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ABSTRACT 

 

VULNERABILITY AND RESILIENCE OF PEOPLE AND PLACES TO HURRICANE 

DAMAGE IN THE U.S. GULF AND ATLANTIC COASTS FROM 1950 TO 2018 

by 

Gainbi Park 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor Zengwang Xu 

 

Extreme weather events are expected to increase as a consequence of climate change, 

increasing the intensity and frequency of natural hazards. Their catastrophic impact is 

attributable to both the geophysical characteristics of a hazardous event itself and the socio-

demographic characteristics of people who are at a greater risk of harm in the aftermath of 

natural hazards. Previous studies have largely used a place-based approach, measuring the 

relative level of social vulnerability between places using a social vulnerability index (SoVI), a 

prevalent spatially explicit method in geographic scholarship. As a composite index, SoVI, has 

been criticized by scholars due to its over-generalization; it cannot indicate the contribution of 

specific local social indicators to vulnerability, obscuring demographic heterogeneity and 

making it difficult to understand who is vulnerable. In contrast to the spatiality of vulnerability, 

the temporal dynamics of social vulnerability have been relatively understudied. This dissertation 

seeks to address these drawbacks of the SoVI approach and to assess hazard-specific 

vulnerability by incorporating geophysical characteristics of natural hazards and differential 

vulnerabilities of affected populations.  

There are four primary objectives of this study: (1) To investigate major patterns in the 

spatial and temporal dynamics of social vulnerability of U.S. counties from 1970 to 2010 using 

quantile standardization, sequence alignment analysis, and cluster analysis; (2) To identify the 
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contributions of the components of SoVI and the local primary factors that contribute to social 

vulnerability using geographically-weighted principal component analysis (GWPCA) and 

explore how those factors have evolved over time using Greater Houston as a case study; (3) To 

estimate the spatial extent and intensity of storm surge inundation and wind damage caused by 

hurricanes along the Gulf and Atlantic Coasts in the United States from 1950 to 2018 using 

geospatial analysis; and (4) To understand differential vulnerabilities of distinctive demographics 

within hurricane at-risk areas using a spatial and temporal analysis.  

The results show that the U.S. counties have four major temporal trajectories, revealing 

areas of persistently low and high vulnerabilities and areas with dynamically changing 

vulnerabilities. The application of GWPCA reveals the most influential local social factors that 

constitute the SoVI index. Moreover, the spatial and temporal trends of the local factors can 

indicate what socioeconomic conditions are prevailing and consistently affect the vulnerability of 

a particular region. In terms of the vulnerability of people to hurricane hazards, this study also 

identifies generalized patterns of demographic changes that are within hurricane-risk zones and 

which population groups are increasingly or decreasingly exposed.  

The results in this study have significant implications for policymakers and national 

disaster management in surveilling vulnerable areas and establishing potential hazard mitigation 

plans. The findings reported here shed new light on social vulnerability assessment urging 

decision-makers to provide more resources to the hardest-hit groups living in the most exposed 

counties. This study is the first comprehensive investigation of hurricane-specific vulnerability 

encompassing the Atlantic and Gulf Coasts and at a national scale. The analytical framework 

suggested in this study can enrich the approach to vulnerability assessment of natural hazards by 

converging geographic and demographic perspectives. 
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Chapter 1. Introduction 

1.1. Introduction 

In recent decades, the human population has seen unprecedented growth and 

redistribution. Its demographic composition has also undergone major changes along with 

alteration of social and natural environments. Anthropogenic activities from unbridled 

consumption of fossil fuels, indiscriminate land development, and deforestation have been 

exacerbating climate change and global warming. The incidents of extreme weather events are 

projected to increase worldwide as a consequence of continued global climate change, increasing 

the intensity and frequency of natural hazards (National Academies of Sciences, 2016). Such 

human-induced environmental stresses amplify risk and vulnerability, which necessitates a 

comprehensive understanding of the extent to which human society is susceptible to natural 

hazards such as wildfires, drought, heavy rainfall, floods, and hurricanes. In response to a high 

risk of natural hazards, understanding the extent to which the United States is vulnerable to 

natural hazards over space and time is imperative to prepare for and mitigate potential impacts of 

natural disasters (Cutter & Finch, 2008; Park & Xu, 2020; Van Aalst, 2006).  

Natural hazards are directly impacted by the geophysical characteristics of the areas in 

proximity to destructive events, as well as the social characteristics of people situating 

themselves in vulnerable conditions (Cutter, 1996; Tobin & Montz, 1997; Wisner, Blaikie, 

Blaikie, Cannon, & Davis, 2004). Socially vulnerable populations are less likely to have 

resources, information, and coping capacity thereby having greater risk and disproportionate 

impacts in the aftermath of natural disasters. The most damaging hurricane events in U.S. 

history, such as Hurricane Katrina (2005), Superstorm Sandy (2012), Hurricane Harvey (2017), 

Hurricane Irma and Maria (2017), substantiate that natural disasters cannot be simply considered 
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“natural” and rather are socially constructed (Cannon, 1994; Hewitt, 1995; Logan, 2009; N. 

Smith, 2006). The socio-demographic factors are directly related to who is more vulnerable and 

who will be more seriously affected.  

Considering the interaction between the physical mechanisms of a hazardous event and 

the social dimensions that contribute to natural hazards vulnerability, social scientists have 

incorporated this relationship into vulnerability research by defining it as the “social causation of 

vulnerability” or “social vulnerability” (Birkmann, 2006; Cutter, 1996; Pelling, 2003; Wisner et 

al., 2004). In particular, a place-based approach has been the main approach used in natural 

hazards vulnerability research over the past few decades, emphasizing identification of the 

spatial distribution of social vulnerability based upon the conceptual framework – “Hazards of 

Place (HOP)” model (Cutter, 1996; Cutter, Mitchell, & Scott, 2000; Moser, 2010). In an attempt 

to implement the concept of the HOP model, Cutter, Boruff, and Shirley (2003) developed a 

social vulnerability index (SoVI) that measures the relative degree of social vulnerability among 

different places. Most studies on geographic vulnerability research have relied heavily on the 

SoVI to answer questions about what locations are more vulnerable to natural hazards at various 

geographic scales (Cutter, 2009; Cutter et al., 2003). 

For decades, the SoVI approach has driven empirical case studies to measure the spatial 

variation of social vulnerability to all types of natural hazards or specific hazard events (C. G. 

Burton, 2010; Myers, Slack, & Singelmann, 2008; Rygel, O’Sullivan, & Yarnal, 2006; C. Wang 

& Yarnal, 2012; Yoon, 2012). Although widely accepted, the SoVI method suffers from several 

limitations – the ecological fallacy, the validity of SoVI in predicting the actual disaster outcome, 

and uncertainty/sensitivity issues in constructing the composite indicator (Barnett, Lambert, & 

Fry, 2008; Fekete, 2009; Jones & Andrey, 2007; Rufat, Eric, Emrich, & Antolini, 2019; 
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Spielman et al., 2020; Tate, 2012; Tellman, Schank, Schwarz, Howe, & de Sherbinin, 2020; 

Wood, Burton, & Cutter, 2010). Moreover, research on the subject of social vulnerability has 

been mostly limited to “vulnerable spatialities,” paying particular attention to the cross-sectional 

variation of social vulnerability and ignoring temporal dynamics (Cutter, 1996; Findlay, 2005; 

Park & Xu, 2020). Another limitation of the SoVI approach is the “obscurity” of the aggregated 

values of the indicator so it cannot single out the primary factors contributing to vulnerability 

(Wood et al., 2010). Future vulnerability research should incorporate the dynamic aspects of 

social vulnerability by considering its temporal shifts and local variation.  

Beyond the generalized profile of social vulnerability, hazard-specific vulnerability 

presents its own unique challenges. For example, hurricanes and cyclones impact different 

populations with varying degrees of social vulnerability, primarily in coastal communities. The 

increasing presence of at-risk human populations along the Gulf and Atlantic Coasts is 

substantially increasing the potential hazards. The continued concentration of people and 

property in coastal areas creates a perpetual risk of exposure to biophysical hazards. The U.S. 

population has experienced significant growth, diversification, and spatial reallocation in the past 

few decades (Donner & Rodríguez, 2008; Magnus, 2008; Thomas, Phillips, Lovekamp, & 

Fothergill, 2013). These changing geo-demographics (i.e., demographic profile of groups of 

people by where they live) have altered the social vulnerability of places across the United 

States. In facing the challenge of climate change and increasing risk from natural hazards, it is 

essential to understand how populations have been historically affected and what population 

groups have demonstrated the most vulnerability. An inter-categorical intersectional approach 

has been widely adopted in quantitative research (e.g., health, ageing, or life-course studies) to 

reveal consequences of inequality stratified by cross-coded categories (e.g., young Black women 
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or men) representing the intersection of different population subgroups. The term “intersectional 

approach” in this dissertation indicates cross-coded categorization based upon multiple 

demographic attributes, taking into account the data available on race/ethnicity, gender, and age 

groups in demographic datasets (Bauer & Scheim, 2019; Holman & Walker, 2020). The use of 

the intersectional approach varies across the social science disciplines. Age is not as 

straightforward as gender, race, class, etc. as an axis of inequality of the intersectional approach, 

but it is relevant in examining population vulnerability in an aging society. Using the 

demographic intersections of race, gender, and age, this dissertation attempts to comprehend how 

this intersectionality can be applied to population vulnerability to hurricane hazards along the 

Gulf and Atlantic Coasts (Kadetz & Mock, 2018; Kuran et al., 2020; Ryder, 2017). Due to 

practical constraints and data availability, the inter-categorical intersectional approach adopted in 

this study is limited to ‘thin description’ rather than ‘thick description’, only providing 

superficial and fragmentary information, and cannot provide in-depth historical, cultural, and 

structural contexts (Geertz, 1973) in explaining the experiences of marginalized groups in 

disaster vulnerability. A full discussion of intersectional social vulnerability to disasters lies 

beyond the scope of this study and needs qualitative data collection and analysis.  

1.2. Research Objectives  

The overall goals of this dissertation are to provide complementary methods to address 

the shortcomings of the social vulnerability index (SoVI) approach and to assess hazard-specific 

vulnerability. The primary aims of this study are to address the following research gaps:   

1. Social vulnerability is a temporally dynamic process. Despite the importance of 

understanding spatial and historical transitions of social vulnerability, most studies have 

not treated the temporal progressions of vulnerability in a systematic and quantitative 
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manner. Considering it as a spatio-temporal process evolving over time and across space, 

part of this dissertation investigates the major patterns in the spatial and temporal 

dynamics of social vulnerability of U.S. counties from 1970 to 2010 (Chapter 3.1). 

2. Methodologically, the SoVI is an aggregated composite index based upon a linear 

combination of a few selected social-demographic variables created from a statistical 

reduction technique such as principal component analysis. This highly aggregated 

indicator cannot determine the degree to which specific local social factors contribute to 

vulnerability. This study explores the differential contributions of the integral 

components of SoVI using a local spatial statistical model and further examines how the 

local primary determinants have evolved over time (Chapter 3.2).  

3. Drawing upon the hazards of place (HOP) model, this study aims to understand the 

geography of hurricane-specific coastal vulnerability in the U.S. using geophysical 

modeling of hurricane-related damage to answer the following research questions 

(Chapter 4): (1) what is the spatial extent and intensity of storm surge inundation and 

wind damage caused by hurricanes along the Gulf and Atlantic Coasts in the United 

States from 1950 to 2018? and (2) what regions have been hardest hit by hurricanes in US 

coastal counties over the past decades since 1950?  

4. The SoVI approach tends to obscure demographic heterogeneity so that it is difficult to 

fully understand who is more vulnerable. A number of studies have analyzed unitary 

demographic variables (e.g., age, gender, race/ethnicity) as separate elements, 

overlooking how people’s identities at the intersections of multiple systems of inequality 

shape disaster vulnerability. Thus, this study aims to unravel the overall population 

distribution and composition within the hurricane at-risk areas to understand differential 
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demographic vulnerability through the application of an inter-categorical (i.e., cross-

coded variables) intersectional approach. This can be an additional approach to 

complement the indicator-based vulnerability assessment, providing a nuanced picture of 

the vulnerable segments of population groups. Specifically, this study will answer the 

following research questions (Chapter 5): (1) what population groups have been 

increasingly or decreasingly exposed to hurricane-related damage over time within the 

hurricane-prone regions? and (2) how are socially vulnerable people spatially distributed 

within at-risk areas and how has that distribution evolved over time? 

1.3. Dissertation Structure 

The overall structure of this dissertation is organized into six themed chapters. Chapter 2 

begins by laying out the theoretical backgrounds of this research and reviews literature on 

vulnerability science, theoretical frameworks of social vulnerability, and the SoVI approach and 

its limitations. This chapter also presents the demographic trends of coastal populations and their 

diversification in the hurricane coasts in the United States to corroborate why vulnerability 

research needs to incorporate demographic differential vulnerability, specifically focusing on 

populations exposed to hurricane risk.  

Chapter 3 consists of two subsections addressing social vulnerability to natural hazards at 

local and at national scales. The first part deals with the spatial and temporal dynamics of social 

vulnerability at county level in the contiguous United States from 1970 to 2010 to provide 

general spatial and longitudinal patterns. The second part presents the application of a local 

spatial statistical method – geographically weighted principal component analysis (GWPCA) – 
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to help identify a complementary approach to the social vulnerability index by examining local 

determinants. The Houston-The Woodlands-Sugar Land metropolitan area was selected as a case 

study.  

Chapter 4 estimates the wind and storm surge damage of all hurricanes that made landfall 

along the Gulf and Atlantic Coasts from 1950 to 2018. Both the spatial extent and intensity of 

these storms will be estimated to determine physical vulnerability to hurricane-related damage 

using the historical hurricane tract database and geospatial analyses. Based upon the spatial 

extent of hurricane at-risk areas, Chapter 5 further investigates the overall demographic changes 

over time from 1970 to 2018 by employing intercensal county data and the decennial census. 

Chapter 6 summarizes the major findings of this dissertation and suggests possible future work.  
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Chapter 2. Literature Review 
 

2.1. Introduction  

Vulnerability science has been extensively applied to a wide variety of academic fields 

such as ecology, public health, sustainable science, environmental justice, and disaster risk 

management. The question is what exposes people and places to greater harm from 

environmental hazards (Füssel, 2007)? Within risk, hazard, and disaster scholarship, 

vulnerability science has long encompassed three different but intersecting domains: 

physical/natural systems (i.e., exposure to risk), human systems including social systems and 

built environment, and local spatial characteristics of places (Cutter, 2003, 2009). Indeed, 

vulnerability is multi-dimensional, and it is thus imperative to comprehend how these systems 

interact with each other. The resultant complex human-environment interactions affect the 

vulnerability of people and places to many hazards.  

The remaining part of this chapter proceeds as follows: It first gives a brief overview of a 

paradigm shift from hazard-oriented to integrative perspectives on vulnerability. Second, it 

discusses how vulnerability to multiple hazards has been studied within geographic scholarship 

and its endeavors to address these research gaps. Third, it further examines how the intersection 

of multiple social-demographic categories (i.e., race/ethnicity, gender, age, social class) 

contributes to differential social vulnerability.  

2.2. Paradigm Shifts of Social Vulnerability 

Vulnerability refers to a series of pre-existing conditions of people and locales that may 

adversely affect their capacity to withstand, cope with, and recover from potential harm and 

disastrous outcomes (Adger, 2006; Cutter, 1996). It was not until the 1970s and 1980s that 
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natural hazards research moved away from a hazard-oriented or engineering paradigm in which 

the geophysical agent (i.e., exposure to risk) was considered the primary source of vulnerability 

and societal conditions were only secondary factors (Berkes, 2007; Birkmann, 2006; Hewitt, 

1995). This traditional managerial view of the hazard paradigm has been challenged by scholars 

critiquing the overemphasis on the “naturalness” of natural disasters (O'Keefe, Westgate, & 

Wisner, 1976). Starting in the early 1980s, scholars began reappraising their technological and 

engineering perspectives on natural disasters and for the first time considering the interaction 

between society and nature. Viewed in this light, natural disasters are hardly natural; rather they 

should be considered “unnatural” and “social catalysts” (Cannon, 1994; Hewitt, 1995; Kates, 

1971; Kates & White, 1986). For example, growing pressure of human development and 

overbuilding along the coast increase the potential for more destructive hurricanes, increasing the 

risk of causalities and property damage. In addition, inconsistent residential building codes or 

regulations can make coastal communities more vulnerable to hurricane damage (Chmutina & 

Von Meding, 2019).  

Adding the perspective of political ecology introduced a new “hazards in context” 

framework, emphasizing social causation of vulnerability whereby social and political 

dimensions of a given society are incorporated to understand the differential impacts of natural 

hazards (Cutter, 2001; Pulwarty & Riebsame, 1997). This new social vulnerability paradigm is 

rooted in a broader societal context. In other words, how environment-society systems engender 

different impacts of natural hazards and what makes certain groups of people and places more 

vulnerable are the major concern of vulnerability analysis (Cutter, 1996, 2001; Tobin & Montz, 

1997; Wisner et al., 2004). As Smith (2006:1) maintained: “There is no such thing as a natural 

disaster. In every phase and aspect of a disaster– causes, vulnerability, preparedness, results and 
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response, and reconstruction – the contours of disaster and the difference between who lives and 

who dies is to a greater or lesser extent a social calculus.” As such, natural hazards are a 

confluence of biophysical vulnerability and social vulnerability. Despite having the same degree 

of risk and exposure, socially vulnerable populations are disproportionately affected by disaster-

related outcomes compared to less socially vulnerable populations due to the lack of resources 

and coping capacity. Wealthier people are more likely to own homes with flood insurance and 

other protective measures to protect property damage from hurricanes and floods. In addition, 

affluent people tend to have greater accessibility to evacuation shelters and financial reserves 

than their counterparts to recover from the catastrophic impacts of natural disasters. On the other 

hand, vulnerable populations are more likely to reside in flood-prone areas with cheaper real 

estate and that often do not have flood insurance due to their economic status. Social 

vulnerability can be determined by the socio-economic and demographic characteristics of 

people and places that are associated with unfavorable and susceptible conditions in the wake of 

natural hazards. This in turn influences the extent to which vulnerability impacts different 

populations (Cannon, 1994; Cutter, 1996; Park & Xu, 2020; Wisner et al., 2004). 

2.3. Theoretical Frameworks of Vulnerability  

The vulnerability of individuals and locales is subject to both physical and social 

vulnerability. In the conventional hazards paradigm of risk and disaster research, the great 

concern was to reduce biophysical vulnerability (i.e., exposure, intensity, frequency of natural 

hazards) by identifying human occupancy within the at-risk zones (Cutter, 2001; Keith Smith, 

2013). Measuring social vulnerability is not as straightforward as quantifying the physical 

vulnerability due to its complex and multi-dimensional properties arising from environment-

society interactions. Social constructions of vulnerability have been conceptualized and refined 
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by scholars in vulnerability research. The theoretical frameworks are all anchored with a human 

ecological framework, each with a different focus (C. G. Burton, Rufat, & Tate, 2018). Since 

these theoretical models have become the cornerstone of vulnerability science at present, it is 

imperative to systematically review what efforts have been made to measure vulnerability. This 

section briefly elucidates the trajectories and the characteristics of major vulnerability 

frameworks to date.  

2.3.1. Pressure and Release Model 

In the pressure and release (PAR) model, natural disasters are seen as the embodiment of 

two different realms in which the underlying processes shaping vulnerability and the hazardous 

events converge. Both socio-economic processes and physical exposure put pressure on a 

particular location, increasing vulnerability of place (i.e., pressure). As place vulnerability 

accumulates, it reaches a tipping point where the conditions in an area become unsafe and have a 

greater potential for disastrous outcomes (i.e., release). This model conceptualizes how disasters 

arise when natural hazards affect vulnerable populations, focusing on the “progression of 

vulnerability”. The transformation of vulnerability is addressed in three steps: root causes, 

dynamic pressures, and unsafe conditions (Birkmann, 2006; Wisner et al., 2004).  

Root causes are indirect factors that give rise to vulnerability on a global scale such as 

social-demographic and political processes that can affect unequal access and distribution of 

resources among different social groups in a given society. They are pervasive and exert their 

influence on a global scale such as  inadequate governance, a weak economic system, and 

limited influence in decision making. Dynamic pressures encompass both macro- and micro-

level social processes that transfer the root causes into unsafe conditions such as rapid population 

change, urbanization, and environmental degradation. Combined with the occurrence of natural 
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hazards, each step in the progression of vulnerability gradually builds up and transforms the root 

causes into unsafe conditions, increasing pressure on the entire social system. Unsafe conditions 

are when human vulnerability is substantiated in space and time coupled with a hazard. These 

conditions can include populations or communities residing in hazard-prone areas which lack 

disaster relief and mitigation strategies. 

Overall, the PAR model is significant in vulnerability research in that it seeks to explain 

the socially constructed vulnerability to natural hazards in macro-level social contexts, taking 

into account the nexus of underlying drivers and dynamic processes, and how these social factors 

and unsafe conditions interact with natural hazards in a sequential fashion. Nonetheless, this 

model has been criticized for being too extensive and ambiguous to distinguish the causal 

relationships between root causes, dynamic pressures, and unsafe conditions in a quantitative 

way (Birkmann, 2006). Therefore, this conceptual model leaves the question to researchers on 

how this framework can be applied to practical empirical studies.   

2.3.2. Hazards of Place (HOP) Model  

Vulnerability is manifested in space and place at various levels of geography in the shape 

of human settlement in hazard-prone areas. The hazards of place (HOP) model posits 

vulnerability as a latent and multi-dimensional feature of society within the geographic domain. 

The HOP model is a place-based approach that integrates both biophysical risk exposures and 

underlying social conditions (Cutter, 1996, 2003). Spatial locality is the focal point of this 

conceptual framework, and it also includes the time dimension given the temporal dynamics of 

vulnerability (Figure 1).  

In this model, vulnerability is represented by an assemblage of risk (likelihood of 

meteorological or geophysical events) and mitigation measures (social interventions to lessen the 
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impacts of disasters such as planning), which subsequently generate the initial place-specific 

hazard potential. The hazard potential can be transformed into biophysical vulnerability and 

social vulnerability when it infiltrates the layer of geographical contexts (i.e., location-specific 

conditions such as proximity to hazardous areas) and the layer of social fabrics (i.e., social-

demographic characteristics of people and places), respectively. For example, if a hurricane has 

high wind speeds it demonstrates high biophysical vulnerability. However, if it has low wind 

speeds then the area it affects will be only exposed to low biophysical vulnerability. In terms of 

social vulnerability, the concept is the same as if a hurricane hits a wealthy community, the 

overall social vulnerability from that hazard potential would be reduced. In contrast, if the same 

hurricane affected a community with multiple socially vulnerable conditions, then the hazard 

potential would be transformed into high social vulnerability. The overall place vulnerability is a 

consequence of the interaction between biophysical vulnerability and social vulnerability, and 

this in turn influences future risk management and mitigation strategies.  
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Figure 1. Hazards of Place (HOP) model of vulnerability (adapted from Cutter, 1996) 

Unlike the intricate PAR model, the HOP model is relatively intuitive. It looks at the 

relationships between biophysical vulnerability and social vulnerability to a single or multi-

hazard through the lens of local spatial contexts. It puts more emphasis on the role of locale or 

place, enabling social scientists to capture the socio-spatial variability of vulnerable places and 

people (Cutter, 2003). This place-specific conceptual model has laid the foundation for assessing 

vulnerability in a quantifiable way using the social vulnerability index (SoVI) approach (Cutter 

et al., 2003). Consequently, the HOP model has been widely employed in extensive empirical 

studies during the past decades (C. G. Burton et al., 2018).  

2.3.3. Vulnerability Framework in Sustainability Science 

Turner et al. (2003) contend that the PAR model subordinates the role of biophysical 

subsystems to socio-economic and political factors. As an alternative, the vulnerability 

framework of sustainability science addresses the interaction between the biophysical 
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environment and human society. This model attempts to explain how vulnerability (exposure and 

sensitivity) can be amplified or mitigated through different ways of responding (resilience and 

adaptation) in a feedback loop across scales (C. G. Burton et al., 2018). The environmental and 

societal factors are all non-directional and scale-dependent, which means the factors contributing 

to vulnerability have a nonlinear bidirectional causality with each other at various spatial scales. 

For instance, during the 2005 hurricane Katrina event, New Orleans was disproportionately 

affected by both location-driven factors and factors that were working from outside the city. 

Specifically, New Orleans was built in low-lying flood plains, contributing to its high 

biophysical vulnerability. This was compounded by income inequality and the placement of low-

income communities in the most vulnerable areas of the city. Outside of the city itself, the 

governmental response to the crisis led to greater havoc in the city both during and after the 

initial disaster event occurred. The complexity of the situation makes it impossible to decipher 

between which factors are causative and which are consequential. Instead, they all operate in a 

feedback loop, leading to amplified local vulnerability. Although this framework acknowledges 

the multi-scale properties of vulnerability assessment, it is fundamentally in accord with the HOP 

model in that it emphasizes the importance of the place-based approach to understanding how 

vulnerability varies from location to location. The place-based analysis is indispensable to elicit a 

set of generalized characteristics of place vulnerability in the linked human-environment system.  

In summary, vulnerability science has shifted its focus from biophysical hazards to social 

vulnerability in the context of human-environment interaction. Such conceptualization of 

vulnerability is directly related to how we can measure its sensitivity to a single or multi-hazard. 

The HOP model (Cutter, 1996) is the most commonly adopted in empirical vulnerability studies 

through the lens of geography, space, and place to reveal the spatial variation of vulnerability 



  

16 

 

(Cutter, 2009). Despite this holistic perspective, however, critical issues and challenges still 

remain in vulnerability assessment (C. G. Burton et al., 2018). This dissertation research is also 

predicated on the HOP model, but it aims to bridge the model’s gaps and shortcomings, which 

will be discussed in the following section.  

2.4. The Social Vulnerability Index  

Social vulnerability could impinge on people’s ability to prepare for, deal with, and 

recuperate from the impacts of a natural hazard event. Most research on vulnerability assessment 

is based upon composite indicators that measure the absolute level of susceptibility and 

resilience. The HOP model is at the core of the spatial representation of social vulnerability to 

natural hazards at the local level (C. G. Burton et al., 2018; Cutter, 2003; Rufat, 2013). Cutter et 

al. (2003) first introduced the social vulnerability index (SoVI) in an attempt to translate the 

multi-dimensional “social space of vulnerability” into a spatially informed quantifiable 

measurement.  

The SoVI quantifies and identifies the degree to which social vulnerability is spatially 

differentiated with a single composite index. Focusing on particular places and localities, it 

captures the cross-sectional and spatial variation of social vulnerability based on the underlying 

socio-economic and demographic characteristics of populations (Park & Xu, 2020). It allows us 

to better understand where our society is vulnerable to the loss potential of natural hazards due to 

social conditions, and thus it is crucial in helping establish more effective mitigation strategies 

(Cutter, 2009; Cutter et al., 2003; Cutter & Finch, 2008; David King & MacGregor, 2000; 

Morrow, 1999).  
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2.4.1. Design of the Social Vulnerability Index 

An extensive body of literature has investigated how to disentangle the complexity of 

social vulnerability into a single-value indicator using proxy variables that are often place-based 

aggregate data. Previous studies are largely based upon a deductive, hierarchical, or inductive 

approach to creating indicators in which the major difference is the structural design of index 

construction (Tate, 2012). The first approach tries to deduce what social variables can represent 

the social vulnerability of a given society and what proxy variables can be included in building a 

composite indicator. Since it is based on a priori theory or general principles from the literature, 

the resultant index is composed of a small set of social variables, typically fewer than ten. This 

approach was adopted in the early empirical studies on social vulnerability indices (Cutter et al., 

2000; Wu, Yarnal, & Fisher, 2002). The hierarchical method is a hybrid approach integrating 

participatory processes and local knowledge from stakeholders in determining the relevant social 

variables and the relative importance of those proxy variables. Generally, the composite index 

derived from this approach consists of ten to twenty variables wherein the social variables are 

grouped into several sub-categories (levels) according to the same latent characteristics of 

vulnerability (C. G. Burton et al., 2018; Tate, 2012). The Center for Disease Control (CDC)’s 

social vulnerability index (SVI) is a typical example of the hierarchical model (Chakraborty, 

Tobin, & Montz, 2005; Flanagan, Gregory, Hallisey, Heitgerd, & Lewis, 2011).  

Last but not least, the inductive approach is data-driven, and the SoVI is widely known as 

an example of this approach (Cutter et al., 2003). In order to develop a systematic social 

vulnerability index, it synthesizes a large number of social variables (more than twenty 

indicators) that influence unequal exposure and differential effects of natural hazards (Tate, 

2012; Yoon, 2012). A number of vulnerability studies have used the SoVI to reveal the regional 
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discrepancies and spatial distribution of social vulnerability of all-natural hazards (Cutter & 

Finch, 2008; Park & Xu, 2020; Yoon, 2012) or specific hazard events such as floods (C. Burton 

& Cutter, 2008; Fekete, 2012; Rufat, Tate, Burton, & Maroof, 2015), tsunami (Wood et al., 

2010), sea-level rise (Wu et al., 2002), and hurricane-related damage (C. G. Burton, 2010; Myers 

et al., 2008; Rygel et al., 2006; C. Wang & Yarnal, 2012). 

2.4.2. The Process of Aggregating Social Vulnerability Variables  

Once a set of indicators are selected according to the structural design, several more steps 

are required to compute the composite scores: (1) data standardization (i.e., normalization), (2) 

data reduction, (3) weighting, and (4) aggregation (Jones & Andrey, 2007; Schmidtlein, Deutsch, 

Piegorsch, & Cutter, 2008; Tate, 2012; Yoon, 2012). First, all the original variables measured at 

different scales must be transformed into a common scale by data standardization such as 𝑧 

scores (typically used in inductive approach) or linear scaling (e.g., min-max rescaling 

transformation, maximum value/ratio of value transformation) to make them comparable. In the 

case of the deductive approach, all the normalized values are aggregated to create final 

composite scores of social vulnerability for each spatial unit (Tate, 2012; Yoon, 2012). 

Meanwhile, the inductive approach employs a large set of variables and thereby requires 

statistical techniques such as principal component analysis (PCA) to identify a smaller number of 

uncorrelated latent factors, representing a significantly large portion of the variability in the 

original variables. It is common to use a rotation method to extract a few major independent 

components, such as the varimax rotation—one of the orthogonal rotations either maximizing or 

minimizing the loadings (i.e., the correlation between original variables and the components)—

for easy interpretation (Rencher & Christensen, 2012; Rogerson, 2014; Schmidtlein et al., 2008).  
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During the last stage of the index creation, the sign (positive or negative) of the 

component loadings is adjusted to reflect their known contribution to social vulnerability before 

aggregation. In other words, the directionality of component loadings is modified to assure 

whether those components increase or decrease the level of social vulnerability, applying equal 

weights. Each component may have different weighting considering its relative importance, but 

the choice of weighting scheme is still inconclusive owing to a lack of scientific and theoretical 

evidence (Barnett et al., 2008; Tate, 2012). The extracted component scores (or factor scores) are 

then linearly combined to produce the final composite scores for each geographic unit. Following 

this procedure, the SoVI is constructed with several dominant factors that are statistically 

reduced from extensive sets of socio-economic and demographic variables. The specific 

procedure for creating the SoVI is well-documented (Cutter et al., 2003; Jones & Andrey, 2007; 

Schmidtlein et al., 2008; Yoon, 2012).  

2.4.3. Caveats of Social Vulnerability Index Approach   

The SoVI-based approach has been widely popularized over the past two decades due to 

its applicability in capturing the multidimensionality of social vulnerability to natural hazards. 

Yet, there exist some critical challenges in its reliability and robustness. The end product of SoVI 

is subject to change depending on spatial scales (i.e., the level of aggregation), selection of proxy 

variables, and methodological choices (e.g., weighting schemes, aggregation methods), all of 

which inevitably entail the researchers' subjectivity and preferences (Barnett et al., 2008; 

Flanagan et al., 2011; Jones & Andrey, 2007; Spielman et al., 2020). The resultant index is 

bound to incorporate issues of sensitivity, instability, and uncertainty. There is still no consensus 

on choosing the best approach and the social variables that truly reflect the multidimensional and 

latent nature of vulnerability, and different sets of social variables will affect the results of PCA 
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and SoVI (Tarling, 2017). Several studies have assessed the indices’ performance and validity by 

conducting sensitivity and uncertainty analysis (Schmidtlein et al., 2008; Tate, 2012, 2013). 

Some recent studies have raised questions about the predictability of SoVI indicators and 

have underscored the validation of social vulnerability indices in practical contexts. The 

empirical ancillary data (e.g., actual property damage or fatality data) have been tested to assess 

the “explanatory power” of composite indices. Can the exploratory SoVI indices explain the 

actual outcome of natural hazards in real-world situations (Bakkensen, Fox‐Lent, Read, & 

Linkov, 2017; C. G. Burton et al., 2018; Fekete, 2009; Rufat et al., 2019; Tellman et al., 2020)? 

Indeed, these methodological challenges and validation issues are primarily concerned with the 

way in which the social vulnerability indices are formulated. The following caveats and 

limitations provide the grounds for the improvement of the SoVI-based approach in Chapter 3. 

2.4.4. Caveat 1. Social Vulnerability as Spatial and Temporal Dynamics 

The aggregated indicator, SoVI, reveals the spatial variation of social vulnerability using 

categories in which the absolute magnitude is classified ranging from low to high. Much of the 

current literature on social vulnerability has focused on “vulnerable spatialities,” paying special 

attention to the cross-sectional variation of social vulnerability (Findlay, 2005). In vulnerability 

science, the place-based approach solely focuses on “spatiality” and “mapping of vulnerability” 

predominates over the time-based approach (Barnett et al., 2008; Cutter, 2003). Traditional 

vulnerability studies have been mostly restricted to limited comparison of spatial patterns as a 

static phenomenon at a particular point in time.  

However, as noted by Barnett, Lambert, and Fry (2008, p.15), “vulnerability is the 

product of phenomena occurring at a range of interlinked spatiotemporal scales.” Social 

vulnerability is not only spatially-variant but also temporally variant because the underlying 
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social drivers of vulnerability change over time (Birkmann, 2006; Cutter, 1996). Indeed, social 

vulnerability is temporally dynamic rather than being stationary (Bolin & Kurtz, 2018). 

Nonetheless, the spatial and temporal dynamics of social vulnerability have not been 

characterized in a systematic and quantitative way. This is primarily due to the latent nature of 

social vulnerability, which makes it not directly measurable. Different sets of social variables are 

used to create SoVIs at different time points, which are often constructed by different numbers of 

variables and components. This makes the SoVI at different time points not directly comparable 

(Park & Xu, 2020).   

2.4.5. Caveat 2. Social Vulnerability Index Conceals the Heterogeneous Local Contributors 

The composite index SoVI has been very useful to quantify the relative magnitude of the 

overall social vulnerability, providing a practical approach to address the social-spatiality of 

social vulnerability (Cutter & Finch, 2008; Hogan & Marandola Jr, 2005). But previous studies 

using the SoVI approach have been limited to the spatial distribution and/or temporal evolution 

of overall vulnerability (Cutter & Finch, 2008; Park & Xu, 2020) and have not dealt with specific 

social conditions that contribute to social vulnerability. The index is subject to the common 

caveats of the aggregate social indicators, especially the unrealistic assumption of spatial 

heterogeneity of the statistical methods the indicators rely on (Barnett et al., 2008; Frazier, 

Thompson, & Dezzani, 2014; Hinkel, 2011).  

The aggregate composite index SoVI is composed of accumulated layers of multiple 

social-demographic variables (Fekete, 2012), so it does not account for the specific local social 

indicators that serve as the proxy of the primary determinants significantly affecting local social 

vulnerability. The values of the SoVI simply indicate an average level of vulnerability of the 

areal units, causing “compensability” in which the local primary determinant of social 



  

22 

 

vulnerability is sacrificed, and it cannot inform what specific social conditions determine the 

high or low social vulnerability at the locale (Fekete, 2012; Jones & Andrey, 2007; Rufat et al., 

2015; Tate, 2013). Understanding the local primary determinants is of great need in 

policymaking and disaster mitigation, as they identify the specific contexts creating high social 

vulnerability. Most social vulnerability studies have only focused on the measures and patterns 

of the overall social vulnerability, and the underlying processes that drive high social 

vulnerability and its change over time have been largely ignored. 

The issues of SoVI are largely rooted in its methodology in which multiple social 

variables are linearly combined into a few principal components while preserving the greatest 

variability in the original social variables, and the principal components are then grossly 

aggregated into the SoVI, a simple global indicator that only shows high or low magnitude 

(Hinkel, 2011). The statistical reduction techniques such as classic Principal Component 

Analysis (PCA) or factor analysis are non-spatial statistical methods that assume that the social 

variables contribute to the principal components homogeneously across space (or across the 

universe of the dataset). As a result, the SoVI inevitably conceals the local heterogeneity and the 

differential influences of the social variables to social vulnerability at different spatial locations 

(Demšar, Harris, Brunsdon, Fotheringham, & McLoone, 2013; Fotheringham & Brunsdon, 1999; 

Robinson, Lindley, & Bouzarovski, 2019).  

2.5. Hurricane Hazards and Coastal Population Trends in the United States 

Hurricanes are extreme meteorological events that are likely to be affected by climate 

change, of which global warming and sea level rise are two foreseeable changes that could 

impact the consequences of hurricane disasters. The frequency and/or intensity of hurricanes are 

projected to increase in the coming decades, producing high-speed winds and heavy precipitation 
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(Arkema et al., 2013; Changnon, Pielke Jr, Changnon, Sylves, & Pulwarty, 2000; Emanuel, 

2011; National Academies of Sciences, 2016; Rahmstorf, 2017; Shepherd & Knutson, 2007). 

Hurricanes have historically proven to be some of the most devastating and costliest natural 

disasters in the Gulf of Mexico and Atlantic coasts regions of the United States, causing the 

highest number of fatalities (6,593) and the most damage ($945.9 billion total with the highest 

average event cost ($21.5 billion per event) between 1980 and 2020 (Diaz & Pulwarty, 2012; 

NOAA Office for Coastal Management). The primary causes of the massive damage and loss of 

life are storm-surge flooding and high-speed winds. In particular, drownings from storm surges 

have been blamed for most hurricane-related casualties and injuries (Dolan & Davis, 1994; 

Glahn, Taylor, Kurkowski, & Shaffer, 2009; Lin, Emanuel, Smith, & Vanmarcke, 2010) 

Increasingly destructive hurricane activities pose a threat to coastal communities along 

the U.S. Gulf of Mexico and Atlantic coasts. The fast-growing coastal population and 

demographic shifts along the coastal regions are playing a major role in substantially aggravating 

the consequences of hurricanes (Changnon et al., 2000; Cutter, Johnson, Finch, & Berry, 2007; 

Donner & Rodríguez, 2008; Lam, Arenas, Li, & Liu, 2009). Approximately 123.3 million 

people, which amounts to 39 percent of the total U.S. population, resided in hurricane-prone 

coastal areas in 2010, increasing to 127 million people in 2016. The population was expected to 

grow to 134 million (i.e., an 8% increase) from 2010 to 2020 in coastal zones. Coastal 

populations are projected to increase up to 144 million people (i.e., 20% increase) by 2025 

within 100 𝑘𝑚 of the coastal areas in the United States, thereby continuously increasing coastal 

population’ vulnerability to natural hazards (Crossett, Ache, Pacheco, & Haber, 2013; Culliton et 

al., 1990; Maul & Duedall, 2019; NOAA Office for Coastal Management).  
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Rapid coastal population growth puts more people in harm’s way, and rising property 

values by accelerating urbanization and intensive development have put more environment-

related stresses along coastal areas (Lam et al., 2009). The burgeoning coastal settlement and 

coastal-dependent economic activities (e.g., shipping, tourism, fisheries, and petroleum industry) 

are attracting more people to move to the hurricane coasts. Specifically, the Gulf of Mexico 

regions have seen an 8.5% increase in population employed in construction industries and a 

10.8% increase of employment in maintenance occupations, which is higher than the national 

rate (D. Cohen, 2019). Overdevelopment due to the high demand for second homes and coastal 

real estate has increased the risk and exposure of people and infrastructure to hurricane-related 

damage more than ever before (Changnon et al., 2000; Cutter et al., 2007; Pielke, 1997; Pompe 

& Haluska, 2011; Keith Smith, 2013). 

Coastal communities have experienced tremendous diversification in their demographic 

characteristics. Over the last several decades, we have seen a rapid increase in aging populations 

in coastal regions as a huge influx of retirees and second-home owners continue to grow in the 

hurricane-prone coastal counties. The downward trend of the middle-class in the coastal 

megalopolises continues, widening the economic polarization between the wealthy and the low-

income bracket. However, the declining middle-class population is offset by an inflow of 

immigrants who are racial minority groups (especially, Hispanic/ Latino) employed in tourism-

related service sectors in coastal counties (Crossett et al., 2013; Cutter & Emrich, 2006; Cutter et 

al., 2007). Coastal counties have become more racially and ethnically diverse than non-coastal 

counties, which may influence the extent of disaster impacts and social vulnerability across a 

different set of geodemographics, and thereby complicate the analysis of its vulnerability and 

resilience to hurricane damage (D. Cohen, 2019; Cutter et al., 2007; Mileti, Darlington, 
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Passerini, Forrest, & Myers, 1995). In this respect, this dissertation will discuss the overall 

changing demographics of hurricane at-risk areas in light of demographic differential 

vulnerability.   

2.6. Demographic Differential Vulnerability from an Intersectional Perspective 

Recently, a growing interest in intersectional perspective in health outcome and 

environmental inequalities has led to an analytical framework for social-environmental justice  

(Alvarez & Evans, 2021; Bauer & Scheim, 2019; Green, Evans, & Subramanian, 2017; Ryder, 

2017). Intersectionality theory originated in Black feminist scholarship to explain mutually 

interconnected systems of social oppression that shape inequalities based on multiple axes of 

social characteristics such as race/ethnicity, gender, age, class, nationality, immigration status, 

and other social identity categories. The intersectional approach posits that socio-environmental 

systems of oppression are inextricably interwoven with an intersection of multiple social 

identities (Hopkins, 2019; Penner & Saperstein, 2013; Viruell-Fuentes, Miranda, & Abdulrahim, 

2012).  

Although there is a growing body of literature on intersectionality in population health 

research, far too little attention has been paid to an intersectional approach in the context of 

vulnerability research. Social vulnerability to natural hazards has an intrinsic and inseparable 

relationship with social stratification, which emphasizes the role of intersectionality. Hence, 

adopting an intersectional perspective allows us to understand how different socio-demographic 

intersections can collectively shape social vulnerability and how the intersectional factors make 

certain population groups more susceptible to environmental risk and hazardous events (Bauer & 

Scheim, 2019; Ryder, 2017). Despite the importance of inter-categorical intersectionality, most 

vulnerability studies have tended to employ single unitary categorical variables (race or class) 
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rather than using cross-classified categories (e.g., elderly White males/females) representing 

intersecting social-demographic identities between demographic groups.  

Intersectionality is currently well-documented as a critical conceptual framework in the 

domain of health research and social sciences. However, intersectional methodological 

approaches have not yet been fully specified in the research literature ranging from survey 

analysis, in-depth interviews, biographical analysis, and statistical multi-level analysis (Bauer & 

Scheim, 2019; Green et al., 2017; Hopkins, 2019). There is no standardized approach to 

investigate how socio-demographic identities produce spatial and societal inequalities and 

oppression. One criticism of intersectionality is that, as the number of social dimensions 

increases, the more difficult it is to interpret the meaning of social stratification, posing 

methodological challenges for large-scale quantitative analyses (Alvarez & Evans, 2021; Bauer 

& Scheim, 2019; Evans, 2019; Green et al., 2017; Lutz, 2015; Penner & Saperstein, 2013).  

In Chapter 6, this study attempts to understand how different intersectional demographic 

group memberships can contribute to vulnerability to environmental risks and harms, focusing 

on hurricane-related damage. Considering diversification of coastal populations, vulnerability to 

hurricane hazards should analyze racial inequalities in the coastal regions in tandem. Instead of 

using a single axis of category independently, this study adopts a descriptive inter-categorical 

intersectional approach based on multiple axes of social dimensions simultaneously—

race/ethnicity, gender, and age—to explore the intersection of racial disparities and vulnerability 

to hurricane hazards in the US Gulf and Atlantic coasts. However, the descriptive intersectional 

approach employed in this study cannot elucidate the causal processes that contribute to social 

inequalities (Bauer & Scheim, 2019; Evans, 2019).  
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Chapter 3. Social Vulnerability Studies at Local and National Scales 
 

3.1. Introduction 

Social vulnerability has been widely adopted in identifying vulnerable people and places 

for disaster preparedness and mitigation. The multi-dimensional properties of social vulnerability 

cannot be directly measured or observed, and therefore necessitates development of social 

vulnerability indices (SoVIs) to simplify the latent and complex social conditions that situate 

certain population groups or places in vulnerable conditions using an aggregate composite 

indicator (Beccari, 2016; Cutter et al., 2003; Flanagan et al., 2011; Flanagan, Hallisey, Adams, & 

Lavery, 2018; Yoon, 2012).  

As discussed in the previous chapter, social vulnerability has not been fully understood as 

a spatially explicit and temporally dynamic process changing over time and across space in the 

literature. Most studies based on the SoVI approach have exclusively focused on the spatial 

manifestation of vulnerability, neglecting the temporal evolution of vulnerability. But the 

temporal progression of vulnerability is also a critical element and thus should be incorporated 

into the analysis of vulnerability in tandem with the spatiality of social vulnerability. The 

vulnerable status is not firmly fixed or stable, and the vulnerable phase is temporally shifting 

over time (Cutter, 1996).  

Use of the SoVI has been greatly favored in various social science disciplines, in 

particular geography, environmental studies, disaster research, and epidemiology/public health. 

It has been criticized for not explicitly explaining what specific local social indicators can serve 

as proxies for “local primary determinant of social vulnerability (i.e., local indicator variable).” 
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This is attributed to the way in which the SoVI is designed, relying on principal component 

analysis (C. G. Burton et al., 2018; Tate, 2012; Yoon, 2012).  

While the HOP model emphasizes the importance of the temporal aspects of social 

vulnerability and local geographic contexts, there has been few empirical investigations into 

temporal progression and the local determinants of social vulnerability. Chapter 3 mainly 

addresses two caveats of the social vulnerability index (SoVI) through an empirical analysis of 

the United States at both local and national scales. Chapter 3.1. presents the spatial and temporal 

dynamics of social vulnerability at county level in the United States from 1970 to 2010, and 

addresses the following research questions: “How has social vulnerability changed in the U.S. 

during the past five decades from 1970 to 2010?” and “What were the prominent trajectories of 

social vulnerability change across U.S. counties over the last five decades?” Chapter 3.2. further 

explores the differential contributions of the constituent components of SoVI and investigates 

how the local indicator variables have evolved over time and across the Greater Houston 

metropolitan area as a case study using the geographically weighted principal components 

analysis. Specific research questions are as follows: “How has social vulnerability changed in the 

Greater Houston from 1970 to 2010?” and “How have the local primary determinants of social 

vulnerability evolved over time across the study area?” The remainder of this chapter will 

present the findings of the research.  
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3.2. Spatial and Temporal Dynamics of Social Vulnerability in the United States 

from 1970 to 2010: A County Trajectory Analysis1  
 

3.2.1. Objectives 

The objective of this subsection is to systematically investigate the temporal dynamics of 

social vulnerability as a critical component in understanding disaster vulnerability. This study 

aims to provide an overview of the spatial and temporal dynamics of social vulnerability in the 

United States using U.S. county-level socio-economic and demographic data from 1970 to 2010. 

There are three primary aims of this study: (1) to examine the prominent trajectories of social 

vulnerability change in U.S. counties over time; (2) to determine the extent to which the county 

level social vulnerability is stationary or mutable over time; and (3) to identify locations where 

social vulnerability has deteriorated over time. 

3.2.2. Data  

The county-level social, economic, and demographic variables for each decade from 

1970 to 2010 were obtained from the U.S. Census Bureau and Social Explorer, which provides 

tabulated data of the U.S. decennial censuses since 1790. The variables of each decennial census 

prior to 2010 have been interpolated to the 2010 census county boundaries. The number of 

variables available to this study varies depending on the census year: 26 (1970), 27 (1980), 30 

(1990, 2000), and 31 (2010). The specific variables are shown in Table 1. In addition to the 

different number of variables available in different censuses, some of the variables might have 

slightly different definitions depending on the census year. Overall, these variables include a 

wide range of socio-economic, demographic, and built environment characteristics, which 

 
1 Portions of this chapter have been published in the International Journal of Applied Geospatial Research, co-

authored with Dr. Zengwang Xu 
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represent the county-level vulnerability measured at different social dimensions—e.g., age, 

gender, race and ethnicity, educational attainment, household structure, income level, language 

proficiency, housing tenure status, occupation, and other built environment factors, etc. 

Some spatial data processing was implemented to ensure the contiguity and 

comparability of the county-level data. The decennial censuses provide separate statistics for a 

number of independent cities from the counties in which they are geographically embedded. 

According to the legal/statistical area description (LSAD) of the U.S. Census Bureau, Virginia 

has 39 independent cities among 134 counties/county equivalents; both Maryland and Nevada 

have one independent city. These independent cities and their social variables were merged with 

nearby counties to form contiguous geography. In total, 41 cities were merged into nearby 

counties, thereby resulting in 3,067 counties in the conterminous United States, which were the 

geographical base in this study. 
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Table 1.  Variables used to calculate the social vulnerability index for each decade from 1970 to 

2010 (the symbol ✓  represents that the variable is used to calculate the SoVI for the decade) 

Variable Description 1970 1980 1990 2000 2010 

Percent of females ✓ ✓ ✓ ✓ ✓ 

Percent of population under 5 years old ✓ ✓ ✓ ✓ ✓ 

Percent of population over 65 years old ✓ ✓ ✓ ✓ ✓ 

Median age - - - - ✓ 

Percent of other races (1970) ✓ - - - - 

Percent African American ✓ ✓ ✓ ✓ ✓ 

Percent Native American  - ✓ ✓ ✓ ✓ 

Percent Asian  - ✓ ✓ ✓ ✓ 

Percent Hispanic - - ✓ ✓ ✓ 

Percent of persons in group quarters (mental hospital,  

home for the aged and dependent, other institution) 
✓ ✓ ✓ ✓ ✓ 

Percent of population 5 years and older in linguistically  

isolated households 
- ✓ ✓ ✓ ✓ 

Percent of population less than high school graduate  ✓ ✓ ✓ ✓ ✓ 

Average income for population 14 years and older  

(1970),  Per capita income (in dollars) (1980-2010) 
✓ ✓ ✓ ✓ ✓ 

Percent of families below poverty line ✓ ✓ ✓ ✓ ✓ 

Percent of female-headed households with own children  

under 18 years old at present 
✓ ✓ ✓ ✓ ✓ 

Percent females participating in civilian labor force ✓ ✓ ✓ ✓ ✓ 

Percent of civilian labor force unemployed ✓ ✓ ✓ ✓ ✓ 

Percent employed in primary extractive industries  ✓ ✓ ✓ ✓ ✓ 

Percent employed in transportation and material-moving 

occupation 
✓ ✓ ✓ ✓ ✓ 

Percent employed in service occupation ✓ ✓ ✓ ✓ ✓ 

Percent of families/households earning $50,000 and  

over  
✓ ✓ ✓ ✓ ✓ 

Percent of rental occupied housing units ✓ ✓ ✓ ✓ ✓ 

Percent of housing units that are mobile homes ✓ ✓ ✓ ✓ ✓ 

Percent of housing units that were built 1939 or earlier ✓ ✓ ✓ ✓ ✓ 

Percent housing units with 5 or more (1980), 10 or more  

units in structure (1970, 1990-2010). 
✓ ✓ ✓ ✓ ✓ 

Average value of owner-occupied housing unit ✓ ✓ ✓ ✓ ✓ 

Average rent (in dollars) for renter-occupied housing  

units 
✓ ✓ ✓ ✓ ✓ 

Percent households with no television set (1970), no  

telephone service available (1980-2010) 
✓ ✓ ✓ ✓ ✓ 

Percent of household with no automobiles or vehicles ✓ ✓ ✓ ✓ ✓ 

Percent of foreign-born population ✓ ✓ ✓ ✓ ✓ 

Percent of households with social security income ✓ ✓ ✓ ✓ ✓ 

Percent urban population - ✓ ✓ ✓ ✓ 
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3.2.3. Methodology  

To begin with, this study constructed the county-level social vulnerability index (SoVI) 

for each decennial year from 1970 to 2010 by adopting the procedure proposed by Cutter et al. 

(2003). For each decennial year, principal components analysis (PCA) was performed to derive a 

new set of independent principal components that together represent the majority of variation in 

the original variables. The first step to construct the SoVI is to convert all original variables to z-

scores so that they can be compared to one another. The next step is to apply a linear 

transformation (i.e., rotation) method to create the uncorrelated components that represent a large 

portion of the variance in the original variables (Rogerson, 2014). The varimax rotation 

employed in this study is one of the orthogonal rotations, which either maximize or minimize the 

loadings (i.e., correlation between original variables and the components) for easy interpretation 

of the components (Rencher & Christensen, 2012). A few major components are selected to 

represent the majority of variation in the original variables, and then these components are 

linearly combined to create the SoVI for each county.   

One of the major challenges of the SoVI is that different years should not be directly 

compared due to the multi-dimensional attributes of social vulnerability, data availability, and 

the different variables selected at different times (C. G. Burton, 2010; Fekete, 2009; Jones & 

Andrey, 2007; David  King, 2001; Yoon, 2012). In this study, the SoVI can be used to assess the 

relative level and the spatial variation of social vulnerability in the United States for each decade 

from 1970 to 2010. However, they should not be directly compared across different decades, as 

the values of SoVI at different decades are essentially not comparable to each other.  

To compare over different years, the SoVIs of counties in each decade from 1970 to 2010 

were converted into a series of ordinal vulnerability states in accordance with the five 20-
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quantiles of the SoVI (i.e., 0-20% as low, 21-40% as medium-low, 41-60% as medium, 61-80% 

as medium-high, and 81-100% as high). The social vulnerability of each county in each decade 

was represented as one of the ordinal categories corresponding to the 20-quantiles. Each county 

has a sequence of social vulnerability categories from 1970 to 2010, which represent the 

county’s changing social vulnerability states over different years. The sequence of social 

vulnerability states can be represented in the state-sequence (STS) format (Gabadinho, Ritschard, 

Studer, & Müller, 2009). For example, the SoVI of Maricopa County in Arizona has a “low” 

social vulnerability state in 1970 and 1980, “medium-high” in 1990, “medium” in 2000, and 

“high” in 2010, the state-sequence format of the changing social vulnerability of Maricopa 

County is (low, low, medium-high, medium, high) from 1970 to 2010. 

Counties having a sequence of SoVI states can then be classified according to the 

similarity (or dissimilarity) of their changing social vulnerability states over time by using 

sequence alignment analysis (Delmelle, 2016). The sequence alignment (or optimal matching) 

analysis was initially developed in the field of molecular biology to determine the extent to 

which two DNA configurations are similar (Kruskal, 1983). It was not until the late 1980s that 

social scientists adopted the sequence alignment analysis in exploratory spatial data analysis 

(ESDA) (Hollister, 2009; Stehle & Peuquet, 2015). Since then, sequence alignment analysis has 

been widely used to assess the similarity among categorical sequences (strings) and to extract the 

prominent pattern among a collection of sequences (Shoval & Isaacson, 2007). Many researchers 

have utilized this method to investigate the development process of welfare programs (Abbott & 

DeViney, 1992), career trajectory and life courses (Abbott, 1991; Abbott & Tsay, 2000; 

Brzinsky-Fay & Kohler, 2010), and transportation research (Joh, Arentze, Hofman, & 

Timmermans, 2002; Kwan, Xiao, & Ding, 2014; J. H. Lee, Davis, Yoon, & Goulias, 2017). A 
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recent study quantified U.S. neighborhoods as a series of categorical typologies based on 

longitudinal socio-economic, demographic, and housing characteristics to examine how the 

spatial patterns of urbanization process and neighborhood poverty have evolved over time in the 

United States (Delmelle, 2016; K. O. Lee, Smith, & Galster, 2017). This study adopts a similar 

procedure to that used by Delmelle (2016) to explore the spatial and temporal dynamics of social 

vulnerability at the county level in the United States from 1970 to 2010.  

The key to the sequence alignment method is to calculate the similarity (or dissimilarity 

or distance) between sequences of states. Each sequence consists of a set of elements observed at 

multiple points in time, and each element in a sequence represents a categorical state or event 

(Hollister, 2009). There are three methods to assess the similarity of sequences: Longest 

Common Prefix (LCP), Longest Common Subsequences (LCS), and Optimal Matching distances 

(OMA). All the approaches use different ways to define the dissimilarity (or distance or cost) 

between the sequences of states. The OMA, which is the most commonly used approach, 

measures the distance (or dissimilarity) between sequences by using the substitution cost 

(Delmelle, 2016; Gabadinho et al., 2009; Hollister, 2009; Lesnard, 2006; Studer & Ritschard, 

2016). To select the most appropriate method, researchers should try out different methods rather 

than relying exclusively on one method (Brzinsky-Fay & Kohler, 2010; Studer & Ritschard, 

2016).  

The LCS and OMA produced the same distance matrix in this analysis since LCS can 

generate the same sequence as OMA does when LCS finds an optimal match between sequences 

(Lember, Matzinger, & Vollmer, 2014). The OMA was adopted in this study to determine the 

similarity of the sequences of social vulnerability states of counties. It determines the degree of 

dissimilarity by computing the minimum number of editing operations (i.e., insertion, deletion, 
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and substitution) to make the two sequences identical, and this is also known as substitution cost 

(Abbott & Tsay, 2000; Brzinsky-Fay & Kohler, 2010; Joh et al., 2002; Studer & Ritschard, 

2016). The Needleman-Wunsch algorithm, which is implemented in the TraMine package in R, 

is widely used to find the least substitution cost to match a source sequence to a target sequence 

through the insertion/deletion substitution operations (Needleman & Wunsch, 1970). The more 

operations involved in transforming two sequences into the identical conformation, the greater 

the substitution cost. The resulting cost is derived in a symmetrical 𝑛 × 𝑛 matrix, 𝑊:  

𝑊 = [

𝑤11 ⋯ 𝑤1𝑛

⋮ 𝑤𝑖𝑗 ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑛

] 

where 𝑛 represents the number of unique states in the sequences (Gabadinho et al., 2009; 

Needleman & Wunsch, 1970; Studer & Ritschard, 2016), 𝑤𝑖𝑗 represents the substitution cost 

between two sequences (for example, 𝑠𝑖 and 𝑠𝑗), and 𝑊 is the symmetrical substitution-cost 

matrix (𝑤𝑖𝑗=𝑤𝑗𝑖).  

Typically, substitution cost has been measured in different ways based on a priori 

knowledge, e.g., the attributes of the states, quantitative indices, or transition rate (Hollister, 

2009; Studer & Ritschard, 2016). To avoid subjectivity, transition rate is often used to determine 

the similarity among all possible combinations of states. More precisely, for 𝑖 ≠ 𝑗, the 

substitution cost derived from transition rate can be calculated as follows: 2 − 𝑝(𝑖|𝑗) − 𝑝(𝑗|𝑖), 

where 𝑝(𝑖|𝑗) is the transition rate or probability that state 𝑖 at time 𝑡 has changed into a different 

state 𝑗 at time 𝑡 + 1. In this study, we employed the transition rate approach to obtain the 

substitution cost between sequences of social vulnerability states of counties. The less frequent 
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transition rate between the states, the higher the substitution cost (Delmelle, 2016; Hollister, 

2009; Studer & Ritschard, 2016).  

Table 2 illustrates the substitution costs calculated based on the transition rates. In this 

study, there are not many counties that change their social vulnerability states directly from low 

to high, so the cell of low (row) to high (column) in the substitution cost matrix has the 

maximum value. Meanwhile, the transition from medium-low to medium or medium-high to 

high is more frequent, and the corresponding cells have relatively low values.   

Table 2. Substitution cost matrix between different states of social vulnerability 

 Low Medium-Low Medium Medium-High High 

Low 0 1.51 1.80 1.90 1.96 

Medium Low 1.51 0 1.50 1.76 1.92 

Medium 1.80 1.50 0 1.52 1.84 

Medium High 1.90 1.76 1.52 0 1.57 

High 1.96 1.92 1.84 1.57 0 
 

The sequence alignment analysis offers a quantitative means to study many changing 

social phenomena (Brzinsky-Fay & Kohler, 2010). It allows us to study the temporal dynamics 

of social vulnerability in a rigorous manner in this study. As social vulnerability is considered a 

place-based characteristic that varies over time, this method enables us to examine more 

accurately the different place-based trajectories of changing social vulnerability and where they 

occur in the United States. The overall methodology is described in Figure 2. All analyses were 

carried out using SPSS 25.0 and the TraMineR package in the statistical software R (Gabadinho, 

Studer, Mueller, Bergin, & Ritschard, 2016).  
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Figure 2. Overall methodology to study social vulnerability dynamics 

 

3.2.4. Spatial Patterns of Social Vulnerability in the United States 

This study employed the PCA method to derive a SoVI to assess the relative magnitude 

of social vulnerability of counties based on the hazards of place (HOP) model proposed by 

Cutter et al. (2003). The inductive approach was chosen for county-level data of every decade 

from 1970 to 2010. The Kaiser-Meyer-Olkin (KMO) test was performed to determine if the 

number of variables is adequate for PCA analysis. The variables are usually considered being 

suitable for the PCA method if the KMO index is greater than 0.5 (Williams, Onsman, & Brown, 

2010). The KMO indices of the variables at each decade from 1970 to 2010 were at least 0.78. 

For every decade, the PCA analyses produced seven to eight principal components that explained 

72 to 78 percent of the total variability in the original variables.  

Table 3 summarizes the principal components derived from the original county-level 

variables for each decade from 1970 to 2010. The components are named based on the original 

variables that have significant contribution to the components (i.e., those variables with high 

loading, which represents the correlation between the variable and component). Although the 

names assigned to the dominant components are based on the high-loading variables, other 

variables also contribute to the components, just not as much (Rygel et al., 2006). As can be seen 

in Table 3, although the 7-8 principal components are characterized by a few socio-economic 

and demographic characteristics, each component contains different variability of the original 
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variables during different decades. The main county-level variables for the major components 

are socioeconomic status and wealth. Other variables significantly contributing to social 

vulnerability include age (i.e., percent of elderly and children), race (i.e., percent of African 

American, Asian, Hispanic, and Native American), gender (i.e., percent of female population), 

and built environment (i.e., housing type and housing tenure status etc.). This is consistent with 

what has been found by Cutter and Finch (2008).  

Mapping SoVI can reveal the spatial variation of social vulnerability. As shown in Figure 

3, distinctive spatial patterns exist in the social vulnerability in the United States. During the 

study period (1970 – 2010), the most socially vulnerable counties are located along the U.S. - 

Mexico border (Arizona, New Mexico, and Texas), in the Pacific Southwest region (California 

and Nevada), and the Gulf Coast region; and the least vulnerable counties are located in 

Northeast and East North Central in the Midwest. High and medium-high socially vulnerable 

counties are also found in Appalachia (especially, in Kentucky and West Virginia in the central 

Appalachian region) from 1970 to 2000, but the social vulnerability of these counties decreased 

in 2010. There is a concentration of high social vulnerability in the West North Central region 

(North Dakota, South Dakota, and Nebraska) since 2000. The entire southern tip of Florida has 

become highly vulnerable since 2000. The Midwest and inland areas in the South-Atlantic 

(Tennessee, North Carolina, and South Carolina) - Mid-Atlantic regions progressively turn into 

low vulnerability after 1970. These spatial patterns are consistent with what has been found by 

Cutter and Finch (2008) and Yoon (2012). 
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Table 3. The principal components used to construct the SoVI of U.S. counties from 1970 to 2010 

Year 1970 1980 1990 2000 2010 

Percentage of total 

variance explained 
71.5 76.6 78.1 77.9 75.1 

Number of 

components 
7 8 7 7 8 

Major components 

(% variance 

explained) 

1. Socioeconomic 

status (23.3) 

2. Age (17.7) 

3. Housing type & 

Immigration (8.7) 

4. Primary sector 

employment (6.9)  

5. Population in 

group quarters & 

Female (5.7) 

6. Service sector 

employment (5.1) 

7. Unemployment 

(4.0) 

1. Wealth (26.2) 

2. Socioeconomic 

status & Race 

(Black) (14.1) 

3. Age (10.3) 

4. Built environment 

& Transportation 

workers (7.3) 

5. Language barrier 

& Ethnicity 

(Hispanic) (6.2) 

6. Population in 

group quarters & 

Service sector 

employment (4.6) 

7. Unemployment 

(4.2) 

8. Race (Native 

American) (3.6)  

1. Wealth (28.5) 

2. Socioeconomic 

status & Race 

(Black) (17.5) 

3. Language 

barrier & 

Ethnicity 

(Hispanic) (9.3) 

4. Age (7.6) 

5. Built 

environment & 

Transportation 

workers (6.4) 

6. Race (Native 

American) (5.1) 

7. Population in 

group quarters 

& Female (3.8)  

1. Wealth (27.7) 

2. Household 

composition & 

Poverty (19.0) 

3. Language barrier 

& Ethnicity 

(Hispanic) (8.6) 

4. Age (7.0) 

5. Built 

environment 

(6.0) 

6. Population in 

group quarters & 

Female (5.6)  

7. Race (Native 

American) & 

Service sector 

employment (3.9) 

1. Wealth (24.1) 

2. Socioeconomic 

status (18.6) 

3. Age (8.3) 

4. Language barrier & 

Immigration (6.3) 

5. Vehicle availability 

& Tenure (5.6) 

6. Population in group 

quarters & Female 

(5.1)  

7. Race (Native 

American) (3.8) 

8. Service sector 

employment (3.2) 



  

41 

 

 

Figure 3. Spatial patterns of decadal social vulnerability indices (1970-2010) 

 

3.2.5. Social Vulnerability Trajectories of U.S. Counties 

This study further examines the temporal dynamics of social vulnerability of U.S. 

counties from 1970 to 2010 in a quantitative way. The changing vulnerability of each county 

from 1970 to 2010 is represented as a sequence of vulnerability states. The sequence represents 

the profile of the county’s changing social vulnerability over time. Sequence alignment analysis 

in conjunction with hierarchical clustering analysis (Ward’s method) is used to find similar or 
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distinct profiles of changing social vulnerability of counties (Gabadinho, Ritschard, Mueller, & 

Studer, 2011; T. King, 2013). Four clusters are found in U.S. counties, and each has a unique 

profile of social vulnerability change over time. Figure 4 plots the changing frequency of 

counties in different vulnerability states in each cluster. Figure 5 presents the counties in each 

cluster. 

 

Figure 4. Frequency of counties in different vulnerability states in each decade in each cluster 

 

Figure 4 shows the frequency of counties of different social vulnerability states in each 

cluster of counties, and how the portions of counties in each vulnerability state changed over 

time.  For instance, the majority of counties in cluster 1 have persistent low vulnerability over 

time whereas in cluster 4 most counties have high vulnerability. Clusters 2 and 3 have varying 

degrees of vulnerability. The plot of cluster 2 shows that over time only a small portion of 
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counties have high social vulnerability, and the rest of counties spread in other social 

vulnerability states. The plot of cluster 3 shows that over time only small portions of counties 

have low, low-medium, or medium social vulnerability, and large portions of counties have high 

or medium-high social vulnerability. The four clusters of counties are mapped to show where 

these four different temporal dynamics of social vulnerability occur in the United States (Figure 

5). The mean trajectories of social vulnerability of each cluster are plotted in Figure 6. Each 

cluster has demonstrated distinctive characteristics. 

 

Figure 5. Spatial distribution of the counties in different clusters from 1970 to 2010 

 

Cluster 1 – Persistent low vulnerability: Counties in cluster 1 are characterized by their 

persistent low social vulnerability over time with 360 (out of 3,067) counties falling into this 

category.  More than 80% of counties have low or medium-low social vulnerability in each 
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decade from 1970 to 2010.  These counties are mainly concentrated in the Northeast: New 

England, south of the Middle Atlantic, and northern part of the South Atlantic region, and some 

others spread out across the East North Central region in the Midwest. 

Cluster 2 – Dynamic low-medium vulnerability: The majority of counties in cluster 2 are 

characterized by low, medium-low, or medium level of social vulnerability with 1518 (out of 

3,067) counties falling into this cluster. Only a small portion of counties have high social 

vulnerability. The proportions of counties in the other social vulnerability states are relatively 

large and stable over time (Figure 4). In each decade, around 80% of counties in this cluster have 

lower than medium social vulnerability. The counties in this cluster are mainly located in the 

hinterland of the northern coastal plain and in the eastern Great Plains. Several clusters can be 

identified in the Rocky Mountain region (Wyoming, Utah, Colorado), the northwest region 

(Oregon), the northeast/mid-Atlantic region (Maine, New York, Pennsylvania), and the upper 

south-central region (Arkansas, Mississippi, Tennessee). 

Cluster 3 – Dynamic medium-high vulnerability: Counties in cluster 3 are characterized by 

medium-high social vulnerability with 727 (out of 3,067) counties falling into this cluster. In 

each decade, more than half of the counties in this cluster have medium-high or high social 

vulnerability. About 20% of the counties have high social vulnerability in each decade from 

1970 to 2010. In 1970, the counties having medium-high social vulnerability were 30 to 40%, 

but the proportion of counties continued to increase up to approximately 60% in 2000 (Figure 4). 

In 2010, the mean social vulnerability of cluster 3 dropped slightly (Figure 6). About a 10% 

increase in the number of counties with medium, medium-low, and low vulnerability states 

appears to contribute to lowering the mean level of social vulnerability comparing with 2000 

(Figure 4 and Figure 6). Counties in this cluster disperse across the United States; small clusters 
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appear in southern Texas and Louisiana near the Mississippi River and in the northern Great 

Plains. In most cases, they surround or are immediately adjacent to counties of high social 

vulnerability and serve as the buffer between clusters 2 and 4.   

 

Figure 6. The trajectories of mean social vulnerability of each cluster 

 

Cluster 4 – Persistent high vulnerability: Counties in this category have the opposite 

vulnerability state to counties in cluster 1, and more than 80% of the counties (100% in 1990 and 

2000) have been dominated by high or medium-high social vulnerability in every decade since 

1970 with 462 (out of 3,067) counties falling into this cluster. Figures 4 and 6 illustrate that 

cluster 4 has an upward trajectory in social vulnerability since 1970, reaching an all-time high in 

1990 and 2000. In 2010, the vulnerability declined as a result of the increase in counties with 
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low, medium-low, and medium social vulnerability (Figure 4). These most socially vulnerable 

counties are located in the Pacific Southwestern and the U.S.-Mexico border regions. They are 

also concentrated in the Appalachian region and along the lower Mississippi River. Small 

clusters spread in the lower coastal plain. Since these areas have persistent high social 

vulnerability over time, particular attention should be paid to mitigation efforts here. Hazards 

occurring in these areas could result in aggravated consequences due to their vulnerable social 

condition. 

We further explored the social variables that contribute to the differential social 

vulnerability of the clusters of counties. We calculated the medians of all the social variables at 

different times for counties in each cluster. Ten variables that have the largest contrast in their 

medians between cluster 1 and cluster 4 are listed in Table 4. Counties in cluster 4 (in 

comparison with cluster 1) have higher median values in percent of African-Americans, percent 

of population with less-than-high-school education, percent of families below the poverty line, 

percent of female-headed households with own children younger than 18 years old present, 

percent employed in primary extractive industries, percent of households with no telephone 

service, percent of households with no automobile/vehicles available, and percent of housing 

units that are mobile homes (except 1970). In addition, counties in cluster 4 have relatively lower 

medians in per capita income and percent of female persons participating in the civilian labor 

force. The higher/lower values of these variables reflect the disadvantaged (or favorable) social 

conditions in racial composition, poverty and income levels, education, and resource availability 

that all together result in the persistent high social vulnerability of counties in cluster 4 (or low 

social vulnerability in cluster 1). The medians of the variables of cluster 2 and cluster 3 are in 

accordance with their respective levels of social vulnerability between cluster 1 and cluster 4. 
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Table 4. Median values of ten variables with highest contrast in cluster 1 and cluster 4 (1970 – 2010) 

Variables Clusters 1970 1980 1990 2000 2010 

Percent of the population 

that are African American 

Cluster1 0.77 0.93 1.12 1.50 2.05 

Cluster2 1.25 1.21 1.28 1.50 1.66 

Cluster3 1.05 0.95 1.49 1.78 2.06 

Cluster4 3.05 2.69 2.82 3.26 3.48 

Percent of population with 

education less than high 

school graduate 

Cluster1 28.31 16.74 21.99 14.57 10.52 

Cluster2 34.12 22.06 27.42 19.77 14.44 

Cluster3 37.37 25.77 31.03 23.71 17.72 

Cluster4 41.99 29.91 38.76 30.85 23.38 

Per capita income 

Cluster1 3248.1 6962.0 13656.0 21435.0 27148.0 

Cluster2 2784.3 6100.5 11017.0 17414.5 22342.0 

Cluster3 2571.7 5589.0 9832.0 15715.0 20516.0 

Cluster4 2390.2 4965.5 8914.5 13965.0 17691.0 

Percent of families below 

poverty level 

Cluster1 8.65 6.50 5.83 4.80 6.11 

Cluster2 13.40 10.02 10.65 8.61 9.85 

Cluster3 18.03 13.29 14.56 11.89 12.24 

Cluster4 24.36 18.35 20.92 17.28 16.05 

Percent of female-headed 

households with own 

children < 18 years old 

present 

Cluster1 3.75 10.86 5.29 5.99 6.38 

Cluster2 4.15 11.86 5.84 6.54 7.01 

Cluster3 4.31 12.45 6.08 6.63 7.37 

Cluster4 5.59 14.44 7.91 8.69 9.27 

Percent of female persons 

participating in civilian 

labor force 

Cluster1 38.61 47.35 56.68 58.68 57.93 

Cluster2 35.40 42.42 49.58 53.13 53.21 

Cluster3 32.60 38.95 45.22 48.85 49.84 

Cluster4 30.89 36.70 41.79 44.59 46.01 

Percent of employed in 

primary extractive 

industries 

Cluster1 6.32 4.19 3.51 1.65 1.40 

Cluster2 10.22 8.03 6.17 4.08 3.77 

Cluster3 15.82 12.73 9.79 7.10 6.94 

Cluster4 18.63 15.81 12.53 8.58 8.53 

Percent of housing units 

that are mobile homes 

Cluster1 5.13 7.22 8.99 7.58 6.14 

Cluster2 4.72 8.91 12.69 12.96 11.32 

Cluster3 4.19 9.51 14.48 15.57 13.99 

Cluster4 3.78 10.01 16.94 18.51 16.72 

Percent of households with 

no telephone service 

available 

Cluster1 3.52 5.79 3.86 1.58 2.64 

Cluster2 4.74 7.91 6.65 3.03 3.49 

Cluster3 6.01 9.61 9.04 4.20 3.96 

Cluster4 8.59 16.49 14.85 6.59 5.04 

Percent of households with 

no automobiles /vehicles 

available 

Cluster1 10.48 6.43 5.45 4.79 4.23 

Cluster2 13.68 8.72 7.73 6.56 5.52 

Cluster3 15.91 9.44 8.47 7.47 6.19 

Cluster4 18.90 11.14 10.65 9.28 7.39 

Note: Cluster1: Persistent low vulnerability; Cluster2: Dynamic low-medium vulnerability; Cluster3: 

Dynamic medium-high vulnerability; Cluster4: Persistent high vulnerability. 

 

Furthermore, we wonder to what extent the counties have changed their membership in 

different clusters. Table 5 shows how many counties have increased or decreased and how many 
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counties have remained unchanged in their social vulnerability in consecutive decades from 1970 

to 2010. Cluster 1 and cluster 4 have more counties maintaining their social vulnerability states 

over time. It shows that counties with very low or very high social vulnerability tend to maintain 

their social vulnerability states over time. Counties in cluster 2 and cluster 3 are more volatile in 

changing their vulnerability states over time. In each decade, more than half of the counties have 

changed (increased or decreased) their social vulnerability states, even though the portion of 

counties in each social vulnerability state is relatively stable over time (Table 5). For example, 

many more counties in cluster 2 have changed their social vulnerability states (either increase or 

decrease) and only a small portion of counties have stayed the same level of social vulnerability 

in the consecutive decades from 1970 to 2010 (Table 5). However, the portions of counties in 

different social vulnerability states in cluster 2 appear to be relatively stable over time (Figure 4). 

Table 5. Number of counties by changing social vulnerability status per cluster in consecutive decades 

Clusters 
Change of 

Vulnerability 

1970-1980 

(Period 1) 

1980-1990 

(Period 2) 

1990-2000 

(Period 3) 

2000-2010 

(Period 4) 

Cluster 1 

Up 10 19 6 108 

Stay the same 216 309 334 248 

Down 134 32 20 4 

Cluster 2 

Up 590 402 435 647 

Stay the same 384 538 653 458 

Down 544 578 430 413 

Cluster 3 

Up 318 250 197 183 

Stay the same 178 275 315 289 

Down 231 202 215 255 

Cluster 4 

Up 126 66 8 20 

Stay the same 293 383 424 312 

Down 43 13 30 130 
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3.2.6. Discussion and Conclusion  

This study analyzes the spatial and temporal dynamics of social vulnerability of U.S. 

counties and examines how they evolve from 1970 to 2010. As the SoVI created at different 

times should not be directly compared, we implemented a methodology to standardize and 

cluster the indices over time. This study shows that U.S. counties exhibit four major trajectories 

of social vulnerability across the United States. These distinctive temporal dynamics also reflect 

on how local social vulnerability responds to the changing socio-economic and demographic 

characteristics across the United States since 1970. The counties with different dynamic 

categories have demonstrated distinctive spatial patterns. In accordance with the present results, 

a previous study projected that the socially vulnerable areas in 2010 would be concentrated along 

the U.S.-Mexico, counties that are adjacent to the lower Mississippi River, Pacific Southwest 

region, and the country’s metropolitan areas (Cutter & Finch, 2008). Our analysis suggests that 

hazard mitigation and prevention efforts should pay more attention to those counties or areas that 

have persistent high social vulnerability as well as where social vulnerability has demonstrated 

large changes. Social vulnerability research to date has tended to focus on spatially explicit 

quantification of vulnerability at a particular point in time rather than the temporal trends. This 

project is the first longitudinal-transition study to provide quantitative long-term temporal 

trajectories and durations of the vulnerability status of individual counties from 1970 to 2010, 

expanding the study by Cutter and Finch (2008).  

Social vulnerability has the same nature as many other social indicators as it is latent and 

multidimensional and cannot be directly measured. The social vulnerability index (SoVI) has 

been widely used as a proxy to represent the overall measurement of social vulnerability. The 

comparability of SoVI between different years has been plagued by inconsistencies in the 
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original variables, the data transformation/normalization methods, the unit of analysis (i.e., 

spatial scales), aggregation methods, and weighting schemes in creating the SoVI (Anderson et 

al., 2019; Jones & Andrey, 2007; Schmidtlein et al., 2008; Tate, 2012, 2013; Yoon, 2012). A 

recent study by Anderson et al. (2019) attempted to compare a hierarchically-constructed socio-

ecological system vulnerability index, termed the Global Delta Risk Index, with the standard 

SoVI by counting how many census tracts change their vulnerability classes between the two 

indices and by mapping these class rank changes. But comparing the extent of divergence and 

convergence between the two indices is not an appropriate way to cope with different structural 

designs, epistemological frameworks, and aggregation methodologies. The methodology used in 

this study offers an alternative solution that is effective to 1) improve comparability of different 

vulnerability indices measured at different time points, taking into account the fundamental 

differences between various vulnerability indices, and 2) to study the spatial and temporal 

dynamics of social vulnerability. The proposed methodology can be applied to other social 

indicators. Beyond simply providing “point-in-time snapshots of vulnerability,” this nationwide 

study at the county level provides the spatial and temporal evolution of the overall social 

vulnerability in the contiguous United States, showing generalized spatial and longitudinal 

patterns (Park & Xu, 2020). The study is still limited by lack of information on specific social 

conditions and local primary factors that drive higher levels of social vulnerability in a given 

region. Most studies using the SoVI approach cannot answer the question of the major driving 

social factors or the latent processes affecting social vulnerability at the local level (Yoon, 2012). 

Addressing key mechanisms of vulnerability in a local context is greatly needed to reduce 

vulnerability and to help policymakers and local communities make better-informed decisions. 
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The questions raised by this study can be approached by applying localized principal component 

analysis.  

3.3. Local Scale – The Constituent Components and Local Primary Determinants of 

Social Vulnerability Index2  
 

3.3.1. Objectives 

The SoVI approach cannot explain the specific local social contexts that contribute to 

social vulnerability. The purpose of this subsection is to investigate the differential contributions 

of the components of SoVI and to examine the spatial and temporal dynamics of local factors of 

social vulnerability through a case study of the Houston–The Woodlands–Sugar Land 

Metropolitan Area. Geographically weighted principal component analysis (GWPCA) will be 

used to understand how local factors are distributed in space and how they have evolved over 

time since 1970. 

3.3.2. Study Area  

This study focused on The Houston-The Woodlands-Sugar Land Metropolitan Statistical 

Area (Greater Houston, hereafter), which is one of the most populous and rapidly growing 

metropolitan areas in the United States. Its population increased from 2,195,146 in 1970 to 

7,051,556 in 2019, and the growth rate is 19.1% just from 2010 to 2019 (Balderrama et al., 

2019). As of 2019, it consists of thirteen counties in Southern Texas near the US Gulf of Mexico. 

The Greater Houston area produced gross domestic product (GDP) of $490.1 billion in 2019, 

which placed it 7th place among the U.S. metropolitan areas (Balderrama et al., 2019). The 

median household income of the area was $64,688 in 2018, and the poverty rate was 14.5 

percent in 2018, which was above the U.S. average of 13.1 percent (U.S. Census Bureau, 2018). 

 
2 Portions of this chapter have been published in the Natural Hazards, co-authored with Dr. Zengwang Xu 
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Its strong economy driven by the petroleum and medical industries has attracted a large influx of 

immigrants and domestic migrants (City of Houston, 2018).  

The Greater Houston area has experienced rapid population growth and demographic 

diversification fueled by an array of social, demographic, economic, geographic, and urban 

governance factors (Fisher, 1989; Qian, 2010). In particular, the demographic diversity in the 

Greater Houston area is attributed to a large and burgeoning immigrant and migrant population 

over the past several decades. The Hispanic/Latino and Asian populations have more than 

doubled from 1980 to 2018. While the share of African American population has remained 

stable, the non-Hispanic white population has declined over time. Due to its proximity to the 

Gulf Coast, flat topography, and highly urbanized land use and land cover, the area has been 

plagued by many hazards, including hurricane wind and storm surge, flooding, air pollution, 

urban heat island effects etc. (Chakraborty, Grineski, & Collins, 2019; Harper, 2004; Streutker, 

2003; Zhang, Villarini, Vecchi, & Smith, 2018). The area has undergone extensive land 

subsidence due to groundwater discharge and the oil and gas extraction operations, which leads 

to a greater risk of flooding (Stork & Sneed, 2002). Several infamous flooding events have 

severely damaged the area, such as tropical storm Allison in 2001, Houston’s 'Tax Day Flood' in 

2016, and Hurricane Harvey in 2017.  

With the dramatic changes in social, economic, and demographic conditions along with 

the hazards it must confront, it is imperative to understand where and how the society is 

vulnerable, more importantly, what specific local social conditions have affected its local 

vulnerability. Studying social vulnerability in this area is in a pressing need to hazard mitigation 

along the US Gulf and Atlantic coasts. We hypothesize that the social vulnerability in this area 
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exhibits significant spatial heterogeneity in not only its relative magnitude but also the specific 

social determinants that underlie local vulnerability as well as its evolution over time.  

 

3.3.3. Data and Methodology   

The study begins with the overall social vulnerability in the area and how it evolves over 

time by computing the tract level SoVI using variables from the 1970, 1980, 1990, and 2000 

decennial censuses, and the 2008-2012 and the 2013-2017 American Community Survey 5-year 

estimates. There is no consensus on what social variables have to be included in the SoVI. We 

adopt the social variables used in constructing the social vulnerability index created by the 

Center for Disease Control and Prevention (Flanagan et al., 2011). Among fifteen social 

variables, two of the variables (i.e., percent of population 5 years and older who speak English 

less than very well and percent of group quarter population) were excluded from our study due to 

skewed distributions and incomplete measurement over time. Thirteen social, economic, and 

demographic variables are selected and have been standardized to 2010 census tracts (Table 6). 

Table 6. Variables selected from the 1970, 1980, 1990, and 2000 decennial censuses and the 2008-2012 

and 2013-2017 American Community Survey 5-year estimates 

Variables Descriptions 

PAGE5 Percentage of population under 5 years old 

PAGE65 Percentage of population over 65 years old 

PSPHCH 
Percentage of single parent (male or female) householder, no spouse present with  

children under 18 

PMINOR 

Percentage of minority population (total of the following) 

1970: Black or African American + Other (Before Substitutions and Allocations) 

1980-ACS 2013-2017: Persons of Spanish Origin + Black or African American Alone +  

American Indian and Alaska Native Alone + Other 

PPOVERTY Percentage of population below poverty line 

PUNEMP Percentage of civilian labor force unemployed 

PED12LES Percentage of 25 years and older with less than high school education 

PRENTER Percentage of renters 

MEDHHINC Median household income (1970: Average family income) 

PMOBILE Percentage of housing units that are mobile homes 
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PHUBLT39 Percentage of housing units that were built 1939 or earlier 

PNOTEL Percentage of households with no telephone service available (1970: No television sets) 

PNOVEH Percentage of households with no vehicles 
 

Following the standard social vulnerability index approach, this study also uses global 

PCA to calculate the overall SoVI using the sum of the PC scores. Both the values of the SoVI 

and its constituent PC scores are examined to understand the extent to which the SoVI values 

conceal the different combinations and variabilities of the constituent PC scores. The extent to 

which original social variables contribute to PCs is represented by the variables’ loadings (i.e., 

correlation between the original variables and the components). The variables’ loadings to PCs 

from the global PCA method are constant values that imply homogenous study-area-wide 

dependences between the PCs and the original variables. In other words, the dependence 

between the variable and the PC is the same everywhere across the study area, and this 

homogeneous dependency is termed stationarity (Demšar et al., 2013; Fotheringham, Charlton, 

& Brunsdon, 1998; Lloyd, 2010; Openshaw, Charlton, Wymer, & Craft, 1987). 

Built on the stationarity assumption, the global PCA method does not take into account 

the heterogenous nature of variables at different locations. The PC scores from the global PCA 

method are the aggregated representations of several original social variables (Fotheringham & 

Brunsdon, 1999). The resultant SoVI is aggregated as the sum of scores of selected PCs, and this 

further generalizes and conceals the heterogenous contributions of the original variables to the 

SoVI at different spatial locations. The local spatial heterogeneity and dependence provide 

important insight on how social vulnerability is affected by different social conditions at the local 

level (Robinson et al., 2019). As the local version of the PCA method, the geographically 

weighted principal components analysis (GWPCA) is able to account for the spatial 
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heterogeneity of local social conditions in contributing to the social vulnerability at every spatial 

location (Gollini, Lu, Charlton, Brunsdon, & Harris, 2015; Lloyd, 2010).  

GWPCA is the local version of the global PCA method and it applies the PCA method to 

the local neighborhoods of every location (Harris, Brunsdon, & Charlton, 2011; Harris, Clarke, 

Juggins, Brunsdon, & Charlton, 2015). GWPCA has been applied in many geospatial studies to 

explore the heterogeneous local structure. Some recent applications in geoscience and 

environmental studies investigated the local components of an air quality indicators (C. Wu, Hu, 

Zhou, Li, & Jia, 2019), heavy metal variability in soil (Fernández, Cotos-Yáñez, Roca-Pardiñas, 

& Ordóñez, 2018; Kumar, Lal, & Lloyd, 2012; H. Wang, Cheng, & Zuo, 2015), the distribution 

of flood vulnerability indicators (Chang & Chen, 2016), landslide susceptibility mapping 

(Sabokbar, Roodposhti, & Tazik, 2014), and land cover classification (Comber, Harris, & 

Tsutsumida, 2016). GWPCA has been widely adopted in social sciences to explore variations in 

the characteristics of the population of Northern Ireland (Lloyd, 2010), the heterogeneous local 

factors of the travel activity patterns of the elderly (Losada, Alen, Cotos-Yanez, & Dominguez, 

2019), and the varying determinants of residential preferences in housing market segments (C. 

Wu, Ye, Ren, & Du, 2018). A growing body of literature has adopted GWPCA in the studies of 

social inequality in environmental health (Saib et al., 2015), urban deprivation (Mishra, 2018), 

energy poverty (Robinson et al., 2019), and quality of life (Murillo, Olmo, & Builes, 2019). 

GWPCA begins by computing the local variance-covariance matrix (∑(𝑢𝑖, 𝑣𝑖)) for every 

spatial location 𝑖 with coordinates (𝑢𝑖, 𝑣𝑖). PCA is based on one global variance-covariance 

matrix (∑), and GWPCA is based on variance-covariance matrices (∑(𝑢𝑖, 𝑣𝑖)) at every location:  

PCA ∑ = 𝑋𝑇𝑋  
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GWPCA ∑(𝑢𝑖 , 𝑣𝑖) = 𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖)𝑋  

where 𝑋 is the matrix consisting of 𝑛 rows of observations and 𝑚 columns of variables, (𝑢𝑖 , 𝑣𝑖) 

are the geographic coordinates of the 𝑖th observation, and 𝑊(𝑢𝑖 , 𝑣𝑖) is a diagonal matrix of 

weights determined by kernel functions that define local neighbors and spatial weights. Data 

observations at neighboring locations are weighted by a distance-decay kernel weighting 

function (e.g., exponential, Gaussian, and bi-square, etc.). For each location, its local principal 

components are derived by decomposing the locally-fitted variance-covariance matrix, the same 

way as the global PCA method decomposes the global variance-covariance matrix, as follows: 

PCA ∑ = LVL𝑇 

GWPCA ∑(𝑢𝑖, 𝑣𝑖) = 𝐿(𝑢𝑖, 𝑣𝑖)𝑉(𝑢𝑖 , 𝑣𝑖)𝐿(𝑢𝑖 , 𝑣𝑖)𝑇 

where 𝐿(𝑢𝑖, 𝑣𝑖) denotes a matrix of local eigenvectors and 𝑉(𝑢𝑖 , 𝑣𝑖) a diagonal matrix of local 

eigenvalues at location 𝑖 with coordinates (𝑢𝑖, 𝑣𝑖). As the result, GWPCA generates loadings and 

component scores for every location based on data in its local neighborhood (Demšar et al., 

2013; Gollini et al., 2015; Harris et al., 2011; Harris et al., 2015; Harris et al., 2016). 

For a data matrix with 𝑛 observations on 𝑚 variables, the global PCA produces a set of at 

most 𝑚 principal components and loadings for the whole study area, whereas GWPCA generates 

at most 𝑚 principal components and loadings for each of the 𝑛 observations/locations. The 

loadings at each location – local loadings – represent the contributions of the variables at the 

neighboring locations to the principal components at the location. Based on the local loadings, 

GWPCA makes it possible to examine at each location the extent to which the social variables in 

its neighborhood contribute to social vulnerability at the location, and especially, which variable 
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has the largest loading or contributes the most at each location, i.e., the primary determinant to 

the local social vulnerability (i.e., the ‘winning’ variable in GWPCA literature). 

In order to utilize the GWPCA method appropriately, it is important to choose an 

appropriate kernel weighting method and bandwidth to define the local neighborhoods. The size 

of the kernel, so-called the kernel bandwidth, determines the size of local neighborhoods in the 

computation. If the bandwidth is too small, the GWPCA model will take into account a smaller 

number of local observations than that would make the GWPCA results reliable, whereas if the 

bandwidth is too large, the excessive number of local observations will be counted in the 

GWPCA, and its results are going to be close to the results of the global PCA (Wu et al. 2018). 

Hence, it is necessary to choose the optimal bandwidth that can contain sufficient local 

variability and avoid overgeneralization. Bandwidth selection can be achieved either by a user-

defined fixed bandwidth or an adaptive bandwidth (using a fixed number of nearest neighbors 

via a cross-validation score); the adaptive bandwidth approach is more commonly used (Gollini 

et al. 2015; Harris et al. 2011). Our GWPCA method is based on a bi-square weighting function 

and adaptive bandwidths.  

The major GWPCA results in this study are the primary determinants to local 

vulnerability, which are the social variables that contribute the most at each location. For every 

location (i.e., census tract in this study), GWPCA derives the primary determinant variable at 

every time point (i.e., 1970, 1980, 1990, 2000, 2008-2012, and 2013-2017). Thus, each location 

(or tract) can be characterized by a sequence of the primary determinants over time. Cluster 
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analysis is employed to explore how the sequences of primary determinants have changed in the 

study area over time. 

Cluster analysis is commonly used to find patterns to group data; it is often conducted by 

maximizing the inter-cluster dissimilarity and minimizing the intra-cluster similarity (Aggarwal, 

2014; Grubesic, Wei, & Murray, 2014; Murray & Estivill-Castro, 1998). The dissimilarity 

(similarity) between data observations is often calculated by using several distance metrics such 

as Euclidean distance, Manhattan distance, and Minkowski distance – all of these can only be 

applied to numerical variables. For data with categorical variables, Gower’s distance can be used 

(Gower, 1971; Kaufman & Rousseeuw, 2009; Podani, 1999). The sequence alignment method 

can be employed only for categorical variables, such as the most influential social variables in 

this study (Needleman & Wunsch, 1970). As discussed earlier, the sequence alignment method 

evaluates the similarity or dissimilarity between two categorical sequences by Levenshtein edit 

distance, which is the cost to transform one sequence into another in terms of insertions, 

deletions, and substitutions (Levenshtein, 1966). In this study, we use the functions in TraMineR 

package in the statistical software R to calculate the minimal editing cost between the sequences 

of the primary determinants of any two tracts (Gabadinho et al., 2011). Ward’s method is then 

applied to the minimum editing cost distance matrix to explore the clustering patterns of the 

sequences of primary determinants in the study area (Ward Jr, 1963). Figure 7 presents the flow 

of the overall research process.  

 

Figure 7. Overall methodology to study local factors of social vulnerability 
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3.3.4. Spatial and Temporal Patterns of SoVI and its Principal Components  

We first examine the spatial and temporal patterns of the overall social vulnerability in 

the Greater Houston area by examining the SoVI and its constituent principal components (PCs). 

The Kaiser-Meyer-Olkin (KMO) statistic and the result of Bartlett test of sphericity indicated 

that the sample size of the dataset was suitable for PCA analysis. The results of the global PCA 

were then rotated using varimax rotation, which makes the extracted PCs more interpretable 

(Rencher & Christensen, 2012). Five PCs were extracted for each time point, and these PCs 

explain 76 to 84 percent of the total variance in the original variables (Table 7). 
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Table 7. The principal components of the SoVI during different time periods 

Year 1970 1980 1990 2000 2008-2012 2013-2017 

Percentage of 

total variance 

explained 

79 84 84 81 77 76 

Number of 

components 
5 5 5 5 5 5 

Major 

components 

(% variance 

explained) 

1. Multiple 

vulnerable 

conditions (30) 

2. High 

percentage of 

renter 

households& 

single parent 

households 

(15) 

3. High 

percentage of 

elderly & low 

percentage of 5 

years and 

younger (15) 

4. Unemployment 

(10) 

5. Mobile homes 

(10) 

1. Multiple 

vulnerable 

conditions (38) 

2. High 

percentage of 

the elderly & 

old buildings 

(15) 

3. Less youth & 

high 

percentage of 

renter 

households(13) 

4. Mobile homes 

(10) 

5. Low median 

household 

income (9) 

 

1. Multiple 

vulnerable 

conditions (38) 

2. High 

percentage of 

the youth & 

low percentage 

of the elderly 

(13) 

3. High 

percentage of 

old buildings 

(12) 

4. Mobile homes 

(10) 

5. High 

percentage of 

renter 

households & 

low median 

household 

income (10) 

1. Multiple 

vulnerable 

conditions (37) 

2. High 

percentage of 

the youth & 

low percentage 

of the elderly 

(12) 

3. High 

percentage of 

renter 

households & 

low median 

household 

income (11) 

4. High 

percentage of 

old buildings 

(11) 

5. Mobile homes 

(10) 

1. Multiple 

vulnerable 

conditions (30) 

2. High 

percentage of 

households 

without 

telephone 

service & 

vehicles (15) 

3. High 

percentage of 

youth & low 

percentage of 

the elderly (14) 

4. Mobile homes 

(9) 

5. High 

percentage of 

old buildings 

(8) 

1. Multiple 

vulnerable 

conditions (29) 

2. High 

percentage of 

youth & low 

percentage of 

the elderly (18) 

3. High 

percentage of 

households 

without 

telephone 

service (11) 

4. Mobile homes 

(10) 

5. High 

percentage of 

old buildings 

(9) 
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Each PC is characterized by the social variables with large loading values. PC1 accounts 

for the most variance or is loaded with the variance from as many variables as possible. It 

correlates with multiple socially vulnerable conditions. For example, the PC1 for the 2013-2017 

period correlates with several variables: percent of people in poverty, percent of unemployed 

civilian labor force, percent of households without a vehicle, percent of minority, percent of 

single parent households, low median household income, and percent of people with less than 

high school education. Other PCs correlate with fewer variables, and the number and variables 

can vary over time, for example PC2 for the 2008-2012 period positively correlates with the 

percent of households without a vehicle, the percent of households without telephone service, 

and the percent of renter households, but PC2 for the 2013-2017 period correlates with the 

percent of people 5 years and younger, the percent of single parent households, and the percent 

of minority racial/ethnic groups, and negatively correlates with the percent of people 65 years 

and older. This volatility results from changes in the social variables at different times. The last 

three PCs only correlate with one or two variables. Specifically, PC4 and PC5 mainly correlate 

with either percent of mobile homes or percent of older buildings.  These two variables have 

quite different frequency distributions than other variables, and they are more skewed to a small 

value with a long tail. Most mobile homes are spatially distributed in the suburbs, and the older 

buildings are mainly located in the central city. 

Figure 8 shows the spatial distributions of the SoVI in 1970, 1980, 1990, 2000, 2008-

2012, and 2013-2017. The SoVI has shown persistent geographic patterns in the Greater Houston 

area. The most socially vulnerable areas are located in the inner-city and suburban outskirts, and 

between are the less vulnerable areas, forming a doughnut-shaped pattern. Although the specific 
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location and size of the annuluses are not the same at different time points, the general annulus 

pattern has been persistent since 1970.   

 

Figure 8. Spatial distribution of the social vulnerability index (SoVI) during different time periods 

 

The central city area in Greater Houston has experienced chronic racial and ethnic 

segregation with a high concentration of poverty, and the majority of the population in this area 

is predominantly Hispanic and African American (O'Connell, 2016; O'Connell & Howell, 2016). 

East and south of the Inner Loop neighborhoods near downtown have transitioned from upper- 

and middle-income areas to lower-income neighborhoods since 1980.  Meanwhile, suburban and 

coastal areas are composed of middle- or upper-class Whites and elderly retirees who prefer 
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suburban living or to reside near water (Crossett et al., 2013). Together, all these social 

demographic factors contribute to the persistent spatial patterns of social vulnerability. 

3.3.5. The Differential Contribution of the Constituent Components of the SoVI  

The SoVI is the sum of all the PC scores, and it cannot indicate the extent to which each 

constituent PC contributes to the overall sum. A high SoVI value can be the result of a high 

value for PC1 or other PCs. Figure 9 presents the value of all five PCs for the 2013-2017 period.  

 

Figure 9. Spatial distributions of the principal component (PC) scores of the five constituent PCs (PC1: 

multiple vulnerable conditions, PC2: high percentage of youth and low percentage of the elderly, PC3: 

high percentage of households without telephone service, PC4: mobile homes, PC5: high percentage of 

old buildings) of the SoVI for the 2013-2017 period (PC1-PC5) and the distribution of the PCs that have 

the highest scores (Max PC) 
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Among the five PCs, PC1 accounts for the most variability in the original variables.  For 

the 2013-2017 period, PC1 accounts for 29% of the total variability, and it is correlated with 

multiple original variables. High PC1 scores are mainly located in the inner Houston city, in the 

east of Harris County near Buffalo Bayou, and in some tracts in the suburbs. PC2 mainly 

correlates with a high percentage of youth and a low percentage of the elderly, and it also 

moderately correlates with single parent households and minority populations. PC3 mainly 

correlates with a high percentage of households without telephone service. PC4 correlates with a 

high percentage of mobile homes and PC5 correlates with a high percentage of old buildings.  

The five PCs have different spatial distribution patterns, and each contributes to a layer of 

the spatial pattern of the SoVI in 2013-2017. Although PC1 accounts for the largest amount of 

variability in the original variables, the spatial distribution pattern of PC1 only contributes to 

some of the spatial distribution pattern of the SoVI, especially in the high vulnerability areas in 

the central city. This becomes more apparent when PC1 is contrasted to PC4, which only 

represents one variable – the percent of mobile homes – but has the highest PC score and 

contributes most to the high vulnerability of almost all suburban tracts (Figure 9 – Max PC). If 

the SoVI is used as the only measure of social vulnerability, the differential contributions of the 

specific PCs to the SoVI are going to be unknown. As shown by a scatter plot between all PCs 

and the SoVI in Figure 10, the variability of the PC scores become larger as the SoVI increases, 

and many of the tracts with high SoVI are due to high values in other PCs rather than PC1. This 

indicates the high overall vulnerability of those tracts is not only due to their overall social 

conditions, but also one or two specific conditions.  
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Figure 10. Scatter plot of the five PCs versus the SoVI in the 2013-2017 period 

 

The values of the PCs and SoVI can only represent the relative magnitude of social 

vulnerability and cannot capture the contribution of specific social variables, especially at the 

local level. However, the GWPCA method can provide information about the contribution of 

original variables to the social vulnerability at each location. The GWPCA method in this study 

focuses on PC1 as it accounts for the most variability in the original variables and correlates with 

multiple original variables. The randomization test is conducted to verify if local eigenvalues 

vary across space so that the GWPCA is applicable (Harris et al., 2011). The Monte Carlo 

significance tests showed that the null hypothesis of local eigenvalue stationarity was rejected at 

a significance level of 0.05, which means that there exists significant spatial non-stationarity that 

warrants the use of GWPCA. 
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An important indicator of the performance of the PCA method is how much variance in 

the original variables the PCs account for. For example, the five PCs account for 76 percent of 

the variance in the original variables in the 2013-2017 period (Table 7). GWPCA produces its 

local geographically weighted principal components (GWPCs) for every location that accounts 

for local variability. Using GWPCA on the variables from the ACS 2013-2017, Figure 11 maps 

the cumulative local percentage of variance (PTV) of the top five local GWPCs that explain the 

most local variance. The local PTV indicates how much local variance can be explained by the 

local GWPCs for each tract. The local PTV ranges from 74.2 to 86.4 percent across the study 

area in 2013-2017. Most tracts have higher PTVs than 76 percent—the percentage of variance 

explained by the global PCA; only a small number of tracts have local cumulative PTV between 

74.3 and 76 percent (colored in red on Figure 11). This implies that the locally-fitted GWPCA 

performs well in representing the variability in the original variables.  

GWPCA produces locally-fitted components and loadings for each tract in the study area. 

We examine which social variable contributes to the local social vulnerability the most for each 

tract. The variable with the highest local loading is indicative of the greatest contribution of the 

variable to local social vulnerability, thus it is the primary determinant to local social 

vulnerability (Gollini et al., 2015; Harris et al., 2011). The primary determinants to PC1 are 

presented in Figure 12. 
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Figure 11. Cumulative local percentage of variance explained by top five GWPCs in the 2013-2017 

period 
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Figure 12. The primary local determinants of social vulnerability in the 2013-2017 period               
(MEDHHINC: median household income, PAGE65: percentage of population over 65 years old, PED12LES: 

percentage of 26 years and older with less than high school education, PHUBLT39: percentage of housing units that 

were built 1939 or earlier, PMINOR: percentage of minority population, PNOTEL: percentage of households with 

no telephone service available, PNOVEH: percentage of households with no vehicles, PPOVERTY: percentage of 

population below poverty line, PRENTER: percentage of renters, and PSPHCH: percentage of single parent 

householder with children under 18) 
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The primary determinants show great heterogeneity across the Greater Houston area. Ten 

out of thirteen of the variables are found to be the primary determinants in different parts of the 

Greater Houston area. Some variables are primary determinants for large geographical areas. For 

example, median household income is the primary determinant of local social vulnerability for 

large contiguous areas in the western and northern area. The percent of households in poverty, 

the percent of single parent households, and the percent of renter households are the primary 

determinants in moderately large patches of contiguous areas.  These primary determinants 

reflect the heterogenous social conditions that drive local social vulnerability in different parts of 

the Greater Houston area. 

 

3.3.6. Spatial and Temporal Patterns of the Local Primary Determinants of Social 

Vulnerability  

The primary determinant of social vulnerability at a particular location can vary over 

time. To further understand how they have changed across the Greater Houston area, we 

conducted clustering analysis on the primary determinant variables to PC1 at different times. The 

clustering was based on the Levenshtein edit distance between tracts on their sequences of 

primary determinants. Several clustering algorithms were examined using the R package 

‘clValid’ to determine a suitable clustering algorithm and an optimal number of clusters (Brock, 

Pihur, Datta, & Datta, 2008). Based on the elbow method and the intra-cluster similarity 

measures such as the Dunn index and silhouette width, the census tracts in the area were 

classified into five clusters using a hierarchical clustering method (i.e., Ward’s method). The five 

clusters are shown in Figure 13. 
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Figure 13. The five clusters of tracts based on their primary determinants in 1970, 1980, 1990, 2000, 

2008-2012, and 2013-2017 
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Each cluster has its distinctive location in the Greater Houston area. As shown in Figure 

13, cluster 1 is located in a large contiguous area mainly in the western Greater Houston area. 

Cluster 2 is mainly located in the eastern part of Harris County outside of the central city of 

Houston. Cluster 3 is located in the eastern part of the central city of Houston and part of the 

southwestern Greater Houston area near the Galveston Bay. Cluster 4 is mainly located in the 

northeastern suburbs. Cluster 5 is mainly located in western Harris County right outside of the 

City of Houston in part of northern Fort Bend County and part of Brazoria County. 

Each cluster can be characterized by the primary determinant that the majority of its 

tracts hold. For the whole area and for each cluster, the primary determinants of tracts at different 

times are listed in Table 8. Over time, the median household income (MEDHHINC), percent of 

people in poverty (PPOVERTY), and percent of households without a vehicle (PNOVEH) have 

been the primary determinants for the majority of census tracts across the Greater Houston area 

(Table 8). The degree of the majority of these variables varies from 25% (278/1104 in 2013-

2017) to 58% (645/1104 in 2008-2012). All three variables are closely related to economic 

disadvantage. For the majority tracts in cluster 1, cluster 2, and cluster 3, the primary 

determinants have been persistent over time: median household income (MEDHHINC) in cluster 

1, percent of people in poverty (PPOVERTY) in cluster 2, and percent of households without a 

vehicle (PNOVEH) in cluster 3. For the majority of tracts in clusters 4 and 5, there are a greater 

number of fluctuations in the primary determinants over time, indicating frequent changes. For 

tracts in cluster 4, there are four primary determinants over time, i.e., percent of people in 

poverty (PPOVERTY), percent of children 5 years and younger (PAGE5), median household 

income (MEDHHINC), and percent of single parent households (PSPHCH). For tracts in cluster 

5, the primary determinants are the percent of people in poverty (PPOVERTY), percent of 
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children 5 years and younger (PAGE5), median household income (MEDHHINC), and percent 

of renter households (PRENTER). 

Table 8. The primary determinants to PC1 for the majority of tracts across the Greater Houston area and 

in different clusters at different time points 

    Areas 1970 1980 1990 2000 2008-2012 2013-2017 

The 
Whole 
Study 
Area 

MEDHHINC 
(405/1060) 

PNOVEH 
(285/1104) 

PPOVERTY 
(286/1104) 

MEDHHINC 
(427/1104) 

PPOVERTY 
(645/1104) 

MEDHHINC 
(278/1104) 

Cluster 1 
MEDHHINC 

(176/259) 

PAGE5 

(120/299) 

MEDHHINC 

(139/299) 

MEDHHINC 

(165/299) 

MEDHHINC 

(155/299) 

MEDHHINC 

(170/299) 

Cluster 2 
MEDHHINC 

(78/223) 
PPOVERTY 

(65/223) 
PPOVERTY 

(115/223) 
PED12LES 

(95/223) 
PPOVERTY 

(214/223) 
PPOVERTY 

(94/223) 

Cluster 3 
PNOVEH 

(180/237) 

PNOVEH 

(197/237) 

PNOVEH 

(170/237) 

PNOVEH 

(77/237) 

PPOVERTY 

(217/237) 

PNOVEH 

(86/237) 

Cluster 4 
PPOVERTY 

(68/195) 
PAGE5 
(78/195) 

PPOVERTY 
(72/195) 

MEDHHINC 
(140/195) 

PSPHCH 
(143/195) 

PSPHCH 
(124/195) 

Cluster 5 
MEDHHINC 

(63/146) 

PRENTER 

(105/150) 

MEDHHINC 

(78/150) 

PAGE5 

(60/150) 

PPOVERTY 

(85/150) 

PRENTER 

(76/150) 

Note: The number in parentheses signifies the number of tracts with the primary determinants / total number of 

tracts, respectively.  

*MEDHHINC = median household income; PAGE5=percent of 5 years old and younger; PPOVERTY=percent of 

people under poverty; PED12LES=Percent of 25 years and older with less than high school education; 

PNOVEH=percent of households without a vehicle; PSPHCH=percent of single parent households; 

PRENTER=percent of renters; PRENTER = percent of renter households. 
 

We also plot the frequency of the primary determinants of all tracts in each cluster in 

Figure 14. Each cluster has a unique frequency distribution of the primary determinants. It is 

apparent that the median household income (MEDHHINC) is the primary determinant in cluster 

1. A moderate number of tracts have the percent of 5 years and younger (PAGE5) in 1980, and 

percent of people in poverty (PPOVERTY) during the 2008-2012 and 2013-2017 periods. In 

cluster 2, the primary determinant of around 90% of its tracts is the percent of people in poverty 

(PPOVERTY) between 2008 and 2012. The percent of people with low levels of educational 

attainment (PED12LES) also have a high frequency beginning in 1980. In cluster 3, the percent 
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of households without a vehicle (PNOVEH) is the primary determinant for all the time periods 

except the 2008-2012 period when the percentage of people living in poverty (PPOVERTY) is 

the primary determinant. In cluster 4, the percent of single parent households (PSPHCH) is the 

primary determinant of the majority of tracts during the 2008-2012 and 2013-2017 periods. 

During other periods, the percent of 5 years and younger (PAGE5), percent of minority 

(PMINOR), median household income (MMEDHHINC), percent of people in poverty 

(PPOVERTY) are the primary determinants for large numbers of tracts in cluster 4. In cluster 5, 

the percent of renter households (PRENTER) is the primary determinant for a larger fraction of 

tracts. The percent of people in poverty (PPOVERTY), median household income 

(MEDHHINC), and percent of 5 years and younger (PAGE5) are the primary determinants for 

large portions of tracts at different times in cluster 5. 

 

Figure 14. The frequency distribution of the primary determinants over time in each cluster 
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The primary determinant of a tract can vary over time. Each tract can be characterized by a 

sequence of primary determinants at different times, i.e., 1970, 1980, 1990, 2000, 2008-2012, 

and 2013-2017. This cluster analysis is based on the dissimilarity between the sequences of 

primary determinants of tracts. To understand the prominent sequences in each cluster, the top 

ten most frequent sequences in each cluster are plotted in Figure 15. These top ten most frequent 

sequences cumulatively account for different percentage of tracts in different clusters: 32.9% in 

cluster 1, 46.6% in cluster 2, 48.9% in cluster 3, 44.2% in cluster 4, and 48.7% in cluster 5. In 

cluster 1, the most frequent sequence is MEDHHINC (1970) → PNOVEH (1980) → 

MEDHHINC (1990) → MEDHHINC (2000) → PHUBLT (2008) → PHUBLT (2013), which 

shows that the sequence has median household income (MEDHHINC) in 1970, percent of 

households without a vehicle (PNOVEH) in 1980, MEDHHINC again in 1990 and 2000, and 

percent of housing units that were built 1939 or earlier (PHUBLT39) in both 2008-2012 and 

2013-2017 periods. Some clusters have different sequences, while others have a fluctuating 

frequency of primary determinants each year. For example, the most frequent sequence in cluster 

3 has the percent of households without a vehicle (PNOVEH) as the primary determinant in 

1970, 1980, 1990, and 2000. The overall impression from Figure 15 is that there is significant 

change over time of the primary determinants. 
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Figure 15. The top ten frequent sequences of the primary determinants over time in each cluster 

 

In order to examine the degree of change, we summarized the number of tracts that have 

changed (or not changed) their primary determinants in consecutive time periods in Table 9. For 

the whole Greater Houston area, there are always more tracts that change their primary 

determinants than those that have not in consecutive periods. The number of tracts that have 

changed their primary determinants is 6 times greater than those that have not changed from 

2000 to the 2008-2012 period. Among the five clusters, tracts in cluster 1 and cluster 3 are 

relatively stable. In other clusters, there are significantly more tracts that change their primary 

determinants, for example, all except 6 tracts in cluster 5 have changed their primary 

determinants from 2000 to the 2008-2012 period. 

We also aimed to examine the most prominent transitions of the primary determinants 

over time. In Table 10, we summarize the primary determinant transitions in consecutive time 
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periods. For the whole Greater Houston area, from 1970 to 1980 and 1980 to 1990, the most 

frequent observed sequence is from PNOVEH to PNOVEH for both periods, i.e., there are more 

tracts that remain PNOVEH than any other sequences. The rest of the transitions in other time 

periods are PPOVERTY → MEDHHINC, MEDHHINC → PSPHCH, and PPOVERTY → 

PPOVERTY. For cluster 1, most tracts remain in MEDHHINC (median household income) than 

change to other primary determinants between years since 1970. For cluster 2, the major 

transitions are between PPOVERTY and PED12LES, i.e., between percent of people in poverty 

and percent of people with education less than high school. For cluster 3, the major transitions 

are between PNOVEH and itself or PNOVEH and PPOVERTY, i.e., the percent of households 

without a vehicle and percent of people in poverty. In clusters 4 and 5, the transitions involve 

more diverse primary determinants, such as PSPHCH (percent of single parent households) and 

PRENTER (percent of renter households). As such, it is evident that clusters 1, 2, and 3 have 

shown persistent transition patterns, while clusters 4 and 5 have shown more varying transitions. 
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Table 9. The number of tracts that have (or not) changed their primary determinants in consecutive time 

periods 

Areas 

Change of the 

most influential 

variable 

1970 – 1980 1980 – 1990 1990 – 2000 2000 – 2008* 2008 – 2017** 

The whole 
study area 

Not changed 279 308 314 148 455 

Changed 781 796 790 956 649 

Cluster 1 
Not changed 89 103 102 77 170 

Changed 170 196 197 222 129 

Cluster 2 
Not changed 11 14 97 34 85 

Changed 212 209 126 189 138 

Cluster 3 
Not changed 146 139 72 19 54 

Changed 91 98 165 218 183 

Cluster 4 
Not changed 6 18 26 12 114 

Changed 189 177 169 183 81 

Cluster 5 
Not changed 27 34 17 6 32 

Changed 119 116 133 144 118 

Note: ACS 2008-2012 5-year estimates*, ACS 2013-2017 5-year estimates ** 

 

Table 10. The most frequent transitions of the primary determinants between consecutive years (or 

periods) 

Areas 1970→1980 1980→1990 1990→2000 2000→2008* 2008→2017** 

The whole 

study area 

PNOVEH→ 
PNOVEH 
 (146/1060) 

PNOVEH→ 
PNOVEH 
(137/1104) 

PPOVERTY→ 
MEDHHINC 
(114/1104) 

MEDHHINC→ 
PSPHCH 
(163/1104) 

PPOVERTY→ 
PPOVERTY 
(192/1104) 

Cluster 1 
MEDHHINC→ 
MEDHHINC 
(89/259) 

MEDHHINC→ 
MEDHHINC 
(55/299) 

MEDHHINC→ 
MEDHHINC 
(74/299) 

MEDHHINC→ 
MEDHHINC 
(72/299) 

MEDHHINC→ 
MEDHHINC 
(104/299) 

Cluster 2 
PMOBILE→ 

PPOVERTY 

(42/223) 

PPOVERTY→ 

PED12LES 

(59/223) 

PED12LES→ 

PED12LES 

(73/223) 

PED12LES→ 

PPOVERTY 

(93/223) 

PPOVERTY→ 

PPOVERTY 

(85/223) 

Cluster 3 
PNOVEH→ 
PNOVEH 
(143/237) 

PNOVEH→ 
PNOVEH 
(137/237) 

PNOVEH→ 
PNOVEH 
(71/237) 

PNOVEH→ 
PPOVERTY 
(76/237) 

PPOVERTY→ 
PNOVEH 
(85/237) 

Cluster 4 
PPOVERTY→ 

PMOBILE 

(27/195) 

PMOBILE→ 

PPOVERTY 

(49/195) 

PPOVERTY→ 

MEDHHINC 

(49/195) 

MEDHHINC→ 

PSPHCH 

(129/195) 

PSPHCH→ 

PSPHCH 

(108/195) 

Cluster 5 
MEDHHINC→ 
PRENTER 
(34/146) 

PRENTER→ 
MEDHHINC 
(66/150) 

MEDHHINC→ 
PAGE5 
(48/150) 

MEDHHINC→ 
PPOVERTY 
(41/150) 

PPOVERTY→ 
PRENTER 
(44/150) 

Note: MEDHHINC = median household income; PAGE5=percent of 5 years old and younger; PPOVERTY=percent 
of people under poverty; PED12LES=Percent of 25 years and older with less than high school education; 
PNOVEH=percent of households without a vehicle; PSPHCH=percent of single parent households; 
PRENTER=percent of renter households. ACS 2008-2012 5-year estimates*, ACS 2013-2017 5-year estimates **. 
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3.3.7. Discussion and Conclusion   

The inductive design of SoVI using global PCA and the associated aggregation process 

tend to obscure spatial effects, making it difficult to capture which social indicators contribute 

the most to overall social vulnerability at a particular place. As a result, the SoVI score cannot 

elucidate the primary contributors to vulnerability and subtle geographical nuances that influence 

overall social vulnerability (Anderson et al., 2019; Morse, 2004; Robinson et al., 2019; Rufat, 

2013; Yoon, 2012). Preliminary work on understanding the specific vulnerability factors was 

undertaken by Rufat (2013). His work identified the spatial distribution of each socio-economic 

indicator profile (i.e., spectra graphs) and compared them with the average values of the study 

area in an effort to unravel the specific drivers of vulnerability—called “spectra of vulnerability.” 

However, this study did not take into account spatial interactions of the area being studied. In the 

same vein, Robinson et al. (2019) investigated the relative influence of social indicators on 

vulnerability to energy poverty in England to disentangle each global component and its spatial 

distribution using GWPCA.  

To date, there has been no application of GWPCA to social vulnerability to natural 

hazards. This study has examined the contributions of the constituent components of the SoVI. 

Although the SoVI is intended to measure the overall degree of social vulnerability, a significant 

portion of areas with high SoVI are composed of components representing only one or two 

specific social conditions. We found that the overall social vulnerability in the Greater Houston 

area, as measured by the SoVI, has exhibited persistent spatial patterns since 1970. The central 

city and suburban outskirts in the Greater Houston area are more socially vulnerable as they have 

high SoVI values. But the spatial patterns of the SoVI are not equally constituted by the 
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components of the SoVI. In particular, the high social vulnerability of suburban areas is mainly 

the result of one principal component that highly correlates with the percent of mobile homes.  

We have also examined the spatial and temporal patterns of the local primary 

determinants of social vulnerability by using the geographically weighted principal components 

analysis (GWPCA) and sequence alignment analysis-based clustering method. The application of 

GWPCA allows us to see that the local primary determinants of social vulnerability have 

exhibited prominent spatial and temporal patterns. The median household income, percent of 

households without a vehicle, and percent of people in poverty are the three primary 

determinants that have been held by most tracts in the Greater Houston area since 1970. 

In addition, results of this study indicate that five clusters of primary determinants in the 

Greater Houston area change over time. Clusters 1, 2, and 3 are mainly dominated by median 

household income, percent of people in poverty, and percent of households without a vehicle, 

respectively. This is consistent with the demographic trend of the City of Houston where the 

population has experienced high poverty alongside a significant growth of immigrants and 

minority populations, and high unemployment rates (O'Connell & Howell, 2016). Clusters 4 and 

5 have larger variation in their primary determinants over time. All the primary determinants that 

are held by most tracts in the clusters and throughout the Greater Houston area reflect that 

disadvantages in economic situation, mobility, and family structure are the most influential 

factors contributing to social vulnerability. For clusters 4 and 5, the primary determinants of the 

local social vulnerability change more often than clusters 1, 2, and 3. The temporal patterns of 

the local primary determinant variables of social vulnerability exhibited a substantial change 

over time. More than half of the tracts in the Greater Houston area change their local primary 

determinants in consecutive time periods. The most frequent change of the primary determinants 
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in consecutive time periods varies per cluster. In cluster 1, the most frequent change is from 

median household income to itself, suggesting the dominance and persistence of this variable in 

this cluster. Cluster 3 has a similar persistent pattern, but the variable is the percent of 

households without a vehicle. The other clusters involve more variables changing over time.  

The present study has been the first attempt to explicitly examine the extent of temporal 

variation in local primary determinants of the social vulnerability index from 1970 to 2010 using 

Greater Houston as a case study. The insights gained from this study may enable effective 

resource allocation by identifying local contributing factors to social vulnerability.  

In addition to offering specificities in reducing social vulnerability, the local primary 

determinants to the social vulnerability shed light on the potential qualitative processes that 

underlie the changing social vulnerability across space and over time. Many social indicators are 

similar to the aggregate composite indicators (e.g., resilience, deprivation, collective efficacy, 

social cohesion, etc.) like the SoVI. They are useful in simplifying complex social phenomena, 

but very often they are found to be too simplified for resource allocation and decision and policy-

making. The methodology adopted in this study shows the possibility of local spatial statistical 

methods in helping bring more local realism and specificity to these social indicators. With the 

increasing availability of data from different sources, a larger set of variables can be incorporated 

in constructing aggregate composite indicators. Although this study only used thirteen variables, 

they still form the basis of the social vulnerability index representing socio-economic status, 

household composition and disability, minority status and language, and housing and 

transportation (Flanagan et al., 2011). There is not a consistent agreement on how many and 

which variables should be included in a social vulnerability index, but a higher number of 
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variables does not guarantee a reliable and meaningful index (Spielman et al., 2020; Strode et al., 

2020).  

The primary determinant variables found in this study show that only a few variables are 

the primary determinants and that they are very persistent in certain parts of the study area. 

GWPCA is a local spatial statistical method that performs the principal components analysis on a 

sub-dataset for each location. Although GWPCA has wide applications, it carries the common 

caveats of the local spatial statistical methods, such as overlapping statistical tests, so its usage 

and interpretation are more exploratory rather than confirmatory. However, the local spatial 

statistical methods that account for spatial heterogeneity and dependence show its strength in 

contributing useful insight in social indicator research. 

3.4. Summary 

The purpose of this chapter was to address two criticisms of the social vulnerability index 

(SoVI) at both the national and local scale: (1) social vulnerability has not been characterized as 

with spatial and temporal dynamics in a systematic and quantitative manner, and (2) the SoVI 

conceals the heterogeneous local contributors. This chapter proposed a methodological 

framework to advance the SoVI in an effort to understand systematic temporal variation of social 

vulnerability at the national scale for the conterminous United States and the local primary 

determinants contributing to the overall social vulnerability in Greater Houston as a case study. 

Applying the sequence alignment analysis coupled with the SoVI, this study has shown that the 

U.S. county-level social vulnerability exhibits four distinctive temporal variations from 1970 to 

2010, revealing areas of persistently low/high vulnerability and areas with dynamically changing 

vulnerability statuses that either increase or decrease over time. In addition, the application of 

GWPCA can be used as an alternative way to track down the most influential social determinants 
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that constitute the SoVI index. Temporal trends of the local primary determinants of social 

vulnerability index can be beneficial in understanding what socioeconomic conditions are 

pervasive and consistently affect vulnerability in a particular region over a long-term period of 

time. These pragmatic approaches adopted in this study have significant implications for 

practitioners and local stakeholders in monitoring vulnerable areas being studied and establishing 

potential hazard mitigation plans.  

The analytic framework proposed in this chapter, nonetheless, is still based upon the 

spatial aggregation of the social vulnerability in which its core purpose is to identify the 

generalized pockets of high social vulnerability across multiple/all hazards (Beccari, 2016; 

Flanagan et al., 2018; Tellman et al., 2020; Yoon, 2012). Each hazard has its unique 

characteristics in terms of physical phenomena and its consequential damage. However, the 

majority of studies using the SoVI approach has served as the basis for providing an overall 

social vulnerability profile in the event of all-natural hazards rather than being a hazard-specific 

approach. Since the occurrence of natural hazards still carries accidental and random 

components, it is necessary to understand what areas have been historically damaged by a certain 

hazard risk to provide a fuller picture of hazard preparedness.  

Despite the fact that the SoVI is a useful instrument for detecting the “outliers or 

anomalies” where there is relatively high vulnerability, the ecological fallacy—a type of 

inference fallacy when the interpretation of results about individuals are deduced from aggregate 

data measured at multiple geographic scales—is part of the indicator-based approaches (Beccari, 

2016; Gall, 2007; Wood et al., 2010). The local primary determinants from GWPCA are 

complementary in explaining what social factors play a major part in producing the overall social 

vulnerability at a certain place. Yet, to fully understand who is vulnerable is still questionable 
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solely based upon the SoVI approach. In conjunction with the SoVI, vulnerability research 

should take into consideration the population distribution and demographic composition to 

answer who is at greater risk of exposure to a certain natural hazard, termed “demographic 

differential vulnerability” (Muttarak, Lutz, & Jiang, 2015). In this respect, the remaining 

chapters of this dissertation focus on hurricane hazards to investigate what population groups 

have resided within the hurricane-impacted areas over time in the United States.  
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Chapter 4. Hurricane Damage along the U.S. Gulf and Atlantic Coasts             

from 1950 to 2018 
 

4.1. Introduction 

U.S. coastal populations face the risk of hazards such as hurricanes, storm surges, sea-

level rise, and coastal erosion. Estimating exposure to hurricane risk is a basic step in 

comprehending geophysical vulnerability of coastal communities (Cutter, 2001). To date, 

numerous studies have assessed hurricane vulnerability on a case-by-case basis, focusing on the 

most devastating hurricane events that have caused enormous societal losses. Such case-specific 

studies do not necessarily show the long-term effects of hurricane risks in coastal regions and 

provide a limited picture in assessing the comprehensive vulnerability to hurricane hazards over 

time. One longitudinal study by Logan and Xu (2015) modeled hurricane-related hazards to 

capture spatial patterns of actual hurricane exposure that have occurred from 1950 to 2005. 

Despite the importance of long-term research in hurricane vulnerability, there remains a paucity 

of longitudinal studies that systematically examine vulnerability in terms of demographic 

changes along the U.S. Gulf and Atlantic Coasts. The majority of damage and loss of life are 

associated with storm surges and high winds in the wake of hurricanes, and impacts have been 

unevenly distributed across the U.S. during the past several decades. Figure 16 shows the 

trajectories of all hurricanes and tropical storms that reached the U.S. East Coast, Florida, and 

Gulf Coast area from 1950 to 2018. The objective of this chapter is therefore to estimate the 

geographic distribution of hurricane hazards in the United States by modeling the extensive 

hurricane-related damage (i.e., storm surge and wind damage) from 1950 to 2018. Specifically, 

this chapter is designed to answer the following research questions: (1) What are the spatial 

extent and intensity of storm surge inundation and wind damage caused by hurricanes along the 
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Gulf and Atlantic Coasts in the United States from 1950 onwards? and (2) What regions have 

been particularly hard hit by hurricanes in the U.S. coastal counties over the past decades since 

1950?  

 

Figure 16. Historical hurricane and tropical storm tracks that made landfall along the U.S. Gulf and 

Atlantic coasts from 1950 to 2018  

 

4.2. Data and Methodology  

Since the historical geospatial data of hurricane impacts are seldom available, it is 

necessary to reconstruct to what extent past and recent hurricanes have affected coastal regions. 

This chapter intends to determine the geographic extent of storm surges and wind damage over 

an extended period of time from 1950 to 2018 to identify the comprehensive locational 

vulnerability to hurricane impacts. The modeled results from every hurricane are then aggregated 
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to a single unified spatial surface, reflecting the long-term hurricane impacts across the entire 

coastal areas for decades. The resultant unified geographic extent of all hurricane-related damage 

is based on 190 hurricanes and tropical storms during the study period from 1950 to 2018, 

serving as a baseline to Chapter 5’s examination of vulnerability to hurricane damage among 

different segments of the population.  

In estimating hurricane-related damage, the public hurricane database (known as the 

revised Atlantic hurricane database, HURDAT2) was employed in this study to identify the areas 

that are susceptible to frequent major hurricanes. The HURDAT2 is the second-generation 

hurricane database maintained and updated annually by the U.S. National Oceanic and 

Atmospheric Administration (NOAA) at the National Hurricane Center (NHC). This database 

can be obtained from the NHC Data Archive and contain the best-estimated track records of all 

historical hurricanes, tropical storms, and subtropical storms of the Atlantic basin, including the 

Gulf of Mexico and Caribbean Sea since 1851. Each storm can be identified by its name and 

identifier number with detailed information such as date, time, position that geocoded the center 

of the storm (latitude and longitude), intensity (i.e., maximum sustained wind in knots), central 

pressure, and size (Landsea & Franklin, 2013; Landsea, Franklin, & Beven, 2015). These 

parameters are used to compute the storm surge heights and wind damage resulting from 

hurricanes by considering hurricane gust factors.  

Topographic data or digital elevation models (DEM) are also crucial in determining 

storm surge inundation because the shape of the terrain is highly related to how water flows and 

drains along and off a surface. The primary dataset used in this study is the U.S. Geological 

Survey (USGS) National Elevation Dataset (NED), which is seamless elevation data covering 

the conterminous United States at different spatial resolutions (Zachry, Booth, Rhome, & 
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Sharon, 2015). In this study, the 1/3 arc-second (approximately, 10 meters) DEM dataset is 

selected for coastal inundation mapping. Tide data is also required to generate a water surface as 

an input value in storm surge modeling. The initial water level for each hurricane can be found at 

the nearby tide station referring to the hurricane path observed 18 hours before nearest approach 

(or landfall) in most storm situations (Jelesnianski, Chen, & Shaffer, 1992; Logan & Xu, 2015). 

The table below provides the source of the data required in estimating the areas affected by storm 

surges and wind damage from 1950 to 2018. 

Table 11. Data sources for hurricane damage modeling 

Data Source 

The revised Atlantic hurricane database 

(HURDAT2) 

National Hurricane Center Data Archive 

(https://www.nhc.noaa.gov/data/) 

National Elevation Dataset 
USGS The National Map Viewer 

(https://apps.nationalmap.gov/viewer/) 

Tide, currents, and water levels   
NOAA Tides and Currents  

(https://tidesandcurrents.noaa.gov/) 

Sea, Lake, and Overland Surges from 

Hurricanes (SLOSH) Model Display Program 

National Hurricane Center 

(https://www.nhc.noaa.gov/surge/slosh.php) 

 

4.3. Estimation of Storm Surge Inundation  

In an attempt to overcome data scarcity in historical GIS hurricane data, this study adopts 

a hydrodynamic model, called Sea, Lake, and Overland Surges from Hurricanes (SLOSH) in 

obtaining the spatial extent and intensity of storm surge. The SLOSH model is currently being 

used by NHC for real-time forecasting of potential hurricane storm surges across the entire 

seaboard of the United States (Glahn et al., 2009; Jelesnianski, Chen, Shaffer, & Gilad, 1984; 

Lin et al., 2010). A major advantage of the SLOSH model is its ability to reproduce the historical 

hurricane storm surges based on the HURDAT2 dataset. The accuracy of the estimated surge 
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height is known to be within ± 20% of the observed water heights (Forbes, Rhome, Mattocks, & 

Taylor, 2014; Jelesnianski et al., 1984; K. Smith & Petley, 2009).  

The SLOSH model is a two-dimensional numerical coastal model that computes the 

maximum water heights considering the dynamic flow of water over land and water based on 

pre-determined grid cells referred to as a basin. Currently, there are 32 basins covering the entire 

US Atlantic and Gulf of Mexico Coasts, Hawaii, Puerto Rico, Virgin Islands, and the Bahamas. 

All hurricanes and tropical storms that made landfall along the coastal regions can be modeled 

with the operational basins as shown in Figure 17. If a hurricane impacted a larger extent of the 

area, multiple basins are considered in the modeling procedure.   

 

Figure 17. The coverage of the SLOSH model 
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Depending on the region, the basins have different shapes (mostly, polar or 

hyperbolic/elliptical) composed of thousands of grid cells, and these are one of the primary 

inputs with the meteorological parameters that must be entered in the modeling process (Conver, 

Sepanik, Louangsaysongkham, & Miller, 2008). The closer to the primary area of interest such 

as a bay or a region immediately adjacent to the coastline, the finer the resolution of the grid 

cells. Meanwhile, the spatial resolution of the grid cells is coarser in the deep open oceans due to 

a low significance in simulation. The basins integrate geographical characteristics of the 

particular area along the coasts that influence storm surge such as topography, shoreline 

structure, levees, bathymetry of ocean areas, and continental shelves (Forbes et al., 2014). 

Modeling storm surge requires the following meteorological parameters as input parameters to 

generate the wind field that drives the storm surge inundation: storm track positions (i.e., latitude 

and longitude at 6-hour interval), intensity (i.e., storm central pressure at 6-hour interval), radius 

of maximum wind (RMW, i.e., size—the distance between the center of a storm and the location 

where the strongest wind generates at 6-hour interval), forward speed, and landfall time 

(Jelesnianski et al., 1984; Mercado, 1994). Considering these input parameters coupled with a 

selected basin, the SLOSH model can determine the flow of storm surge across the surface and 

then estimate the maximum envelope of water in each basin grid during a storm’s life cycle.  

Spatial analysis can be conducted to derive the inundation extent and the depth of a storm 

surge using simulated water height from the SLOSH model and DEM data. It is important to 

note that each dataset refers to a different vertical datum; the SLOSH model output references 

the National Geodetic Vertical datum 1929 (NGVD29); the initial tidewater level refers to Mean 

Lower Low Water (MLLW); the elevation data is based on the North American Vertical datum 

of 1988 (NAVD88). All elevations are based on different vertical data and cannot be directly 
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used for spatial analysis. Therefore, it is required to maintain a consistent vertical datum between 

the estimated storm surge inundation height and the terrain elevation data using a transformation 

to derive the depth of a storm surge accurately. The SLOSH model does not include the wave 

components on top of the surge, and thus the astronomical tides can be added to the model 

results (Frazier, Wood, Yarnal, & Bauer, 2010; Glahn et al., 2009; Houston, Shaffer, Powell, & 

Chen, 1999; Logan & Xu, 2015; Maloney & Preston, 2014). As a result, the maximum surge 

water height generated from the SLOSH model can be converted to a GIS file format to create an 

interpolated surface. 

Figure 18 represents the coastal regions that have been exposed to the impact of one foot 

or higher of storm surge since 1950. The result is consistent with the NOAA/National Weather 

Service/National Hurricane Center Storm Surge Unit’s storm surge inundation map (Zachry et 

al., 2015). Storm surge damage is highly localized along coastal areas. Overall, a stretch of the 

Gulf Coast from South Texas to the Florida panhandle has borne the brunt of storm surge 

damage over time. Southeastern Louisiana (especially, the lower Mississippi River delta region), 

Alabama, Mississippi, and the Northwestern Panhandle of Florida have been hard hit by the most 

intensive storm surges more than twenty-one times with the maximum frequency of thirty-nine 

for the past several decades. Western Louisiana, Southwestern Florida, and West-Central Florida 

have also experienced frequent exposure to storm surge impacts. In the Southeastern coastal 

regions, the Charleston area in South Carolina, the Outer Banks, and the coastal counties near 

Brunswick, New Hanover, Pender, and Onslow Counties have been affected by storm surges at 

least eleven times. In contrast, the Mid-Atlantic region has been relatively less affected by storm 

surge inundation. Particularly, the Chesapeake Bay area—especially the southeastern shore of 

Virginia (Hampton Roads region) and the southern tip of Delmarva Peninsula—have been 
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flooded by storm surges at least ten times. It is not unusual to observe fairly frequent storm surge 

inundation in the Eastern Long Island regions (Nassau and Suffolk County) and southwestern 

Connecticut. New England regions have also been subject to coastal inundation for decades. 

These regions are increasingly becoming more susceptible to hurricane strikes due to climate 

change and sea-level rise (Boon, 2012; Cutter et al., 2007; Sallenger, Doran, & Howd, 2012).  

 

Figure 18. Modeled frequency of storm surge inundation of one foot or higher based on hurricanes and 

tropical storms from 1950 to 2018 
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4.4. Estimation of Wind Damage  

Strong hurricane winds often cause severe structural damage to infrastructure, residential 

structures, and commercial structures (K. Smith & Petley, 2009). This study adopts a simple 

meteorological model (HURRECON), which is based on published empirical studies of 

hurricanes, to reconstruct the intensity of wind damage by each hurricane. The HURRECON 

model was developed to estimate the basic structure of a storm’s surface wind conditions such as 

sustained wind velocity, peak gust velocity, and wind direction of movement. This model also 

uses the meteorological parameters3 of a storm (i.e., storm track and wind speed) as input data. It 

also requires a rectangular geographic file (i.e., 16-bit IDRISI raster file format) to distinguish 

the land cover type (water or land) in estimating the surface wind speed and direction. The raster 

grid should be equally divided per each cell to produce a more accurate modeling result. The 

parametric equations are well documented in the literature (Boose, Chamberlin, & Foster, 2001; 

Boose, Serrano, & Foster, 2004; Logan & Xu, 2015). In this model, the predicted wind damage 

is adjusted for hurricane wind field estimation and then classified into the modified Fujita scale 

classes (no damage, F0, F1, F2, F3)—originally proposed by Fujita (1971) to characterize the 

wind intensity and damage by tornadoes—by correlating the maximum quarter-mile wind speed 

with wind damage intensity (Boose et al., 2004). The HURRECON model can generate the 

prediction of wind damage for an individual site as a table or for the entire area of interest as an 

IDRISI raster format, which is compatible with TerrSet (formerly IDRISI) software. 

 
3 The estimation of hurricane wind is based on the same parameters used in previous empirical study that modeled 

historical hurricanes along the Gulf Coast (Logan & Xu, 2015). Different parameters may result in more accurate 

estimations for storms that made landfall on the Atlantic coast.  
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The HURRECON-modeled results are compiled to show a more complete picture of 

wind damage for the entire coastal regions on the Fujita scale since 1950 (Figure 19). Hurricane 

wind rapidly becomes weaker as the storms make landfall along the coast as a consequence of 

their interaction with coastal geomorphic characteristics and the loss of heat. Occasionally, 

hurricanes can travel hundreds of miles deep into the interior counties after landfall, intensifying 

its power. Hence, the areas affected by hurricane wind are not just limited to the immediate 

vicinity of coastal regions, moving further inland (Emrich & Cutter, 2011; Kruk, Gibney, 

Levinson, & Squires, 2010).  

 

Figure 19. Modeled wind damage frequency and intensity from 1950 to 2018 
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Panel A shows the spatial extent of hurricane risk in which a total of 759 counties have 

experienced F0 wind damage (the loss of leaves and branches) over time stretching from 

Southeast Texas to the far stretches of Maine. The counties within 100 miles of the coastline 

have been exposed to F0 wind strengths more than 5 times. Panel B reveals the areal extent of F1 

damage (scattered blowdown), and 478 counties have been exposed to F1 strength wind forces. 

As can be seen from Panel C, the areas exposed to F2 or F3 (extensive blowdown) wind 

strengths are concentrated along and including the coastal regions of North Carolina, South 

Florida, and the Gulf of Mexico. As expected, F0- and F1-intensity winds traveled further inland 

compared to F2- and F3-scale winds that are more localized along the coastline (Panel D). The 

areal extent of hurricane-driven storm surge is geographically concentrated along the coastal 

shoreline counties, whereas hurricane winds tend to affect the inland areas to a larger extent, 

penetrating deep into the inland areas of the United States. This is more apparent in northeastern 

states.    

4.5. Summary  

Hurricanes pose the risk of great damage to the coast and to society. Physical or 

locational vulnerability can be assessed based on the impacts, magnitude, frequency of natural 

hazards, and geographical proximity to the source of natural hazards (Cutter, 2001; Logan & Xu, 

2015). The purpose of this chapter was to determine the geographic extent of the area impacted 

by hurricane damage and to examine regional variation in frequency and intensity of damage 

from 1950 to 2018 along the U.S. Gulf and Atlantic Coasts. The modeled outputs of all 

hurricanes were aggregated into a singular geographic area to show long-term historic 

cumulative damage over the past six decades. As a result, 759 counties were found to be the 

hurricane at-risk zones that have experienced at least one instance of hurricane damage during 
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the study period, which will be my study area in the following chapter. The next chapter, 

therefore, moves on to discuss what population groups have been more or less susceptible to 

hurricane hazards within the hurricane-prone areas.  
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Chapter 5. Social Vulnerability to Hurricane Hazards: The Changing 

Demographics within Hurricane At-Risk Areas 
 

5.1. Introduction 

According to the hazards of place model, social vulnerability to natural hazards or 

environmental risks arises not only from physical or locational vulnerability but also from the 

close linkage between the environment and the underlying social processes (Cutter, 1996). 

Socioeconomic and demographic characteristics of people, including age, gender, race/ethnicity, 

income levels, level of education, and employment status, etc. can affect vulnerability. Most 

studies have focused scholarly attention on measuring the relative level of social vulnerability, 

adopting the place-based SoVI approach at different local scales focusing on a single hurricane 

hazard (C. G. Burton, 2010; Clark et al., 1998; Finch, Emrich, & Cutter, 2010; Flanagan et al., 

2011; Myers et al., 2008; C. Wang & Yarnal, 2012).  

The adverse impact of natural hazards can be compounded by human occupancy and the 

ability of people and places to cope with and to mitigate the effect of natural hazards (Barnett & 

Adger, 2018; Martine & Guzman, 2002; Muttarak et al., 2015). In recent years, there has been an 

increasing amount of literature on population change, composition, and the interplay of 

population dynamics and vulnerability (Donner & Rodríguez, 2008; Fussell et al., 2017; Logan, 

Issar, & Xu, 2016; Logan & Xu, 2015; Marandola & Hogan, 2006; Schultz & Elliott, 2013). 

Population changes and composition can transform risk or a hazardous event into catastrophic 

natural disasters. Although population composition and distribution are interwoven with social 

vulnerability, intersectional theory has not been incorporated into the understanding of 

demographic dynamics and the study of vulnerability. The degree of vulnerability is not solely 

contingent on a single-axis demographic factor (e.g., older adults and children). Rather, it is 
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produced as the consequence of the interconnectedness of other demographic factors such as 

race, sex, age, and social class (Kuran et al., 2020). As a proxy to better understand differential 

demographic vulnerability, this chapter also investigates which demographic subgroups are at 

risk of hurricane damage, as detailed in chapter 4, by incorporating an intersectional approach 

from 1970 to 2018. Specifically, this study aims to unravel which populations are increasingly or 

decreasingly exposed to the hurricane damage over time within hurricane-prone regions 

considering population dynamics. The findings of this research can assist policymakers and local 

community stakeholders in supporting disaster emergency planning and evacuation strategies in 

a meaningful manner.  

5.2. Study Area  

This study focuses on the coastal counties that have experienced at least one instance of 

hurricane-related damage between 1950 and 2018 along the Gulf of Mexico and Atlantic Coasts 

in the United States (Figure 20). Coastal counties, as defined in this study, are geographically 

restricted to the Gulf of Mexico coastline and the eastern Atlantic Coast of the United States (i.e., 

the North Atlantic Basin region), excluding the Pacific Coast and the Great Lakes region, 

providing a baseline for describing the human settlement of the hurricane-impacted coastal 

shorelines (Ache, Crossett, Pacheco, Adkins, & Wiley, 2015; Crossett et al., 2013; NOAA Office 

for Coastal Management, 2021; Strobl, 2011).  
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Figure 20. The study area in the U.S. Gulf and Atlantic Coasts (759 coastal counties) 

Combining the spatial extent of hurricane damaged areas of F0, F1, F2, and F3 wind and 

storm surge, the spatial coverage of this study area consists of 759 counties over 22 states. The 

aggregated geographic extent of all hurricane-related damage shows a generalized and 

standardized pattern with no seasonal or random variation across time and space (Logan & Xu, 

2015). The affected coastal counties in the Gulf Coast cover the majority of counties that are 

affected by hurricanes, up to approximately 200 miles from coastal shorelines. Meanwhile, the 

affected coastal counties of the Atlantic Coast are located up to 400 miles from the coast, 

reaching further inland than the Gulf Coast. The whole study area is used to calculate the share 

of the population groups that are exposed to storm surge inundation and wind damage (F0, F1, 

F2, and F3) within residential areas described in the following subsections.  



  

99 

 

5.3. Data and Methodology  

Land-cover dataset – This study investigates at-risk populations in residential areas of 

hurricane-prone areas using land-use and land-cover type to calculate the percentage of 

residential areas in each county/census tract that have been affected by storm surge and wind 

damage (i.e., damage fraction, hereafter). To ensure non-residential land use areas are excluded 

in calculating the fraction, this study integrates nationwide land cover data from the National 

Land Cover Database (NLCD) for the following years: NLCD 2001, 2006, 2008, 2011, 2013, 

and 2016 (Homer et al., 2020; Pozzi & Small, 2005; Yang et al., 2018). A longitudinal study of 

temporal change of land-cover patterns by Homer et al. (2020) reported that as much as 5.6 

percent of the United States’ 29,000𝑘𝑚2 has been developed over the last 15 years. By 

incorporating the long-term land-cover dataset, it is possible to take into account land-use change 

and rapid urban/suburban sprawl. For the purpose of analysis, 4 categories of developed/built 

areas are selected among the 16 land cover classification categories in this study (Table 12).  

Table 12.  National Land Cover Database classification (developed/built areas) 

Land Cover Class Classification Description 

Developed, Open 

Space 

Areas with a mixture of some constructed materials, but mostly vegetation in 

the form of lawn grasses. Impervious surfaces account for less than 20% of 

total cover. These areas most commonly include large-lot single-family 

housing units, parks, golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic purposes. 

Developed, Low 

Intensity 

Areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 20% to 49% percent of total cover. These areas most 

commonly include single-family housing units. 

Developed, Medium 

Intensity 

Areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 50% to 79% of the total cover. These areas most 

commonly include single-family housing units. 

Developed High 

Intensity 

Highly developed areas where people reside or work in high numbers. 

Examples include apartment complexes, row houses and 

commercial/industrial. Impervious surfaces account for 80% to 100% of the 

total cover. 

Source: Multi-Resolution Land Characteristics (MRLC) Consortium (https://www.mrlc.gov/) 
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Population dataset – Using the damage fraction of storm surge and wind damage 

(measured by Fujita scale – F0, F1, F2, F3) coupled with population data, we can obtain the 

number of people that have been exposed to hurricane risks over the past five decades. For the 

areas affected by wind damage, this study incorporates the U.S. Intercensal County Population 

Data (1970-2018). For storm surge areas, census tract data from the decennial census and 

American Community Survey (ACS) can yield the localized impact of storm surge inundation 

(Logan & Xu, 2015). Both the county-level data and census-tract level population data are 

stratified by age, gender, race, and Hispanic origin in which race is classified into different 

number of categories depending on the year of data. Recently, a growing consensus believes that 

intersectionality can be an analytical tool to uncover qualitative differences in vulnerability and 

resilience within groups (Kuran et al., 2020). In this study, demographic population data are 

stratified by age, gender, race, and Hispanic origin to further examine how the extent of 

vulnerability varies among different segments of populations (e.g., white male elderly, white 

female elderly, black male elderly, black female elderly).  

Gender plays a role in vulnerability with females being more susceptible to natural 

hazards than males causing differential impacts (e.g., mortality rates, causality rates) in the 

aftermath of natural hazards (Cutter et al., 2003; Wisner et al., 2004). The concept of “gendered 

disaster vulnerability” helps in understanding how gender functions with other demographic 

characteristics (e.g., class, race/ethnicity, age) in shaping social vulnerability (Enarson & 

Meyreles, 2004; Llorente-Marrón, Díaz-Fernández, Méndez-Rodríguez, & Gonzalez Arias, 

2020; Neumayer & Plümper, 2007; Parida, 2015). Initially, this study hypothesized that there 

would be a significant difference between the males and females in estimating at-risk 

populations. However, it was found that their population tends to have similar patterns. For this 
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reason, demographic data are only stratified by four race categories (non-Hispanic White, non-

Hispanic Black, non-Hispanic Others, and Hispanic) and five age groups as follows – age group 

1 (0-4 years), age group 2 (5-19 years), age group 3 (20-34 years), age group 4 (35-64 years), 

and age group 5 (65 years and older).  

To allocate population to each hurricane-damaged zone, this study calculated a damage 

fraction using zonal raster operations. GIS zonal analysis calculates descriptive statistics (e.g., 

sum, count, mean, mix/max, standard deviation, etc.) and evaluates different raster datasets for a 

specified zone (Dong, Sadeghinaeenifard, Xia, & Tan, 2019). Zonal statistics were implemented 

to obtain the damage fraction for each zone using multiple raster datasets—residential land cover 

from the NLCD data and the estimated hurricane damage results from chapter 4. The results of 

the zonal analysis calculated the total number of residential cells that are affected by hurricane 

damage and the total number of residential cells for each county or census tract, respectively. 

Based on these two values, the damage fraction was calculated and then multiplied with the 

stratified demographic data to estimate how many people have been in high-risk hurricane zones 

within residential areas. The specific procedure is described in the flow chart (Figure 21). Data 

management and analysis were performed using ArcGIS 10.7 and statistical software R.  



  

102 

 

 

Figure 21. Data processing procedure for estimating at-risk populations 

  

This study measured both the percentage of populations residing in varying degrees of 

hurricane damage zones in the United States and their share of the population within the study 

area over time. The percentage refers to the ratio of one age-race group in the affected area to the 

total population in the affected area, and the share denotes the ratio of one age-race group in the 

affected area to the total population of that group in the study area. As defined in section 5.2, the 

study area is the combined geographical areas of storm surge damage and F0 wind damage in the 

U.S. coastal region, encompassing all counties that have been affected by some category of 

hurricane damage (i.e., 759 counties). Calculating the age-race specific percentages (𝐴𝑅𝑆𝑝𝑃) 

and age-race specific share (𝐴𝑅𝑆𝑝𝑆) can be expressed in the following forms:  

1) The percentage of populations affected by each hurricane damage category: 

𝐴𝑅𝑆𝑝𝑃 =
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
× 100 

where ∑ 𝑃𝑖𝑗 is sum of all race-age groups in the specific hurricane damaged area and 𝑃𝑖𝑗 is the 

total population of a race-age specific group 𝑖 (e.g., non-Hispanic White age group 1) affected by 
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a hurricane damage category 𝑗 (i.e., storm surge damage or wind damage by each category F0, 

F1, F2, F3). The age-race specific percentage of populations affected by each hurricane damage 

category is calculated as the ratio of one age-race group in the affected area to the total 

population in the affected area.  

 

2) The share of populations affected by each hurricane damage category: 

𝐴𝑅𝑆𝑝𝑆 =
𝑃𝑖𝑗

𝑃𝑖𝑞
× 100 

where 𝑃𝑖𝑞is the total population of a specific race-age group in the study area (𝑞) and 𝑃𝑖𝑗 is the 

total population of a race-age specific group 𝑖 affected by a hurricane damage category 𝑗 in the 

study area (i.e., 759 counties). 

Based on the percentage and the share of populations affected by each hurricane damage 

category, this study seeks to understand how each population subgroup stratified by race and age 

groups has changed within the most hurricane-prone areas in the U.S. coastal counties from 1970 

to 2018.  

5.4. At-Risk Populations in the Hurricane-Prone Coastal Counties 

How many people have been living in the U.S. hurricane coastal counties (i.e., 759 

coastal counties as shown in Figure 20) from 1970 to 2018? Before delving into the demographic 

changes of coastal populations, it is important to understand how the U.S. national population 

and its growth rate have been changing over time. The graph below presents the U.S. population 

growth over the past 50 years (Figure 22). The national population was about 204 million in 

1970 with the population growing exponentially over time, reaching 327 million in 2018. This 

increase can be attributed to the influx of immigrants in the 1980s and 1990s (Heisler & 
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Shrestha, 2011). While there have been uptrends in national population growth between 1970 

and 2010, in general, the yearly rate of population growth has slowed to an all-time low of 0.62% 

per year in 2018, possibly due to the 2008 recession, low fertility rate, and severe immigration 

restrictions in more recent years (Frey, 2021).  

In this study, coastal counties are defined as counties that border the Gulf of Mexico 

coastline and the eastern Atlantic Coast of the United States, excluding the Pacific Coast. In 

these coastal counties, population growth has largely mirrored the national trend during the same 

period. The coastal counties are more overcrowded than the nation as a whole, and they are 

expected to grow in the future (Crossett et al., 2013). The total number of people living in coastal 

areas was 73 million in 1970, growing by a total of 100 million people between 1970 and 2000 

(Figure 23). Although the population growth rate consistently declined after 2000, along with the 

national trend, there was a 63 percent increase in the coastal population from 1970 to 2018, 

exceeding 119 million in 2018. The population density of coastal counties is substantially greater 

than inland counties (Crossett et al., 2013; Crowell et al., 2010). The coastal populations are 

facing multiple threats, such as climate change and coastal hazards, exposing 36.5 percent of the 

U.S. total population to increasingly vulnerable situations (Figure 24). Along with rapid 

population growth and an economic construction boom, the coastal populations has been racially 

diversified, thereby further exacerbating their vulnerability to hurricane hazards in the coastal 

counties over time (D. T. Cohen, 2018; Cutter et al., 2007).  
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Figure 22. The national trend of the U.S. total populations and growth rate 

 

 

Figure 23. The population trend of the coastal counties and growth rate* 

 
*
 
Coastal counties, as defined in this study, are geographically restricted to the Gulf of Mexico coastline and the eastern Atlantic Coast of the 

United States (i.e., the North Atlantic Basin region), excluding the Pacific Coast and the Great Lakes region
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Figure 24. The percentage of the total U.S. population living in coastal counties* 

 

Figure 25. Total population exposed to hurricane damage in the study area from 1950 to 2018 

 
*
 
Coastal counties, as defined in this study, are geographically restricted to the Gulf of Mexico coastline and the eastern Atlantic Coast of the 

United States (i.e., the North Atlantic Basin region), excluding the Pacific Coast and the Great Lakes region
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Figure 25 presents how many people have been exposed to hurricane-related damage in 

absolute terms. It is apparent that the total population has continuously increased within each 

hurricane affected area from 1950 to 2018. Wind damage is separated into different categories 

based on intensity (i.e., F0, F1, F2, and F3). While some of this growth might be due to the 

national trend, there is higher exponential growth trend in F0 and F1 areas than the national 

trend. Approximately, 165 million people are affected by some degree of wind damage during 

the study period. Generally, the intensity of hurricanes weakens when they interact with coastal 

geomorphic characteristics and lose their energy source (i.e., warm ocean waters). However, 

tropical storms and hurricanes can travel hundreds of miles deep into interior counties after 

landfall and the remnants of hurricanes may occasionally intensify their power. Therefore, the 

affected areas are not just limited to the immediate vicinity of coastal regions, extending 

hundreds of miles from the immediate coastal shorelines (Figure 27). In contrast, storm surge 

damage and F3 wind are highly localized along coastal areas as shown in Figure 26 and Figure 

27. From the graph above (Figure 25), we can see that 5 million people resided in the residential 

areas that are affected by storm surge damage and 3 million people resided in high intensity of 

wind (F3 scale) areas as of 2018.  

To summarize, the overall demographic trends within hurricane impacted areas reveal 

that the coastal populations are faster growing than the national average, and this migration puts 

more people at greater risk of hurricane hazards. This poses a challenge to policymakers to make 

more informed decisions in mitigating coastal vulnerability to hurricane hazards. In addition to 

the national demographic profile of coastal populations, it is imperative to further investigate 

what population groups have become progressively more susceptible to storm surge and wind 

damage over time.  
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5.5. At-Risk Populations in Different Hurricane Damage Categories  

This section aims to unravel the vulnerability of people by applying the demographic data 

stratified by race and age groups to the geographic boundaries of each hurricane damage 

category (i.e., storm surge inundation, wind damage by Fujita scale). Rather than solely 

considering the unitary axes of a demographic category (e.g., race, gender, age, socioeconomic 

status, etc.,) independently, this study adopts a descriptive inter-categorical approach (i.e., cross-

coded categories) that can help us understand how intersected demographic categories shape 

vulnerability (Bauer & Scheim, 2019; Kuran et al., 2020; Muttarak et al., 2015). Since the 

coastal areas exposed to storm surge and F3 wind damage are highly concentrated along the 

coastal shoreline (Figure 26), this study uses the decennial census (1970, 1980, 1990, 2000) and 

the American Community Survey (ACS) 5-year estimates (2014-2018) at census tract level. On 

the other hand, hurricane winds produce widespread damage both in coastal counties and inland 

counties. Considering such a larger extent of wind-driven hurricane impacts, this study analyzes 

county-level population estimates within the contours of F0, F1, and F2 wind-damaged areas. As 

mentioned in section 5.3, the demographic data are divided into sub-groups according to race and 

five age groups: age group 1 (0-4 years), age group 2 (5-19 years), age group 3 (20-34 years), 

age group 4 (35-64 years), and age group 5 (65 years and older). However, the starting year of 

the specific race recording differs by race category and the unit of analysis. At census tract level, 

the Other race category and Hispanic origin are available beginning in 1980 and 2000, 

respectively. Prior to 1990 at county level, the race categories available are white, black, and 

Other with no Hispanic origin. The Other race category and Hispanic origin are available from 

1970 and 1990 at county level, respectively.   



  

109 

 

5.5.1. Populations At-Risk from Storm Surge Inundation  

 

Figure 26. The coastal counties affected by storm surge 

Percentage of people living in storm surge damaged areas – As shown in Figure 26, most 

counties damaged by storm surges over the study period are located along the coastal shoreline, 

within an area of 409,652 𝑘𝑚2. Figure 27 is a breakdown of the racial and age composition 

affected by storm surge damage during the study period. Out of all the categories, age group 3 

has occupied the largest proportion among all race categories. The white population consistently 

accounts for the largest proportion of the affected population. However, the white age group 3 

has been declining steadily since 1980. Notably, among all racial groups, white age group 5 has 

been steadily increasing since 2010. The black population mirrors the trends of the white 

population. As of 2018, the black age group 5 has overtaken age group 2 as the second largest 
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proportion among the black population. Although the Other category only occupies a small 

proportion of the overall percentage, the middle-aged adults (age group 3 and age group 4), and 

older adults (age group 5) have increased continuously over time. In addition, the Hispanic 

population tends to remain stable with no distinctive demographic shifts, beginning with its 

classification in 2000. 

Share of people living in storm surge damaged area – In terms of share of the storm surge 

affected population (Figure 28), age groups 4 and 5 account for the highest share across all other 

racial-age groups. This is possibly due to the preference of the older generation to live in coastal 

communities by purchasing second-homes for recreational opportunities or retirement 

destinations. Overall, the share of the population living in storm surge affected areas has 

decreased across all age and racial groups since 1970. From 1970 to 1990, the black and Other 

populations were the most affected by storm surges, however, since 19704 both of these 

population groups have been declining. In contrast, the white population and Hispanic population 

have been relatively consistent, only marginally decreasing beginning in 2000. This indicates 

that whites and Hispanics have greater vulnerability but also greater resiliency when compared to 

the black and Other populations. Storm surge affected areas tend to have higher residential 

property values due to the proximity to waterfront, and cost of insurance in these areas tends to 

be more expensive than inland areas (Bin, Kruse, & Landry, 2008; Logan & Xu, 2015). This can 

lead to minority populations being financially displaced from these areas. These results show an 

inverse pattern of social vulnerability occurring with whites, presumably rich people, being more 

vulnerable than minority populations, excluding the Hispanic population.  

 
4 Since 1980 for the Other population group 
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Figure 27. Demographic trends in the areas exposed to storm surge inundation among different 

population groups stratified by race and age groups (percentage)                                                              
*Note: The start of the specific race category recording at census tract level: Other (1980), Hispanic origin (2000). 

The decennial census is used until 2010, and the ACA data are used beginning in 2010.  

 

Figure 28. Demographic trends in the areas exposed to storm surge inundation among different 

population groups stratified by race and age groups (share)                                                                         
*Note: The start of the specific race category recording at census tract level: Other (1980), Hispanic origin (2000). 

The decennial census is used until 2010, and the ACA data are used beginning in 2010.  
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5.5.2. Populations At-Risk to F0 Wind Damage  

 

Figure 29. The coastal counties affected by wind damage according to Fujita scale (F0, F1, F2, and F3): 
*Note: F0: minor damage to buildings/trees, F1: houses damaged, and single or isolated groups of trees blown 

down, F2: houses unroofed or destroyed and extensive tree blowdowns, F3: houses blown down or destroyed and 

most trees down 

Percentage of people living in F0 wind-damaged areas – As can be seen from the map (Figure 

29), F0 affects the largest portion of the study area, 1,298,585𝑘𝑚2. The areas affected by F0 

wind ranges from 120 miles to more than 300 miles away from the coastlines, and they are less 

exposed to the more damaging effects of hurricanes. As shown in Figure 30, prior to 1990, age 

group 2 was the largest proportion affected among the black population, and age groups 2, 3, and 

4 shared equal proportion among the Other and Hispanic categories. Beginning in 1990, age 

group 4 occupies the largest proportion of the population across all racial groups. According to 

the U.S. Census Bureau, the proportion of people 65 years and over (i.e., age group 5) declined 
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nationally between 1990 and 2000 (Hetzel & Smith, 2001). However, in the F0 affected area, the 

proportion of age group 5 did not demonstrate this national trend, instead it remained stable 

among the white and black population. The proportion of the elderly showed an increasing trend 

among Other and Hispanic racial groups. Beginning in 2010, age group 5 has seen a higher rate 

of growth among all racial groups, demonstrating an aging population in F0 inland counties. 

Notably, Hispanic and other racial groups have been consistently increasing their share of the 

percentage throughout the study period. This uptrend also coincides with the steady decline of 

most of the age groups within the white population. These general demographic trends are 

consistent among F0, F1, and F2 areas, with the percentages being nearly identical (Figures 30, 

32, 34).  

 

Figure 30. Demographic trends in the areas exposed to F0 damage among different population groups 

stratified by race and age groups (percentage)                                                                                          
*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 
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Figure 31. Demographic trends in the areas exposed to F0 damage among different population groups 

stratified by race and age groups (share)                                                                                                                                                                               
*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 

Share of people living in F0 wind-damaged areas – In 1970, there was no significant difference 

in the share of age groups of white populations (Figure 31). However, as time goes on, the share 

of age group 5 split off from the other cluster of age groups, occupying about 3 percent more of 

the share than the other age groups. This coincides with the increasing trend of age group 5 

among the proportion of affected populations. Although, the black and white populations have a 

similar affected share within the F0 affected areas, there is an inverse pattern between the age 

distribution of the white population and the black population. That is to say, age groups 4 and 5 

occupy the smallest share among the age groups of the black population, whereas age groups 4 

and 5 are the highest shares among the white affected population. Age groups 1 and 2 (children 

and teenagers) occupy the largest share among other age groups of the black population 

consistently from 1970 to 2018. Within the white population, these age groups account for the 
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third and fourth highest share among the other age groups and are clustered around age group 4. 

The other racial category tends to show a similar trend in age group as the black population. The 

Hispanic racial category is somewhat similar to the white racial group. However, age groups 1 

through 4 cluster toward age group 5 in Hispanic population over time, whereas age group 1 

through 4 are clustering away from age group 5 in the white population.  

5.5.3. Populations At-Risk from F1 Wind Damage  

Share of people living in F1 wind-damaged areas – F1 wind affects a slightly smaller 

geographic area, 817,360𝑘𝑚2, falling within 90 miles to 200 miles from the coastal shorelines, 

which is mostly rural (Figure 29). The population distribution and growth tend to have similar 

trends, corresponding to the inland counties affected by F0. Since both the percentage and the 

share of F1 have a similar population distribution and growth over time as F0 (Figure 32), this 

section mainly focuses on the share.  

The share of all age groups of the white population steadily increased from 1970 to 1990, 

but then age groups 1, 2, 3, and 4 started to level off in 1990 and remained steady. The exposure 

of white age group 5 has been continually increasing over time among the F1 affected 

population. The black and white populations share the same inverse relationship among age 

groups as the F0 affected population. The other racial group shares the same characteristics as 

the F0 distribution, mimicking the black population (Figure 30). Notably, the share of age group 

5 of the Hispanic population steadily increased from 1990 until 2000 and then remained stable 

over time, reaching up to 56 percent in 2018. All the other Hispanic age groups have experienced 

continuous growth from 1990 to 2018. Overall, F0 and F1 have very similar distributions and 

trends among the affected population. 
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Figure 32. Demographic trends in the areas exposed to F1 damage among different population groups stratified by 

race and age groups (percentage)                                                                                                                                 

*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 

 

Figure 33. Demographic trends in the areas exposed to F1 damage among different population groups stratified by 

race and age groups (share)                                                                                                                                         

*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 
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5.5.4. Populations At-Risk from F2 Wind Damage  

Share of people living in F2 wind-damaged areas – F2 wind damage is more localized along the 

coasts in areas with hurricane landfall events within an area of 311,142𝑘𝑚2, composed of mostly 

urbanized areas (Figure 29). As mentioned earlier, population distribution of F2 damaged areas 

resembles F0 and F1 areas in terms of percentage (Figure 34), and thus this subsection addresses 

the population in terms of its share of the population in the study area.  

 

Figure 34. Demographic trends in the areas exposed to F2 damage among different population groups 

stratified by race and age groups (percentage)                                                                                                                                                                            
*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 

As shown in Figure 35, the share of age groups 1, 2, and 3 among the white and Hispanic 

population has historically experienced less F2 wind damage. The share of white elderly people 

is significantly higher than other age groups within the white population over time. Since 1990, 
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there has been about a 3 percent point gap between age group 5 and the other age groups within 

the white population.  

 

Figure 35. Demographic trends in the areas exposed to F2 damage among different population groups 

stratified by race and age groups (share)                                                                                                                                                                               
*Note: The start of the specific race category recording at county level: Other (1970), Hispanic origin (1990) 
 

Overall, the black population demonstrates similar patterns and distributions as the 

previous wind damage categories. However, there is a significant dip among all age groups 

between 2005 and 2006. This might be related to the displacement of the black population 

following Hurricanes Katrina and Rita during the 2005 hurricane season. Consistent with 

previous empirical studies (Do Yun & Waldorf, 2016; Frey & Singer, 2006; Myers et al., 2008; 

Paxson & Rouse, 2008), these two intense hurricanes significantly impacted the black 

population, causing an approximately 1 percent decline in the number of black people living 

within the F2 at-risk areas. This dip can also be observed among the white population. However, 
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the impact was minimal, and the population quickly recovered in the following years. There is no 

evidence of these events impacting the Hispanic population. It is unclear whether or not these 

two hurricanes made an impact on the Other racial group as many of their age groups were 

already in decline during this period. Remarkably, the Hispanic population has the largest share 

among all racial groups, a two-fold increase compared to white population. This disparity 

becomes more evident within the F3 wind-damaged area.  

5.5.5. Populations At-Risk from F3 Wind Damage  

Percentage of people living in F3 wind-damaged areas – The areas affected by F3-scale wind 

damage comprise only 23 counties within an area of 53,000𝑘𝑚2, generally concentrated around 

New Orleans Louisiana, the Florida panhandle, the southern tip of the Florida peninsula, and 

along the southeastern US-Mexico border in Texas (Figure 29). Figure 36 and Figure 37 provide 

the breakdown of racial and age composition affected by F3 wind damage during the study 

period in percentage terms and absolute terms, respectively. As of 2018, the white population 

cumulatively makes up about 50 percent of the affected population living in F3 affected areas. 

This is likely due to the high property value along the coastal areas. The Hispanic population 

cumulatively accounts for about 40 percent of the affected population exposed to F3 wind 

damage in the same year. In contrast, the other two categories (i.e., the black and the Other racial 

groups) only make up a small percentage of the overall composition. Among all racial groups, 

age group 3 dominates all other age groups. This is presumably because the F3 areas are located 

adjacent to coastal shorelines where there are mostly urban coastal metropolitan areas such as 

Matamoros–Brownsville on the Mexico-US border, Greater New Orleans in Louisiana, and 

Naples and Panama City in Florida. Taking into account the recording of Hispanic populations in 
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2000, the age-racial composition of the affected population remains consistent throughout the 

study period. 

 

Figure 36. Demographic trends in the areas exposed to F3 damage among different population groups 

stratified by race and age groups (percentage)                                                                                                                                                                             
*Note: The start of the specific race category recording at census tract level: Other (1980), Hispanic origin (2000). 

The decennial census is used until 2010, and the ACA data are used beginning in 2010    

 

Share of people living in F3 wind-damaged areas – In terms of share, only a small percentage 

of the white, black, and Other population groups live within F3 damaged zones (Figure 37). 

Interestingly, the share of the Hispanic population living in these high-risk areas ranges from 5 

percent for age group 1 all the way to 15 percent for age group 5 in 2018. Despite the risk, a 

large share of the Hispanic population lives within these 23 counties, whereas only a small share 

of all other racial groups lives in these areas. Even though a large absolute number of white 

people are affected by F3 wind, shown through the percentage (Figure 36), this amount accounts 
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for roughly 2 percent of each age group living in the study area. In addition, the share of the 

white population living in the affected area has increased roughly one percent between 1970 and 

2018. In contrast, the share of black, Other, and Hispanic have decreased roughly by one percent 

during the study period. This implies that the white population is more adaptable and resilient to 

high-intensity hurricanes. On the other hand, minority populations are not as well-equipped to 

handle storms of high intensity, leading to an exodus from these high-risk areas. 

 

Figure 37. Demographic trends in the areas exposed to F3 damage among different population groups 

stratified by race and age groups (share)                                                                                                                                                                                   
*Note: The start of the specific race category recording at census tract level: Other (1980), Hispanic origin (2000). 

The decennial census is used until 2010, and the ACA data are used beginning in 2010. 

 

5.5. Discussion and Conclusion 

This study integrates the estimation of storm surge and wind damage based on historical 

hurricanes from 1950 to 2018 to explicate demographic differential vulnerability in the U.S. Gulf 
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and Atlantic coasts. Although it is known that land-cover change is closely associated with 

human settlement and population density (Pozzi & Small, 2005), no previous study has 

incorporated the residential land-use characteristics in estimating the demographic changes of at-

risk populations. To fill this void, the present study was designed to explore how the overall 

population has been affected by hurricane impacts within the residential areas along the Atlantic 

and Gulf coasts. Hurricane hazards did not affect all population subgroups in the same way. The 

second aim of this study was to disentangle how different demographic intersectional group 

memberships (e.g., white young adults, white elderly people, black young adults, black elderly 

people, etc.) stratified by race and five age groups shape vulnerability across intersecting 

population subgroups.  

This study finds that a greater share of white and Hispanic populations are exposed to 

hurricane storm surges than black and Other populations. In addition, the middle-aged and the 

elderly population (i.e., age groups 4 and 5) take up the highest share across all other racial-age 

groups. These findings are consistent with that of Logan and Xu (2015) who also identified the 

white and the elderly population as being the most vulnerable group to storm surge damage 

along the U.S. Gulf Coast during the period 1950-2005. In regard to the wind damage, F0, F1, 

and F2 have the same age and race distribution among the affected population in terms of 

percentage. Even as the spatial extent of wind damage shrinks, the racial and age makeup of the 

affected population remains the same. In terms of share, there is a growing population trend 

across all the racial-age groups within the F0, F1, and F2 affected areas in general. This is 

attributable to the large extent of hurricane wind damage, encompassing most of the study area. 

It appears that the demographic trend follows the national trend. In accordance with the 

literature, there is a demographic dip between 2005 and 2006 among African American 
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population in particular, possibly due to substantial residential displacement following 

Hurricanes Katrina and Rita. Another interesting finding is that the share of Hispanic population 

is the highest among racial groups within the F3 wind-damaged area. This demographic trend is 

aligned with the Hispanic population growth within the F3 damaged area especially in Texas and 

Florida (Hernández & Moreno-Fernández, 2018).  

Knowing what population groups are at greater risk of hurricanes is important. This 

approach may help us to understand what population groups have had to take the brunt of 

adverse effects of hurricanes and how demographics have changed within the hurricane-prone 

areas. However, the results of this study do not distinguish between natural population changes 

and those that are caused by hurricanes. These results, therefore, need to be interpreted with 

caution. This study is a descriptive inter-categorical intersectional approach rather than an 

analytical intersectional approach (Bauer & Scheim, 2019), since it cannot identify the causal 

processes of hurricane damage and the extent of hurricane-induced residential mobility and 

natural migration. For most events that are not severe enough to immediately displace people, the 

effect might not be as direct and explicit (Fussell et al., 2017; Hunter, 2005). There are still many 

unanswered questions about the extent of inflow and outflow of the population between pre-

disaster and post-disaster periods (i.e., actual hurricane-induced residential mobility) and return 

migration patterns. Future research should investigate hurricane-induced forced migration by 

applying analytic statistical models and using micro datasets.  
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Chapter 6. Conclusion 

6.1. Summary and Significance 

This dissertation is fundamentally based upon the hazards of place (HOP) model and the 

social vulnerability index (SoVI), which have long traditions in geographic social vulnerability 

scholarship. Although widely accepted by scholars, the SoVI-based research is still in need of 

methodological improvement to further advance vulnerability science (Fekete, 2019). The 

research presented in Chapter 3 was undertaken to propose complementary methods to address 

the shortcomings of the SoVI approach in two ways.  

The social vulnerability index derived from different time points cannot be used to reveal 

the temporal trajectories of social vulnerability. An alternative solution is to standardize the 

indices measured at different time points and to create sequences indicating vulnerable status at 

each time point in order to find the areas having a similar progression of vulnerability. By 

applying the sequence alignment analysis and cluster analysis, this study investigated how the 

social vulnerability of U.S. counties has evolved across space and time from 1970 to 2010. The 

results show that U.S. counties exhibit four major features in their temporal dynamics and 

pathways of the social vulnerability progression across the United States: the counties with 

persistent low vulnerability status, those counties with dynamically low-medium vulnerability 

status, the counties with dynamically medium-high vulnerability status, and the counties with 

persistently high vulnerability status. The insights gained from this study may be of assistance to 

policymakers in monitoring temporal changes of vulnerability and developing long-term 

mitigation hazard strategies, paying particular attention to those areas that have persistently high 

social vulnerability and continuously fluctuate. Understanding the temporal paths of vulnerable 

statuses across different time points can be beneficial in understanding where and when to take 
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actions to reduce disaster social vulnerability and enhance resilience (Cutter, Burton, & Emrich, 

2010). 

The SoVI is a highly aggregated index composed of multiple layers of social-

demographic variables. Despite the usefulness of this composite index in encapsulating the 

multidimensional nature of social vulnerability, it tends to smooth out the extreme values of 

social variables and local interactions in designing the SoVI (Fekete, 2012; Jones & Andrey, 

2007; Rufat, 2013; Rufat et al., 2015). In terms of policy implications, this poses some problems 

in that it cannot determine the local primary determinants or agents that contribute to overall 

social vulnerability. To address this problem, this study demonstrates the application of 

geographically weighted principal component analysis to identify the contributions of the 

integral components of SoVI and the local primary determinants that contribute to social 

vulnerability. The approach suggested in this study will prove useful in scrutinizing the “black 

box” of the SoVI by specifying which local primary factors have contributed to the output of 

overall social vulnerability (Fekete, 2019). The derived local primary determinants can provide 

additional information about the underlying social processes that underlie the transitions of social 

vulnerability across space and time. In addition, the methods used for this study may be applied 

to other social indices such as social resilience index or quality of life index as an alternative way 

to provide the elements that lie hidden from the composite indices.  

However, while these two methods complement the social vulnerability approach, they 

do not take into consideration the properties of physical hazards and the differential demographic 

populations specifically affected. In Chapter 4 and Chapter 5, this research narrowed down the 

scope of vulnerability to hurricanes and tropical storms to address hazard-specific social 

vulnerability. Extending the existing literature by Logan and Xu (2015), this study estimates the 
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spatial extent and intensity of hurricane wind and storm surge damage of all hurricanes that made 

landfall along America’s hurricane coasts from 1950 to 2018 (Cutter et al., 2007). The spatial 

extent and intensity of historical hurricanes that have affected the Gulf and Atlantic coastal areas 

revealed that storm surge damage in these areas extends up to approximately 41,000𝑘𝑚2 and the 

largest extent of wind damage (F0) extends to approximately 1,300,000𝑘𝑚2. This project is the 

first comprehensive investigation of hurricane vulnerability encompassing the Atlantic and Gulf 

Coasts stretching from Texas to Maine. The extensive results of the hurricane modeling were 

aggregated into a single surface, representing longitudinal risk of hurricanes. By integrating the 

past and recent hurricane damage over long periods of time, the results delineated the high risk 

of hurricane zones more accurately than arbitrarily defining the study areas. The findings from 

this study can provide a fundamental basis for understanding the risk of exposure and 

demographic vulnerability to hurricane-related damage of the coastal regions at a national scale.   

In order to determine demographic characteristics of the people most impacted by storm 

surges and strong winds, Chapter 5 identified generalized patterns of demographic changes that 

are subject to hurricane hazards. Based on the geographic extent of hurricane at-risk zones and 

land-use data, this study performed zonal analysis to further examine how many coastal 

populations are exposed to hurricane-related damage within the residential areas. Specifically, 

this study attempts to identify which population subgroups are most at risk to hurricane hazards 

according to the hurricane damage categories—storm surge damage and F0/F1/F2/F3 wind 

damage. Adopting an inter-categorical descriptive intersectional approach, the demographic 

datasets employed in this study were stratified by race and five age groups. The demographic 

variables were cross-coded (i.e., white age group 1~5, black age group 1~5, Other age group 

1~5, Hispanic age group 1~5) to take into account how social-demographic identities affect 
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people’s vulnerability and resilience to hurricane hazards. Based on the share of population, the 

results suggest that different groups have been impacted differently over time with white and 

Hispanic, middle-aged, and the elderly population (i.e., age groups 4 and 5) being more exposed 

to storm surge damage. In terms of wind damage, white and Hispanic populations tend to have 

similar trends among all wind damage categories, excluding F3, identifying age groups 4 and 5 

as the groups most exposed among these categories. Within the areas affected by F3, Hispanic 

age groups 4 and 5 are the population groups subject to the most intense wind damage. The 

population change of Hispanics has been shown to be neutral, neither increasing nor decreasing 

over time. The share of white has been increasing, whereas the share of black and Other has been 

declining over time, implying that the white population is more resilient than the other racial 

groups. Black and Others are likely to leave the high-risk areas of F3 wind, migrating to inland 

counties, as the increasing trend of their population share indicates. Hurricane damage might act 

as a push-factor, pushing the groups with fewer economic resources from heavily impacted 

areas. Based on these results, we can conclude that the minority population groups (black, Other, 

and Hispanic) are more impacted by hurricane-related damage than the white population. 

Disaster policies and government recovery plans should therefore aim to make these population 

groups more resilient in the future, providing more resources to the hardest hit groups living in 

the most exposed counties. Although this study is exploratory and descriptive, the results provide 

detailed insight into vulnerability (Kuran et al., 2020; Ryder, 2017).  

As discussed earlier, the SoVI approach has received much criticism due to its 

oversimplification and generalization. This can lead to misinterpretation of the mapping results 

of SoVIs, especially when making an inference about individuals from this aggregated 

measurement (Beccari, 2016; Fekete, 2012; Wood et al., 2010). Since the SoVI is composed of 
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multiple socio-demographic variables, it is difficult to pin down the specific population groups 

that are situated in vulnerable conditions and who they are. It simply draws a conclusion that 

people within the highly vulnerable areas are all vulnerable to the same degree with no 

consideration of demographic characteristics (race/ethnicity, age, gender, or class). The SoVI 

also tends to blur the actual demographic composition of an affected area, often neglecting the 

heterogeneity of the studied populations. For example, within storm surge damaged areas, white 

elderly people are at the highest risk, however, since the SoVI does not consider the white 

elderly population in creating the index, this subgroup is likely to be ignored. Moreover, the 

changing racial/ethnic composition and diversification of U.S. demographics also complicate this 

assessment (Frey, 2018). This study highlights the importance of demographic analysis in 

conjunction with the SoVI approach to offer a more nuanced picture of population vulnerability 

(Marandola & Hogan, 2006; Muttarak et al., 2015).  

In conclusion, this dissertation lays the groundwork for comprehensive social 

vulnerability research by rethinking the shortcomings of the critical ‘HOP’ framework and the 

SoVI approach. According to Morse (2004, p.156), “they [the social indices] are only meant to 

help with an initial analysis of the phenomenon being studied.” Despite its caveats, the SoVI is 

still useful in identifying vulnerable areas in a quantifiable manner at the initial stage of 

assessment. While all the approaches proposed in this study still have some limitations, they are 

pragmatic and complementary to the HOP model and the SoVI approach. The broad implication 

of this integrated approach is that it can be beneficial for stakeholders and decision makers in 

capturing the temporal dynamics and the primary local drivers of social vulnerability as well as 

the specific vulnerable population groups. Despite its exploratory nature, this dissertation 

demonstrates how demographic changes can be incorporated into social vulnerability research to 
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untangle the specific population subgroups facing the risk of hurricane hazards. The analytical 

framework suggested in this study is interdisciplinary and can enrich the approach to 

vulnerability assessment to natural hazards by converging geographic and demographic 

perspectives. 

6.2. Future Research  

This study was limited by the absence of the validation of the SoVI-based vulnerability 

analysis due to scarcity of relevant data such as mortality data, property damage, population 

displacement, and residential mobility data within the hurricane-affected area at the national 

level (Rufat et al., 2019; Tate, 2012). Especially, exploring the demographic changes within the 

hurricane at-risk areas was purely descriptive; it was not possible to determine a causal 

relationship between long-term hurricane damage and population change. Future studies need to 

examine more closely the links between the impacts of hurricane-related damage on local 

population change based on empirical statistical analysis. A further study could assess the long-

term effects of hurricanes on population displacement and return migration at multiple spatial 

scales. The most critical limitation lies in the fact that findings from the index-based approaches 

or demographic methodologies are data-driven and highly quantitative. Thus, further studies 

should adopt mixed method approaches to provide a complete picture of vulnerability 

intersecting multiple axes of race, gender, and class. (Anderson et al., 2019; Rickless, Yao, 

Orland, & Welch-Devine, 2020). The present study provides a good starting point for future 

work that considers the potential long-term scenarios of sea-level rise and global climate change 

in estimating future hurricane-related damage and the associated population vulnerability. In 

addition, a greater number of inter-categorical demographic variables (e.g., income level 

stratified by race/ethnicity and age groups) could produce interesting findings that could account 
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for an interlocked social system in shaping demographic differential vulnerability. Although this 

study utilizes the place-based approach using spatially aggregated census data, future research 

could incorporate microdata to further address the vulnerability of individuals. An individual-

based approach will enable us to gain a better understanding of the vulnerability and resilience 

that are operating at both individual and aggregate levels (Kwan, 2009). To date, researchers in 

almost every discipline have been seeking to reduce population vulnerability by adopting 

individual approaches either following a geographical or demographic tradition (Marandola & 

Hogan, 2006). This dissertation calls for special attention from the natural hazard research 

community, local actors, and decision-makers to integrate geographic and demographic 

perspectives in developing targeted interventions. By focusing on integrated research, 

vulnerability and resiliency studies can be enhanced and lead to greater scientific contributions in 

the future (Taubenböck & Geiß, 2014). 
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