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ABSTRACT 

AUTUMN TREE PHENOLOGY IN NORTHERN WISCONSIN: 
HUMANS VERSUS PHOTOGRAPHS 

 

by 

Trevor Iglinski 

The University of Wisconsin-Milwaukee, 2021 
Under the Supervision of Professor Mark Schwartz 

 

 

Ecosystem primary productivity halts when plants go dormant, and so the 

timing of dormancy as it relates to autumn phenology has been a focus of much 

interdisciplinary research. While monitoring plant phenology has its roots in directly 

observing specimens, digital sensors along with modern methods have also become 

a mainstay in phenology.  Results from different methods often vary, so there is still 

a need to better understand how digital cameras record autumn phenology, 

especially in comparison with ground-based observations (Keenan et al. 2014). This 

study compared autumn phenology derived from direct ground observations with 

upward-facing fisheye photography, in the context of a larger research project 

(C.H.E.E.S.E.H.E.A.D.19), to precisely determine autumn tree phenology across 53 

field sites in a heterogeneous temperate deciduous forest with over 220 individual 

trees and 1,000 digital photos sampled. Less-studied trees such as aspen (Populus 

spp.), birch (Betula spp.), and basswood (Tilia americana) were included in the 

project, as well as sugar maple and red maple (Acer spp.).  
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The results show that inflection points from sigmoid curves and change point 

detection are in close agreement for critical transition dates including the start of 

leaf coloration (bias of change points later at i= -0.47 days) and end (i= -0.6), but 

with slightly less agreement for the start of leaf fall (bias of change points earlier at 

i= 3.8) and the end of leaf fall (bias of change points later at i= -3.39).  

While camera-derived transition dates correlated poorly with corresponding 

human-derived transition dates, the best relationship detected was between green 

chromatic coordinate (GCC) inflection points and leaf fall (when foliage is mostly 

absent from tree canopies). This work is intended as a pilot study for novel 

methodologies in the field of ground-based phenology.   
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1 INTRODUCTION 

Phenology is defined loosely as “nature’s calendar”, referring to the timing of 

life stage events in both plants and animals. Events in plants may include flowering, 

budbreak, or foliage abscission. In animals, phenological events such as bird 

migration, reproductive activity, or insect maturation play a role in the ecosystem 

as well. These recurring events are somewhat variable in nature’s calendar from 

year to year, and plant phenology is driven by a multitude of factors such as day 

length, latitude, temperatures, genetics, and complex physiological processes 

(Friedman et al. 2011). Climate change has been influencing phenology and has 

received much focus from interdisciplinary scholarly research (Fitchett et al. 2015) 

as phenology has potential as an indicator of adaptability in a warming world 

(Badeck et al. 2004; May & Montgomery 2015; Prevey et al. 2020). For those 

studying phenological phenomena, plants receive significant focus as primary 

producers for ecosystems, but there are various modern phenological observation 

methods (Tang et al. 2016) which are discussed in greater detail in the literature 

review section. The use of digital repeat photography to study plant phenology has 

become widespread, and the results are often boiled down to a myriad of discreet 

transition dates which loosely refer to an observed cutoff point such as the timing of 

“greenness rising” or “leaf fall”. These transition dates are human constructions 

which help to compare different years of phenological data. Results from previous 

research indicates transition dates for spring and autumn are well captured by near-

surface cameras but calculated seasonal transition dates vary among other 

methods including ground observations and satellite remote sensing (Hufkens et al. 

2012; Keenan et al. 2014; Toda & Richardson 2018). This study seeks to analyze the 
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link between transition dates from upward-facing digital repeat photography with 

direct ground observations of tree phenology embedded within a broader research 

study aimed at better understanding autumn land-atmosphere interactions in a 

heterogenous ecosystem. Drawing from novel and established methodologies, this 

study addresses the following research goals:  

1. To characterize autumn 2019 within the study area. Specifically, what are 

the most precise autumn transition dates for nine deciduous broadleaf tree 

species at field sites throughout the study area?  

2. How well does upward-facing digital repeat photography compare against 

direct ground observations for detecting autumn tree phenology at 53 field 

sites?  

 

2 LITERATURE REVIEW 

Clearly, phenological timing is plastic with regards to climate variability leading to 

earlier spring and later autumns (Reed 2006; Dragoni & Rahman 2012; Ge et al. 

2015). To understand phenological changes over time requires both spatially and 

temporally extensive datasets, but often these are incomplete. Furthermore, data 

interoperability issues may arise such as when comparing results from one method 

to another.  As stated previously, there are several methodological approaches used 

to study phenology, such as direct ground observation, digital repeat photography, 

satellite remote sensing, carbon-flux measurements, and leaf area index. These 

methods’ advantages and limitations will be discussed in this section, with 
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particular focus given to direct ground observation and digital repeat photography 

as they are the two main methods employed by this study.  

2.1 DIRECT GROUND OBSERVATION 

The traditional method to study phenology is to simply watch the visual cues 

change throughout the seasons and record the time of phenological events. This 

method has been used for centuries to track culturally and agriculturally significant 

plant species across the world. Records date back hundreds and even thousands of 

years ago in some locations (Mikami 2008; Schwartz 2013). Most modern data, 

however, emerge from phenological networks—often a loose organization which 

may draw from direct observations made from many individuals from within a 

geographic area. The first phenological networks were established in 18th century 

Europe (Dahl & Langvall 2008) and by the mid-1900’s several countries had some 

form of phenological observation network for people to share their data.  

In the USA, it was not until 2007 that the nationwide USA-National Phenology 

Network (USA-NPN) was founded, which has grown to include over 20,000 active 

observers tracking 1,057 plant species as of 2021 (Schwartz et al. 2012; USA-NPN 

2021). With the help of volunteers and organizers, phenological networks have 

greatly expanded on historical datasets into the 21st century thereby allowing for 

long-term research at the regional or even continental scale (Schwartz 1994; Cayan 

et al. 2001; McCabe et al. 2011). Long-term datasets of phenological observations 

are rare but valuable; phenological changes are most meaningful when arranged 

over vast periods of time to observe significant differences at decadal scales. Direct 

human observation, being the oldest form of phenological monitoring, will always 
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have a major role in longitudinal studies, even as continuous satellite monitoring 

becomes more available.  

Observation networks greatly improved the sample size and collaborative 

efforts for scholarly research (McDonough et al. 2020; full list at: USA-NPN 2021), 

and networks have also set standard methods for phenological observations, as 

described by Denny et al. (2014). In these USA-NPN sampling protocols, the authors 

highlight the problems detecting subtle shifts in species’ phenology, as well as the 

need for long-term data with standard metrics geographically distributed while 

covering many taxa. These scholars worked closely with the USA-NPN to develop in-

situ monitoring protocols standardized across taxonomic groups as well as 

ecosystem type. Protocols cover the visual human observation methods for 

terrestrial, freshwater, as well as marine plants and animals. The biodiversity 

covered in this standardization gets at quantifying phenophases in terms of onset, 

duration, and intensity. Simplification is one goal of this standardization by favoring 

“status monitoring” techniques which could be answered with “yes” or “no” by the 

observer. This may be considered an advantage in that it enables citizen science 

even without training (Feldman et al. 2018) but was not the protocol used in this 

study for several reasons. First, simplified status monitoring has less precision when 

it comes to quantifying autumn transition, because trees breakdown chlorophyll and 

absciss their leaves asynchronously for different parts of the canopy, so that the 

most sun-exposed tops of tree canopies may be further along in their autumn 

phenology than other parts. Second, autumn leaf coloration and leaf fall occur more 

like a continuous trend than a discreet event. Thus, status monitoring protocols are 

suited for volunteer-based citizen science but less so for more locally specific 

research studies such as this.  

about:blank#pubsdescribing
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While advancements have been made by regional or continental phenology 

monitoring networks, Stucky et al. (2018) raise the need for a more global 

understanding of phenological phenomena, specifically the terms used and globally 

standardized methodologies. Some programs, such as the Global Phenological 

Monitoring Programme has shown limited success at building datasets in Europe 

and North America, with most of the data coming from central Europe. Stucky et al. 

call for a much broader coordinated effort both to connect the various phenological 

monitoring networks and get them to agree upon a standard set of definitions. This 

could better enable climate scientists to utilize phenology of plants across the globe 

to understand the effects of climate change at various latitudes and ecosystem 

types.  

Beyond protocol standardization, issues persist with respect to direct human 

observations of phenology, and that comes down to human subjectivity with respect 

to identifying phenological phenomena. Empirical science tends to favor primary 

data which are accurate and replicable, but especially tries to minimize observer 

bias. When humans are the phenological sensors, there may be issues when it 

comes to things like estimating leaf area percentages, detecting subtle morphology, 

or even plant identification. There is no direct solution to this challenge as it 

impossible to count every leaf on a tree, rather the subjectivity is best recognized 

and mitigated with protocols fit to specific research questions, such as with the 

ground observations used in Schwartz et al. (2013). Given that there are a 

multitude of other methods to track phenology, human observations must not be 

considered “ground truth” because of observer bias which quickly becomes 

apparent when multiple people attempt to estimate relative fractions of tree 

canopies in different phenological stages.  
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Overall, direct observations of phenology in the field remains a powerful tool to 

study phenology despite its potential introduction of human subjectivity. These 

observations occur at the individual specimen level which requires upscaling for 

comparison with other monitoring methods as will be discussed in the following 

sections on digital repeat photography and satellite remote sensing.  

2.2 SATELLITE REMOTE SENSING 

The geographic scale required to answer some research questions at scale 

means that direct ground observation data, even from large monitoring networks, 

are not uniformly spatially distributed or numerous enough to understand plant 

dynamics across the continuous landscape-- so researchers often use remote 

sensing. Satellite remote sensing covers large areas at regular and predictable time 

intervals and traditionally has been used outside of phenology to measure 

vegetation cover. Remote sensing has been employed for decades to study land 

surface characteristics with radiometry on a variety of sensor-platform systems, 

each with their unique set of spatial, spectral, and temporal resolutions. In 

particular, vegetation indices like the normalized difference vegetation index (NDVI) 

can detect healthy vegetation by exploiting reflectance values of the near-infrared 

band which vegetation strongly reflects and red band which vegetation strongly 

absorbs.  Spectral vegetation indices including NDVI and others such as enhanced 

vegetation index (EVI) have been widely used in phenology (Fischer 1994; Moody & 

Johnson 2001; Yu et al. 2003). Some other vegetation indices are described in Table 

1 in the review by Zeng et al. (2020) which also include biophysical vegetation 

indices such as leaf area index (LAI) which can be directly measured by instruments 

(e.g., LAI-2000) on the ground or by satellite-derived data products. Satellite remote 

sensing is generally not capable of detecting specific phenological events, rather 
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what can be detected are general landscape dynamics usually referred to as land 

surface phenology (LSP, de Beurs & Henebry 2005). In this section, the advantages 

and disadvantages will be discussed to contrast the fundamental concept of scale in 

satellite remote sensing to track phenology.  

The potential of satellite remote sensing for phenology was greatly improved 

upon by Zhang et al. (2003) in which MODIS vegetation index time-series data were 

fit to a logistic curve hypothesized to ideally represent four key transition dates: 

green-up, maturity, senescence, and dormancy. This was a groundbreaking 

publication and has influenced the field by setting up the theoretical foundation for 

curve-fitting time series, while allowing flexibility for different vegetation indices to 

be used, even from other types of remotely sensed data. Other models have been 

developed, but the basic premise of fitting a function to the time-series of 

vegetation indices remains a dominant method used in satellite remote sensing of 

phenology (Fisher et al. 2006; Elmore et al. 2012). While this method works well at 

understanding broad landscape patterns over large areas, a clear distinction must 

be noted that ecosystems are actually comprised of countless individual 

interactions between the environment and biological cycles which may have their 

nuance washed out by a single value covering an arbitrarily defined square pixel.  

Schwartz & Liang (2009) and Liang et al. (2011) reconciled the different 

scales between field and space with hierarchical upscaling to produce a “landscape 

phenology” at meso-scales, a flexible term referring to the bridge between small- 

and large-scale observations. Individual phenological events directly observed were 

cross-compared with remotely sensed data to check for agreement and provide an 

upscaling method similar in scale to satellite data. This represents an 

epistemological shift to understanding in-situ phenology as too complex and 
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heterogenous for direct human observations to adequately capture, but with a 

logical spatial grid of ground observations the individualized data can be upscaled 

to be comparable with remotely sensed LSP. This study also helped bridge the gap 

between “landscape phenology” and “land surface phenology”, the latter being 

what is actually measured by MODIS and other satellite-derived phenology.  

Overall, remote sensing methods continue to improve and will always have 

limited applicability for local studies but are well suited for many types of regional 

or continental scale research. In their review of phenological research using remote 

sensing, Zeng et al (2020) discusses why remote sensing with satellites matters in 

the context of science, agriculture, and environmental monitoring. They discuss 

more of the technical progress in the field as well as problems of scale, data 

contamination, and lacking ground observations for “truthing”.  The case has been 

made that global phenological change studies are best situated to take advantage 

of satellite-derived phenology metrics. This methodology presents opportunities for 

interdisciplinary collaboration among physical geographers to answer the bigger 

questions about planet-wide ecological seasonality.   

2.3 DIGITAL REPEAT PHOTOGRAPHY 

Digital cameras are ubiquitous in everyday 21st century life, as well as research. 

They are relatively cheap, reliable, and can produce data continuously with basically 

no storage limitations. When applied to phenological monitoring, this is in contrast 

with human observations, which either rely on sparse volunteered data or hired 

seasonal observers (which for remote research plots can be quite a labor 

investment). Furthermore, satellite imagery from high-quality commercial satellites 

is expensive and still requires highly skilled technicians to process multispectral 
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data. However, digital cameras can be mounted to a platform to capture images 

remotely at regular intervals, or (as in the case of this study) carried with human 

observers to revisited study sites to capture semi-regular images from the ground. 

Here, a distinction must be made between upward-facing digital repeat 

photography (DRP) and above-canopy, oblique-view DRP which is more common 

with open-data networks such as in the PhenoCam program (PhenoCam Explorer 

2019). An overview of DRP and some gaps in the literature will be discussed in this 

section, along with the connection between DRP and direct ground observations.  

Digital repeat photography in phenology can be theoretically reduced to 

capturing a time-lapse of vegetation photos of the same view over the course of 

weeks or longer. As vegetation transitions through phenological stages, visual cues 

(examples include green leaves emerging, or autumn coloration) are detectable by 

the sensor and a phenological signal can be processed from those images. For 

example, Kato and Komiyama (2002) proved that the first leaf flush in spring can be 

detected by upward-facing fisheye cameras through the decreasing light levels 

which is useful for understanding forest understory dynamics. Since the early 

2000s, several methods involving image brightness thresholding or color ratios with 

digital repeat photography have been deployed to monitor plant phenology.   

  Significant progress on this topic of using digital cameras to study forest 

phenology can be traced back to work by Andrew Richardson (Richardson et al. 

2007; Richardson et al. 2009) in the Bartlett Experimental Forest. With an existing 

carbon flux tower in use at the site, a camera was mounted above the tree canopy 

looking down on a section of forest and multiple images were saved each day to 

construct a time-series. With the connection already made in the previous section of 

this paper between satellite radiometry and phenology, the signal captured by 
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traditional digital cameras are ratios of color, specifically red, green, and blue 

(RGB). Richardson and colleagues proved that plant phenology can be studied 

cheaply and reliably with cameras. However, some disadvantages were recognized 

right away, such as varying brightness conditions affecting the relative color ratios 

(the various RGB indices used to detect different phenological activity). As 

expected, greenness of images increases in spring and decreases in autumn, while 

redness (RCC) increases in autumn as chlorophyl levels in foliage decreases. 

Furthermore, Ryu et al. (2012) showed that upward-facing cameras can accurately 

measure leaf-area-index (LAI), or the area of foliage, when compared with data from 

LAI-2000 and litterfall traps. Research done in oak-savannah by Liu et al. (2018) 

agrees with this and show that image greenness (GCC) is negatively correlated with 

leaf fall rates detected by litterfall boxes. They also draw links between various 

foliar senescence rates with phenological events extracted with Bayesian change 

point detection. It seems reasonable to assume what works in oak savannah is 

different but not too dissimilar from other ecosystem types such as the forests of 

northern Wisconsin.  

One challenge to using digital repeat photography in situ is changing light 

conditions due to things like weather, solar angle, or technical issues. Anyone who 

has taken a photo of the bright daytime sky can tell you that too little camera 

exposure can wash out darker features which, in the case of phenological 

monitoring, can influence results. Foundational research on this topic in forest 

phenology research came from Zhang et al. (2005), who found that 16-71% of leaf 

area can be undetectable at automatic exposure settings on a DSLR camera. They 

recommended one-stop of underexposure and reference protocols which 

significantly reduced bias, when compared with ground measurements. Publications 
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by Macfarlane et al. (2011, 2014) also recommend under-exposure settings and 

provide standardization techniques for scene illumination levels for upward-facing 

photographs and above-canopy DRP. Canopy gap fraction increases for upward-

facing image series in autumn as leaves fall off branches, thus transitioning pixels 

to detecting sky. This is an advantage, in that primary data can be processed in 

multiple ways to understand several forest foliar traits, namely leaf area index, gap 

fraction and GCC/RCC.  

Phenology can be studied at multiple scales, typified by highly localized direct 

ground observation studies and with broad spatial extent best studied with satellite 

remote sensing. However, like ground observation networks, networks of near-

surface digital sensors help bridge the different. These networks include 

“PhenoCam”, “European Phenology Network”, and “Phenological Eyes Network” 

which have been established at hundreds of sites including forest, grassland, and 

agriculture (Richardson et al. 2009; Motohka et al. 2010; Nasahara & Nagai 2015). 

These camera networks are capable of monitoring leaf, tree, and landscape 

phenology, but do require significant calibration to be fully interoperable (Wingate 

et al. 2015). Nonetheless, at least in North America the potential of the PhenoCam 

network has been expanded by Richardson et al. (2018) which processed imagery 

from over 130 cameras across dozens of vegetation classifications. The spatial 

extent for their data covered mostly the continental USA, and they provide 

phenological transition dates based on “greenness rising” and “greenness falling”. 

The number of images now publicly available is vast, with the PhenoCam program 

adding about one million images per month (“PhenoCam”, NAUTV 2019).  

Preprocessed repeat digital photography from these open-data platforms enables 

sophisticated analyses at broader geographic scale than could be done otherwise.  
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Reliable digital repeat photography does not have to come from professional 

academic camera installations, such as those mounted on human-made towers, but 

could someday come from citizen scientists in a similar fashion as the USA-NPN’s 

Nature’s Notebook (observation program). Access to high-quality digital cameras is 

not uncommon in the United States, which could be pointed toward trees and other 

plants during key transitional periods. Of course, volunteered geographic 

information can be extremely valuable for research but citizen scientists often lack 

formal training (See et al. 2016) which could present issues for data quality despite 

standardization protocols like those published by Denney et al. (2014). Still, 

volunteered information from citizen scientists using digital repeat photography 

could one day be an additional source of data for phenology research.  The use of 

digital repeat photography continues to become more accessible as previous 

limitations like resolution and storage limits attenuate, which support the notion 

that citizen science could someday have a role in digital repeat photography to 

study phenology. 

Digital repeat photography, both downward facing and upward facing, has been 

established as an objective way to monitor phenology, and has mostly done with 

fixed-camera installations. Scholars highlight the need for ground validation across 

different vegetation classifications (Tang et al. 2016) to allow for “big-data” 

breakthroughs. Also, there is still a need to test mobile upward facing photography 

which could enhance our ability to monitor phenology at the ground level. This 

study builds on ground-based methods –direct human observations alongside digital 

repeat photography in a heterogeneous temperate deciduous forest. 
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3 METHODS 

3.1 DATA COLLECTION 

3.1.1 Human observations  

3.1.1.1 Study area  

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled 

by a High-Density Extensive Array of Detectors 2019 (C.H.E.E.S.E.H.E.A.D.19) 

project took place within a 10x10km square area of forested and aquatic landscapes 

in northern Wisconsin. The study domain location, centered on the existing Park 

Falls “tall” 447m tower AmeriFlux/NOAA supersite (U.S.-PFa/WLEF) was partly 

chosen due to its history of atmospheric and environmental research (Butterworth 

et al. 2020). Past research in the area includes previous years of phenological 

human observations, above-canopy Phenocam imagery, and under-canopy light 

sensors.  

Wisconsin’s glacial history influenced the land within the study area, with 

45% of the study area classified by the Wisconsin Department of Natural Resources 

(WDNR) Land Type Association as “Chequamagon Washed Till and Outwash”, 31% 

“Glidden Drumlins”, and 24% “Northern Highland Outwash Plains”. Before European 

colonization of the area, the land was territory of the Anishnaabe (Ojibwe) tribe. 

Nowadays, the 100km2 domain is a mixture of private land and USFS National 

Forest. There is still some active forestry in the area, including management of 

even-aged pine plantations within the study area although this had no known 

influence on results of this study. 
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To broadly summarize the heterogeneous vegetation landcover in the area, 

the “Wiscland 2” classification data product was used (Wisconsin DNR, 2016). This 

dataset was developed by the WDNR using machine learning classification on 

Landsat data in conjunction with ground validation sites. The level-2 classifications 

by areal percentage of the study area are presented in Fig. 3-1.  

Figure 3-1: Landcover classification of study area 

 

Coniferous forest, Forested wetland, and Broadleaf deciduous forest 

dominated the area, with several other broad land cover classifications present. In 

actuality, the landscape in the study was more complex than the broad landcover 

classifications used in Wiscland 2 which was useful for getting a general 

understanding of the heterogeneity of the study area.  

  

40%

25%

23%

6%
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Wiscland-level 2 landcover classification in 100km2
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3.1.1.2 Sampling design 

Figure 3-2: Map of phenology plots. Main plots are marked with red circles and legacy plots marked 
with blue circles in insets. Plots are labelled with their designation used in the Cheesehead19 study.  

 

The unique situation of CHEESEHEAD19 allowed for studying many aspects of 

land-atmospheric interaction, and plant phenology monitoring was just one aspect 

of the broader research context. Field surveys aimed at detecting tree leaf 

characteristics such as pigment content and plant primary production were 

conducted within this study area throughout the growing season, although those 

data were not used in this study. Of the eight phenology mainplots added for this 

study, some were also field sites at which the leaf characteristics and plant growth 

were monitored. The eight phenology mainplots are shown in Fig. 3-2 as red circles, 

and at each mainplot there were four or five subplots arranged with one subplot at 
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the mainplot center with other subplots at 25m distance in cardinal directions 

around the center. A map with tree locations for two mainplots dubbed 333 and 

333N are shown in Fig. 3-3.  

Two legacy phenology plots called DEF and PQR were reused from previous 

studies (Schwartz et al. 2013) which featured a grid system of subplots arranged 

along linear transects (shown in map insets within Fig. 3-2). These legacy plots had 

three to six trees observed at each location.  

 

Figure 3-3: Example of subplot orientation around mainplots “333” and “333N”. Tree Locations 
marked with colored circles indicating their species.   
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This plot design was used to increase observer efficiency because by keeping 

subplots clustered around mainplots then there was less travelling, while still 

spatially arranging trees apart from each other by 25m to reduce potential bias 

from over-clustering. The number of subplots varied per mainplot to avoid placing 

research plots at non-representative locations such as too close to a road or to 

avoid forest gaps. The total number of dominant canopy deciduous broadleaved 

trees at all the subplots for all eight mainplots was 20 individuals. Observed trees 

were selected based on proximity to subplot center and overall tree health. Each of 

the trees in this phenological study had their spatial relation in terms of distance 

and degrees to the sub-plot center point recorded, as well as their species. The 

diameter at breast height (DBH) was measured initially but was unused in the 

analysis. All 223 specimen trees were visually marked and had their GPS 

coordinates taken with high precision so that observers could find them during 

revisits when they recorded their phenological state and took images of the canopy. 

A baseline phenological observation for every one of the marked trees 

(n=223) was taken on two dates in early September 2019 at which point nearly all 

the study trees still had 100% of their green leaves. From September 17th onward, 

sub-plots were revisited every two or three days to record the “event number” 

which ranged from 800 to 890 for leaf color, and 900 to 990 for leaf fall (Table 3-1). 
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Table 3-1: Autumn phenological event protocol (from Schwartz et al. 2013) 

Event number observation codes 

Leaf color 

 (including those on ground) 

Leaf fall 

(based on total leaves initially) 

800 <10% of leaves colored 900 <10% of leaves fallen 

810 10-50% of leaves colored 910 10-50% of leaves fallen 

850 50-90% of leaves colored 950 50-90% of leaves fallen 

890 >90% of leaves colored 990 >90% of leaves fallen 

 

At the eight main plots, there were a total of 33 subplots and there were a 

total of 20 legacy subplots in the “DEF” and “PQR” study areas. When these sub-

plots were revisited, a digital fisheye-lens photograph was taken at zenith on the 

center of the sub-plots; this is discussed in greater detail in the following section.  

Event numbers for both leaf color and leaf fall were intended as a category of 

the relative percentage of a tree’s canopy so there was some human subjectivity 

when it came to estimating fractions of canopy. To account for some of the observer 

subjectivity, field observations of event numbers and digital images were taken by a 

three-person team, which helped with data consistency by allowing observers to 

check for agreement on their estimated event numbers. Data were recorded up 

until October 25, 2019 (DOY 298), when all the study trees had reached near-

maximum leaf color and leaf fall. At this point, over 90% of leaves had fallen from 

the study trees and plots were longer visited.  
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3.1.2 Digital Camera Images 

3.1.2.1 Image capture  

As observers visited sub-plots to record event numbers for trees, they carried 

with them a DSLR camera (Canon EOS Rebel T3i) with fisheye lens, also referred to 

as hemispherical lens, mounted on a folding tripod. A radial bubble level 

permanently affixed above the lens was used to point the lens at zenith directly 

above the subplot’s center (marked with permanent stake). The radial orientation 

could vary each time an image was taken, but with care to make sure the aperture 

was level (with bubble level) and at sub-plot center (marked with a stake). At the 

end of each field day, the image files were moved to external storage and saved as 

the raw CR2 format and as JPEG. As not every plot was able to be visited on the 

same date, the total number of images for the plots varies, with the maximum 

number of images in a series twenty, and the minimum number sixteen. Horizontal 

images were captured to attempt to measure understory phenology but not used in 

this study.  

3.1.2.2 Exposure setting  

The level of brightness in an image captured with a DLSR camera is 

determined by several settings which can be set manually or automatically by the 

device. In this study, there were two images taken every time a site was visited: 

with manual settings and with automatic exposure settings. ISO speed determines 

how sensitive the camera’s sensor is to light, aperture controls the lens diaphragm 

to allow more or less light reaching the sensor, and shutter speed affects how long 

light is allowed to reach the sensor.  
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 Other studies have shown that phenological dates derived from upward-

facing photographs can be sensitive to changing scene illumination (image 

brightness), which can vary day-to-day or even by time-of-day, but Macfarlane et al. 

(2014) developed a simple protocol to standardize photographic exposure to be 

used for sensitive phenological metrics. They recommend standardizing under-

exposed images in their raw file format by applying a contrast stretch to the color 

image. This was shown to reduce the effect of image brightness variation on canopy 

gap fraction, leaf area index, and chromatic coordinate calculations. 

In this study, to correct for varying brightness conditions washing out foliage 

pixels, an algorithm for color image histogram equalization was developed in Python 

for this purpose. This histogram equalization reduced the variability in brightness 

levels in the under-exposed images, which allowed for finer tree canopy details to 

be visible whereas in the non-standardized under-exposed and over-exposed 

images fewer fine details could be detected (Fig. 3-4). 

 

 

Figure 3-4: Example of histogram equalization on photo 

Automatic exposure 

 

Manual exposure 

(f/3.5 stop; 1/4000 sec) 

Manual exposure with 

Histogram equalization 
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In the image on the right, there are fine details at the tips of branches including 

branches themselves and foliage which is not visible in the automatic exposure 

image on the left (Fig. 3-4). Based on the advantages of applying contrast 

stretching to under-exposed images, this standardization method was applied to 

each image for all sub-plots and were the imagery data used for further analysis.   

3.1.3 Temperature Data   

Micrometeorological data was available at two legacy sites (G8 and R6 shown 

as cyan squares in Fig. 3-2 insets), which were utilized to understand the inter-

annual differences in microclimate temperature. This was useful because the legacy 

phenological observations were near to these temperature sites. Temperature data 

were collected with HOBO data loggers attached to the north side of large, mature 

trees and set to take air temperatures (at ~1.5m shelter height) and 20cm deep soil 

temperatures every ten minutes within the repurposed legacy plots. Data were 

available for 2010, 2012, 2013, and 2019. Other years’ data were available but not 

analyzed because legacy phenological observations were not recorded in those 

years. Statistical analysis on these datasets included ANOVA and post-hoc tests 

were performed on temperature data at G8 and R6 across the different years.  

3.2 ANALYSIS 

3.2.1 Year 2019 temperature context   

At the reused legacy plots (DEF and PQR) where historical ground 

observations and temperature series data were available, many of the same 

individual trees were still standing and resampled with the same observation 

method. This allowed for contrast with other years to understand general 

comparisons such as whether autumn was late or early in 2019. Every tree which 
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was sampled in 2019 and in past years was summarized with descriptive statistics 

grouped by species. Non-linear regression was performed on individual trees’ data 

at legacy plots by fitting a sigmoid curve and calculating its inflection points. These 

inflection points were compared interannually using ANOVA on the sample means 

and post-hoc tests.  

Finally, a basic comparison of the average first date of 850, 890, 950, and 

990 event numbers was performed on the median values by species. This was 

considered supplementary to the post-hoc tests to generally characterize 2019 tree 

phenology.  

3.2.2 Direct phenological observation 

3.2.2.1 Sigmoid curve fitting 

To understand the rate of change of event numbers for leaf color and leaf fall, 

it is pragmatic to look for distinct singular dates in time which could represent the 

“beginning”, “middle”, or “end” of autumn, which can be observed through time as 

leaves change color and absciss. A logistic curve was fitted by minimizing least 

squares of residuals between observed and expected curve values. Sigmoidal curve 

fitting was done using Scipy Using the “dogbox” method of minimizing least 

squares. The use of logistic curves to model phenology was best described 

theoretically in Zhang et al. (2003) to represent spring and autumn vegetation 

indices. The sigmoid function fitted to leaf color values and leaf fall values is defined 

as:  

𝑦 =
𝐿

1 + exp(−𝑘(𝑥 − 𝑥0 )
+ 𝑏 
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For this sigmoidal logistic equation, y is the median event number, x is the 

independent date variable as day-of-year (DOY), and k, L, and b are fitting 

parameters. This logistic sigmoid function is best understood as starting and ending 

periods of no y-value change, and a critical exponential relationship when the 

phenological event numbers were changing most rapidly. Therefore, x-values which 

define the beginning, middle, and end of the steep slope can be calculated using 

differentiation. In other phenological studies these critical dates calculated from 

vegetation indices are commonly used to describe the start of season (SOS), middle 

of season (MOS), and end of season (EOS). Spring or autumn could be understood in 

this fashion, as best described in Zhang et al. (2003). Autumn is the only season of 

interest for this study, and event numbers will be used for the vegetation indices; 

the first inflection point will be thought of as the start of autumn, second inflection 

point for middle of autumn, and third inflection point as the end of autumn following 

suit of other studies. An example of the intermediary curves and final inflection 

points (extrema) are shown in Fig. 3-5.     

Figure 3-5: Example of subplot 15-C fitted sigmoid curve with curvature and inflection points 
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The three inflection points were identified using extrema on rate of sigmoid 

curvature (shown with the dashed “Gradient” line in Fig. 3-5); these inflection points 

were expected to represent the “beginning”, “middle”, and “end” of the 

phenological response for both leaf color and leaf fall. 

R-squared and MSE for each fitted logistic regression were calculated at the 

individual tree level and median sub-plot values. Different aggregation methods 

were used: median values by species, by subplot, and no aggregation (by tree). By 

species aggregation was useful for understanding the difference between the nine 

studied trees, whereas the by plot aggregation was useful to compare human-

derived transition dates with camera-derived dates. By tree aggregation proved 

computationally demanding and resulted in some obviously fallacious results and 

were not used for statistical analysis. The calculated transition dates using sigmoid 

curve-fitting were stored in csv file format to be compared with transition dates 

from other methods.  

3.2.2.2 Change point/linear segmentation  

Recent studies support the use of linear segmented regression as an 

alternative to sigmoidal curves. Linear segmentation is conceptually more simplistic 

in that the vectors connecting change points indicate a rate of change as well as 

well as having a discreet beginning and end at the “change points”. This emerging 

method has proven more effective at linking human-observed ground observations 

with MODIS vegetation indices products (Xie & Wilson 2020) and with repeat digital 

photography relative greenness (Liu et al. 2018).  
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This study applies the linear segmentation method on event number data 

aggregated with median event number values by subplot to calculate the DOY at 

which change points fall (Fig. 3-6).  

 

The first and second change points, shown with dashed blue lines in the 

example above (Fig. 3-6) were then stored in csv file format to be compared with 

transition dates from other methods.  

3.2.3 Digital Camera Images 

3.2.3.1 Preprocessing  

With just under 100GB of data collected as fisheye lens photography and 

over 1,000 unique images, extracting meaningful phenological data proved to be a 

significant undertaking. The first step in pre-processing the images was to remove 

the black rectangular space around the circular fisheye view, resulting in a circle 

with a width x height of 2200x2200 pixels. This was done by adding a fourth band, 

“alpha”, which was binary and commonly used in digital images to make pixels 

Figure 3-6: Example of linear segmentation and change points at subplot 333-W 
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appear transparent. Next, histogram equalization following contrast stretching 

methods supported by Macfarlane et al. (2014) was performed on the manually 

exposed images. This histogram equalization method increased contrast between 

very bright pixels of the sky and darker non-sky pixels.  The effect this had on 

image sharpness by reducing washing out effect is discussed in previous section 

3.1.2.2 as it relates to image exposure setting.  

Next, to remove non-sky pixels from the masked and contrast stretched 

images, a simple digital number (DN) threshold on the blue band was performed. 

MacFarlane (2011) advocates for the use of simple classification methods over more 

complex methods as it does not significantly affect calculated phenological 

transition dates. A threshold of Blue DN greater than 190 (DN>190) was selected 

based on data exploration as well as trial and error using different thresholds. In 

agreement with this, Leblanc et al. (2005) show that foliage have a much lower 

reflectivity and transmittance of blue light. This performed well for images at 

different plots across different light/sky conditions with little to no filtering-out of 

non-sky pixels. An example of this thresholding is shown in Fig. 3-7. 
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The preprocessing of the images was now complete at this point, leaving only 

non-sky pixels for every image. However, these pixels could contain not only the 

foliage of tree canopies, but also things like branches, tree stems, or other 

obstructions not being studied. Image thresholding using Red, green, or blue bands 

proved ineffective at removing these obstructions from the images as they shared 

too many similarities with foliage pixels, and their pixel locations changed from one 

image in a series to the next.  

In some of the image series, obstructions such as shorter understory plants, 

major lower dead branches, or evergreen conifers (Abies balsamea & Pinus strobus) 

were blocking a clear view to the canopy of the tallest deciduous trees. Some series 

of images had significant obstructions, which were manually identified as an 

additional preprocessing step and noted for future considerations of overall data 

quality and accuracy. 

Figure 3-7: Example of sky pixels vs non-sky pixels using blue band thresholds 
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Table 3-2: Image-series quality assessment 

IMAGE SERIES 

QUALITY 

ANALYSIS Conifer presence 

 

Obstruction level 

HIGH LOW NONE 

Total 

number of 

plots 

HIGH 3 2 7 12 

LOW 7 10 9 26 

NONE 3 4 8 15 

Total number of 

plots 

13 16 24 53 

 

 Table 3-2 shows the count of image series which had evergreen conifers 

present in the camera view and, as a separate category, those which had >50% of 

field-of-view obstructed with non-foliar elements such as significant dead lower 

branches, or understory shrubs. 29 image series out of 53 had some level of 

evergreen conifer presence, while 38 image series out of 53 had some level of 

image obstruction. These obstructions were manually identified using a visual 

estimation since this data was not using statistically, only anecdotally.  

Despite about half of subplots having some level non-removable obstructions, 

all 53 image series were included in the rest of image analyses.  

The number of pixels relative to non-sky pixels can be considered the image 

gap fraction, but the sampling design limited its usefulness. To calculate leaf area 

index (the total area of foliage in a system), with this method would have required a 

more sophisticated photography method and thus was not suited to this study. 
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However, the relative number of sky pixels to non-sky pixels can be considered a 

validation of the blue-band DN threshold of >190, because the relative fraction of 

sky pixels generally increases throughout autumn. Generally, the relative fraction of 

sky pixels increased throughout autumn as expected.  

Macfarlane et al. (2014) describe these principles of processing upward-

facing digital images to study phenology and proved (using a variable gap screen 

and in situ monitoring) that ideal exposure settings would decrease over time in 

autumn as the gap fraction increases under similar light conditions. Without 

knowing the gap fraction a priori, two to three stops of under-exposure are 

recommended and was utilized in this study. Mixed pixels were not filtered out 

because a similar study by Macfarlane (2011) indicated that mixed sky-foliage 

pixels are at maximum 10% of non-sky pixels, which decreases over time and was 

deemed acceptable.  

3.2.3.2 Chromatic coordinates  

As trees progressed through their autumn phenology, the leaves exhibited a 

response observed in the red, green, and blue visible spectrum. Using the 

decreasing values of relative greenness in an image series has been validated 

against other phenological monitoring methods most recently by Liu et al. (2018, 

2020) as an effective and simple method to use in repeat digital images in the 

visible electromagnetic spectrum. The term used is green chromatic coordinate, 

defined as:  

𝐺𝐶𝐶 =  
𝐺

𝑅 + 𝐺 + 𝐵
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For context, GCC is expected to increase in spring when more leaves are 

present to reflect or transmit green light and is expected to decrease sharply in 

autumn when chlorophyll breaks down and leaves eventually senesce. Other band 

ratios have shown success, such as RCC and VARI (Keenan et al. 2014). The red 

chromatic coordinate (RCC) is most used in autumn phenology and is understood as 

the relative redness of an image which would increase when leave display 

characteristic fall colors due to other leaf pigments. Another chromatic coordinate 

(VARI), though less widely used, shows promise at detecting anthocyanin content in 

leaves which becomes exposes in autumn as chlorophyll breaks down (Viña & 

Gitelson, 2010). These three chromatic coordinates, or RGB band ratios, are defined 

as:  

𝐺𝐶𝐶 =  
𝐺

𝑅 + 𝐺 + 𝐵
       𝑅𝐶𝐶 =  

𝑅

𝑅 + 𝐺 + 𝐵
       𝑉𝐴𝑅𝐼 =  

𝐺 − 𝑅

𝑅 + 𝐺 − 𝐵
 

In this study, these chromatic coordinates were calculated for every 

preprocessed image for all 53 sub-plots using the python imaging library (PIL). This 

method proved fast and effective at these rigorous algebraic calculations, by 

calculating the mean DN values for the red, green, and blue bands then calculating 

chromatic coordinates from that. However, VARI was calculated but not analyzed 

further due to time constraints. The series of chromatic coordinates were stored as 

csv format for future steps to smooth the data and then analysis. 

3.2.3.3 Smoothing the data  

The calculated relative greenness (GCC) and redness (RCC) in their raw 

states were plagued with “noise”, but following procedures developed by Sonnentag 

et al. (2012) using the 90th percentile moving window algorithm (per90) the level of 

noise was reduced. This smoothing algorithm considers each value at a particular 
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date a function of itself and its neighbors and assigns the 90th percentile value to 

the center date. This algorithm is limited, in that it reduces the number of data 

points due to edge cases. While this is acceptable for other studies with high 

temporal frequency and larger datasets, the data in this study were sparser so the 

loss of samples from edge cases was not acceptable. The per90 smoothing method 

was tested but ultimately unused for this reason.  

To preserve as much data points as possible while still smoothing GCC, RCC, 

and VARI values, a less-used algorithm called Savitsky-Golay (SG) signal filtering 

was employed. This method uses a flexible local polynomial function fitted to a 

subset of data points, then iteratively adjusts the dependent variable to reduce 

error. This method is flexible in terms of defining the window of sub-set points and 

the degree of smoothing. The window for this method was set to 3 points, so that a 

local polynomial function was fitted to each set of three adjacent data points. This is 

like the per90 method but can account for edge cases to not reduce sample size. A 

more detailed description of the SG filter, its parameters, and applications are 

discussed in Luo & Bai (2005). The smoothing effects on the green chromatic 

coordinate (GCC)are shown below comparing the raw GCC values, per90 smoothed 

GCC, and Savitsky-Golay smoothed GCC for a single sub-plot 15-C (Fig. 3-8).   
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Figure 3-8: Example showing the effect of two different smoothing algorithms 

 

 Aside from the loss of edge cases with the per90, the smoothing effect was 

only slightly different, and it was assumed that the effect on results would be 

negligible. Therefore, the Savitsky-Golay filter was performed on raw GCC and RCC 

values and resultant data were used for the next step in analysis, calculating 

transition dates. 

3.2.4 Date extraction from chromatic coordinates  

With a smoothed time-series of chromatic coordinates for each set of images 

(from the 53 subplots) it is visually apparent that GCC and RCC are sensitive to 

phenology. GCC decreases with leaf color and leaf fall, and RCC undergoes a peak 

of values, but then decreases to some minimum value. The next step in this 

analysis was to extract discreet dates (DOY) at critical points in the GCC and RCC 

series which could be compared with critical dates from human observations.  

3.2.4.1  RCC Spline max  

The first method involves the highest value of image redness, RCC, which 

was observed in the smoothed data. This is straightforward and proven effective by 
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a similar study (Xie et al. 2018). However, my study had special considerations in 

that due to project limitations, some days there were no images of the canopy 

taken. Those days in autumn without images could have potentially had greater 

image RCC values indicating greater abundance of leaf color right before leaf 

abscission occurs. So, to attempt to account for these data gaps, a novel method 

was applied called RCC Max-Spline. A spline curve was calculated as centered at the 

maximum observed RCC value plus the nine days prior and after the max value. 

This was designed so that the maximum y value of the spline may fall at a different 

date than the observed maximum value, thereby interpolating to fill in the days 

which had no image taken. The accuracy of this method was tested against the 

human observation critical values for both leaf color and leaf fall using Pearson 

correlation as well as the difference in days between corresponding transition dates 

from other methods.  

3.2.4.2 GCC Sigmoid curve 

The negative sigmoid curve is a staple for autumnal phenological studies and 

was fitted in this study to GCC values. This was done with the “dogbox” method of 

least squares minimization for each series of GCC values at every sub-plot, using 

the same sigmoid function fit to direct observation data. From the fitted sigmoid 

curve, the three critical inflection points were calculated and stored as csv file 

format for comparison with human observations. R-squared values were calculated 

for the non-linear regression during model fitting. The covariance of model 

parameters were stored for future error analysis, as well as the fitted curve 

parameters itself to avoid having to perform regression again and again. The 

inflection points were calculated using extrema from the rate of curvature, or 

gradient, in a very similar fashion as the example in Fig. 3-5: the only difference 
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being that the fitted sigmoid curve was downward sloping (negative) because the 

GCC values decreased throughout autumn. The three calculated inflection points 

from the GCC sigmoid curve were statistically compared with transition dates of 

other methods.  

3.2.4.3 GCC Linear segmentation 

 Much like the linear segmentation method to calculate the change points for 

human observation data, the same principle was applied to digital camera images. 

Three linear segments were fitted to GCC values, then the first and second change 

points were stored in csv format to compare with corresponding human 

observations critical dates (using Pearson correlation coefficients as well as bias 

between methods).  

3.2.5 Cross-method comparison 

In total, there were ten calculated transition dates across the different methods 

based on human observation data (five from leaf color and five from leaf fall), and 

six transition dates based on photograph-derived data (five from GCC and one from 

RCC). A list of the transition dates are given in Table 3-3. 

Table 3-3: List of Phenological Transition Dates 

HUMAN OBSERVATIONS DIGITAL CAMERA IMAGES 

Fitted leaf color sigmoid curve (inflection points 1, 2, 3) Fitted GCC sigmoid curve (inflection points 1, 2, 3) 

Fitted leaf fall sigmoid curve (inflection points 1, 2, 3) GCC Linear segmentation (change points 1, 2) 

Leaf color linear segmentation (change points 1, 2) RCC Spline (maximum) 

Leaf fall linear segmentation (change points 1, 2)  

Total: 10 calculated transition dates Total: 6 calculated transition dates 
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Methods were checked for validation such as between inflection points on leaf 

color and with change points on leaf color, but also compared between human 

observations and photographs. Pearson’s correlation coefficients (with associated 

significance values) were calculated for each pair of data, as well as the difference, 

or bias between dates by subplot. In all, six critical dates from digital camera 

methods were compared with five critical dates for human observations of leaf color 

event numbers and five critical dates from leaf fall event numbers.  

4 RESULTS 

4.1 2019 AUTUMN PHENOLOGY 

4.1.1 Inter-annual comparison 

4.1.1.1 Temperature 

Temperature has been shown to influence spring and autumn phenology, 

which suggests lengthened growing seasons as a result of accumulated growing 

degree days (Vitasse et al. 2009; Yu et al. 2016) Based on that simple assertion, 

daily temperatures throughout autumn (daily range in temperature, 3-day rolling 

average, and OLS regression line shown in Fig. 4-1) were explored to check whether 

2019 was an anomalous year compared with 2010, 2012, and 2013.  
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Figure 4-1: Temperature trends in Autumn for 2010, 2012, 2013, and 2019. Daily temperare range 
shown with blue bars indicating maximum and minimum temperature, solid black line representing 3-
day rolling average, and dashed line representing trendline from OLS regression.  

 

Based on results from daily air minimum temperature ANOVA between 

groups of different years (p-value=0.0007) and between different sites (p-

value=0.038), a main effect was detected between years and between sites, 

suggesting that at least one of the years was conclusively different. Following the 

initial two-way ANOVA, I performed a post-hoc test, the Tukey HSD test, to see 

which years of temperature were different. Results indicate 2019 was on average 

minimum air temperature 2.8°C warmer than 2012, but not significantly different 

from 2010 or 2013 based on a 99% confidence that the sample means could not be 

drawn from the same temperature series. Results of Tukey HSD tests on air mean 
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temperatures were less pronounced, with no statistically significant difference 

between means of different years, although autumn 2012 was on average 1.2°C 

warmer from DOY265 to DOY 300.  

Overall, 2019 was not an outlier year based on these comparisons of 

temperature throughout autumn, but 2019 did have the latest dates for a light frost 

event (0°C) and hard frost event (-2.2°C). This could be expected to influence tree 

phenology to some degree, because of the temperature dependence of foliage as 

well as the susceptibility of frost damage to vegetative tissues.  

4.1.1.2 Tree Phenology 

At the legacy plots (“D,E,F” and “P,Q,R”) most trees were still alive into 2019 

and had their phenological leaf response observed in the same fashion as in the 

autumns of 2010, 2012, and 2013. 49 trees in 2019 were part of this legacy sub-set. 

There was only minor mortality in these dominant canopy trees. However, in 2013 

only the southern sites (“D,E,F”) were sampled, comprised of 18 individuals. Results 

from inter-annual, pairwise t-tests on the second inflection point of a sigmoid curve 

fitted to an individual tree’s leaf color event numbers indicate 2019 was statistically 

different from 2010 and 2012, but not different from 2013 at 95% confidence level. 

The same pairwise t-tests on leaf fall indicates the same sample central tendencies, 

that 2019 was statistically different from 2010 and 2012, but not from 2013. In both 

cases for leaf color and leaf fall, the second inflection point of the fitted sigmoid 

curve relates to the overall central tendency of autumn tree phenology.  

The start of autumn, represented by the first inflection point on the fitted 

sigmoid curves for both leaf color and leaf fall were also tested with paired t-tests. 

Leaf color pairwise t-tests indicate that the start of autumn 2019 was statistically 
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different from 2010 and 2012 but not different from 2013. These results are the 

same for the second inflection point. However, 2019 was different than all three 

years for the third inflection point of leaf color.  

Interestingly, the start of leaf fall was not significantly different in 2019 

compared with all years of past data based on the first inflection point values. 

However, the end of leaf fall followed the same pattern as before, that 2019 has a 

significantly different distribution of data than 2010 and 2012 but not from 2013.  

 However, these t-tests do not adequately capture the nuances in the data, 

which would vary by species to some degree in any year. Aggregated by species, 

median event numbers for leaf color and leaf fall on every sampling date were used 

to show the central tendency of tree phenology in a season. The difference between 

the DOY of the median dates (Table 4-1) show 2019 was five to eight days later 

than median dates averaged in the past.  

Table 4-1: Difference between 2019 and past years event numbers 

2019 – (2010, 2012, 2013) 

Difference (days) 

Leaf color Leaf fall 

850 890 950 990 

Sugar Maple (A. saccharum) 6 8 8 9 

Red Maple (A. rubrum) 5 9 8 6 

Aspen (P. tremuloides) 9 8 5 5 

   

However, the sampling window varied in 2019 versus past years, mostly due 

to the lack of early-autumn observations taken in 2010, 2012, and 2013 (no 

observations before DOY 264). For this reason, the difference in 810 values were 

excluded and only the values for 850, 890, 950, and 990 were deemed valid.  
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 The results from inter-annual comparisons of human observations of 

phenology are confounding. T-tests of sample means of sigmoid inflection points 

indicate 2019 was statistically different from 2010 and 2012 and somewhat 

different from 2013. But when looking at median values by species, autumn 2019 

happened later than the average of past years’ median DOY. Discounting the notion 

of spurious analyses, these results could be explored further to unravel the nuanced 

inter-annual differences in autumn tree phenology.  

4.1.2 Direct ground observations  

Ten transition dates were calculated from the human observation data using 

sigmoid curve inflection points and linear segmentation change points. Aggregated 

using median event numbers by subplots, sigmoid curves generally seemed to 

perform better with a closer model fit (discussed along with Fig. 4-5). 

For the calculated critical dates by subplots, which included from three to five 

sampled trees, the mean difference between the first and third inflection point of 

leaf color was 10.4 days, with a standard deviation of 8.4 days. This is in contrast 

with the mean difference between the first and third inflection points of leaf fall, 

which was 13.1 days with a standard deviation of 11.2 days. From sigmoid curve 

inflection points corresponding to the rate of phenological change, autumn lasted 

less than two weeks for the leaf color and leaf fall transitions.  

Change points from linear segmentation indicate a similar length of autumn 

based on the difference from the first and second change points. Leaf color change 

points were on average 10.3 days apart with standard deviation of 7.3 days. This is 

very similar to the sigmoid curve inflection point differences on leaf color. However, 

for leaf fall, change points one and two were on average 5.9 days apart with 
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standard deviation of 5.8 days. This does not align well with the difference between 

inflection points one and three on leaf fall, indicating possible issues with the 

calculation method or an undetected phenomenon.  

Comparing leaf color with leaf fall calculated transition dates relates to the 

delay between chlorophyll breakdown and leaf abscission. From the first leaf color 

inflection points to the first leaf fall inflection point was on average 3.6 days with 

standard deviation of 9.9 days. The last leaf color inflection point was on average 

6.3 days earlier than the last leaf fall inflection point with standard deviation of 6.1 

days. These results indicate that a large portion leaves do not stick around on 

branches for much longer than a week when they are displaying autumn colors.  

The observed phenological responses for trees studied in autumn 2019 were, 

as expected, varied among tree species. The fitted sigmoid curves with inflection 

points for the data (aggregated by species) are shown in Fig. 4-2.  
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Figure 4-2: Human observation sigmoid curves by species. Red line indicates fitted sigmoid curve for 
leaf color observations by tree species. Blue line indicates fitted sigmoid curve for leaf fall. Dashed 
lines represent inflection points 1, 2, and 3 for corresponding sigmoid curve.  

 

It should be noted that only one individual speckled alder (A. incana) was studied, 

and so the calculated transition dates for that species should not be considered 

representative of the population due to small sample size. Black ash (Fraxinus 

nigra) showed the earliest autumn transition, with most trees having already 

dropped their leaves before other species had even hit their peak event numbers. 
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Basswood (Tilia americana) also showed a relatively early response but had greater 

variance between individual trees indicating a less uniform response for that 

species. Both species of Aspen (P. tremuloides & P. grandidentata) showed a slower 

leaf fall duration than their leaf color duration, based on the first and third dashed 

lines indicating sigmoid curve inflection points. The two species of birch were not all 

that similar to each other; B. papyrifera seemed to begin and end their autumn 

phenological transitions in a shorter timeframe than B. alleghaniensis. This is 

apparent visually by the greater period between the first and third inflections points 

for yellow birch.  

The genus of tree most studied (n=100) by these direct ground observations 

was Acer, which is best-known for its striking red and orange autumn leaf color.  

Red maple (A. rubra) began its autumn phenology earlier and ended later than 

sugar maple (A. saccharum). Red maple also showed a greater variability between 

individuals throughout the study domain. Red maple has been referred to as a 

“super-generalist” because of its adaptability to a wide range of habitats (Abrams, 

1998) which speaks to its phenological flexibility observed in this study. The lower 

closeness of fit (R2=0.716; R2=0.64) for leaf color and leaf fall sigmoid curves 

support this, because some trees were so much earlier or later than others of the 

same species that the resultant fitted model for red maple was elongated. In 

contrast, sugar maple showed a much more uniform phenological response, and a 

tighter window for beginning and end of their leaf phenology.  

Overall, deciduous broadleaf trees in the Cheesehead19 study area tended to 

be at peak fall colors around September 28th (DOY 271), and >90% of leaves on the 

vast majority had fallen by October 25th (DOY 298).  
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4.1.3 Sigmoid curves vs Linear segmentation validation  

The statistical relationship between critical date calculation methods on 

human observations were tested, namely sigmoid curves vs linear segmentation. 

Pearson correlation coefficients (ρ) were expected to be 1.0 for a perfect validation 

between the two methods, but results were that between leaf color inflection point 

1 and leaf color change point 1 there was ρ=0.61, and between leaf color inflection 

point 3 and leaf color change point 2 there was ρ=0.89 (closest to 1.0). There was a 

slight bias for the inflection points less than 1 day earlier than the change points 

(given as negative “i” values in Fig. 4-3). This represents average difference 

between calculated transition dates and is also the intercept of the fitted regression 

line with slope of 1.  
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Figure 4-3: Leaf color inflection points (red) and leaf fall (blue) vs corresponding change points. Black 
line represents regression line using intercept-only method. i values represent intercept, or bias in 
transition dates. Higher Root-mean-squared-error (RMSE) indicates greater average error between 
black line and subplot transition dates (+).  

 

 

The higher correlation coefficient could indicate the end of the leaf 

coloration—meaning autumn leaf colors have hit their peak and the transition 

period has ended. On average, the difference between the first inflection point and 

the first change point for each field site was 0.47 days, with a standard deviation of 
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8.1 days for the differences. The difference between the third inflection point and 

the second change point was 0.60 days, with a standard deviation of 3.5. 

Closeness of fit for models is better for the sigmoid curves as shown with R2 

distributions in Fig. 4-4.  

Figure 4-4: R2 distributions of sigmoid curve (x-axis) and linear segmentation (y-axis) for leaf color and 
leaf fall. Sigmoid curves had a greater overall R2 distribution than linear segmentation.  

 

 This could be due to issues with errors when fitting the linear segments, 

rather than a superiority in the sigmoid curve fitting method because only a few 

samples using linear segmentation on leaf color values had R2<0.76, with a similar 

relationship for leaf fallThe results from this study indicate that there is less 

agreement between sigmoid curve-fitting and linear segmentation in the beginning 

of autumn leaf color transition probably due to a few outlier data points contributing 

to the higher standard deviation in the beginning, but strong agreement for the end 

of leaf color transition.  
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4.1.4 Spatial autocorrelation  

Spatial autocorrelation as it is applied in this study refers to how similar or 

dissimilar individual tree phenological event numbers are based on their proximity 

to their neighbors.  The global Moran’s I for all trees’ first maximum leaf color is 

0.232 indicating a positive spatial autocorrelation, and for all trees’ first maximum 

leaf fall it was 0.200 also indicating a slight positive spatial autocorrelation. The 

spatial component of tree phenology is embedded within the local context of study 

trees, as the positive global Moran’s I could be due to collinearity with other spatial 

variables such as microclimate.  

This finding agrees with similar ground observation phenology research by 

Liang et al. (2011), who report that no consistent spatial autocorrelation exists for 

all trees, likely due to spatial heterogeneity from individual and species differences 

between trees. Local Moran’s I analysis agrees with this assumption because 

several homogeneous species plots had a significant positive spatial autocorrelation 

for leaf color and leaf fall, but this could also be due to collinearity for trees of same 

species with similar phenological response. Although not the focus of this paper, a 

greater level of intra-species spatial autocorrelation would likely manifest at 

different levels of scale than the 10km2 study domain.  

4.2 HUMANS VS PHOTOGRAPHS  

Several phenological transition dates were calculated based on the human 

observation data and digital camera image series which were cross-compared using 

Pearson’s correlation coefficient with associated p-values, as well as the average 

difference, or bias, between different methods. The bias is indicated by the “i” 
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values on the following several figures. P-values were not generally statistically 

significant at >95% confidence level for the correlations, although calculated dates 

seemed to correlate better for the end of the autumn transition period rather than 

the beginning.   

These results from cross-comparisons between human-derived transition 

dates and photo-derived transition dates varied in their correlations and biases. 

However, phenological photo-derived transition dates produced dubious results 

which seemed to vary widely from the human-derived transition dates. At 90% 

confidence level, GCC change point 2 and leaf color change point 2 were 

statistically correlated, which in accordance with results discussed toward the end 

of section 4.1.3 indicates that there is better agreement for the ending of autumn, 

but less so for the beginning of autumn transitions.  

4.2.1 RCC Spline Maximum 

In general, this method did not perform as expected, as seen from the flat 

results (circles) in Fig. 4-5. There was no significant correlation between RCC spline 

maximum method with any human-derived transition dates, which basically 

indicates that whatever this novel method was detecting was not tree phenology, or 

that there is another factor playing a significant role. The method comparison with 

intercept closest to zero was leaf color inflection point 3 (i=0.77, with SD=7.98), 

then leaf fall inflection point 2 (i=1.01, with SD=8.42).  



48 

Figure 4-5: Leaf Color (top row) and Leaf Fall inflection points (bottom row) vs RCC Max spline dates. 
Black line represents regression line using intercept-only method. i values represent intercept, or bias 
between transition dates. Higher Root-mean-squared-error (RMSE) indicates greater average error 
between black line and calculated transition date pairs shown with grey circles (n=53). 

 

 

4.2.2 GCC Sigmoid inflection points 

The GCC inflection points extracted from the fitted sigmoid curve had a weak, 

statistically insignificant correlations with inflection points from leaf color (ρ ranged 

from 0.13 to 0.18) and leaf fall (ρ ranged from 0.15 to 0.29). The positive correlation 

coefficients showed some promise but were all still not significant and nowhere near 

an ideal value of 1.0.  

Surprisingly, GCC inflection points had a much lower bias when compared 

with leaf fall than with leaf color (figure 4-7). This suggest that leaf abscission is 

more closely coupled with relative canopy greenness inflection points.  
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Figure 4-6: GCC inflection points vs Leaf color (top) and vs leaf fall (bottom). Black line represents 
regression line using intercept-only method. i values represent intercept, or bias between transition 
dates. Higher Root-mean-squared-error (RMSE) indicates greater average error between black line and 
calculated transition date pairs shown with grey circles (n=53). 

 

 

 

4.2.3 GCC linear segmentation change points 

Compared with GCC inflection points, linear segmentation has relatively small 

differences in the corresponding transition date on a per plot basis. The GCC change 

point 1 was on average 1.04 days earlier than the first GCC inflection point, with a 

standard deviation of 8.5 days. The GCC change point 2 was on average 1.2 days 

later than the third GCC inflection point, with a standard deviation of 5.0 days.  

Linear segmentation of leaf color human observations and GCC from digital 

images showed the most promise of the tested methods, with GCC change point 2 

and leaf color change point 2 statistically significant at confidence level >90% (Fig. 

4-7).  
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Figure 4-7: GCC change points vs leaf color change points (top) and leaf fall (bottom). Black line 
represents regression line using intercept-only method. i values represent intercept, or bias between 
transition dates. Higher Root-mean-squared-error (RMSE) indicates greater average error between 
black line and calculated transition date pairs shown with grey circles (n=53). 

 

 

This indicates that human observations and digital camera images are in 

closest agreement with the timing of the end of autumn but are in less agreement 

detecting the beginning of autumn color transition. This is further supported by 

comparing the GCC change points with leaf color event number inflection points, 

with a statistically significant (>95% confidence) relationship between the GCC 
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change point 2 and leaf color inflection point 3, again related to the end of autumn 

leaf color transition. (Fig. 4-8)  

Figure 4-8: GCC change points vs leaf color inflection points (top) and leaf fall (bottom). Black line 
represents regression line using intercept-only method. i values represent intercept, or bias between 
transition dates. Higher Root-mean-squared-error (RMSE) indicates greater average error between 
black line and calculated transition date pairs shown with grey circles (n=53). 

 

These results are like the previously discussed results that linear segmentation 

change points agree well with the third inflection point of the fitted sigmoid curve 

on leaf color event numbers (described in section 4.1.3) again indicating that 

change point analysis detects the end of autumn better than the beginning, when 

considering this cross-validation between phenological date calculations.  
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 The results from comparing human-derived transition dates with photo-

derived transition dates are that they do not agree well for all plots, although there 

is some promise in GCC inflection being coupled to leaf fall, and an overall better 

agreement across methods for the ending of autumn.  

5 DISCUSSION 

5.1 CHARACTERIZING AUTUMN 2019 TREE PHENOLOGY 

Considering inter-annual differences presented in section 4.1.1, the timing of 

2019 was not a conclusively extreme-outlier year compared to three past years in 

terms of autumn temperature but comparing tree phenology with past years 

suggests that tree phenology was later in 2019 than what was usual in past years.  

This conclusion is somewhat confounding, but perhaps could be explained by 

other factors known to influence autumn tree phenology such as first frost dates 

(2019 was latest as discussed in section 4.1.1.1), photoperiod, cooling-degree days, 

and total monthly precipitation as described in a meta-analysis of autumn 

phenology research by Gill et al. (2015). Photoperiod would not explain the 

differences in this study, because data were compared for the same trees at the 

same exact geographic location and thus would not vary in their day length from 

year-to-year. However, cooling-degree days or monthly precipitation were not 

studied in this thesis and could be analyzed further to perhaps explain the 

exaggerated differences in timing of phenology against the lesser inter-annual 

differences in daily autumn temperatures. If those factors were found to not be the 

cause of different phenological response in 2019, then the most reasonable 

explanation would be that the differing temporal frequency, lack of early autumn 
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observations, or other experimental design factors contributed to the different 

response.  

5.2 CHANGE POINT DETECTION 

Change point detection on vegetation indices to track phenology may have 

potential to shift the paradigm from sigmoid fitted curves (Liu et al. 2018; Xie & 

Wilson, 2020), but the results from this study show greater closeness of fit (R2) for 

sigmoid curve fitting (Fig. 4-4). Several factors could have led to these results, such 

as the calculation method itself, noisy dataset, or the study design itself.  

 This study used a function with naïve logic to fit a variable number of points, 

which when interpolated was tested until its error was minimized. The permutations 

were based on the “Nelder-Mead” method of transforming the change point 

locations each computational iteration to settle on a satisfactory resultant set. This 

is in contrast with other methods used by other studies, such as those using 

Bayesian phenology models (Schleip et al. 2008; Thomson et al. 2010; Yang et al. 

2014). Liu et al. (2018) advocates for a Bayesian approach for change point 

detection over fitted sigmoid curves on GCC values because it eliminates biases 

from strong, short term fluctuations which could influence the sigmoid logistic 

curve. In this study, temporal frequency made it so that short term fluctuations 

could create false positive change points as well as causing a significant effect on 

the fitted sigmoid curves, so Bayesian change points may help reduce biases if it 

were to be tested in the future.  

 A noisy dataset is not uncommon in scientific research, and to some degree it 

should be expected. However, some image series may have so many obstructions 

or varying light conditions that a particular change point could be undetectable 
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against outlier erroneous GCC data points. This would not apply to the direct 

observations which did not have sampling errors like in the digital repeat 

photography. Therefore, change point analysis cannot be disproven as a useful tool 

for analyzing phenological events for digital repeat photography, but is inferior to 

sigmoid inflection points for direct ground observation data in this study.   

 The study draws primary data from two sources: direction ground 

observations and digital repeat photography, to which change point analysis was 

applied. On days when a sub-plot was not sampled, trees would continue to 

progress through their autumnal phenology. The event number scheme for direct 

ground observations were based on categories of relative percentage so gaps in the 

data would be less likely to be greatly impacted by data gaps. On the other hand, 

data gaps in GCC, a scalar value, could be more drastic and thus could influence the 

change point detection algorithm to a false positive. With the number of change 

points vis-à-vis linear segments user-determined to be three linear segments, one 

change point may be spurious but the other change point accurate. So, it could be 

assumed that the lack of complete daily image series in the early part of autumn 

decreased model performance. These unexpected results in the change point 

detection being better suited for the end of fall could at least partially be explained 

by differing number of days between samples points to an understudied limitation 

to this model by the literature and could be studied in the future.  

 Overall, several factors contributed to the slight underperformance of change 

point detection on both direct ground observations and digital repeat photography. 

Nonetheless, these results maintain the efficacy of sigmoid curve fitting as well as 

change point detection on phenological data as standard analytical approaches.  
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5.3 HUMANS VS PHOTOGRAPHS 

Calculating transition dates for autumn phenology proved challenging to match 

up from human observation and digital camera image series. The lack of major 

agreement between direct ground observations and digital repeat photography 

derived critical dates could be explained by the differing scale, or by photographic 

issues.  

Direct event number observations were taken at the individual tree level, but 

there was no way to tell for sure which trees were captured in the camera field of 

view, which included upwards of 20 tree canopies in a single image. Some of the 

individually studied trees were in the camera images, due to the presence of tree 

markers being visible in some images, but it is likely that most of the tree canopy in 

images were not trees individually tracked with event numbers. Not only were 

different trees sampled by cameras than by human observers, but also the two 

sampling techniques operated at different spatial scales. There could be upward of 

25 or more individual trees with their canopies at least partially captured in an 

image series, whereas four to five individual trees were sampled with event number 

observations. It is possible that with careful manual parsing, a count of tree species 

in each image could bridge the spatial divide. The role of scale in these differing 

methodologies was significant enough to distort results and was not easily 

remedied with over 1,000 images in this heterogenous forest study domain, mostly 

due to the radial orientation of camera view changing from day to day.  

The lack of statistically significant validation between images and direct 

observations of phenology could also be partially explained by obstructions in the 

images. Upward-facing photographs were taken at the plot center, but the plot 

locations were selected for direct ground observations without considering 



56 

implications for digital repeat photography. The forest structure in the study domain 

was uneven-aged mixed northern deciduous-conifer secondary forest, so naturally 

things like understory, low dead branches, and evergreen conifers were present at 

some sub-plots which were not excluded from analysis (discussed in section 

3.2.3.1). The effect this had on the two image series quality is shown in Fig. 5-1, 

showing the expected GCC and RCC smoothed data on the right for subplot 15-C 

with minor conifer presence in the field of view, and bad image series on the left for 

subplot 252-S, with high obstruction from branches, stems, and high evergreen 

conifer presence. The smoothed GCC and RCC data for that faulty image series is 

relatively flat but with several extreme values creating peaks, and so calculated 

critical dates were spurious and likely due to the poor image quality.  

Figure 5-1: Examples of bad and good images, and their chromatic coordinates 
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This study succeeded at detecting phenological phase transition dates using 

human-derived samples at over 200 trees, but less so using the 53 upward-facing 

fisheye photography. The CHEESHEAD19 domain which was comprised of mixed 

and diverse northern deciduous forest, and digital repeat photography has been 

shown to perform poorly with mixed-species images (Nagai et al. 2015). Scholars 

recommend species-homogenous image series which agree more closely with direct 

ground observations, but that is sometimes not available or feasible with project 

constraints. This phenological study covered nine typical native tree species, which 

could potentially be analyzed further to separate the affect from different species 

phenological habits.  

Heterogeneous landscapes including mixed-species forest are challenging to 

study across this spatial extent (100km2) using handheld cameras especially 

because of the discreet nature of field plots leading to spatial gaps between sites. 

This could be true for direct observations at field sites as well, which could have led 

to important areas in the study area not sampled from. Upscaling toward landscape 

phenology (Liang & Schwartz 2009) by fusing with satellite-derived phenology 

products could alleviate some of the potential spatial gaps in the data. Nonetheless, 

direct observations proved more precise at calculating the phenological transition 

dates, in alignment with previous ground-based studies from the same area.  

6 CONCLUSION 

Handheld digital cameras are not yet capable of detecting phenological 

responses of trees in a mixed northern forest setting to the same level of precision 

as direct human observation, but there is still enormous potential for this type of 
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monitoring. Static installations of Phenocam-like setups account for several 

limitations in this study. Between two transition date calculation methods on 

human-derived phenology, there is a good agreement between sigmoid curve 

inflection points and change point detection, agreeing with previous studies (de 

Beurs & Hennebry 2010, Liu et al. 2018, Xie & Wilson 2020). The potential coupling 

shown between GCC and both leaf color and leaf fall point to the conclusion that 

repeat digital photography could prove highly useful as another technique to track 

individual plant phenology on the ground; the mobile aspect of mobile cameras 

could expand spatial constraints typically experienced by ground observations. To 

fully realize that potential, this study highlights several issues which can arise from 

improper site selection, image frequency, camera orientation, or possibly 

processing methods.  

This study connected prior phenology data in a way which could prove useful for 

researchers in the context of Cheesehead19, as well as the broader phenology 

community, because of the unique intensive monitoring history at this location in 

Northern Wisconsin covering several common native broadleaf deciduous trees in 

their typical forest settings.  

Links could be made between other, less understood factors which might 

influence or be influenced by autumn tree phenology, such as highly specific 

weather conditions studied by Cheesehead19 not limited to near-surface 

atmospheric eddy-covariance data products, forest canopy characteristics, and 

summer primary productivity.   
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6.1 FUTURE RECOMMENDATIONS 

The phenological data collected during autumn 2019 stemmed from a unique 

opportunity to study the land and atmosphere concurrently (which contributed to its 

somewhat hasty project design). It is recommended that future autumn 

phenological research consider insight learned post-hoc: site selection should favor 

site more suited to upward-facing photography, and sampling protocol decisions 

should attempt to control for more variables such as varying brightness, camera 

orientation, and image frequency.   

As with this study and recommended by other research, underexposure of 

images is better than automatic settings (Zhang et al. 2005, MacFarlane et al. 

2014). Even with this, brightness levels will vary due to weather or solar angle; the 

effects of this can be alleviated with maintaining the same camera rotation in each 

image, or with a reference image with a clear view of the sky. Fixed camera 

installations do not have the issue of varying orientation, but in this study the 

camera was not always oriented the same way which could have introduced error in 

the results. Additional steps to manually identify the species present in each image 

field of view could help validate results with direct phenological observation. 

 Furthermore, accurate site selection is paramount to maintain a clear, 

unobstructed view of the tree canopy. Previous studies showed that a disadvantage 

of this viewing geometry is that it emphasizes nearest vegetation because it is 

closest to the camera. Keenan et al. (2014) suggests oblique view to avoid this 

problem. The use of upward-facing fisheye photography employed in this study 

could have resulted, especially when understory shrubs were in view, in a loss of 

the ability to detect subtle changes in the dominant forest canopy.  
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Finally, temporal frequency plays a major role in the accuracy of data in 

situations like digital repeat photography where it is pretty much guaranteed there 

will be poor-quality images for any number of reasons. Like in the case of studies 

where a remote camera can be set up to take an image at set time intervals, the 

best image per day around the same time makes the most sense. This would 

require more technical setup which limits the ability to bring the camera around to 

different field sites. In future studies, I would suggest visiting plots every day by 

taking the same path so that images are taken around the same hour. This could 

also alleviate the effect solar angle would have on differing light-canopy interaction, 

and thus control for more variables. This type of mobile upward-facing fisheye 

photography would work best for situations where research is conducted near to 

base to reduce travel times.  

Due to Cheesehead19 project logistics, the fisheye lens camera became 

available for research use not long before September 2019, and thus field 

methodological decisions needed to be make quickly. In future phenological 

monitoring projects, practices and principles related to illumination, view angle, 

obstructions, and frequency discussed in this study can be fully implemented.  
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