order to check that a matrix is totally positive, one only needs to check

minors with consecutive rows and columns, and, in fact, by [6] only the initial minors

need to be checked. The given inequalities (along with TP conditions on specified

data) insure that all 2-by-2 minors as well as initial minors det(Â[1, 2, 3|2, 3, 4]) and

det(Â[2, 3, 4|1, 2, 3]) are positive.

The first inequality in (3.1) is from the {1, 2|3, 4} minor. To get the second

inequality in (3.1) note that

det(Â[1, 2, 3|2, 3, 4]) = s1

(

1 −
1

r

)(

s2s3 −
t4
s1

s

r

)

− t4(1 − s2t2)
( s

r2
− 1

)

.

This minor is positive if

(1 − s2t2)(s − r2) < (r − 1)(αr − s).

Rearranging terms gives

s(r − s2t2) < αr(r − 1) + r2(1 − s2t2)

= αr(r − 1) − r2(r − 1) + r2(r − s2t2)

= (αr − r2)(r − 1) + r2(r − s2t2)

or

s < (αr − r2)
r − 1

r − s2t2
+ r2. (3.3)

From positivity of the 2-by-2 minors we also have s < αr, but 1 > s2t2 gives r−1

r−s2t2
< 1

so that

(αr − r2)
r − 1

r − s2t2
+ r2 < αr

and the inequality in (3.3) is, therefore, the more restrictive leading to the second

inequality in (3.1). The inequalities in (3.2) are verified similarly.

The {1, 2, 3} principal minor and the determinant must also be checked for pos-

itivity. We will first verify that det(Â[1, 2, 3]) > 0. Note that the {1, 2, 3} principal

minor in the TN completion in (2.3) is (1 − s1t1)(1 − s2t2) and is positive since the

two factors come from minors of fully specified 2-by-2 submatrices. Using Sylvester’s

determinantal inequality (which we use several times hereafter), this gives

1 >
−s1t1s2t2

1 − s1t1 − s2t2
. (3.4)

The {1, 2, 3} principal minor of Â is

det(Â[1, 2, 3]) = 1 + t1t2s1s2

1

r
− s1t1 − s2t2 + s1s2

s4q

t3p

(

1 −
1

r

)

.
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Since the last term is positive (r > 1) this minor is positive if

1 + t1t2s1s2

1

r
− s1t1 − s2t2 > 0.

That is, if

r >
−s1t1s2t2

1 − s1t1 − s2t2
,

which is the case by (3.4) and r > 1.

In order for the determinant of Â to be positive we must show (again by Sylvester)

det(Â) = 1

1−s2t2

[

(1 − s1t1)(1 − s2t2) − s1s2

(

1 − 1

r

)

(

t1t2 −
s4

t3

q

p

)]

∗
[

(1 − s2t2)(1 − s3t3) − t2t3

(

1 − 1

p

) (

s2s3 −
t4
s1

s
r

)]

−
[(

1 − 1

p

) (

t1t2t3 − s4
q

p

)

− s4

(

q

p2 − 1
)

(1 − s2t2)
]

∗
[(

1 − 1

r

) (

s1s2s3 − t4
s
r

)

−
(

s
r2 − 1

)

(1 − s2t2)
]

> 0.

By (3.1) and (3.2), s, q → 1 as r, p → 1+ and then det(Â) → det(B̂) = (1− s1t1)(1−

s2t2)(1 − s3t3) > 0. Therefore, p, q, r, s can be chosen close enough to 1, while still

satisfying the constraints, so that Â is a TP completion of A.

We now have a TP completion of the 4-by-4 partial TP matrix, the graph of

whose specified entries is a cycle. This is the base case for the induction in the proof

of the n-by-n case. For an n-by-n TP matrix A, it is easy to append a row (or column)

bT to A and get an (n + 1)-by-n TP matrix

Â =

[

bT

A

]

.

For the induction step in the proof of the TP cycle completion in the general case we

prepend the completed (n−1)-by-(n−1) submatrix with a row along the top, but the

first and last entries of that row must be specified. That n-by-(n − 1) matrix is then

prepended with a column on the left to get a TP completion. The following lemma

shows how to add a row to a TP matrix while maintaining the specified data in the

first and last positions of the row.

Lemma 3.2. Let the n-by-n matrix A = (aij) be TP and let b1a1n > a11bn. The

partial TP matrix

B =

[

b1 ? · · · ? bn

A

]
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has a TP completion.

Proof. Consider the matrix

[

b′1 b′2 · · · b′n−1 bn

A

]

(3.5)

in which the first row is proportional to the first row of A. The matrix in (3.5) is TN.

Now, raise b′1 to b1 to get the TN matrix

C ′ =

[

b1 b′2 · · · b′n−1 bn

A

]

in which all minors involving the first row and column are positive (as are all minors

not involving the first and second rows). Then C ′ is a TN completion of B.

Now consider the entries b′2, . . . , b
′

n−1. Increasing b′2 will decrease minors that

involve the first row and first and second columns of C ′, but these minors are all

positive. On the other hand, increasing b′2 will increase minors that involve the first

row and second column (but not the first column). These minors are all positive or 0.

So, the net effect of increasing b′2 is that some 0 minors will increase and some positive

minors will decrease. Choose β2 > b′2 so that no positive minor becomes nonpositive.

The process can be continued by next considering b′3 followed by b′4, etc. At each

step, the entry b′i can be increased to βi, i = 3, . . . , n−1 in such a way that no positive

minor becomes nonpositive and all zero minors involving that entry become positive.

This process results in the matrix

B̂ =

[

b1 β2 · · · βn−1 bn

A

]

which is a TP completion of B.

Lemma 3.2 is used to prove the following:

Lemma 3.3. Let A be an (n− 1)-by-(n− 1) TP matrix. Then, the n-by-n partial

TP matrix

G =





















1 b2 ? · · · ? bn

c2

?
... A

?

cn





















has a TP completion.
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Proof. Begin by completing the first row of
[

b2 ? · · · ? bn

A

]

using the claim of Lemma 3.2 to obtain

B =

[

b2 β2 · · · βn−1 bn

A

]

.

It is easily verified that

C =





















1

c2

? B
...

?

cn





















is partial TP.

A TP completion of C can be found using the same bordering technique as in

the proof of Lemma 3.2. Begin by bordering B in the left side with a column that is

a cn

an−1,1
times the first column of B. By using this multiple we obtain cn in the n, 1

entry, resulting in the TN matrix
















c′1 b2 β3 · · · βn−1 bn

c′2
... A

c′n−1

cn

















(3.6)

in which all minors involving the first and second columns are zero and minors not

involving both columns are positive. The 1, 1 entry of the matrix in (3.6) is c′1 = b2cn

an−1,1

which is less than 1. Increasing this entry to 1 increases any minors involving the first

row and column. Thus, all principal minors (including the determinant) are positive.

Next, we need to increase c′2 to c2 while maintaining nonnegativity of all minors

and ensuring that no positive minors become nonpositive. That is, we have to check

that the matrix

C ′ =





















1 b2 β3 · · · βn−1 bn

c2

c′3
... A

c′n−1

cn
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remains TN. We only need to check minors that include rows 1 and 2 and column 1.

The affected minors not containing row 1 will only increase since c2 will be in the 1,1

position of the submatrix.

Let xT = (b2, β3, . . . , βn−1, bn) and yT = (c2, c
′

3, . . . , c
′

n−1, cn) and let σ, τ ⊆ N =

{1, 2, . . . , n} be such that |σ| = |τ | = k, 1, 2 ∈ σ, 1 ∈ τ . If W = C ′ [σ|τ ], and if xτ ,

yσ, and H are the submatrices of x, y, and A, respectively, that are conformal with

C ′ [σ|τ ] then

W =

[

1 xT
τ

yσ H

]

.

Using the up-column elimination described in [7] (that preserves TN) to annihilate

the entries below the 1,1 entry of W we see that the determinant of W is

det W = det











1 xT
τ

0
... H̃

0











= det H̃.

There are two cases to consider when finding det H̃. If τ2 = 2, then, since the affected

entries of the first column of C ′ are a multiple of the first column of A the above

elimination gives

H̃ =











1 a1,τ3
− c2xτ3

· · · a1,τk
− c2xτk

0
... H̃(1)

0











and detW = det(H̃(1)) which equals the determinant of the corresponding submatrix

of A. Since A is TP, this determinant is positive.

The more subtle case is that in which τ2 6= 2. In this case, the submatrix H̃ has

the form

H̃ =

[

a1,τ2
− c2xτ2

· · · a1,τk
− c2xτk

H̃1

]

in which H̃1 is H̃ with the first row deleted. Then, by linearity of the determinant

det H̃ = detH − c2 det

[

xτ2
· · · xτk

H̃1

]

= detH − c2 det H̃x,

in which H̃x =

[

xτ2
· · · xτk

H̃1

]

.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 125-137, February 2011



ELA

136 C.R. Johnson and B.K. Kroschel

The determinant of W is positive if c2 < det H

det H̃x

. From the original partial matrix

we have that 1 − b2c2 > 0 so that 1/b2 > c2. We will show that 1/b2 < det H

det H̃x

and,

thus detW > 0. If τ is changed to τ̂ so that 1 /∈ τ̂ and τ̂1 = 2, then C ′[σ|τ̂ ] is

C ′[σ|τ̂ ] =











b2 xT
τ̂

aσ2,1

... H

aσk,1











which is a submatrix of the TP matrix B and, therefore, has positive determinant.

The same step of elimination that created zeros in the first column of W also creates

zeros in the first column of C ′[σ|τ̂ ] below the 1,1 entry. The matrix H is then reduced

to
[

a1,τ2
−

xτ2

b2
· · · a1,τk

−
xτk

b2

H̃1

]

and 0 < det C ′[σ|τ̂ ] = b2 det H̃ − det H̃x so that 1/b2 < det H

det H̃x

. Therefore, C ′ remains

TN when c′2 is raised to c2 (and keeps the determinant positive).

The same argument applied the bj ’s in the proof of Lemma 3.2 can be applied to

the ci’s in the first column of C ′ sequentially raising each ci to γi resulting in a TP

completion of the partial TP matrix G.

These TP lemmas allow us to state and prove the TP cycle completion result in

the same manner as the proof in the TN case. The main result is:

Theorem 3.4. Suppose that

A =



















a11 a12 a1n

a21 a22 a23 ?

a32

. . .
. . .

?
. . .

. . . an−1,n

an1 an,n−1 ann



















is a partial TP matrix. Then A has a TP completion if and only if:

a1na22 · · · an−1,n−1 < a12a23 · · · an−1,n

and

an1a22 · · · an−1,n−1 < a21a32 · · · an,n−1.
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4. Additional comments. By a monotonically labelled block (MLB) graph G,

we mean one that can be decomposed into k induced subgraphs G1, G2, . . . , Gk in

which the maximum label in Gi is the minimum label of Gi+1, i = 1, 2, . . . , k − 1, the

vertex set of Gi intersects that of Gj if and only if j = i + 1 and then in exactly

one vertex, and there are no edges between vertices of one subgraph and those of

another. (Thus, the vertex of intersection of Gi and Gi+1 is a cut vertex of G.) We

note that a partial TN or TP matrix, the graph of whose specified entries is a MLB

graph of G has a TN completion, respectively a TP completion, if and only if the

principal submatrix associated with each block Gi has the appropriate completion

(based upon the results of [8] in the TN case and [9] in the TP case). Now, if each

block is either a clique or a properly labelled cycle, we have complete conditions for

TN or TP completability.

REFERENCES

[1] W. Barrett, C.R. Johnson, and R. Loewy. The real positive definite completion problem: cycle

completability. Mem. Amer. Math. Soc., 122 (584), 1996.

[2] W. Barrett, C.R. Johnson, and P. Tarazaga. The real positive definite completion problem for

a simple cycle. Linear Algebra Appl., 192:3–31, 1993.

[3] E. Dryden and C.R. Johnson. Totally Nonnegative Completions. Research Experiences for

Undergraduates Research Publications of the College of William and Mary, Summer 1997.

Reported to NSF in Summer 1997 by C.R. Johnson, advising Emily Dryden. Supported

by National Science Foundation grant DMS 96-19577.

[4] E. Dryden, C.R. Johnson, and B.K. Kroschel. Adjacent edge conditions for the totally non-

negative completion problem. Linear Multilinear Algebra, 56:261–277, 2008.

[5] S. Fallat and C.R. Johnson. Totally Nonnegative Matrices. Princeton University Press, Prince-

ton, to appear.

[6] S. Fomin and A. Zelevinsky. Total positivity: Tests and parametrizations. Math. Intelligencer,

22:23–33, 2000.

[7] M. Gasca and J.M. Peña. On factorizations of totally positive matrices. Math. Appl., Kluwer

Academic, Dordrecht, The Netherlands, 359:109–130, 1996.

[8] C.R. Johnson, B.K. Kroschel, and M. Lundquist. The totally nonnegative completion problem.

Topics in Semidefinite and Interior-point Methods, Fields Inst. Commun., Amer. Math.

Soc., Providence, 18:97-107, 1998.

[9] C.R. Johnson and C. Negron. Totally positive completions for monotonically labeled block

clique graphs. Electron. J. Linear Algebra, 18:146–161, 2009.

[10] C. Jordan and J.R. Torregrosa. The totally positive completion problem. Linear Algebra Appl.,

393:259–274, 2004.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 125-137, February 2011


	Conditions for a totally positive completion in the case of a symmetrically placed cycle
	Recommended Citation

	tmp.1644963170.pdf.TO0HH

