University of Wisconsin Milwaukee UWM Digital Commons

Theses and Dissertations

December 2021

# An Interactive Health Data Science Platform for Exploratory Analysis of Health Outcomes – a Case Study with Colon Cancer

Hemanth Kumar Alapati University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Computer Sciences Commons

#### **Recommended Citation**

Alapati, Hemanth Kumar, "An Interactive Health Data Science Platform for Exploratory Analysis of Health Outcomes – a Case Study with Colon Cancer" (2021). *Theses and Dissertations*. 2753. https://dc.uwm.edu/etd/2753

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact scholarlycommunicationteam-group@uwm.edu.

# AN INTERACTIVE HEALTH DATA SCIENCE PLATFORM FOR EXPLORATORY ANALYSIS OF HEALTH OUTCOMES – A CASE

# STUDY WITH COLON CANCER

by

Hemanth Kumar Alapati

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

December 2021

# ABSTRACT

# AN INTERACTIVE HEALTH DATA SCIENCE PLATFORM FOR EXPLORATORY ANALYSIS OF HEALTH OUTCOMES – A CASE STUDY WITH COLON CANCER

by Hemanth Kumar Alapati

The University of Wisconsin-Milwaukee, 2021 Under the Supervision of Professor Jake Luo and Professor Mukul Goyal

Disease prediction is an important aspect of early disease detection and preventive care with wide range of applications in healthcare domain. Previous studies used image processing techniques, statistical and machine learning models to predict diseases. Prediction accuracies vary with data type and the target. Often the data is processed through models under different data conditions to identify what works best for a scenario. This results in tweaking the code, running multiple iterations making these methods usable only for people with technical skills. An interactive platform is developed that hides the technicalities and allows the users to change options like target disease for prognosis, feature selection method, sample size, ML algorithm. With this, multiple approaches can be tried and compared to find a combination of the options for an efficient outcome. Colon cancer is used to perform a case study to test this platform. 2 selection algorithms and 3 ML models are used. Although both selection methods identified identical features as significant for colon cancer prediction, the order of the features based on the scores is different. Hence, the machine learning algorithms performed similarly with both the selection methods. Random Forest, Logistic Regression, and Decision Tree had accuracies 87%, 86%, and 83% respectively.

© Copyright by Hemanth Kumar Alapati, 2021 All Rights Reserved

## TABLE OF CONTENTS

| List of Figures                                           | vi       |
|-----------------------------------------------------------|----------|
| List of Tables                                            | vii      |
| Introduction                                              | 1        |
| Study Proposal                                            | 2        |
| Related Work                                              | 4        |
| Disease Diagnosis                                         | 4        |
| Disease Prognosis                                         | 4        |
| Colon Cancer Prognosis                                    | 4        |
| Methodology                                               | 5        |
| Data sources and data description                         | 5        |
| Data storage and management                               | 8        |
| Data extraction, transformation, and analysis             | 9        |
| Feature Selection Algorithms                              | 11       |
| Select K Best with chi square                             | 12       |
| Feature Importance using Extra Trees Classifier           | 12       |
| Machine Learning Models                                   | 12       |
| Decision Tree                                             | 12       |
| Logistic Regression                                       | 13       |
| Random Forest                                             | 14       |
| Pipelines                                                 | 14       |
| User Interface                                            | 15       |
| Ipywidgets<br>Appmode                                     | 16<br>17 |
| Features                                                  | 18       |
| Output                                                    | 19       |
| Case Study                                                | 22       |
| Results                                                   | 23       |
| Selector 1: SelectKBest<br>Selector 2: Feature Importance | 23<br>26 |

| Conclusion                  | 29 |
|-----------------------------|----|
| Application and Future Work | 30 |
| Application                 | 30 |
| Future Work                 | 30 |
| References                  | 31 |

# LIST OF FIGURES

| Figure 1: Annual number of new colorectal cancer cases, USA, 1999-2018                | 1  |
|---------------------------------------------------------------------------------------|----|
| Figure 2: File specification of NIS_2016_Core data (part 1)                           | 6  |
| Figure 3: File specification of NIS_2016_Core data (part 2)                           | 7  |
| Figure 4: ICD10CM ORDER 2018 file                                                     | 8  |
| Figure 5: Solution architecture                                                       | 9  |
| Figure 6: Data processing                                                             | 11 |
| Figure 7: Decision Tree Model                                                         | 13 |
| Figure 8: Logistic Regression                                                         | 13 |
| Figure 9: Random Forest architecture                                                  | 14 |
| Figure 10: Machine Learning Pipeline                                                  | 15 |
| Figure 11: ipywidgets displayed on a jupyter notebook                                 | 16 |
| Figure 12: Appmode Jupyter Notebook extension                                         | 17 |
| Figure 13: Appmode view on Jupyter Notebook                                           | 18 |
| Figure 14: User selected options, feature list, ML outcome                            | 19 |
| Figure 15: Selected feature scores                                                    | 20 |
| Figure 16: Selected features and target heatmap                                       | 21 |
| Figure 17: Heat map for correlation between feature and target (SelectKBest Selector) | 24 |
| Figure 18: Accuracy comparison for different models using SelectKBest selector        | 25 |
| Figure 19: Heat map for correlation between feature and target (SelectKBest selector) | 27 |
| Figure 20: Accuracy comparison for different models using Feature Importance selector | 28 |

# LIST OF TABLES

| Table 1: ICD10CM ORDER 2018 file layout                          | 8  |
|------------------------------------------------------------------|----|
| Table 2: UI user input options                                   | 19 |
| Table 3: Top 20 features selected by SelectKBest selector        | 23 |
| Table 4: Top 20 features selected by Feature Importance selector | 26 |

#### Introduction

Cancer is a broad term that refers to uncontrolled aberrant growth of human cells. Our body consists of trillions of cells. These cells normally expand and multiply to generate new cells as needed. This ordered process can sometimes break down, resulting in abnormal or damaged cells growth which can result in cancer. Colon cancer is a form of cancer where such uncontrolled cell growth is observed in the large intestine (colon) which is the final part of the digestive tract [1]. Colon cancer is also referred as Colorectal cancer which includes rectal cancer as well which starts in the rectum.

Colorectal cancer is the 3<sup>rd</sup> most diagnosed cancer in America excluding skin cancers [2]. **Figure 1** shows the number of new colorectal cancer cases detected in America during the years 1999 to 2018 [3].



Figure 1: Annual number of new colorectal cancer cases, USA, 1999-2018 [3].

Some of the symptoms for colon cancer include a change in bowel habits, such as diarrhea or constipation, rectal bleeding, consistent stomach pain, such as cramps, gas, or bloating, a feeling as if the bowels don't empty completely, weakness or exhaustion, unexplained

weight loss. The symptoms vary widely among patients and only a few patients experience these symptoms at an early stage [1]. Colon cancer treatment uses surgery, chemotherapy, radiation therapy, targeted drug therapy, immunotherapy, supportive (palliative) care or a combination of these [4].

This dissertation uses healthcare data obtained from Nationwide Inpatient Sample (NIS) Dataset [5], and applies Machine Learning models like Decision Tree, Logistic Regression, and Random Forest to predict colon cancer. It also identifies top features that affect the prediction using the feature selection methods like Select K Best and Feature Importance methods. A generic disease prediction framework has been built with a UI component for user interaction making it accessible to broad category of users. The UI allows users to choose the amount of data that needs to be analyzed, percentage of this data used for training and testing purposes, number of features that need to be identified, type of feature selection algorithm that need to be applied to identify the features, machine learning algorithm that need to be applied on the selected data and features for the prediction.

#### **Study Proposal**

Create a platform that helps with Exploratory Data Analysis of health data. The platform needs to be interactive without exposing the technicalities so that it is available for wide range of users. It should be flexible to be able to try and test different variations of data, algorithms without changing the code. It should make the comparative analysis easy by giving the flexibility to switch between algorithms, data. It should be generic so that it can be used for prognosis of multiple diseases.

2

Below are the flexible features:

- Select diseases
- Number of positive cases used for analysis
- Number of negative cases used for analysis
- Number of features that need to be identified
- Select feature selection algorithms
- Select the Machine Learning model
- Percentage of the selected data used for training the model

Based on the selections made, the platform should process the data, analyze it with selected algorithms and give the feature and prediction accuracy information.

Output of the platform should have the below details:

- Features that are highly correlated with the selected disease
- Segregate the features that have positive or inverse correlation with the disease.

Use this platform to study Colon cancer prognosis. Identify the features that have positive and inverse correlation with Colon cancer. Study the research done on the correlation of these features with colon cancer. Do a comparative study of the selection algorithms, and Machine Learning algorithms. Identify which model works better for Colon cancer prediction.

#### **Related work**

#### Disease diagnosis

Early usage of machine learning in health care domain started with disease diagnosis. Some studies talked about the advancements around Machine Learning and showed how a variety of these models can be used in disease diagnosis [14]. Techniques like Image Processing, Artificial Neural Networks, Bayesian Networks, and Machine Learning were used in these studies. Most of these studies analyzed the specimen from patients using machine learning techniques, identified patterns for diagnosis of various diseases. These have helped in early identification of serious diseases; there by enabling early treatment of these diseases and improving the chances of cure.

#### **Disease prognosis**

As health care evolved, more patient data is digitized. Health data, storage & computing power availability and advancement in Machine Learning has enable studies on prediction of diseases by analyzing patient health data using Machine Learning techniques [15]. Most of these studies did comparative analysis on the data by applying various methods and identifying the efficient methods [16, 17]. These studies have helped in identifying groups of people that are at more risk of getting diseases. This segregation helped in giving preventive health services for individuals who are at risk for a disease. This also led to early identification of diseases based on the at-risk segregation and being proactive.

#### Colon cancer prognosis

Colon cancer is an area of interest for researchers as it is one of the top cancer types with significant number of cases. Machine Learning algorithms have been used to predict the stages

4

of colon cancer based on pathological test results [18]. There were studies about building the prognosis predictor using the gene [19], serum [20] samples from colon cancer patients.

#### Methodology

#### Data sources and data description

Healthcare Cost and Utilization Project (HCUP) developed one of the largest publicly available databases called National Inpatient Sample (NIS) database to store admission level healthcare information. Sponsored by Agency for Healthcare Research and Quality (AHRQ), NIS database stores about 7 million patient history every year since 1988. The 2016 dataset consists of three ASCII files: 'Core File', 'Hospital Weights File' and 'Severity Measures File' and has a total size of 15GB. In this dissertation, the 'Core File' data is used. 'File Specification' explains how the data elements are organized in the 'Core File'. **Figure 1** and **Figure 2** show the 'File Specification' file. It includes information such as database name, discharge year of data, file name, data element number, data element name, starting and ending column of data element, data element type, data element label, etc.

The 2016 NIS core data file has 7,135,090 records. For every record, there are 98 data elements which can be split into two categories: non-clinical and clinical. Non-clinical data includes demographic information of the patient (age, sex, race), date of admission, total cost, zip code, hospital ID, length of stay, etc. Treatment types, procedures, diagnosis categories, diagnosis codes, etc. are some of the clinical data. Each entry lists a maximum of 30 diagnosis codes that represent disease conditions the patient has history of, which are one of the most impactful data elements. The 2016 database represents these disease codes is ICD-10 (International Classification of Diseases, 10<sup>th</sup> revision) format. The WHO (World Health

5

Organization) designed these codes so that every disease has a unique code with a view to help healthcare personnel, insurance companies and concerned parties to specify health conditions in a uniformed manner. The 2016 dataset may include up to 69,823 diagnosis codes (ICD-10-CM).

Figure 2 and Figure 3 show the print of NIS 2016 core file layout:

FileSpecifications NIS 2016 Core - Notepad <u>File Edit Format View H</u>elp Data Set Name: NIS\_2016\_CORE Number of Observations: 7135090 Total Record Length: 497 Total Number of Data Elements: 98 Columns Description \_\_\_\_\_ 1- 3 Database name 5-Discharge year of data 10- 35 File name 37- 39 Data element number 41- 69 Data element name Starting column of data element in ASCII file 71- 73 75-77 Ending column of data element in ASCII file 79- 79 Non-zero number of digits after decimal point for numeric data element 81- 84 Data element type (Num=numeric; Char=character) 86-185 Data element label 3 5 7 NIS 2016 NIS\_2016\_Core NIS 2016 NIS\_2016\_Core 1 AGE 1 Num Age in years at admission 2 AGE\_NEONATE 4 Num Neonatal age (first 28 days after birth) indicator NIS 2016 NIS\_2016\_Core 3 AMONTH 6 Num Admission month 4 AWEEKEND NIS 2016 NIS 2016 Core 8 9 Num Admission day is a weekend NIS 2016 NIS\_2016\_Core 10 11 Died during hospitalization 5 DIED Num 12 23 22 7 Num 24 Num NIS discharge weight Disposition of patient (uniform) NIS 2016 NIS\_2016\_Core 6 DISCWT NIS 2016 NIS\_2016\_Core 7 DISPUNIFORM 25 27 26 29 Discharge quarter DRG in effect on discharge date NIS 2016 NIS\_2016\_Core 8 DQTR Num NIS 2016 NIS 2016 Core 9 DRG Num 10 DRGVER 30 31 NIS 2016 NIS\_2016\_Core Num DRG grouper version used on discharge date 32 35 34 36 NIS 2016 NIS\_2016\_Core 11 DRG\_NoPOA Num DRG in use on discharge date, calculated without POA 12 DXVER NIS 2016 NIS 2016 Core Num Diagnosis Version 37 39 41 NIS 2016 NIS\_2016\_Core 38 40 13 ELECTIVE Num Elective versus non-elective admission NIS 2016 NIS 2016 Core 14 FEMALE Num Indicator of sex NIS 2016 NIS\_2016\_Core 15 HCUP\_ED 43 Num HCUP Emergency Department service indicator NIS 2016 NIS\_2016\_Core 16 HOSP\_DIVISION 17 HOSP\_NIS 44 46 45 Num Census Division of hospital NIS 2016 NIS\_2016\_Core 50 NIS hospital number Num 57 64 NIS 2016 NIS\_2016\_Core 18 I10\_DX1 51 Char ICD-10-CM Diagnosis 1 58 NIS 2016 NIS 2016 Core 19 I10 DX2 Char ICD-10-CM Diagnosis 2 65 71 Char ICD-10-CM Diagnosis 3 NIS 2016 NIS\_2016\_Core 20 I10\_DX3 NIS 2016 NIS\_2016\_Core 72 78 79 85 21 I10\_DX4 Char ICD-10-CM Diagnosis 4 Char ICD-10-CM Diagnosis 5 NIS 2016 NIS 2016 Core 22 I10 DX5 Char ICD-10-CM Diagnosis 6 NIS 2016 NIS\_2016\_Core 23 I10\_DX6 86 92 NIS 2016 NIS 2016 Core 24 I10 DX7 93 99 Char ICD-10-CM Diagnosis 7 NIS 2016 NIS\_2016\_Core 25 I10\_DX8 100 106 Char ICD-10-CM Diagnosis 8 Char ICD-10-CM Diagnosis 9 Char ICD-10-CM Diagnosis 10 NIS 2016 NIS\_2016\_Core 26 I10\_DX9 107 113 NIS 2016 NIS 2016 Core 27 I10 DX10 114 120 Char ICD-10-CM Diagnosis 11 NIS 2016 NIS\_2016\_Core 28 I10\_DX11 121 127 NIS 2016 NIS\_2016\_Core NIS 2016 NIS\_2016\_Core 29 I10\_DX12 30 I10\_DX13 128 134 Char ICD-10-CM Diagnosis 12 Char ICD-10-CM Diagnosis 13 135 141 142 148 149 155 Char ICD-10-CM Diagnosis 14 Char ICD-10-CM Diagnosis 15 NIS 2016 NIS\_2016\_Core 31 I10\_DX14 NIS 2016 NIS 2016 Core 32 I10 DX15 NIS 2016 NIS\_2016\_Core 33 I10\_DX16 156 162 Char ICD-10-CM Diagnosis 16 NIS 2016 NIS\_2016\_Core NIS 2016 NIS\_2016\_Core 34 I10\_DX17 163 169 Char ICD-10-CM Diagnosis 17 35 I10\_DX18 170 176 Char ICD-10-CM Diagnosis 18 NIS 2016 NIS\_2016\_Core 36 I10\_DX19 177 183 Char ICD-10-CM Diagnosis 19 184 190 NIS 2016 NIS 2016 Core 37 I10 DX20 Char ICD-10-CM Diagnosis 20 NIS 2016 NIS\_2016\_Core Char ICD-10-CM Diagnosis 21 38 I10\_DX21 191 197 Char ICD-10-CM Diagnosis 22 NIS 2016 NIS\_2016\_Core 39 I10\_DX22 198 204 205 211 Char ICD-10-CM Diagnosis 23 NIS 2016 NIS\_2016\_Core 40 I10\_DX23

Figure 2: File specification of NIS\_2016\_Core data (part 1)

| NIS 2016 NIS 2016 Core | 41 I10 DX24    | 212 218 | Char ICD-10-CM Diagnosis 24                                        |
|------------------------|----------------|---------|--------------------------------------------------------------------|
| NIS 2016 NIS 2016 Core | 42 I10 DX25    | 219 225 | Char ICD-10-CM Diagnosis 25                                        |
| NTS 2016 NTS 2016 Core | 43 T10 DX26    | 226 232 | Char ICD-10-CM Diagnosis 26                                        |
| NIS 2016 NIS 2016 Core | 44 T10 DX27    | 233 239 | Char ICD-10-CM Diagnosis 27                                        |
| NTS 2016 NTS 2016 Core | 45 T10 DY28    | 240 246 | Chan ICD-10-CM Diagnosis 28                                        |
| NIS 2010 NIS_2010_COTE | 45 110_0X20    | 240 240 | Chan ICD-10-CH Diagnosis 20                                        |
| NIS 2016 NIS_2016_Core | 40 110_0729    | 247 255 | Chan ICD 10 CM Diagnosis 29                                        |
| NIS 2016 NIS_2016_COPE | 47 110_000     | 254 260 | Char ICD-10-CM Diagnosis 50                                        |
| NIS 2016 NIS_2016_Core | 48 110_ECAUSE1 | 261 267 | Char ICD-10-CM External cause I                                    |
| NIS 2016 NIS_2016_Core | 49 110_ECAUSE2 | 268 274 | Char ICD-10-CM External cause 2                                    |
| NIS 2016 NIS_2016_Core | 50 110_ECAUSE3 | 275 281 | Char ICD-10-CM External cause 3                                    |
| NIS 2016 NIS_2016_Core | 51 I10_ECAUSE4 | 282 288 | Char ICD-10-CM External cause 4                                    |
| NIS 2016 NIS_2016_Core | 52 I10_NDX     | 289 290 | Num ICD-10-CM Number of diagnoses on this record                   |
| NIS 2016 NIS_2016_Core | 53 I10_NECAUSE | 291 293 | Num ICD-10-CM Number of External cause codes on this record        |
| NIS 2016 NIS_2016_Core | 54 I10_NPR     | 294 295 | Num ICD-10-PCS Number of procedures on this record                 |
| NIS 2016 NIS_2016_Core | 55 I10_PR1     | 296 302 | Char ICD-10-PCS Procedure 1                                        |
| NIS 2016 NIS_2016_Core | 56 I10_PR2     | 303 309 | Char ICD-10-PCS Procedure 2                                        |
| NIS 2016 NIS_2016_Core | 57 I10_PR3     | 310 316 | Char ICD-10-PCS Procedure 3                                        |
| NIS 2016 NIS 2016 Core | 58 I10 PR4     | 317 323 | Char ICD-10-PCS Procedure 4                                        |
| NIS 2016 NIS 2016 Core | 59 I10 PR5     | 324 330 | Char ICD-10-PCS Procedure 5                                        |
| NIS 2016 NIS 2016 Core | 60 I10 PR6     | 331 337 | Char ICD-10-PCS Procedure 6                                        |
| NIS 2016 NIS 2016 Core | 61 I10 PR7     | 338 344 | Char ICD-10-PCS Procedure 7                                        |
| NIS 2016 NIS 2016 Core | 62 T10 PR8     | 345 351 | Char ICD-10-PCS Procedure 8                                        |
| NIS 2016 NIS 2016 Core | 63 T10 PR9     | 352 358 | Char ICD-10-PCS Procedure 9                                        |
| NTS 2016 NTS 2016 Core | 64 T10 PP10    | 350 365 | Chan ICD-10-PCS Procedure 10                                       |
| NTS 2010 NTS 2010_COTE | 65 T10 DD11    | 366 373 | Chan ICD 10 PCS Procedure 10                                       |
| NIS 2016 NIS_2016_Core | 65 110_PK11    | 200 272 | Char ICD-10-PCS Procedure 11                                       |
| NIS 2016 NIS_2016_Core | 66 110_PR12    | 2/2 2/9 | Char ICD-10-PCS Procedure 12                                       |
| NIS 2016 NIS_2016_Core | 67 110_PR15    | 200 200 | Char ICD-10-PCS Procedure 15                                       |
| NIS 2016 NIS_2016_Core | 68 110_PR14    | 387 393 | Char ICD-10-PCS Procedure 14                                       |
| NIS 2016 NIS_2016_Core | 69 110_PR15    | 394 400 | Char ICD-10-PCS Procedure 15                                       |
| NIS 2016 NIS_2016_Core | 70 KEY_NIS     | 401 410 | Num NIS record number                                              |
| NIS 2016 NIS_2016_Core | 71 LOS         | 411 415 | Num Length of stay (cleaned)                                       |
| NIS 2016 NIS_2016_Core | 72 MDC         | 416 417 | Num MDC in effect on discharge date                                |
| NIS 2016 NIS_2016_Core | 73 MDC_NoPOA   | 418 419 | Num MDC in use on discharge date, calculated without POA           |
| NIS 2016 NIS_2016_Core | 74 NIS_STRATUM | 420 423 | Num NIS hospital stratum                                           |
| NIS 2016 NIS_2016_Core | 75 PAY1        | 424 425 | Num Primary expected payer (uniform)                               |
| NIS 2016 NIS_2016_Core | 76 PL_NCHS     | 426 428 | Num Patient Location: NCHS Urban-Rural Code                        |
| NIS 2016 NIS 2016 Core | 77 PRDAY1      | 429 431 | Num Number of days from admission to I10_PR1                       |
| NIS 2016 NIS 2016 Core | 78 PRDAY2      | 432 434 | Num Number of days from admission to I10 PR2                       |
| NIS 2016 NIS 2016 Core | 79 PRDAY3      | 435 437 | Num Number of days from admission to I10 PR3                       |
| NIS 2016 NIS 2016 Core | 80 PRDAY4      | 438 440 | Num Number of days from admission to I10 PR4                       |
| NIS 2016 NIS 2016 Core | 81 PRDAY5      | 441 443 | Num Number of days from admission to I10 PR5                       |
| NIS 2016 NIS 2016 Core | 82 PRDAY6      | 444 446 | Num Number of days from admission to I10 PR6                       |
| NTS 2016 NTS 2016 Core | 83 PRDAV7      | 447 449 | Num Number of days from admission to I10 PR7                       |
| NIS 2016 NIS 2016 Core | 84 PRDAV8      | 450 452 | Num Number of days from admission to I10_RR                        |
| NIS 2016 NIS 2016 Core | 85 PPDAV9      | 453 455 | Num Number of days from admission to I10_NO                        |
| NIS 2010 NIS_2010_COTE | 86 DDDAV10     | 455 455 | Num Number of days from admission to 110_FRS                       |
| NIS 2010 NIS_2010_COTE | 87 DDDAV11     | 450 450 | Num Number of days from admission to 110_PR10                      |
| NIS 2016 NIS_2016_Core | 07 PRDATII     | 459 461 | Num Number of days from admission to 110_PR11                      |
| NIS 2010 NIS_2010_CORE | 00 PRDAV12     | 402 404 | Num Number of days from admission to 110_PK12                      |
| NIS 2016 NIS_2016_Core | 89 PRDAY13     | 465 467 | Num Number of days from admission to 110_PRI3                      |
| NIS 2016 NIS_2016_Core | 90 PRDAY14     | 468 4/0 | Num Number of days from admission to 110_PR14                      |
| N15 2016 N15_2016_Core | 91 PRDAY15     | 4/1 473 | Num Number of days from admission to I10_PR15                      |
| NIS 2016 NIS_2016_Core | 92 PRVER       | 474 475 | Num Procedure Version                                              |
| NIS 2016 NIS_2016_Core | 93 RACE        | 476 477 | Num Race (uniform)                                                 |
| NIS 2016 NIS_2016_Core | 94 TOTCHG      | 478 487 | Num Total charges (cleaned)                                        |
| NIS 2016 NIS_2016_Core | 95 TRAN_IN     | 488 489 | Num Transfer in indicator                                          |
| NIS 2016 NIS_2016_Core | 96 TRAN_OUT    | 490 491 | Num Transfer out indicator                                         |
| NIS 2016 NIS_2016_Core | 97 YEAR        | 492 495 | Num Calendar year                                                  |
| NIS 2016 NIS_2016_Core | 98 ZIPINC_QRTL | 496 497 | Num Median household income national quartile for patient ZIP Code |
|                        |                |         |                                                                    |

Figure 3: File specification of NIS\_2016\_Core data (part 2)

An ICD10CM code – description file has been used to translate ICD10 codes to their short descriptions. **Figure 4** represents the sample file and **Table 1** has the file layout information.

📗 icd10cm\_order\_2018 - Notepad

| File  | Edit Fo | rmat | View Help                                          |                                                    |
|-------|---------|------|----------------------------------------------------|----------------------------------------------------|
| 00001 | A00     | 0    | Cholera                                            | Cholera                                            |
| 00002 | A000    | 1    | Cholera due to Vibrio cholerae 01, biovar cholerae | Cholera due to Vibrio cholerae 01, biovar cholerae |
| 00003 | A001    | 1    | Cholera due to Vibrio cholerae 01, biovar eltor    | Cholera due to Vibrio cholerae 01, biovar eltor    |
| 00004 | A009    | 1    | Cholera, unspecified                               | Cholera, unspecified                               |
| 00005 | A01     | 0    | Typhoid and paratyphoid fevers                     | Typhoid and paratyphoid fevers                     |
| 00006 | A010    | 0    | Typhoid fever                                      | Typhoid fever                                      |
| 00007 | A0100   | 1    | Typhoid fever, unspecified                         | Typhoid fever, unspecified                         |
| 00008 | A0101   | 1    | Typhoid meningitis                                 | Typhoid meningitis                                 |
| 00009 | A0102   | 1    | Typhoid fever with heart involvement               | Typhoid fever with heart involvement               |
| 00010 | A0103   | 1    | Typhoid pneumonia                                  | Typhoid pneumonia                                  |
| 00011 | A0104   | 1    | Typhoid arthritis                                  | Typhoid arthritis                                  |
| 00012 | A0105   | 1    | Typhoid osteomyelitis                              | Typhoid osteomyelitis                              |
| 00013 | A0109   | 1    | Typhoid fever with other complications             | Typhoid fever with other complications             |
| 00014 | A011    | 1    | Paratyphoid fever A                                | Paratyphoid fever A                                |
| 00015 | A012    | 1    | Paratyphoid fever B                                | Paratyphoid fever B                                |
| 00016 | A013    | 1    | Paratyphoid fever C                                | Paratyphoid fever C                                |
| 00017 | A014    | 1    | Paratyphoid fever, unspecified                     | Paratyphoid fever, unspecified                     |
| 00018 | A02     | 0    | Other salmonella infections                        | Other salmonella infections                        |
| 00019 | A020    | 1    | Salmonella enteritis                               | Salmonella enteritis                               |
| 00020 | A021    | 1    | Salmonella sepsis                                  | Salmonella sepsis                                  |
| 00021 | A022    | 0    | Localized salmonella infections                    | Localized salmonella infections                    |
| 00022 | A0220   | 1    | Localized salmonella infection, unspecified        | Localized salmonella infection, unspecified        |
| 00023 | A0221   | 1    | Salmonella meningitis                              | Salmonella meningitis                              |
| 00024 | A0222   | 1    | Salmonella pneumonia                               | Salmonella pneumonia                               |
| 00025 | A0223   | 1    | Salmonella arthritis                               | Salmonella arthritis                               |
| 00026 | A0224   | 1    | Salmonella osteomyelitis                           | Salmonella osteomyelitis                           |
| 00027 | A0225   | 1    | Salmonella pyelonephritis                          | Salmonella pyelonephritis                          |
| 00028 | A0229   | 1    | Salmonella with other localized infection          | Salmonella with other localized infection          |
| 00029 | A028    | 1    | Other specified salmonella infections              | Other specified salmonella infections              |

Figure 4: ICD10CM ORDER 2018 file

| Position | Length | Contents                                                               |
|----------|--------|------------------------------------------------------------------------|
| 1        | 5      | Order number, right justified, zero filled.                            |
| 6        | 1      | Blank                                                                  |
| 7        | 7      | ICD-10-CM or ICD-10-PCS code. Dots are not included.                   |
| 14       | 1      | Blank                                                                  |
| 15       | 1      | 0 if the code is a "header" –not valid for HIPAA-covered transactions. |
|          |        | 1 if the code is valid for submission for HIPAA-covered transactions.  |
| 16       | 1      | Blank                                                                  |
| 17       | 60     | Short description                                                      |
| 77       | 1      | Blank                                                                  |
| 78       | To end | Long description                                                       |

Table 1: ICD10CM ORDER 2018 file layout

#### Data storage and management

A database has been created using PostgreSQL open-source database software. The NIS

2016 core file and ICD10CM Order 2018 files have been imported to the database using the file

layout specification information.

#### Data extraction, transformation, and analysis

The data stored in the database is extracted using python programming language on a Jupyter Notebook. Jupyter Notebook is a web based open-source interactive computing platform. Code snippets can be written in cells. A Jupyter Notebook cell state is saved even after completion of the code execution. As a changed code cell doesn't require a complete program rerun. Running the program right form the cell that is modified to the last cell in the notebook is sufficient. **Figure 5** shows the solution architecture.



Figure 5: Solution architecture

The extracted data is then verified and cleansed. A unique integer is given to each ICD code found in the extracted data and the mapping is maintained in a dictionary. The data extract, unique integer code information is passed to a custom transformer. The transformer converts the

data extract to LIBSVM format by replacing all the ICD codes with their equivalent integer values in the ICD dictionary. The non-ICD columns are also replaced with unique integers. Below is an example of a LIBSVM record. First value in the record is the target value. It is followed by key value pairs. The key is the integer equivalent of the ICD codes and non-ICD columns. The integers are followed by a colon ':' and a value. The value for all the ICD code keys is defaulted to 1 and the values for the non-ICD codes are the actual values the columns have in the data extract. Below is a sample LIBSVM record:

#### '0 114:1 525:1 588:1 629:1 920:1 923:1 2051:1 3942:1 3949:1 7123:48 7124:1 7125:2 7126:1 '

The LIBSVN format records are then converted into a sparse matrix. Each key value in the LIBSVM record becomes a column in the sparse matrix and the corresponding value is now passed to the appropriate cell in the sparse matrix. The cell that corresponds to a column that doesn't have a key entry in the LIBSVM record is filled with a zero. The sparse matrix is then given as input to a selection method. The selection method then selects the columns that are significantly contributing towards the colon cancer prediction. These columns are then filtered out from the sparse matrix and a sub dataset is formed. This sub dataset is then passed to the pipeline for training using the selected machine learning algorithm. The remaining data is then passed through the trained model for prediction. The predicted outcomes are then compared with the actual values for accuracy. **Figure 6** shows the process in a flow chart.



Figure 6: Data processing

# **Feature Selection Algorithms**

Feature selection algorithms help in filtering the number of columns in the data. Below are

the few advantages of using feature selection algorithms:

- Identifies the features that are important for the outcome.
- Helps eliminate non-significant feature and thereby avoids over fitting of the model.
- Model performs well for new samples as it retains the generality.
- Since the number of columns are a subset of the original data, the volume of data that is processed goes down and the model takes less time.

In this dissertation 2 feature selection algorithms are used.

#### Select K Best with chi square

In the chi square method, chi square value is calculated to identify the dependency between the features and the target. The higher the chi square value, the higher the dependency. The features that have higher chi square values in association with the target are identified as significant features for the target prediction.

#### Feature Importance using Extra Trees Classifier

The extremely randomized trees classifier is an ensemble learning technique that has multiple decision trees forming a forest like the Random Forest classifier. However, it is different from Random Forest Classifier in the way the decision trees are constructed in the forest. A random number of features are allocated to each decision tree and each decision tree selects the best feature to split the data based on a mathematical criterion. This mathematical criterion is used for feature selection.

#### **Machine Learning Models**

#### **Decision Tree**

Decision Trees are a supervised Machine Learning model in which data is constantly divided based on a certain parameter. The tree can be explained using two entities: decision nodes and leaves. **Figure 7** shows how the leaves symbolize the decisions or outcomes. Decision Trees works with both categorical and continuous input and output data [6].

12



Figure 7: Decision Tree Model [7].

# Logistic Regression

Logistic Regression is another Supervised Learning model that uses a set of independent variables to estimate unique binary values (true/false, 0/1, yes/no). As seen in **Figure 8**, it fits data to a logit function to estimate the probability of an event. Logistic Regression is sometimes known as Logit Regression because of this. Because it forecasts probability [6], its output falls within the range of 0 to 1.



Figure 8: Logistic Regression [8].

#### Random Forest

Random Forest, also known as Random Decision Forest, is a Supervised Learning algorithm that constructs a "forest" out of a collection of Decision Trees. It's trained using the "bagging" method which is built upon the idea that combining many learning models enhances total output. A Random Forest combines several Decision Trees to provide a more accurate and consistent prediction [9]. This model can be used for regression as well as classification. A Random Forest model architecture is displayed in **Figure 9**.



Figure 9: Random Forest architecture [10].

# **Pipelines**

A Machine Learning Pipeline is a way for automating the procedures involved in generating a machine learning model. Different steps such as data extraction, preprocessing, model training, model testing, and deployment are all handled by ML pipelines [11]. Each pipeline stage's behavior can be generalized, and each step can be created as a reusable component. It is possible to set the order in which the components are executed, as well as how inputs and outputs flow through the pipeline [11]. The pipeline allows the code to work with a variety of selectors, machine learning models, and estimators. The movement of an ML pipeline is seen in **Figure 10**.



Figure 10: Machine Learning Pipeline [12].

The solution has been developed using Python 3 language because of the rich data science related libraries. Pandas library is used for data manipulation. Scikit learn library has been used to import machine learning, pipeline, feature selection, metrics methods. Browser based notebook programming platform Jupyter Notebook has been used as an IDE. ipywidgets library has been used to build the UI. Jupyter Notebook's Appmode feature has been used to hide the technicalities, for better user experience and interaction.

#### **User Interface**

One of the goals of this study is to make the solution available for people with no coding skills. A user interface with options that enables the users is doing a comparative study of various techniques under difference circumstances has been created.

# ipywidgets

ipywidgets is an open-source python library that offers interactive HTML widgets for Jupyter notebooks. These widgets are light weight and easy to use with minimal code. They are apt for data science like project that don't need extensive UI capabilities. They can help in creating simple UI options for user input and output. The library offers simple widgets like a TextBox, slider bar, dropdown to complex Asynchronous widgets. shows the widgets we created for this study.

| Jupyter Disease_Prediction_Using_NIS_2016_ETA - NEW Last Checkpoint: 8 hours ago (autosaved)                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit View Insert Cell Kernel Widgets Help                                                                                                                                                                                                                                                                                                                 |
| B + ∞ 2 1 10 + ↓ ► Run ■ C ► Code                                                                                                                                                                                                                                                                                                                              |
| <pre>114 115 #with out: 116 display(disease_widget) 117 display(positive_cases_widget,positive_cases_text_widget) 118 display(negative_cases_widget,negative_cases_text_widget) 119 display(features_count_widget,features_count_text_widget) 120 display(feature_widget) 121 display(algorithm_widget) 122 display(test_pct_widget) 123 display(button)</pre> |
| Disease: C18 - Colon cancer V                                                                                                                                                                                                                                                                                                                                  |
| Positive cases slider: 34089                                                                                                                                                                                                                                                                                                                                   |
| Positive cases text: 34089                                                                                                                                                                                                                                                                                                                                     |
| Negative cases slider: 7101001                                                                                                                                                                                                                                                                                                                                 |
| Negative cases text: 7101001                                                                                                                                                                                                                                                                                                                                   |
| Number of features slider: 0 10                                                                                                                                                                                                                                                                                                                                |
| Number of features text: 10                                                                                                                                                                                                                                                                                                                                    |
| Feature selection algorithm: SelectKBest<br>FeatureImportance                                                                                                                                                                                                                                                                                                  |
| ML algorithm: Decision Tree<br>Logistic Regression<br>Random Forest                                                                                                                                                                                                                                                                                            |
| Test data %: = 10                                                                                                                                                                                                                                                                                                                                              |
| » Run                                                                                                                                                                                                                                                                                                                                                          |

Figure 11: ipywidgets displayed on a jupyter notebook

This is a good option. However, the users still have access to the code as these widgets appear under the code cell in the Jupyter notebook.

# Appmode

To hide the code completely, an extension to Jupyter Notebook can be used. Once this extension is installed, Appmode button appears on the Jupyter Notebook tool bar. It is

#### highlighted in Figure 12.

| Jupyter Disease_Prediction_Using_NIS_2016_ETA - NEW Last Checkpoint: 8 hours ago (unsaved changes) | real Logout        |
|----------------------------------------------------------------------------------------------------|--------------------|
| File Edit View Insert Cell Kernel Widgets Help                                                     | Trusted Python 3 ● |
|                                                                                                    |                    |
| 22 decemintion='ML algorithm:'                                                                     |                    |

Figure 12: Appmode Jupyter Notebook extension

On clicking on the Appmode extension button, it will take us to a UI only interface that hides the code completely. Although we can go back to the code by selecting the "Edit App" button, it can be disabled and only the UI part can be shared with the users. **Figure 13** shows the Appmode view.

| Jupyter                                                             | Edit App | Logou |
|---------------------------------------------------------------------|----------|-------|
|                                                                     |          |       |
| Disease: C18 - Colon cancer                                         |          |       |
| Positive cases slider: 34089                                        |          |       |
| Positive cases text: 34089                                          |          |       |
| Negative cases slider: 7101001                                      |          |       |
| Negative cases text: 7101001                                        |          |       |
| Number of features slider: 0 10                                     |          |       |
| Number of features text: 10                                         |          |       |
| Feature selection algorithm: SelectKBest<br>FeatureImportance       |          |       |
| ML algorithm: Decision Tree<br>Logistic Regression<br>Random Forest |          |       |
| Test data %: 10                                                     |          |       |
| » Run                                                               |          |       |

Figure 13: Appmode view on Jupyter Notebook

# Features

**Table 2** has the options available for the users. Using a Ctrl or Shift button users have the option to select multiple Feature selection or Machine Learning algorithms. This will run multiple iterations of the analysis by using all combinations of the selection and machine learning algorithms.

| Feature             | Description                                    | Default Value        |
|---------------------|------------------------------------------------|----------------------|
| Disease             | Disease code for prognosis study               | Colon cancer         |
| Positive cases      | Number of records with the selected disease    | Maximum cases for    |
| slider              | code that need to be pulled from the database  | the selected disease |
| Positive cases text | Number of records with the selected disease    | Maximum cases for    |
|                     | code that need to be pulled from the database  | the selected disease |
| Negative cases      | Number of records without the selected disease | Maximum cases for    |
| slider              | code that need to be pulled from the database  | the selected disease |
| Negative cases      | Number of records without the selected disease | Maximum cases for    |
| text                | code that need to be pulled from the database  | the selected disease |
| Number of           | Number of features that need to be selected by | 10                   |
| features            | the selection algorithm                        |                      |

| Feature Selection | Feature method selection that needs to be used                          | SelectKBest  |
|-------------------|-------------------------------------------------------------------------|--------------|
| Algorithm         | for feature identification                                              |              |
| ML algorithm      | Machine Learning algorithm that needs to be used for disease prediction | DecisionTree |
| Test data %       | Percentage of the data pulled from that                                 | 10           |
|                   | databased used for training purpose                                     |              |

Table 2: UI user input options

#### Output

Output is displayed on the Jupyter Notebook right below the "Run" button. Figure 14

shows the user selected options, selected features, Machine learning algorithm related

information. Figure 15 shows selected feature scores and their representation is a bar chart.

Figure 16 shows the selected features and target value heatmap.

```
Feature selection method: SelectKBest
Machine Learning Algorithm: Random Forest
No of features selected: 20
Selected features:
race
C787 - Secondary malig neoplasm of liver and intrahepatic bile duct
Z370 - Single live birth
Z23 - Encounter for immunization
Z3800 - Single liveborn infant, delivered vaginally
C786 - Secondary malignant neoplasm of retroperiton and peritoneum
C7800 - Secondary malignant neoplasm of unspecified lung
Z9049 - Acquired absence of other specified parts of digestive tract
C772 - Secondary and unsp malignant neoplasm of intra-abd nodes
Z3A39 - 39 weeks gestation of pregnancy
Z515 - Encounter for palliative care
Z3801 - Single liveborn infant, delivered by cesarean
K5660 - Unspecified intestinal obstruction
D509 - Iron deficiency anemia, unspecified
Z9221 - Personal history of antineoplastic chemotherapy
D630 - Anemia in neoplastic disease
K913 - Postprocedural intestinal obstruction
K660 - Peritoneal adhesions (postprocedural) (postinfection)
Z933 - Colostomy status
K5669 - Other intestinal obstruction
Training time: 4.85 seconds
Accuracy: 80.10%
Confusion matrix: [[789 188]
 [210 813]]
```

Figure 14: User selected options, feature list, ML outcome

Features and Scores:

|    | Features                                       | Scores       |
|----|------------------------------------------------|--------------|
| 1  | race                                           | 32079.486233 |
| 2  | C787 - Secondary malig neoplasm of liver and i | 2316.411674  |
| 3  | Z370 - Single live birth                       | 1292.012308  |
| 4  | Z23 - Encounter for immunization               | 919.528387   |
| 5  | Z3800 - Single liveborn infant, delivered vagi | 837.000000   |
| 6  | C786 - Secondary malignant neoplasm of retrope | 815.302243   |
| 7  | C7800 - Secondary malignant neoplasm of unspec | 681.984281   |
| 8  | Z9049 - Acquired absence of other specified pa | 649.074405   |
| 9  | C772 - Secondary and unsp malignant neoplasm o | 589.006745   |
| 10 | Z3A39 - 39 weeks gestation of pregnancy        | 564.000000   |
| 11 | Z515 - Encounter for palliative care           | 536.737271   |
| 12 | Z3801 - Single liveborn infant, delivered by c | 440.000000   |
| 13 | K5660 - Unspecified intestinal obstruction     | 432.894410   |
| 14 | D509 - Iron deficiency anemia, unspecified     | 390.480591   |
| 15 | Z9221 - Personal history of antineoplastic che | 377.758294   |
| 16 | D630 - Anemia in neoplastic disease            | 353.241449   |
| 17 | K913 - Postprocedural intestinal obstruction   | 347.115385   |
| 18 | K660 - Peritoneal adhesions (postprocedural) ( | 346.529175   |
| 19 | Z933 - Colostomy status                        | 342.007905   |
| 20 | K5669 - Other intestinal obstruction           | 340.984810   |





Figure 15: Selected feature scores



Figure 16: Selected features and target heatmap

The output is thoroughly discussed in the Results section.

#### Case study

The pipeline was tested using 'Colon Cancer' as the disease condition. 130,000 patient data was randomly selected which consisted of 30,000 positive cases and 100,000 negative cases. The top 20 features were selected using the selectors 'FeatureImportance' and 'SelectKBest'. Predictions are made with the use of machine learning models such as Decision Tree, Logistic Regression and Random Forest. The data was split into 2 parts where 10% of the data was used for testing and the rest was used for training.

There can be 6 test cases since multiple feature selection techniques and machine learning models are used. To keep the results comparable the different algorithms are used on the same dataset. In the results section, the identified top features are analyzed, heat maps are drawn to find correlation among these features. Finally, the prognosis obtained from the 6 test cases are thoroughly compared to find the best performing combination of feature selector and model.

## Results

### Selector 1: SelectKBest

The top 20 features identified by the SelectKBest selector are listed in Table 3 along with

their feature scores.

| No | Feature                                                              | Score         |
|----|----------------------------------------------------------------------|---------------|
| 1  | race                                                                 | 110969.986336 |
| 2  | C787 - Secondary malig neoplasm of liver and intrahepatic bile duct  | 20481.787019  |
| 3  | C786 - Secondary malignant neoplasm of retroperiton and peritoneum   | 7986.015385   |
| 4  | C772 - Secondary and unsp malignant neoplasm of intra-abd nodes      | 6525.202963   |
| 5  | C7800 - Secondary malignant neoplasm of unspecified lung             | 6025.506305   |
| 6  | D630 - Anemia in neoplastic disease                                  | 3688.020718   |
| 7  | K5669 - Other intestinal obstruction                                 | 3428.428736   |
| 8  | K913 - Postprocedural intestinal obstruction                         | 3042.813102   |
| 9  | K5660 - Unspecified intestinal obstruction                           | 2879.670609   |
| 10 | Z370 - Single live birth                                             | 2854.102364   |
| 11 | Z9049 - Acquired absence of other specified parts of digestive tract | 2849.583594   |
| 12 | K660 - Peritoneal adhesions (postprocedural) (postinfection)         | 2782.868982   |
| 13 | Z933 - Colostomy status                                              | 2756.720466   |
| 14 | D500 - Iron deficiency anemia secondary to blood loss (chronic)      | 2697.030743   |
| 15 | Z800 - Family history of malignant neoplasm of digestive organs      | 2628.255751   |
| 16 | G893 - Neoplasm related pain (acute) (chronic)                       | 2296.386377   |
| 17 | Z515 - Encounter for palliative care                                 | 2165.093978   |
| 18 | T451X5A - Adverse effect of antineoplastic and immunosup drugs, init | 2144.598389   |
| 19 | D509 - Iron deficiency anemia, unspecified                           | 2104.356476   |
| 20 | Z9221 - Personal history of antineoplastic chemotherapy              | 2011.939061   |

Table 3: Top 20 features selected by SelectKBest selector.

**Figure 17** represents the heat map indicating the correlation between the target and each of the features, where the correlation score ranges from 1 (deep green) to -.05 (deep red). A positive correlation score means the 2 features move in the same direction whereas a negative correlation indicates the features moving in the opposite direction. Assuming features A and B are negatively correlated, the value of A will increase if the value of B decreases and vice versa [13].



Figure 17: Heat map for correlation between feature and target (SelectKBest selector). After identifying the top features, they are passed through the pipeline and fitted into the machine learning models. The performance of the 3 models is compared in **Figure 18**. Random Forest performs best with the SelectKBest selector and achieves an accuracy of 87.33% followed closely by Logistic Regression being 86.81% accurate and lastly Decision Tree is the least accurate having an accuracy of 83.15%.



Figure 18: Accuracy comparison for different models using SelectKBest selector.

# Selector 2: Feature Importance

The same data is now passed through the Feature Importance selector to identify the 20

features. The sample data and the feature numbers are kept identical to keep the results

comparable. Table 4 represents the selected features by the Feature Importance selector and their

feature scores.

| No | Feature                                                              | Score    |
|----|----------------------------------------------------------------------|----------|
| 1  | C787 - Secondary malig neoplasm of liver and intrahepatic bile duct  | 0.067829 |
| 2  | race                                                                 | 0.033172 |
| 3  | C772 - Secondary and unsp malignant neoplasm of intra-abd nodes      | 0.022952 |
| 4  | C786 - Secondary malignant neoplasm of retroperiton and peritoneum   | 0.020745 |
| 5  | C7800 - Secondary malignant neoplasm of unspecified lung             | 0.014536 |
| 6  | female                                                               | 0.012065 |
| 7  | K660 - Peritoneal adhesions (postprocedural) (postinfection)         | 0.010818 |
| 8  | K913 - Postprocedural intestinal obstruction                         | 0.009963 |
| 9  | D630 - Anemia in neoplastic disease                                  | 0.009318 |
| 10 | K5669 - Other intestinal obstruction                                 | 0.008566 |
| 11 | Z9049 - Acquired absence of other specified parts of digestive tract | 0.008354 |
| 12 | Z933 - Colostomy status                                              | 0.008087 |
| 13 | Z800 - Family history of malignant neoplasm of digestive organs      | 0.007681 |
| 14 | D500 - Iron deficiency anemia secondary to blood loss (chronic)      | 0.007513 |
| 15 | K5660 - Unspecified intestinal obstruction                           | 0.007428 |
| 16 | D509 - Iron deficiency anemia, unspecified                           | 0.007115 |
| 17 | age                                                                  | 0.006702 |
| 18 | K567 - Ileus, unspecified                                            | 0.006696 |
| 19 | I10 - Essential (primary) hypertension                               | 0.006410 |
| 20 | Z370 - Single live birth                                             | 0.005775 |

Table 4: Top 20 features selected by Feature Importance selector.

The correlation between the target and each of the features shown in Figure 19 using a

heat map. The correlation score ranges from 1 (deep green) to -.05 (deep red) like Figure 17.



Figure 19: Heat map for correlation between feature and target (SelectKBest selector).

The 3 machine learning models perform very similarly to the previous results under the Feature Importance selector. Their performance is compared in **Figure 20**. Random Forest still performs best with a slightly higher accuracy achieved with SelectKBest selector. The Random Forest model and Feature Importance Selector combination provided the highest accuracy of 87.61%. Logistic Regression slightly decreases, and Decision Tree performs the same. The

machine learning models produce almost identical results using the 2 different feature selector models since both the selectors identify similar features.



Figure 20: Accuracy comparison for different models using Feature Importance selector.

#### Conclusion

Early diagnosis of diseases is extremely crucial for the effective treatment for many diseases. The goal of this dissertation is to predict diseases and help healthcare professionals to make more accurate diagnosis. An interactive platform is created which allows the user to pick among multiple feature selection methods and machine learning models to generate predictions. The user also has the option of tweaking disease condition to predict, sample data size, test to train ratio, etc.

With a view to test the platform a case study is performed using colon cancer. Using 2 selection algorithms (Feature Importance and SelectKBest) and 3 machine learning algorithms (Decision Tree, Logistic Regression, Random Forest) promising results are observed. Some of the most important features that contributes to the prognosis include Secondary malig neoplasm of liver and intrahepatic bile duct, Secondary malignant neoplasm of retroperiton and peritoneum, Secondary and unsp malignant neoplasm of intra-abd nodes. The three Machine Learning algorithms performed consistently. Random Forest performed slightly well than Decision Tree and Logistic Regression.

#### **Application & future work**

#### Applications:

This dissertation can be widely used in the healthcare domain to predict diseases which in turn will help the healthcare professionals to provide more accurate diagnosis and better treatment to patients. It's also expected to have significant impact in preventive care as it helps early diagnosis. Insurance companies can use this platform to predict client's possibility of suffering from a disease and finalize insurance premium accordingly.

#### Future work:

Though the result for this dissertation is promising, there are a few improvements that can be incorporated in the future. Instead of using only a single year data, multiple year data can be used to improve the performance of the platform. This would include building a database of disease conditions which is compatible with multiple disease classifications since different year data uses different disease classifications. As the data format for multiple year is slightly different, data should be processed into a general format before using multiple year data.

Deep learning models can be used to increase accuracy as well. Neural networks are extremely powerful to make accurate predictions. Due to resource constraint deep learning could not be explored.

30

## References

- 1. "Colon cancer Symptoms and causes Mayo Clinic". [Online]. Available: https://www.mayoclinic.org/diseases-conditions/colon-cancer/symptoms-causes/syc-20353669. [Accessed: 09-Dec.-2021].
- "Key Statistics for Colorectal Cancer". [Online]. Available: https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html. [Accessed: 09-Dec.-2021].
- 3. "USCS Data Visualizations CDC". [Online]. Available: https://gis.cdc.gov/Cancer/USCS/. [Accessed: 09-Dec.-2021].
- "Colon cancer Diagnosis and treatment Mayo Clinic". [Online]. Available: https://www.mayoclinic.org/diseases-conditions/colon-cancer/diagnosis-treatment/drc-20353674. [Accessed: 09-Dec.-2021].
- "Introduction to the HCUP National Inpatient Sample (NIS), 2016,". [Online]. Available: https://www.hcup-us.ahrq.gov/db/nation/nis/NIS\_Introduction\_2016.jsp. [Accessed: 09-Dec.-2021].
- "Commonly Used Machine Learning Algorithms | Data Science". [Online]. Available: https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/. [Accessed: 09-Dec.-2021].
- "Machine Learning Decision Tree Classification Algorithm Javatpoint". [Online]. Available: https://www.javatpoint.com/machine-learning-decision-tree-classificationalgorithm. [Accessed: 09-Dec.-2021].
- 8. "Logistic Regression A Complete Tutorial with Examples in R". [Online]. Available: https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorialexamples-r/. [Accessed: 09-Dec.-2021].
- 9. "Random Forest Algorithms: A Complete Guide | Built In". [Online]. Available: https://builtin.com/data-science/random-forest-algorithm. [Accessed: 09-Dec.-2021].
- "Random Forest Regression". [Online]. Available: https://levelup.gitconnected.com/random-forest-regression-209c0f354c84. [Accessed: 09-Dec.-2021].
- 11. "What is a Machine Learning Pipeline?". [Online]. Available: https://valohai.com/machine-learning-pipeline/. [Accessed: 09-Dec.-2021].
- "MLOps scalability Machine Learning". [Online]. Available: https://www.gosmar.eu/machinelearning/2021/01/02/mlops-scalability/. [Accessed: 09-Dec.-2021].c

- "Correlation Definitions, Examples & Interpretation | Simply Psychology". [Online]. Available: https://www.simplypsychology.org/correlation.html. [Accessed: 09-Dec.-2021].
- 14. "Machine Learning for Detection and Diagnosis of Disease | Annual ...". [Online]. Available: https://www.annualreviews.org/doi/abs/10.1146/annurev.bioeng.8.061505.095802. [Accessed: 09-Dec.-2021].
- 15. "Machine learning for improved diagnosis and prognosis in ...". [Online]. Available: http://ieeexplore.ieee.org/document/7943950/. [Accessed: 09-Dec.-2021].
- "Comparing different supervised machine learning algorithms for ...". [Online]. Available: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8. [Accessed: 09-Dec.-2021].
- 17. "Disease Prediction by Machine Learning Over Big Data From ...". [Online]. Available: https://ieeexplore.ieee.org/document/7912315. [Accessed: 09-Dec.-2021].
- 18. "Stage II Colon Cancer Prognosis Prediction by Tumor Gene ...". [Online]. Available: https://ascopubs.org/doi/abs/10.1200/jco.2005.05.0229. [Accessed: 09-Dec.-2021].
- 19. "Colon cancer prognosis prediction by gene expression profiling ...". [Online]. Available: https://www.nature.com/articles/1208984. [Accessed: 09-Dec.-2021].
- 20. "Serum-based microRNA signatures in early diagnosis and …". [Online]. Available: https://academic.oup.com/carcin/article/37/10/941/2196570. [Accessed: 09-Dec.-2021].