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Abstract:The zero forcingnumber of a graphhasbeenapplied to communication complexity, electrical power
grid monitoring, and some inverse eigenvalue problems. It is well-known that the zero forcing number of a
graph provides a lower bound on the minimum rank of a graph. In this paper we bound and characterize
the zero forcing number of various circulant graphs, including families of bipartite circulants, as well as all
cubic circulants. We extend the de�nition of the Möbius ladder to a type of torus product to obtain bounds
on the minimum rank and the maximum nullity on these products. We obtain equality for torus products by
employing orthogonal Hankel matrices. In fact, in every circulant graph for which we have determined these
numbers, the maximum nullity equals the zero forcing number. It is an open question whether this holds for
all circulant graphs.

Keywords: zero forcing, minimum rank, maximum nullity, circulant graph, bipartite graph, graph product.

MSC: 05C50, 05C75, 05C76, 15A03

1 Introduction
Let G be a simple �nite graph with vertex set V(G) and edge set E(G). Suppose in the graph G some vertices
are �lled and some are un�lled. The �lling rule is as follows: if a vertex v ∈ V(G) is �lled and has exactly one
un�lled neighbor,w, then vertex v forcesw to be �lled, and v is referred to as a forcing vertex. Given F ⊆ V(G),
the �nal �lling of F is the set of �lled vertices obtained by initially �lling the vertices of F and leaving every
vertex in V(G) \ F un�lled and applying the �lling rule until no more vertices can be �lled. The set F is called
a zero forcing set if the �nal �lling of F is V(G). The terminology of zero forcing arose in the context of forcing
entries of a null vector to be zero as �rst described in [2]. An example of a zero forcing set is given in Figure 1.

In various applications, it is of interest to �nd the cardinality of a smallest zero forcing set in G (which
always exists since V(G) is a trivial zero forcing set). The zero forcing number of G, denoted Z(G), is the mini-
mum cardinality of a zero forcing set for a graph G. Determining Z(G) is NP-hard [1] in general, but has been
calculated for some well-known classes of graphs (see, for example, [2, 14, 16]). Variations of zero forcing
have been useful in communication complexity, quantum mechanics, electrical network monitoring, and
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G1 G2

Figure 1: The �lled vertices are a zero forcing set in G1 but not in G2.

some inverse eigenvalue problems (see [5, 14] for references). The zero forcing number originated in [2] as
a technique to �nd a bound on the minimum rank of a symmetric matrix associated with a graph. Let S(G)
denote the set of symmetric matrices over R whose graph is G. In particular, if G is a graph with vertices
v0, v1, . . . , vn−1, then A ∈ S(G) if A is a real symmetric matrix such that for i ≠ j, A

ij
≠ 0 if and only if v

i

is adjacent to v
j
in G. Note that if A ∈ S(G), then there is no restriction on the diagonal entries of A. Let

M(G) = max{nullity(A) | A ∈ S(G)}. It was demonstrated in [2] that Z(G) provides an upper bound on M(G).

Theorem 1.1. [2] Let G be a graph and let F ⊂ V(G) be a zero forcing set of G. Then M(G) ≤ |F|, and thus

M(G) ≤ Z(G).

Recentwork [3] describes families of graphs forwhich equality holds in Theorem 1.1, that is, families of graphs
G with M(G) = Z(G). If we let mr(G) = min{rank(A) | A ∈ S(G)}, then the rank theorem tells us that mr(G) +
M(G) = n. Hence Theorem 1.1 demonstrates that zero forcing can provide a lower bound on the minimum
rank of any symmetric matrix associated with a graph.

Before going forward, we state some known facts about zero forcing, which can be found in [2].

Lemma 1.2. [2]

1. For any k-regular graph G, Z(G) ≥ k.
2. For n > 1, M(K

n
) = Z(K

n
) = n − 1.

3. For n ≥ 3, Z(C
n
) = M(C

n
) = 2.

4. For n ≥ 5, Z(C
n
) = M(C

n
) = n − 3, where G denotes the complement of the graph G.

5. For disjoint graphs G and H, Z(G ∪ H) = Z(G) + Z(H).
6. For the Cartesian product of graphs G and H, Z(G � H) ≤ min{|V(H)|Z(G), |V(G)|Z(H)}.
7. For m ≥ 2, M(K2 � C

m
) = Z(K2 � C

m
) = min{m, 4}.

In this paper we explore the zero forcing number for various classes of circulant graphs. Section 2 de�nes
circulant graphs and reviews some of their properties. In addition, we extend Deaett and Meyer’s results
on consecutive circulants [10]. The maximum nullity and zero forcing number of circulant graphs that are
bipartite is explored in Section 3. For every bipartite circulant G considered in this section, Z(G) = M(G).
Section 4 introduces the torus product of a graph, noting that certain circulant graphs can be viewed as a
torus product. The section explores the zero forcing number and maximum nullity for several cases of torus
products. The Möbius ladder is a special case of a torus product. We note that for many circulant graphs G
which are torus products, the numbers Z(G) andM(G) are again equal, but there are still cases for which this
is an open question. In Section 5, we show that all cubic circulant graphs G, Z(G) = M(G), and we compute
this value.

2 Properties of circulant graphs
We recall some of the properties of circulant graphs, and derive some basic results on the zero forcing number
and minimum rank for this family. For standard graph theory terminology, see [21].

Given an integer n ≥ 1 and a subset S ⊆ {1, 2, . . . , b n2 c}, a circulant graph G = C
n
(S) is a graph with

vertex set V(G) = {v0, v1, . . . , vn−1} and edge set E(G) = {{v
i
, v
i+j} | i ∈ {0, . . . , n−1} and j ∈ S}, taking sub-
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scripts modulo n. Note that if S = {s1, . . . , st}, then we will abuse notation and write C
n
(s1, . . . , st) instead

of C
n
({s1, . . . , st}). Furthermore, we assume that s1 < s2 < · · · < s

t
. Some examples of circulant graphs are

given in Figures 2 and 3.

v0

v7

v2

v9

v4

v11

v6

v13

v8

v1

v10

v3

v12

v5

Figure 2: The graph C14(2, 7) ∼= K2 � C7 (see Section 4) with a zero forcing set.

Figure 3: The circulant graphs C12(1, 3), C12(1, 2, 4) and C12(1, 4, 6).

Since circulant graphs are vertex transitive, they are regular graphs. In particular, if G = C
n
(s1, . . . , st),

then G is (2t − 1)-regular if 2s
t
= n, and 2t-regular otherwise. Combining this observation with Lemma 1.2(1)

gives a lower bound on the zero forcing number of a circulant graph:

Theorem 2.1. Suppose G = C
n
(s1, . . . , st). If 2st = n, then Z(G) ≥ 2t − 1. If 2st ≠ n, then Z(G) ≥ 2t.

Not every circulant graph is a connected graph (see Figure 4). The connected circulant graphs were charac-
terized by Boesch and Tindell [6]; in the statement below, wewrite gG to denote g disjoint copies of the graph
G.

Theorem 2.2. [6] If G = C
n
(s1, s2, . . . , st), then G is connected if and only if gcd(n, s1, s2, . . . , st) = 1. If

gcd(s1, s2, . . . , st , n) = g, then Cn(s1, s2, . . . , st) ∼= gC n

g

(
s1
g

, s2
g

, . . . , st
g

)
.

Figure 4: The disconnected circulant graphs C8(2, 4) ∼= 2K4 = K4 ∪ K4, and C14(2, 6) ∼= 2C7(1, 3).

Using the function f : Z
n
→ Z

n
, de�ned by f (x) = kx, Muzychuk [19] proved the following graph isomor-

phism between circulant graphs.
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Lemma 2.3. [19] If n > 1 and gcd(k, n) = 1, then C
n
(s1, s2, . . . , st) ∼= Cn({ks1, ks2, . . . , kst}).¹

As an example of Lemma 2.3, if n = 7 and k = 3, then C7(1, 3) ∼= C7(2, 3). Likewise, taking n = 7 and k = 5
gives C7(1, 3) ∼= C7(1, 2).

As noted in the introduction, the zero forcing number (and minimum rank) of a number of families of
graphs are known. Some of these families (e.g., complete graphs, cycles) are special cases of circulant graphs.
The next theorem summarizes some of these known results.

Theorem 2.4. Let G = C
n
(S) be a circulant graph.

1. If S = {j} and gcd(n, j) = 1, then Z(G) = M(G) = 2.
2. If S = {1, . . . , b n2 c} \ {j}, gcd(n, j) = 1, and n ≥ 5, then Z(G) = M(G) = n − 3.
3. If S = {1, 2, . . . , b n2 c}, then Z(G) = M(G) = n − 1.

Proof. (1) The circulant graph C
n
(1) ∼= Cn, the n-cycle. By Lemma 2.3, C

n
(j) ∼= Cn(1). The result then follows

from Lemma 1.2(3).
(2) The graph C

n
(2, . . . , b n2 c) is the complement of C

n
(1) ∼= C

n
. If follows by Lemma 2.3, that if S =

{1, . . . , b n2 c} \ {j} and gcd(n, j) = 1, then G ∼= Cn. Now apply Lemma 1.2(4).
(3) Under this hypothesis, G ∼= Kn; the conclusion follows from Lemma 1.2(2).

Given n ≥ 1 and 1 ≤ d ≤ b n2 c, the graphs C
n
(1, 2, . . . , d) are known as consecutive circulant graphs (e.g., see

Figure 5). Deaett and Meyer [10] determined the zero forcing number and maximum nullity of consecutive
circulants.

Figure 5: The consecutive circulants C8(1), C8(1, 2), C8(1, 2, 3), and C8(1, 2, 3, 4).

Theorem 2.5. [10, Theorems 5.4 and 5.7] If G = C
n
(1, 2, . . . , d), 1 ≤ d ≤ b n2 c, then M(G) = Z(G) = 2d.

By combining the above result with Lemma 2.3, one can determine Z(G) andM(G) for some other families of
circulant graphs:

Corollary 2.6. Suppose G = C
n
(s, 2s, 3s, . . . , ts) for 1 < ts < n

2 .

1. If gcd(n, s) = s, then M(G) = Z(G) = 2st.
2. If gcd(n, s) = 1, then M(G) = Z(G) = 2t.

Proof. (1) If s = 1, then the result holds by Theorem 2.5. Suppose gcd(n, s) = s ≠ 1. By Theorem 2.2, since
gcd(n, s, 2s, . . . , ts) ≠ 1, the graph G is disconnected. In particular, G ∼= sH with H = C n

s

(1, 2, 3, . . . , t). By
Theorem 2.5 M(H) = Z(H) = 2t, so the result follows from Lemma 1.2(5).

(2) By Lemma 2.3, C
n
(s, 2s, . . . , ts) ∼= Cn(1, 2, . . . , t). Now apply Theorem 2.5.

1 with the notational understanding that each product is reduced modulo n and each reduced product m is replaced by n − m if
m > n

2 .
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3 Families of bipartite circulants
In this section, we determine the zero forcing number and minimum rank of some families of bipartite circu-
lant graphs using the work of Meyer [18]. Note that Meyer investigates the family of bipartite graphs whose
biadjacency matrix is a circulant matrix. These graphs are sometimes called generalized bipartite circulants,

although in [18], for expediency, they are simply called bipartite circulants. This usage is di�erent than our
usage of the term bipartite circulant graph. More precisely, a bipartite circulant (as used in this paper) is a
circulant graph which is bipartite. In particular, the family of bipartite circulants is a subclass of the gener-
alized bipartite circulants, the family of graphs studied in [18]. The reader should be aware of the two usages
when consulting [18].

Our starting point is the following characterization of bipartite graphs due to Heuberger.

Theorem 3.1. [15, Theorem 1] Let G = C
n
(s1, . . . , st) be a connected circulant. Then G is bipartite if and only

if n is even and s1, . . . , st are odd.

Note that partitioning the vertices of a bipartite circulant into parts based on the parity of their index will
provide a bipartition of the vertex set. Two bipartite circulant graphs are given in Figure 6.

,

Figure 6: The bipartite circulant graphs C8(1, 3) ∼= K4,4 and C10(1, 5)

Following Meyers [18], we can represent a bipartite circulant graph using its biadjacency matrix. Recall
that if G is a biparitite graph with bipartition V1 ∪ V2 and m = |V1| and n = |V2|, then we can represent G
by the m × n matrix A where A

ij
is 1 if there is an edge between vertex v

i
∈ V1 and vertex v

j
∈ V2, and 0

otherwise. The matrix A is the biadjacency matrix of G.
The next lemma describes how to represent the biadjacency matrix of a bipartite circulant graph. Below,

P denotes the n × n permutation matrix corresponding to the n cycle (123 · · · n). Note that Pn = P0 = I
n
and

P

a = Pb if a ≡ b (mod n).

Lemma 3.2. Let G = C2n(s1, . . . , st) be a bipartite circulant graph.

(1) If s
t
≠ n, then the biadjacency matrix of G is

P

s1−1
2 + P

s2−1
2 + · · · + P

s
t
−1
2 + Pn−

s
t
+1
2 + · · · + Pn−

s2+1
2 + Pn−

s1+1
2 .

(2) If s
t
= n, then the biadjacency matrix of G is

P

s1−1
2 + P

s2−1
2 + · · · + P

s
t
−1
2 =n− st+12 + · · · + Pn−

s2+1
2 + Pn−

s1+1
2 .

Proof. This result is implicit in the proof of [18, Theorem 2.2]. In particular, it is shown that if s ∈ S, then s
contributes the matrices P s−1

2 and P− s+12 to the biadjacency matrix of C2n(S) (there is a typo in [18] where the
author has an n instead of an s). Note that P− s+12 = Pn− s+12 . The result now follows by noting that if s

t
≠ n, then

each s
i
∈ S gives two distinct matrices, but when s

t
= n, the two matrices P

s
t
−1
2 and P−

s
t
+1
2 = Pn−

s
t
+1
2 are the

same matrix.
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Remark 3.3. Note that in Lemma 3.2, the exponents of the matrices P satisfy
s1 − 1
2 < s2 − 12 < · · · < st − 12 ≤ n − st + 12 < n − st−1 + 12 < · · · < n − s1 + 12 .

We recall two further results from Meyer’s paper [18]; we have specialized his results to bipartite circulant
graphs of the form C2n(S).

Lemma 3.4. [18, Theorem 2.4] Suppose that G = C2n(S) is a connected bipartite circulant graph with biadja-

cency matrix P

i1 + · · · + Pir . Then for each unit a ∈ Z/nZ and element b ∈ Z/nZ, the graph G is isomorphic to

the graph with biadjacency matrix P

ai1+b + · · · + Pair+b where the exponents are computed modulo n.

Theorem 3.5. [18, Corollary 3.5] Suppose that G = C2n(S) is a connected bipartite circulant graph with biadja-

cency matrix P

0 + P1 + P2 + · · · + Pt, with t ≤ n − 1. Then M(G) = Z(G) = 2t.

We now come to the main results of this section.

Theorem 3.6. Fix n, ` ∈ N with ` ≥ 1 and n ≥ 2` + 2.

(1) If n is odd and G = C2n(n − 2`, n − 2` + 2, . . . , n − 2, n), then M(G) = Z(G) = 4`.
(2) If n is even and G = C2n(n − 2` − 1, n − 2` + 1, . . . , n − 3, n − 1), then M(G) = Z(G) = 4` + 2.

Proof. (1) Set k = n−1
2 . Then by Lemma 3.2(2), the biadjacency matrix of G has the form

P

k−` + Pk−`+1 + · · · + Pk + Pk+1 + · · · + Pk+`.

Let b = k − `. Then by Lemma 3.4, G is isomorphic to the graph with biadjacency matrix

P

k−`−b=0 + P1 + P2 + · · · + Pk+`−b .

Since k + ` − b = 2`, by Theorem 3.5 we get M(G) = Z(G) = 4`.
The proof of (2) is similar. Let k = n−2

2 . By Lemma 3.2, the biadjacency matrix of G has the form

P

k−` + Pk−`+1 + · · · + Pk + Pk+1 + · · · + Pk+`+1.

Using Theorem 3.4, this graph is isomorphic to the graph with biadjacency matrix

P

0 + P1 + · · · + Pk+`+1−k+`.

So, Theorem 3.5 gives us the conclusion M(G) = Z(G) = 2(2` + 1) = 4` + 2.

For our last result, we require the following result about complete bipartite graphs.

Theorem 3.7. Fix n, ` ∈ N with n > 1, ` ≥ 1, and n ≥ 2` − 1.

1. If 2` − 1 ≤ n − 1 and G = C2n(1, 3, . . . , 2` − 1), then M(G) = Z(G) = 4` − 2.
2. If 2` − 1 = n and G = C2n(1, 3, . . . , 2` − 1), then M(G) = Z(G) = 4` − 4.

Proof. The proof of both statements are similar to the proof of Theorem 3.6.
(1) By Lemma 3.2, the biadjacency matrix of G has the form

P

0 + P1 + · · · + P`−1 + Pn−` + · · · + Pn−1.

Adding ` to each exponent, by Lemma 3.4, the graph G is isomorphic to the graphwith the biadjacencymatrix

P

0 + P1 + · · · + P`−1+`.

Employing Theorem 3.5 gives us M(G) = Z(G) = 2(2` − 1) = 4` − 2.
(2) If G = C2n(1, 3, . . . , n), then the biadjacency matrix is P0 + P1 + · · · + Pn−1, and consequently,M(G) =

Z(G) = 2n −2 = 2(2`−1) − 2 = 4`−4 by Theorem 3.5. Alternatively, one notes that G = K
n,n, and so the result

follows, for example, by [4, Observation 3].



Maximum nullity and zero forcing of circulant graphs | 227

x2,1

x1,1

x2,2

x1,2

x2,3

x1,3

x2,4

x1,4

x2,5

x1,5

x2,6

x1,6

v0

v6

v1

v7

v2

v8

v3

v9

v4

v10

v5

v11

Figure 7: The Möbius ladder K2 1 C6 ∼= C12(1, 6) with a zero forcing set.

Figure 8: The torus product K3 1 C6 ∼= C18(1, 6) with a zero forcing set.

4 Circulants which are torus products
In this section we extend the de�nition of the Möbius ladder to a type of torus product. The zero forcing
number for the Möbius ladder was calculated in [2] to be four (e.g., see Lemma 1.2(7)). We compute the zero
forcing number for our torus products, and as a corollary, we are able to compute the zero forcing number for
a new family of circulant graphs. We also give evidence for a conjecture on the minimum rank of this family.

Recall that the Cartesian product of the graphs G and H with V(G) = {x1, x2, . . . , xn} and V(H) =
{y1, y2, . . . , ym} is the graph G � H with vertex set V = {(x, y) | x ∈ V(G), y ∈ V(H)} with two vertices
(x
i
, y

j
), (x

k
, y`) adjacent if either i = k and y

j
is adjacent to y` in H, or j = ` and x

i
is adjacent to x

k
in G.

We position the vertices of G � H in a n × m grid such that the i-th column contains the vertices (x
k
, y

i
), for

1 ≤ k ≤ n, and the j-th row contains the vertices (x
j
, y

k
), for 1 ≤ k ≤ m. Then G � H essentially consists of m

copies of G as columns and n copies of H as rows. The product C
n
� C

m
can be pictured as a lattice on a torus

(see [17]). For m ≥ 3, de�ne the torus product graph G 1 C
m

to consist of m copies, G1, . . . Gm, of G with G
i

having vertices x1,i , x2,i , . . . , xn,i with edges between copies as follows: for 1 ≤ i ≤ m − 1 and 1 ≤ k ≤ n, x
k,i

is adjacent to x
k,i+1 and, with subscript addition modulo n, x

i,m is adjacent to x
i+1,1. Then the Möbius ladder

is simply the torus product K2 1 C
m
(see for example Figures 7 and 8). Note that the torus product C

n
1 C

m
is

referred to as a twisted torus in [17].
The following proof takes advantage of the fact that the torus product K

n
1 C

m
is locally similar to the

Cartesian product K
n
� C

m
. Let G = K

n
� C

m
for m ≥ 4. It was shown in [2] that Z(G) = M(G) = 2n. Below we

give an alternative argument that Z(G) = 2n; the same argument applies to the torus product K
n

1 C
m
.

Theorem 4.1. Let G = K
n
�C

m
or G = K

n
1C

m
. If m ≥ 4, then Z(G) = 2n. If m = 3 and n ≥ 3, then Z(G) = 2n−1.

If m = 3 and n = 2, then M(G) = Z(G) = 4.

Proof. Let G = K
n
� C

m
or G = K

n
1 C

m
.

First consider the case m ≥ 4. Assume the vertices are in a grid as described before the theorem. The
argument uses the fact that locally, about a column of vertices, the graphs of K

n
� C

m
and K

n
1 C

m
both have

the subgraph structure K
n
� P3. (In fact there is an automorphism of G that takes column G

i
to G

k
for any

i, k.)
Observe that if 2n vertices of two adjacent copies of K

n
are �lled, this set is a zero forcing set of G. Thus,

|Z(G)| ≤ 2n.
Let F be a minimum zero forcing set for G. Pick a forcing vertex v ∈ F. All but one neighbour of vmust be

in F. SinceG is (n+1)–regular, |F| ≥ n+1. Once a forcing ismade from v, the �lled vertices are all those vertices
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in some copy of K
n
(a column), plus two additional vertices in some copy of C

m
(a row). These n + 2 �lled

vertices are in three consecutive columns, say L,M, and R, the middle column M being completely �lled.
In order for a vertex outside of these three columns to force some other vertex, it must be a �lled vertex

with at least n − 1 �lled neighbours. If these n vertices were originally in F, then |F| ≥ (n + 1) + (n − 1) = 2n.
Thus, if |F| < 2n, then before a vertex outside of the three columns can do any forcing, some vertex in one of
the three columns must �rst force a vertex outside these columns.

Without loss of generality, let u be the �rst vertex in column R used to force a vertex outside the three
columns. Then the remaining vertices in R are already �lled. Suppose r ≥ 0 vertices of column R are in F. Then
the remaining n − r vertices in column Rmust have been forced from vertices in columnM. For any vertex in
column M to force a vertex in column R, there must already be a vertex in column L, in the same row, that is
�lled. This implies that there must be at least n − r − 1 vertices in column L that are in F and not adjacent to
v. Hence |F| ≥ (n + 1) + r + (n − r − 1) = 2n. Therefore Z(G) = 2n.

Now consider the case m = 3. Let F be a forcing set. As noted above, for a vertex v ∈ F to force another
vertex, there must be at least (n − 2) other vertices of F in the same column as v. As labelled above, M must
start o� with either (a) n − 1 vertices in F or (b) n vertices in F. Note that in case (a), there must be at least
one row with vertices of F in both L and R. In either case, after a forcing is made, the set of all �lled vertices
must then contain all the vertices ofM and two vertices, one in L and one in R, adjacent to a common vertex
in M. If the zero forcing set F contains ` vertices of L and r vertices of R, then the vertices of M could force at
most ` vertices of R and r vertices of L. Thus, after forcing, at most `+ r vertices of L (and their corresponding
vertices in R are �lled). If ` + r < n − 1, then no further forcing can occur. Thus ` + r ≥ n − 1. In fact, if t is
the number of rows that have a vertex of F in L and a vertex of F in R, then ` + r − t ≥ n − 1. In case (a), t ≥ 1
and in case (b) t ≥ 0. It follows that |F| ≥ 2n − 1. To construct a minimum zero forcing set, let F consist of the
�rst n − 1 vertices of L (with L as column 1), the �rst n − 1 vertices of M (with M as column 2), and the �rst
vertex of R (column 3). Then we claim that F is a forcing set with exactly 2n−1 vertices. In particular x2,1 can
force x

n,1 if G = K
n

1 C
m

and x1,1 can force x
n,1 if G = K

n
� C

m
. Further x1,2 can force x

n,2. From here the
remaining vertices in R can be forced by vertices in M. Thus, Z(G) = 2n − 1.

Finally, for the case m = 3 and n = 2, G is a Möbius ladder and so by [2], M(G) = Z(G) = 4.

Figure 9: The circulant graphs C8(1, 4) ∼= K2 1 C4 and C16(1, 4, 8) ∼= K4 1 C4.

Remark 4.2. As seen above, the proof takes advantage of the shared local structure of the Cartesian and
torus products. Note the only di�erence between the two graphs is the particular permutation of adjacencies
between the�rst columnG1 and the last columnG

n
. As such, the same result holds true for amuch larger class

of graphs, if all of the n! permutations of the adjacencies between the �rst and last column are considered,
not just the two speci�ed by G � C

m
and G 1 C

m
.

Theorem 4.1 can now be applied to the study of circulant graphs. In the next theorem we assume m ≥ 2 since
if m = 1 then the graph considered is a consecutive circulant which is already discussed in Theorem 2.5.

Theorem 4.3. Fix n ≥ 3, and let G = C
nm
(1,m, 2m, . . . , bm) with b = b n2 c. If m = 2, then Z(G) = n + 1. If

m = 3, then Z(G) = 2n − 1. If m ≥ 4, then Z(G) = 2n.
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Proof. Let G = C
nm
(1,m, 2m, . . . , bm) with b = b n2 c. Then G can be obtained by combining the edges of

C
nm
(1) ∼= C

nm
and C

nm
(m, 2m, . . . bm) ∼= mC

n
(1, 2, . . . , b) = mK

n
. One can then observe that for m ≥ 3,

C
nm
(1,m, 2m, . . . , bm) is the torus product K

n
1 C

m
(see for example, Figures 8 and 9). The zero forcing

number can then be obtained from Theorem 4.1.
If m = 2, then G is a (n + 1)–regular graph and by Lemma 1.2(1), Z(G) ≥ n + 1. Taking any vertex v and all

but one of its neighbours provides a zero forcing set of size n + 1. In particular, v will force its only un�lled
neighbour. The remaining n − 2 un�lled vertices can be forced consecutively from the neighbours of v with
subscripts that have the same parity as that of v.

We expect that M(G) = Z(G) for all the graphs in Theorem 4.3. Using special matrices, Theorem 4.5 and
Theorem 4.7 demonstrate that M(G) = Z(G) for these graphs when m = 4 and m = 6.

An n × n circulant Hankel matrix H is a matrix for which each row is shifted one position to the left from
the row above it with awrap around to the end of the row. In particular, if the �rst row ofH is (a1, a2, . . . , an),
then the kth row of H is (a

k
, a

k+1, . . . , ak−1). For example,

H =


1 2 4 −2
2 4 −2 1
4 −2 1 2
−2 1 2 4


is a circulant Hankel. Note that the reverse diagonals of a Hankel matrix are constant and consequently the
matrix is symmetric. Let

P =



0 · · · · · · 0 1

1
. . . 0

0
. . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 0


.

Note that if H is a circulant Hankel matrix, then PH = HPT and PH is itself a circulant Hankel matrix.

Lemma 4.4. For n ≥ 3, there exists an orthogonal circulant Hankel matrix A such that both A and A − PA have

no zero entries.

Proof. Let H be a circulant Hankel matrix with �rst row a = (1, 2, 22, . . . , 2n−2, w) and w = −23
(
2n−2 − 1

)
. We

claim thatH has orthogonal rows. SinceH is circulant, it is enough to show that the �rst rowofH is orthogonal
to every other row of H. If b is row (k + 1) of H, 1 ≤ k ≤ n − 1, then b = (2k , 2k+1, . . . , 2n−2, w, 1, 2, . . . , 2k−1)
and

abT =
n−k−2∑
i=0

2k+2i + 2n−k−1w +
k−2∑
i=0

2n−k+2i + 2k−1w

= 2k
(
4n−k−1 − 1

3

)
+ w2k−1

[
2n−2k + 1

]
+ 2n−k

(
4k−1 − 1

3

)
= 1

3

[
22n−k−2 − 2k + 2n+k−2 − 2n−k

]
+ w2k−1

[
2n−2k + 1

]
= 1

3

[
2n−k + 2k

] [
2n−2 − 1

]
+ w2k−1

[
2n−2k + 1

]
= 0.

Thus H2 = λI with λ = ||a||2 = w2 +
∑

n−2
i=0 22i. Therefore A = 1√

λ

H is an orthogonal circulant Hankel matrix
with no zero entries. The fact that A−PA has no zero entries follows from the fact that H

ij
≠ H

i+1,j for 1 ≤ i < n
and 1 ≤ j ≤ n.

Theorem 4.5. Given n ≥ 3, M(K
n

1 C4) = 2n.
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Proof. Let A be an n × n orthogonal circulant Hankel matrix as in Lemma 4.4. Let

K =


A I O P

T

I B I O

O I −PA I

P O I −PB


with B = A − PA. Note that B is a circulant Hankel matrix and AB = I − PT since PA = APT . Also, BA = I − P
since A and B are symmetric. Let

E =


I −A −PT O

O I O O

O O I O

O −P PB I

 .
Then, using the fact that AB = I − PT and BA = I − P,

EK =


O O O O

I B I O

O I −PA I

O O O O

 .
Since E is invertible, it follows that nulllity(K) ≥ 2n. Note that K is a symmetric matrix with graph K

n
1 C4,

since A, B, PA and PB are symmetric matrices with no zero entries. Therefore, M(K
n

1 C4) ≥ 2n and thus by
Theorem 4.1, M(K

n
1 C4) = 2n.

Since K
n

1 C4 is the circulant C4n(1, 4, 8, . . . , 4b) with b = b n2 c, we have the following:

Corollary 4.6. If G = C4n(1, 4, 8, . . . , 4b) with b = b n2 c, then M(G) = Z(G) = 2n.

Theorem 4.7. Given n ≥ 3, M(K
n

1 C6) = 2n.

Proof. Let A be an n × n orthogonal circulant Hankel matrix as in Lemma 4.4. Let

K =



A I 0 0 0 P

T

I A I 0 0 0
0 I A I 0 0
0 0 I PA I 0
0 0 0 I PA I

P 0 0 0 I PA


.

The graph of K is K
n

1 C6. If

E =



I −A 0 A −PT 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 −P PA 0 −PA I


,

then

EK =



0 0 0 0 0 0
I A I 0 0 0
0 I A I 0 0
0 0 I PA I 0
0 0 0 I PA I

0 0 0 0 0 0


,

noting that APA = AAPT = AATPT = PT . Since that �rst and last n rows of EK are zero, and E is invertible, it
follows that M(G) ≥ 2n and by Theorem 4.1, M(G) = 2n.
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Corollary 4.8. If G = C6n(1, 6, 12, . . . , 6b n2 c) then M(G) = Z(G) = 2n.

Remark 4.9. Based uponCorollaries 4.6 and 4.8, wewonder if G = C
mn
(1,m, 2m, . . . ,mb n2 c) impliesM(G) =

Z(G) in general.

There is another circulant graph that is isomorphic to a torus product. In particular, the graph C
nm
(1,m) ∼=

C
n

1 C
m
. (Note that for m ≠ n, C

m
1 C

n
is not isomorphic to C

n
1 C

m
.)

The following theorem mimics a result [5] on the zero forcing number of the Cartesian product C
n
� C

m
,

which is not surprising since locally, the graph is the same as C
n

1 C
m
. In particular, it was shown in [5] that,

with n ≥ m ≥ 3, thenM(C
m
�C

m
) = Z(C

m
�C

m
) = 2m−1 ifm is odd, and otherwiseM(C

n
�C

m
) = Z(C

n
�C

m
) =

2m.
We do not know ifM(G) = Z(G) in general for G = C

n
1C

m
, but the zero forcing number is bounded above

in samewayas theCartesianproduct, exceptwhenm = n andm is even. In this case, Z(C
m

1C
m
) < Z(C

m
�C

m
).

The argument is similar to that in [11, Theorem 2.18].

Theorem 4.10. Suppose n ≥ 3 and m ≥ 3. Then Z(C
n

1 C
m
) ≤
{
2min {n,m} if m ≠ n
2m − 1 if m = n.

Proof. Let G = C
n

1 C
m
. First note that if two consecutive columns of vertices of G are in a set F, then F is

a zero forcing set of G. In particular, each of these two columns can force all the vertices on a neighbouring
column. If two consecutive rows of vertices of G are in F, by symmetry one can assume the �rst two rows of
G are in F. In this case, one can force the whole third row, left to right: in particular, x2,j can force x3,j as j
ranges from 1 to m. (Note that x2,m cannot force x3,m until x3,1 has been �lled.) Consequently, each of the
subsequent rows can also be forced. Therefore, Z(G) ≤ 2min {m, n} .

Now suppose m = n. Let k = dm2 e. Suppose F consists of the m vertices of column k, and m − 1 vertices
of column k + 1, namely {x2,(k+1), . . . , xm,(k+1)}. Then column k can force m − 1 vertices in column k − 1, in
rows 2 throughm. Now the two columns withm−1 vertices can each forcem−3 vertices in the columns k+2
and k − 2 respectively, namely in rows 3 though m − 1. This can be repeated, �lling two less vertices in each
column until the end columns are reached. If m is odd, then the forcing above will result in the two vertices
in each of columns 1 and m being �lled. In particular, rows k and k + 1 will be completely �lled, and so the
resulting set will force the remaining rows to be �lled, as noted at the beginning of the proof. If m is even,
then column 1 will have the three vertices x

k,1, x(k+1),1, and x(k+2),1 �lled but column m will only have vertex
x(k+1),m �lled. However, x(k+1),1 can force x

k,m. At this point, rows k and k+1 are completely �lled, and so the
remainder of the vertices can be forced. Therefore, Z(C

m
1 C

m
) ≤ 2m − 1.

Corollary 4.11. If n,m ≥ 3, then Z(C
m

2 (1,m)) ≤ 2m − 1, and if n ≠ m, then Z(C
nm
(1, t)) ≤ 2min {m, n} for

each t ∈ {m, n}.

Corollary 4.11 deals with the case that n ≥ 3. (An earlier version of the C
m

2 (1,m) case is found in [12].) For the
case with n = 2, see Theorem 5.2. Determining M(G) for the graphs G in Corollary 4.11 does not seem to be
straightforward. For the case with m = n = 3, the following theorem demonstrates that M(G) = Z(G).

Theorem 4.12. If G = C9(1, 3), then M(G) = Z(G) = 5.

Proof. Let G = C9(1, 3). By Corollary 4.11, Z(G) ≤ 5. By Theorem 1.1, it is enough to show that M(G) ≥ 5. Let

A =



− 1
8

3
4
− 1

2
1 0 0 0 1 0

3
4
−2 1

2
0 1 0 0 0 1

− 1
2

1
2
− 3

4
0 0 1 1 0 0

1 0 0 48
5
− 12

5
− 24

5
− 16

5
0 0

0 1 0 − 12
5

6
5

4
5

0 12
5

0

0 0 1 − 24
5

4
5

4
5

0 0 − 2
5

0 0 1 − 16
5

0 0 − 2
5
− 4

5
− 3

5
1 0 0 0 12

5
0 − 4

5
24
5

6
5

0 1 0 0 0 − 2
5

− 3
5

6
5
− 3

10


.
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Then, A ∈ S(G) and rank(A) = 4 and, therefore, M(G) ≥ 5.

For the family of circulant graphs of Corollary 4.11, we can also �nd a lower bound using the following result
based on the girth of a graph. The girth of a graph G is size of the smallest cycle in G.

Theorem 4.13. [7] Let G be a graph with girth g ≥ 3 and minimum degree δ ≥ 2. Then

Z(G) ≥ (g − 3)(δ − 2) + δ.

The above theorem was �rst conjectured in [8], and proved in some special cases. The proof of Theorem 4.13
was completed in [7] (and see the references there). Theorem 4.13 is now applied to C

mn
(1, t).

Theorem 4.14. Let t ∈ {n,m} with n,m ≥ 3. If G = C
nm
(1, t), then Z(G) ≥

{
4 if 3t = nm
6 otherwise.

Proof. Let G = C
nm
(1, t). The graph G contains a four cycle: {v0, v1, vt+1, vt}. Since, t ≥ 3, in order for G

to have a cycle of length three, then 3t = nm. In particular, G would contain the 3-cycle {v0, vt , v2t}. The
theorem then follows from Theorem 4.13 since G is 4-regular.

In the case n = 3 the zero forcing number equals the lower bound given in Theorem 4.14.

Theorem 4.15. If G = C3m(1, 3), then Z(G) =
{
6 if m > 3
5 if m = 3.

Proof. When m = 3, the result follows from Theorem 4.12. When m > 3, the upper bound of Corollary 4.11
and the lower bound of Theorem 4.14 agree.

In this section we considered graphs C
nm
(1, t) with t ∈ {n,m} and n,m ≥ 3. In the next section we consider

the case with m = 2.

5 The cubic circulant graphs
In this section, we determine the maximum nullity and zero forcing number for all cubic circulant graphs. A
circulant graph is cubic if it is three regular. If G is a cubic circulant graph, then G = C2m(a,m) for some a
with 1 ≤ a < m. The cubic circulant graphs were characterized in [9].

Theorem 5.1. [9] Let G = C2m(a,m) with 1 ≤ a < m, and let t = gcd(a, 2m).

1. If

2m
t

is even, then G
∼= tC 2m

t

(
1, m

t

)
.

2. If

2m
t

is odd, then G
∼= t

2C 4m
t

(
2, 2m

t

)
.

Theorem 5.1 demonstrates that the zero forcing number of a cubic circulant is going to be a multiple of the
zero forcing number of a circulant of the form C2m(1,m) or C2m(2,m). The zero forcing number is calculated
for these classes in Theorems 5.2 and 5.3 respectively.

Theorem 5.2. Suppose m ≥ 2, and G = C2m(1,m). Then M(G) = Z(G) =
{
3 if m = 2
4 if m ≥ 3.

Proof. Let G = C2m(1,m). If m = 2, then G = K4 and, hence, M(G) = Z(G) = 3 by Lemma 1.2(2). Suppose
m ≥ 3. Then G is isomorphic to the Möbius ladder K2 1 C

m
, and hence M(G) = Z(G) = 4 as noted in [2].

Theorem 5.3. Suppose m ≥ 3 and G = C2m(2,m).
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1. If m is odd, then M(G) = Z(G) = min{m, 4}.

2. If m is even, then M(G) = Z(G) =
{
6 if m = 4
8 if m ≥ 6.

Proof. Let G = C2m(2,m). Suppose m = 2k for some positive integer k. Then gcd(2m, 2,m) = 2, and so
G
∼= 2C2k(1, k). Thus, M(G) = Z(G) by Theorem 5.2.
Suppose m is odd. Note that C2m(2) is a subgraph of G consisting of two disjoint cycles of length m.

Observe that the cycle containing vertex v0 consists of the vertices with even subscripts. The other cycle will
consist of the vertices with odd subscripts. For any vertex v

i
∈ V(G), its neighbours will be {v

i+m , vi+2, vi−2}.
Thus, besides the edges of the two aforementioned cycles, the graph G also contains the perfect matching
consisting of the m edges {v

i
, v
i+m} with i ∈ {0, 2, 4, . . . , 2m − 2}, using subscript addition modulo n. It

follows that C2m(2,m) ∼= Cm � K2. The result follows from Lemma 1.2(7).

Theorem 5.4. Let G = C2m(a,m) with 1 ≤ a < m, and let t = gcd(a, 2m).

1. If

2m
t

is even, then M(G) = Z(G) =
{
3t if m = 2t
4t if m ≥ 3t.

2. If

2m
t

is odd, then M(G) = Z(G) =
{
m if 2m = 3t
2t otherwise.

Proof. The theorem follows from Theorem 5.1 and Theorems 5.2 and 5.3, along with Lemma 1.2(5).

Note that when a andm are odd, then the cubic circulant graphs C2m(a,m) in Theorem 5.4 are further exam-
ples of bipartite circulants discussed in Section 3.

6 Concluding comment
For every circulant graph G forwhichwehave calculatedM(G) and Z(G), these two numbers have been equal.
Equality also holds for the extreme cases; when G = K

n
or G = C

n
. We wonder if equality holds for every

circulant graph in general.
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