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ABSTRACT 

PREDICTION OF CONCURRENT HYPERTENSIVE DISORDERS IN PREGNANCY AND 

GESTATIONAL DIABETES MELLITUS USING MACHINE LEARNING TECHNIQUES  

by 

Mary O. Ejiwale 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor: Susan McRoy, PhD 
 

Gestational diabetes mellitus and hypertensive disorders in pregnancy are serious 

maternal health conditions with immediate and lifelong mother-child health consequences. These 

obstetric pathologies have been widely investigated, but mostly in silos, while studies focusing 

on their simultaneous occurrence rarely exist. This is especially the case in the machine learning 

domain. This retrospective study sought to investigate, construct, evaluate, compare, and isolate 

a supervised machine learning predictive model for the binary classification of co-occurring 

hypertensive disorders in pregnancy and gestational diabetes mellitus in a cohort of otherwise 

healthy pregnant women. To accomplish the stated aims, this study analyzed a sub-sample 

(n=4624, n_features=38) of a labelled maternal perinatal dataset (n=9967, n_fields=79) collected 

by the PeriData.Net® database from a participating community hospital in Southeast Wisconsin 

between 2013 and 2018. The datasets were named, “WiseSample” and “WiseSubset” 

respectively in this research. Thirty-three models were constructed with the following six 

supervised machine learning algorithms: Logistic Regression, Random Forest, Decision Tree, 

Support Vector Machine, StackingClassifier, and KerasClassifier (which is a deep learning 
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classification algorithm). All the algorithms were evaluated using the StratifiedKfold cross-

validation (k=10) method. The Synthetic Minority Oversampling Technique was applied to the 

training data to resolve the class imbalance that was noted in the sub-sample at the preprocessing 

phase. Multiple feature selection techniques were explored to identify the best predictors of 

concurrent hypertensive disorders in pregnancy and gestational diabetes mellitus. Model 

performance quality was quantitatively evaluated and compared using accuracy, F1, precision, 

recall, and the area under the receiver operating characteristic curve as metrics.  

Support Vector Machine objectively emerged as the most generalizable model for 

identifying the gravidae in WiseSubset who may develop concurrent hypertensive disorders in 

pregnancy and gestational diabetes mellitus. The model obtained a recall score of 100.00% 

(mean), with 9 predictors extracted by the recursive feature elimination with cross-validation 

with random forest. Finding from this study show that using readily available routine prenatal 

attributes, appropriate machine learning methods can reliably predict the co-existence of 

hypertensive disorders in pregnancy and gestational diabetes mellitus. Six of the nine most 

predictive factors of the comorbidity were also in the top 6 selections of at least one other feature 

selection method examined. The six predictors are healthy weight prepregnancy BMI, mother’s 

educational status, husband’s educational status, husband’s occupation in one year before the 

current pregnancy, mother’s blood group, and mother’s age range between 34 and 44 years.       

Insight from this analysis would support clinical decision making of the obstetric experts when 

they are caring for 1.) the primigravidas since they would have no past obstetric history that 

could prompt their care providers for related feto-maternal medical surveillance; and 2.) the 

multigravidas with no previous pregnancy history that is suggestive of hypertensive disorders in 
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pregnancy or gestational diabetes mellitus. Ultimately, the artificial-intelligence-backed tool 

designed in this research would likely improve maternal-child care quality outcomes. 

Keywords: Gestational Diabetes Mellitus, Hypertensive Disorders of Pregnancy, 

Supervised Machine Learning, Deep Learning, Comorbidity, Concurrence.  
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1. INTRODUCTION 

 

1.1. OVERVIEW OF THE PROBLEM 
 

1.1.1. OVERVIEW OF GESTATIONAL DIABETES MELLITUS AND HYPERTENSIVE 

DISORDERS IN PREGNANCY 

 

Gestational diabetes mellitus (GDM) and hypertensive disorders in pregnancy (HDP) are two 

principal medical conditions that complicate pregnancy. They affect pregnant women of both the 

developed and developing countries. These maternal health problems can occur alone or 

simultaneously. Although both GDM and HDP have been widely studied, they have been 

examined individually mostly, while their comorbidity is rarely investigated, especially with 

machine learning (ML) methods. This research utilized five evidence-based standard supervised 

machine learning (SML) algorithms, and a classifier from the deep learning (DL) sub-field of 

SML for studying the co-existence of HDP and GDM (GDHP) affecting some otherwise healthy 

pregnant women. The standard SML algorithms tested were Logistic Regression, Random 

Forest, Decision Tree, Support Vector Machine, and StackingClassifier. Also, the DL algorithm 

explored is the KerasClassifier. 

Hypertensive disorders in pregnancy are a group of maternal health conditions previously known 

as pregnancy-induced hypertension. It is characterized by a systolic blood pressure ≥140 mmHg 

and/or a diastolic blood pressure at ≥90 mmHg taken at least on two occasions of 4 hours apart in 

previously normotensive women [1] at or after 20 weeks of gestation. There are five main 

variants of HDP: gestational hypertension pre-eclampsia (with and without severe features), 

eclampsia, and HELLP (Hemolysis, Elevated Liver Enzymes and Low Platelet) syndrome. All 

were present in the data analyzed in this research, and they were investigated collectively as 
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HDP because studies have shown their risk factors are largely similar. Pregnancy is normally 

associated with some hemodynamic changes and an impairment in such bodily modifications 

may result in HDP [2]. Some of the maternal and child impacts of HDP are an increased risk for 

future chronic hypertension [3] and cardiovascular disease for both mother [4] and child [5]. 

Chronic hypertension (which exists or is diagnosed before 20th week of pregnancy) and pre-

pregnancy/pre-existing diabetes were excluded from this study. This exclusion is reasonable 

since such medical histories are already a clear signal for the provider to institute “high risk” 

pregnancy management. Also, postpartum hypertension (PHTN) is outside the scope of this 

study, and a concurrence between PHTN and GDM is not meaningful since GDM is not a 

postpartum diagnosis, and no data related to postpartum glucose test is in the analyzed dataset.  

Gestational diabetes mellitus is the most common medical complication of pregnancy. Insulin 

resistance and the accompanying compensatory hyperinsulinemia by the pancreatic β-cells are 

some of the physiologic changes of pregnancy. However, some women experience an imbalance 

in these normal processes, leading to gestational diabetes. GDM is a hyperglycemic condition 

that starts newly (or is first diagnosed) at late pregnancy ≥24th week in an otherwise euglycemic 

woman. This pregnancy complication is characterized by glucose intolerance, insulin resistance, 

and hyperglycemia [5]. In terms of screening/evaluation there is no universal assessment 

guideline currently for GDM [6]. Expectant mothers are usually screened for this health problem 

between 24 and 28 weeks of pregnancy, using Oral Glucose Tolerance Test (OGTT) to evaluate 

the efficiency of the body to metabolize glucose. Like its HDP counterpart, GDM has a plethora 

of deleterious immediate and future maternal and child effects. These include an increased risk 

for diabetes (both mother and offspring), early faster puberty for the child [7].  
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1.1.2. OVERVIEW OF MATERNAL METABOLIC SYNDROME 
 

Metabolic syndrome (MetSyn), previously known as Syndrome X (or insulin resistance 

syndrome), has a significant relationship with HDP and GDM. A shared maternal impact of HDP 

and GDM is their metabolic sequalae [8], and MetSyn may predict HDP [9], and/or gestational 

diabetes [10]. Literature also indicates women’s sex roles (parturition-specific factors) such as 

pregnancy, parity, lactation, contraception, and infertility treatment; influence the risk of 

MMetSyn [11], [12], [13], [14]. The condition is characterized by a cluster of five major risk 

factors, three of which are closely related to HDP and GDM. The established risk factors for 

MetSyn are high body mass index; insulin resistance/ high blood glucose; high level of low-

density lipoprotein, low level of high-density lipoprotein [dyslipidemia]; and high blood pressure 

[15]. MetSyn is a grievous global health challenge with no regard for age, gender, or ethnicity. 

The syndrome is defined by some national and international health bodies, including the World 

Health Organization [16], International Diabetes Federation  [17], and the National Cholesterol 

Education Program Adult Treatment Panel III 2001 [18]. Even though these organizations differ 

slightly in their full definitions of MetSyn, they are unanimous in including a measure of central 

obesity, glucose metabolism, and blood pressure in their characterizations of the syndrome. 

MetSyn has had increasingly wide scientific attention, but the general population is commonly 

targeted [19], [20], [21]. This focus may have contributed to the lack of maternal metabolic 

syndrome (MMetSyn) as an obstetric diagnosis, and thus a lack of an associated International 

Classification of Diseases 9/10 (ICD Version 9/10) code, despite the association of MetSyn with 

GDM, HDP and parturition. These issues about MetSyn of the pregnant women have also 

resulted in a lack of easily accessible structured information about the health problem in 

electronic health records of pregnant women that might allow one to easily extract related 
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dataset. This makes a direct, manual cohort analysis impractical. Instead, the research described 

here considers the relationship between GDM, HDP and MetSyn, using a method that creatively 

serves as a proxy for a retrospective cohort analysis where machine learning methods are applied 

to predict maternal metabolic syndrome. Moreover, this innovative proxy study has a utility, 

since GDM and HDP are well recognized diseases in the obstetric community than maternal 

MetSyn, building a model for their comorbidity is more valuable to the study population and 

their providers, than modelling MMetSyn that is yet to be established as a diagnosis. This type of 

study is particularly useful with sophisticated methodology like machine learning; the kind 

utilized in this research.  

1.2. OVERVIEW OF THE DATASET  
 

The PeriData.Net® database is a perinatal clinical data repository. It consists of individual-level 

patient-identifiable data collected from the parents and the clinical record at participating 

Wisconsin (WI) birth hospitals. The database was originally developed in the mid-2000s for 

collecting Birth Certificate Data required by the Department of Health Statistics (DHS), with 

additional information as requested by participating hospitals, the Wisconsin Association of 

Perinatal Care (WAPC), and other stakeholders. Ultimately, DHS chose another program to 

collect the data, but most of the birth hospitals in the state continue to use Peridata.net®18 because 

there are valuable reporting formats provided by Ancilla, LLC; a company that is responsible for 

the data collection and storage.  

This research is being conducted using a dataset from a single hospital in a small urban 

community in the Southeast WI for the period of 1/1/2015 to 2018. This sample contains 9962 

instances with 79 fields, while its extract has 4624 instances with 38 fields. The omitted fields 

included: 1.) primary fields that were combined during data extraction; 2.) fields with high 
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number of missing values (e.g., intrauterine growth retardation; 3.) fields with low frequency 

count values that could not benefit from merging (father’s education for instance); 4.) fields 

about/clearly suggestive of GDM/HDP-in the past obstetric history (“macrosomia_PreviousPreg” 

for example); and 5.) redundant fields (for example, husband’s reported age and husband’s 

calculated age fields have nearly the same number of actual values). Our research protocol 

included two types of limited Protected Health Information (PHI): “Year of last birth” and “Date 

of first prenatal visit” fields, which were added because the contained information that could be 

used to derive some known risk factors of GDM and HDP. There were three types of values in 

the sample- actual, missing, and placeholder. Also, the dataset format is heterogeneous, having a 

disparate mix of numeric, and non-numeric types that could be mapped onto numeric format 

during preprocessing. Some numeric fields in the dataset also have values that could be 

manipulated into new fields to enable the identification of the specific/range of values associated 

with GDHP; prepregnancy Body Mass Index (BMI) was one of such primary fields. 

Additionally, the sub-sample dataset is significantly imbalanced for the outcome values. 

1.3. OVERVIEW OF METHOD 
 

A sample of PeriData.Net® database was analyzed in a retrospective cohort study that examined 

a representative set of supervised machine learning algorithms for constructing several binary 

classification models for identifying the GDHP-at-risk gravidae. The six classifier training 

algorithms examined in this study were Logistic Regression (LReg), Random Forest (RF), 

Decision Tree (DTree), Support Vector Machine (SVM), StackingClassifier (Stack), and 

KerasClassifier (Keras), which is a deep learning method. During preliminary training and 

testing, we generated several alternative sets of features using four well-known feature selection 

techniques (FSTs). The following FSTs were applied 1.) Recursive Feature Elimination (RFE), 
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2.) Recursive Feature Elimination with Cross-Validation (RFECV), also known as ensemble 

feature selection approach; 3.) Genetic Algorithm, and 4.) Pearson Correlation Coefficient and 

Variance Inflation Factor Analyses (PCC-VIFA).  

The impact of the features and the strategy that selected them were assessed through the 

performance of models constructed with them. The quantitative quality metrics utilized for these 

assessments were accuracy, F1, precision, recall, and the area under the receiver operating 

characteristic curve (AUC), including a plot of the receiver operating characteristic curve (ROC). 

1.4. OBJECTIVES, RESEARCH QUESTIONS, AND SPECIFIC AIMS 
 

1.4.1. GENERAL OBJECTIVES OF THE STUDY 
 

This study sought to construct, evaluate, and compare multiple supervised machine learning 

(standard and deep) models for pregnant women who are at risk for concurrent gestational 

diabetes mellitus and hypertensive disorders in pregnancy. The motivation behind the plan to 

explore and compare multiple classification models is the idea that no single model performs 

optimally across all problems; a phenomenon known as “No Free Lunch theorem” in the 

machine learning domain. The problem of predicting the risk for maternal MetSyn was mapped 

to a problem of developing a classifier to map the multi-facetted data of the gravidae to a binary 

class outcome of Yes_GDHP or No_GDHP. For the analysis. we examined the data fields that 

already exist in the dataset and some other fields that we engineered from them. All the models 

were to be assessed quantitatively and compared for performance quality, using standard 

measures of accuracy, F1, precision, recall (sensitivity), and the area under the receiver operating 

characteristic curve (AUC) as metrics. The best performing model that generalized well to 
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unseen data in the identification of the GDHP-at-risk instances was to be isolated, and the 

following research questions were to be addressed:  

1.4.2. RESEARCH QUESTIONS 
 

1.4.2.1. RESEARCH QUESTION 1 

 

Compared to genetic algorithm, does any of the feature selection techniques (Section 1.3) 

better identify the best input data for building an SML model for GDHP with the dataset 

in this analysis?  

1.4.2.2. RESEARCH QUESTION 2 

 

Could there be any GDHP model that can outperform the Keras model when assessed 

with recall on the dataset to be analyzed in this study?  

1.4.2.3. RESEARCH QUESTION 3 

 

Would the Synthetic Minority Oversampling Technique (SMOTE) algorithm effectively 

address the class imbalance problem that exists in the dataset?  

These questions are answerable by the corresponding specific aims of the project (Section 1.4.3)  

1.4.3. SPECIFIC AIMS OF THE STUDY 
 

The specific aims are to 1.) assess the utility of the FSTs (Section 1.3) in identifying the most 

relevant risk factors for modeling GDHP with SML techniques; 2.) utilize and compare multiple 

SML algorithms (Section 1.3) in building GDHP models with the dataset; 3.) construct and 

compare various SML models (Section 1.3) before and after the application of SMOTE on the 

imbalanced dataset. These aims would lay the groundwork for assessing the feasibility of 
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automated analyses, and for establishing the potential benefit of conducting studies with larger 

datasets in the future.   
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2. LITERATURE REVIEW AND RELATED STUDIES 

 

2.1. LITERATURE REVIEW 
 

2.1.1. BACKGROUND OF THE OBSTETRIC HEALTH PROBLEMS 
 

Gestational diabetes mellitus and hypertensive disorders of pregnancy are common medical 

conditions associated with pregnancy. The prevalence of HDP is 5.2-8.2% [22]. In a 

multinational, multi-site research conducted in 2010-2012; where 214,070 women of 106 

communities in 7 low and middle-income nations were studied, 16% (55) of the 335 women that 

died had preeclampsia or eclampsia [23]. In Southeast Iran 31.9% of severe maternal morbidity 

near misses [24]. The Centers for Disease Control and Prevention (CDC) indicates DHP 

attributes to 6.6% of pregnancy and childbirth related deaths [25]. Gestational diabetes mellitus 

on the other hand, is estimated to constitute 16.0% of the global prevalence of hyperglycemia in 

pregnancy among women ages 20-49 (16.9%) [26]. Insulin resistance and the accompanying 

compensatory hyperinsulinemia by the pancreatic β-cells are some of the physiologic changes of 

pregnancy. However, an imbalance in these processes may result in a hyperglycemic condition 

that starts newly (or is first diagnosed) in late pregnancy ≥24th week in the otherwise euglycemic 

pregnant women. GDM and HDP are individually consequential pregnancy-associated health 

conditions with immediate and lifelong maternal and fetal/child health impact. Mounting 

evidence is available in literature pointing to the immediate and future (sequelae) maternal and 

child health (MCH) effect of HDP and GDM.  

2.1.1.1. MATERNAL AND CHILD IMPLICATION OF GESTATIONAL DIABETES 

MELLITUS OR HYPERTENSIVE DISORDERS OF PREGNANCY 

  

Pregnant women experiencing HDP may have an increased risk for chronic hypertension 5 years 

postpartum [27], and cardiovascular disease for both mother [4], [28], and baby [5]. Post-
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traumatic stress disorders [29]; salt hypersensitivity [30]; end-stage renal disease (increased risk 

by 5- to-12-folds) [31], [32]; and metabolic syndrome [33] , [8] are also linked to HDP or GDM. 

Infants born to pregnancy-related hypertensive or diabetic mothers are not spared of the short 

and long-term effect of these disorders. The child impact includes the following: An increased 

risk of cardiovascular disease [5]; and neuro-developmental impairment [34]; and future weight 

problem [35]; metabolic syndrome [36]. Meanwhile, MetSyn increases the chance of the boy 

child experiencing infertility in his adulthood [37]. Likewise, prematurity and birth weight 

problems are also linked to HDP [38] and GDM [39]. In a ripple effect, female premature 

babies/girls who had birth-weight problem have a high tendency of developing HDP or GDM 

when pregnant [40] perpetuating the cyclic nature of the disorder. Other impacts of HDP/GDM 

include neuro-developmental impairment [34], [41] and behavioral disorder [42].  

2.1.1.2. COST IMPLICATION OF GDM OR HDP 

  

Aside from the scores of maternal-fetal/child consequences of HDP and GDM, evidence abounds in the 

literature showing these pregnancy-related medical conditions are also uneconomical. HDP alone incurs 

additional care costs of $173 million annually [43], and the annual burden per case of GDM is 

approximately $5,800 [44].  

2.1.1.3. RISK FACTORS OF GDM OR HDP 

 

The unpleasant, and sometimes life-threatening, effect of GDM or HDP is heightened when both 

disorders co-exist, then, GDHP deserves additional scientific attention. Meanwhile, the exact 

causes of GDM and HDP individually or jointly, are unknown, but related studies suggest 

several factors explain them. It is worthwhile investigating such risk factors (and metabolic 

syndrome) to understand and identify the strongest predictors of GDHP. Among the social 

determinants of health influencing these pregnancy complications are smoking, alcoholism, and 
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socio-economic factors [45], maternal height [46], parity [47], [12], gravidity [12], maternal 

blood group [48], [49], [50], outdoor air/temperature [51], and genetics [52]. Research shows 

prepregnancy obesity [53] is fundamental to these metabolic-related obstetric health problems. 

Pre-conception weight/BMI is commonly based on the score obtained at the first prenatal care visit. 

Obesity is a body mass index (BMI) ≥30 kg / m2, according to the CDC [54]. A substantial body 

of evidence demonstrates the determinants of health influencing of GDM and HDP; including 

their conjoint, is multifactorial, and while some risk factors are peculiar to the expectant mother, 

the unborn child, and his/her biological father; others have genetic, environmental, or obstetric 

components. Studies show assisted reproductive technology (ART) is also associated with 

gestational hypertension and preeclampsia [55]. This assertion is supported by a large systematic 

review of 47 related studies [56]. Additionally, a meta-analysis of twenty-six GDM studies with 

120 million participants signifies mother’s age is crucial to the development of GDM or HDP, 

but the study asserts that there is no agreement over the specific age/ age group associated with 

GDM [57]. The role, and the precise maternal age/age group that is linked with GDHP is, 

however, not yet established. Maternal height is a significant anthropometric measurement in 

hypertensive disorders of pregnancy [58], and short people have a higher predisposition to GDM 

[46]. It is unclear whether this factor influences the concurrence of both disorders. Central to 

these maternal health problems is the obesity epidemics [14]. Studies indicate that, in the U.S.; 

where metabolic syndrome surges [59], prepregnancy obesity deepens [12]. As shown in a recent 

analysis of the Wisconsin Interactive Statistics on Health (WISH) data of the 2011–2014 period, 

27.8% of WI mothers are obese [60]. Some pregnant women, however, may not know their 

prepregnancy weight or BMI for reasons such as unintended pregnancy (>50.00% in the United 

States [61]), hence, the commonest approach is the adoption of the first prenatal visit values of 

these measurements. In a research that utilized animal model (rats), the results suggest exposure 
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to air pollutants such as nicotine (first/secondhand) contributes almost one-third (30%) of 

maternal obesity [62] and maternal metabolic conditions [14]. Other significant environmental 

components influencing HDP/GDM occurrence are Particulate Matter 7 (PM7) vehicular emits 

exposure [63], and urbanization [64]. Furthermore, there is evidence supporting the notion that 

vitamin D; also known as 25-hydroxyvitamin D (25(OH)D), has a bearing on pregnancy 

outcomes. The environment, genetics, and racial are a close- knit with this fat-soluble vitamin 

that enhances glucose tolerance. Vitamin D deficiency (hypovitaminosis D), which is defined as 

low serum 25-hydroxyvitamin D (25(OH) D) level [65], is prevalent worldwide [66], (among 

women particularly). Maternal hypovitaminosis D raises the susceptibility to GDM and HDP 

[67], [68]. This condition is, however, racially biased against the African Americans and their 

high level of melanin is linked to the insufficiency [66]. This racial group is the worst hit of 

preeclampsia [69] and maternal mortality in the United States [70]. Partner change is another 

unconventional factor influencing HDP; preeclampsia especially [55], [58]. Access to care and 

medical insurance [45]; and fetal gender [71] are some other dynamics influencing GDM and 

HDP. It is therefore evident that the impact of GDM and HDP is both extensive and expensive, 

and the coalesce of the disorders may escalate their individual devastating consequences. Also, 

the challenges confronting the existing risk identification approaches are complicated. These 

issues affirm the relevance of our research as it is of utmost importance to understand this serious 

comorbidity from supervised machine learning perspective.  

2.1.1.4. THE NEED FOR MACHINE LEARNING PREDICTIVE MODELS FOR GDHP 

 

The cause(s) of gestational diabetes mellitus and hypertensive disorders in pregnancy remains 

largely elusive, and their prevention is a challenge to the obstetric community [72]. There is lack 

of direct laboratory test or a particular screening method designed for identifying the GDHP-at-
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risk pregnant women; the test (including results) for each of the disease components of GDHP 

may also reside across multiple silos screening; and the tests may have been done at different 

times or places. Such disjoint screening is not only inconvenient for pregnant women, but also 

resource-consuming (patient time, care cost; and hospital economy) for both patients and 

providers. Some of the individual screening methods may still have limitations, as Gaillard et al. 

(2018) [73] indicated about the African American women and metabolic syndrome screening. 

Additionally, late GDM screening [74], and the variations of such screening [6] pose challenges to 

the disease. Lack of agreement over laboratory tests threatens the quality of the procedure, and it 

may endanger perinatal outcomes. Another issue with GDHP risk assessment currently is that early 

clinical diagnosis is hampered by the mid (HDP) to late (GDM) manifestation of the clinical 

symptoms of each of its disease components. Lastly, convoluted interactions exist among the 

many factors associated with the comorbidity of HDP and GDM, and these interactions are not 

only difficult to determine, but also too burdensome for most providers’ limited time. Therefore, 

there is a great need for GDHP risk factor assessment automation through the machine-aided 

approach that this study develops. Such a tool is scalable, and it would ameliorate the discussed 

challenges with fewer resources. It would also be more convenient; requiring no patient effort, 

and generate results instantaneously at the point of care, all in a feto-maternal non-invasive 

manner. Moreover, because this study would identify which group of the gravidae have the 

greatest risk of GDHP, and what the best predictors are, it offers insight into the care providers 

and the stakeholders towards targeted and strategic program planning (prevention and early 

intervention). This would ultimately save the associated cost from increasing morbidity and 

mortality to the care of women and their infants. As advantageous as risk identification of GDHP 

might be to perinatal outcomes, the comorbidity is rarely studied, relative to research 
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investigating GDM and GDP individually, especially in the machine learning domain, therefore, 

this research also adds to the body of knowledge.  

Finding from this work would support clinical decision making of obstetric experts to identify 

pregnant women who have a high risk for GDHP and thus might need more specialized care 

management. The model will particularly be useful to them when caring for 1.) the primigravidas 

since such women are carrying their first pregnancy, thereby, have no previous obstetric history 

that could prompt their care providers for maternal and child medical surveillance; and 2.) the 

experienced pregnant mothers (multigravidas) with no known obstetric history related to GDM, 

HDP or GDHP. Therefore, the model will likely boost maternal and child care quality outcomes; 

and ultimately be lifesaving for pregnant women and their unborn babies. Equally, the result of 

the proposed study will potentially promote an effective targeted preventive/interventional 

patient care plan; and proper resource distribution to the most needful because our model will 

additionally identify the specific non-causal (risk) factors that best explain GDHP in a non-

invasive manner.  

2.1.2. BACKGROUND OF METHOD 
 

The methods will examine the effectiveness of alternative automated methods for training 

predictive models with existing data where the data elements correspond to the aggregated 

clinical history of an individual patient, represented as a set of fields and associated values. 

These methods will all be examples of supervised machine learning, because the (preprocessed) 

data itself will provide examples of the class values to be predicted as an outcome, while the 

other values might be used as features that might predict that outcome through some 

combination. SML methods generally assume (or work best when) features are independent (and 

thus cannot be redundant), values for features are always available, and the distribution of values 
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is uniformly balanced across their ranges, which is not always the case for medical data.           

To address the complexities of real data, methods of feature selection and feature augmentation 

can be applied before the final SML models are created. SML models overall can be evaluated 

using either a fixed split between training and test sets; or by using a variant of cross-validation, 

which partitions the data over multiple evaluations (by random or stratified sampling technique), 

each of which uses a different partition as the training and test sets. 

2.1.2.1. FEATURE SELECTION  

 

Feature selection picks the best subset of features that maximize the performance of the model. 

Generally, this is done by evaluating different feature subsets- formed from leaving some out and 

testing them. This means we will know what the features to use, but not what values for features 

lead to each class in the decision problem. The aim of this procedure is to minimize the number 

of selected features to the optimal ones that explain the model the most. Among other benefits, 

feature selection removes redundant independent factors, while potentially preventing / 

minimizing 1.) errors; 2.) computational cost of measurement; 3.) underfitting; 4.) overfitting. 

The process also mitigates false or unreliable results. Feature selection adds value beyond model 

accuracy because it provides meaningful insight into the data, making the results of SML more 

transparent. Moreover, most modeling algorithms cannot efficiently handle high dimensional 

data, hence, it is reasonable to eliminate features that offer no value to the model [75]. In an 

imbalanced dataset, preceding data resampling with feature selection is suggested to be more 

effective, especially, if using SMOTE [76]. Four FSTs assessed in this study are: Recursive 

Feature Elimination, Recursive Feature Elimination with Cross-Validation, Pearson Correlation 

Coefficient and Variance Inflation Factor Analyses, and Genetic Algorithm. 
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2.1.2.1.1. RECURSIVE FEATURE ELIMINATION 

 

RFE is an embedded FST that works with either deterministic (fixed) or stochastic 

(random) threshold. The threshold is the number of reduced features (n_features) to be 

used by the classifier. These cut off points serve as the stopping criteria for the iterations. 

The algorithm uses a classifier; hence, each iteration produces a model accuracy, and the 

index number of features is displayed alongside with the model accuracy. The algorithm 

is slow, but it has a track record of success in studies such as the identification of gene 

associated with myocardial infarction [77]. The authors explored RFE with SVM. 

2.1.2.1.2. RECURSIVE FEATURE ELIMINATION WITH CROSS-VALIDATION 

  

This is an ensemble feature selection approach. It aims is to identify and choose a unique 

set of optimal features obtained from the combined selections of multiple FSTs. Hence, 

the RFECV algorithm is a model based FST, thus operating through an estimator 

(classifier). Any type of cross-validation method can be implemented in RFECV, but the 

StratifiedKFold (SKFCV) is a robust cross-validation variant for imbalanced data through 

its sampling technique (stratified). The three methods involved in the FST are available 

through the Scikit Learn Application Programming Interface (API).   
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2.1.2.1.3. GENETIC ALGORITHM 

 

Genetic Algorithm belongs to the wrapper category of feature selection approaches. It is 

an advanced biology-based (evolution) computational method that treats feature selection 

as a search problem, searching iteratively to find the overall optimal set of values for 

some parameter by generating new candidate combination (features) and evaluating them 

together, such that by the final stages of the search, only the combinations that lead to the 

highest quality results remain. This feature selector is widely used in computerized 

modeling tasks involving medical problems. The algorithm also has an impressive 

performance track record [78]. 

2.1.2.1.4. PEARSON CORRELATION COEFFICIENT  

AND VARIANCE INFLATION FACTOR ANALYSES 

 

This method involves three sequential steps 1.) feature-feature multicollinearity check; 

2.) feature-target correlation analysis, and 3.) Variance Inflation Factor (VIF) analysis for 

further assessed for multicollinearity assessment. Each step requires setting a threshold 

for correlation coefficient (r), and an R-Squared threshold for VIF. The output of one step 

is the input of the next step. The VIF method is an inverse of 1-(R- squared), and it is 

available through the Scikit Learn or Statsmodel library of Python programming 

language. The final output of VIF analysis becomes the selected features of the PCC-

VIFA feature selection technique. 

Mathematically, VIF is expressed as: (1/(1-Ri^2))                                                        (1)                                                                          

,where Ri^2 is the amount of variance in y that is explained by x  
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2.1.2.2. DATA AUGMENTATION 

 

The Synthetic Minority Oversampling Technique is a data resampling algorithm that is 

commonly used to resolve severe imbalances in the training set, such as when the number of 

positive examples is less than a quarter of the total, which would allow a training algorithm to 

achieve high measures of performance simply by defaulting to the majority class. There are 

different strategies utilized by the resampling method, the default being “auto”, which ensures 

the number of the minority class and that of the majority class are the same. The K-Neighbors 

algorithm is the underpinning mechanism of the SMOTE algorithm (resampler). The default 

value for the k_neighbors parameter (k) in SMOTE is 5. The resampler can be implemented 

externally or internally through its Imblearn pipeline, and the algorithm can be optimized to 

enhance its effectiveness. 

2.1.2.3. MODEL OPTIMIZATION METHOD 

2.1.2.3.1. HYPERPARAMETER TUNING 

Hyperparameter optimization is a process of finding the best combination of model parameters 

and their values towards minimizing errors and constructing an optimal model. Model 

optimization can be performed manually or automatically. The GridSearchCV (GSCV), from 

Scikit-Learn, is one of the algorithms that is commonly utilized to objectively tune (or regularize, 

in the case of logistic regression) the hyperparameters of a given classifier. The user provides a 

list of different hyperparameters and their corresponding values of a classifier to the “grid-

param” parameter of the GSCV. The tuning algorithm then iterates over the list, and produce the 

best combination of parameters, based on a specified model performance scoring metric. The 

process is, however, time-consuming and the set of parameters (and their values) to explore are 

based on user’s preference, leaving room for variation.  
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A key parameter optimization in the Tree-based algorithms (RF and DTree) is the “criterion”, 

which determines the type of method the algorithms use for finding the informativeness of each 

feature in their decision making of class assignment. This concept is known as Information Gain 

(IG) analysis. RF and DTree use two approaches (Gini and Entropy) for calculating feature 

information gain, also known as feature importance. Entropy was selected by the GSCV method 

for both tree-based algorithms in this study. 

2.1.2.3.2. ENTROPY 

 

Entropy is a measure of the informativeness of a given feature to the determination of the class 

assignment by a Tree-based algorithm. Its score ranges between 0 and 1. The smaller the Entropy 

score of a feature, the optimal the split at such node; and a given node is said to be pure when its 

Entropy score = 0. When both classes in a binary classification obtain the same probability score 

in a feature, a maximum Entropy (1) score is obtained, and the node is said to be “impure”, 

implying uncertainty. Classifiers are often optimized to maximize purity and reduce errors. 

Formula for Entropy: 

, where p represents probability                    (2a)  

For our binarized target, RF and DT would compute the Entropy score of each feature as 

follows: 

Entropy=[(prob_Yes_GDHP)*log2(prob_Yes_GDHP)]-[(prob_No_GDHP)*log2(prob_No_GDHP)]           (2b)                       
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2.1.2.4. MODEL EVALUATION METHOD 

 

2.1.2.4.1. STRATIFIEDKFOLD CROSS-VALIDATION METHOD 

 

The StratifiedKFold cross-validation model evaluation method is a type of cross-validation (CV) 

method that splits the dataset into k equal mutually exclusive stratified subsets, rather than 

performing a random split as K-Fold cross-validation does. K-1 folds are then utilized for 

training the model while each of the subsets is used exactly once for testing the predictive 

performance of the model. This process is repeated (iteration) k-times, and the model 

performance results per k-fold are then aggregated. The mean (average) value is the 

generalization result per model evaluation metric. StratifiedKFold CV is a well-known model 

evaluation approach when using an imbalanced data.  

2.1.2.5. PIPELINE 

  

 

Figure 1: Standard supervised machine learning pipeline. 

  

 
Source: Dipanjan Sarkar, Raghav Bali, Tushar Sharma. Practical machine learning with Python (2018). 
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Within the scope of standard machine learning, a pipeline (Figure 1) represents a clear workflow 

(step-by-step) of a modeling task. Among other benefits, the use of a pipeline promotes model 

scalability and updatability. 

 2.1.2.6. OVERVIEW OF THE SUPERVISED MACHINE LEARNING ALGORITHMS 

EXPLORED  

 

The predictive model of GDHP was established based on five standard SML classifiers and one 

deep learning algorithm. The support vector machine, logistic regression, random forest, decision 

tree and StackingClassifier were the standard SML algorithms tested, while the KerasClassifier 

was examined from the DL subset of SML. The six algorithms were employed to automatically 

differentiate whether a pregnant woman belongs to the positive class or the negative class 

2.1.2.6.1. SUPPORT VECTOR MACHINE 

 

Support vector machines are a distance-based method for training a classifier. The 

method sets a decision boundary between examples represented as vectors such that the 

distances between the examples (for either class) and the boundary are maximized. SVM 

can handle both multiple continuous and categorical variables. Studies show the 

algorithm often produces higher-performing models than other classification algorithms, 

including decision tree, and the conventional statistical methods [79]. This classifier uses 

regression to find and construct hyperplanes in a multidimensional space that best 

separate cases of different class labels, binary labels in this case. The farther away a point 

is from the separating line, the more confident one can be about the prediction for that 

point. In a study of concurrent Type 2 diabetes mellitus and hypertension in the general 

population, SVM was one of the two classifiers with outstanding performance [80].  
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2.1.2.6.2. LOGISTIC REGRESSION 

 

Logistics Regression, also known as logit, is a statistics-based supervised machine learner 

that is used both in classification and regression problems. In binary classification, the 

algorithm predicts a probability for the positive class that can be mapped to a binary 

outcome by setting a threshold. The value of the threshold can be fixed (standard 

approach); determined experimentally or computed using various approaches. The 

standard approach is the default setting.  

The LReg algorithm is widely employed for both classification and regression problems. 

In a binary classification problem, like the one in this study, LReg predicts the 

probability of a given instance (a data entry) belonging to a certain category or not. The 

Liblinear library is among other types of solver in LReg. The solver is geared towards 

binary classification, small to moderate sample size, and it supports L1 (Least Absolute 

Shrinkage and Selection Operator, also known as LASSO) and L2 (Ridge) regularization 

techniques. By default, Scikit Learn utilizes L2 as the regularization method in its logistic 

regression. LReg uses a non-linear activation function, known as the sigmoid function, to 

classify data. Many machine learning studies that model obstetric health problems such 

as GDM [81] and metabolic syndrome [19] successfully explored logistic regression. 

2.1.2.6.3. RANDOM FOREST 

 

The Random Forest classifier is a tree-based supervised ensemble machine learning 

algorithm that builds multiple decision trees from randomly explored and selected subsets 

of its training data, then combines their outputs. It then harnesses the power of the trees 

by aggregating their predictive votes to establish the final class of the test object. This 

characteristic of RF contributes to its advantages over a single decision tree. The RF 
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classifier is known for its high specificity and sensitivity; robustness to noise and outliers; 

and rare overfitting or underfitting; two problems that may arise from noisy data. RF is 

also computationally and time efficient (cost). Literature widely points to the optimality 

of combining many estimators as a classification algorithm [82], [75]. Among many 

clinical problems, RF was implemented for modeling in an acute kidney injury study 

[83]. Also, in a comparative study of diabetes where machine learning models were 

developed, both the LReg and RF classifiers performed similarly [84].  

2.1.2.6.4. DECISION TREE 

 

Another well-known Tree-based algorithm that is commonly used for supervised machine 

learning is Decision Tree. It estimates or constructs a single tree that can be represented 

in a flowchart-like tree structure. The topmost node in a decision tree is the root node, the 

internal node represents feature (attribute), the branch connotes a decision rule, and each 

leaf (terminal) node symbolizes the outcome. The classifier learns to partition the tree 

based on the attribute value in terms of how much information a feature can provide the 

sub-tree, thus calculating the Entropy (Section 2.1.2.2.3.2) or the Gini Impurity of such 

feature (IG analysis). It splits the tree using recursive approach (recursive partitioning). 

The flowchart-like structure assists in understanding the decision-making process of the 

algorithm as the attributes that weighed most heavily in the classification are transparent. 

Studies indicate one of the pitfalls of machine /deep learning model utilization in the 

clinical domain is the lack of human interpretability of some of the algorithms, hence, 

disease models are sometimes seeing as a black box [85]. In general, tree-based 

estimators ameliorate this barrier as they balance human readability and interpretability 

with efficiency, thus, adding value to the classification model. This characteristic bestows 
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a wide acceptance advantage on tree-based models among the medical experts [86]. The 

Decision Tree estimator has been employed in the health domain involving binary 

classification task to identify the relationships of several predictors to an outcome 

variable- metabolic syndrome [19], and GDM [87] for instance. 

2.1.2.6.5. STACKINGCLASSIFIER  

 

The StackingClassifier is a heterogeneous ensemble algorithm. The classifier combines 

multiple classification algorithms through a meta-classifier. The base estimators, also 

known as the first-level learners or weak learners, are trained on the entire training set. 

The algorithm is implemented using cross validation. The meta learner (second-level 

learner) gets fitted on the outputs of the base learners and the final prediction is then 

computed by the meta-estimator, hence. There are two ways of utilizing Stack– training 

the meta classifier on the predicted class labels or on the probabilities from the ensemble.  

2.1.2.7. DEEP LEARNING ARCHITECTURE  

 

 

     Figure 2: Deep neural networks architecture 

 
 

Yes_GDHP (1) 

No_GDHP (0) 

Adapted from: Adhi Tama, Bayu & Rhee, Kyung Hyune. (2017). Attack Classification Analysis of IoT Network 

via Deep Learning Approach. Research Briefs on Information & Communication Technology Evolution 

(ReBICTE). 3. 10.22667/ReBiCTE.2017.11.15.015. 
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A deep architecture/deep neural network (Figure 2) is a hierarchical, interconnected multiple 

layers of three major processing units- input, hidden (more than one hidden layer), and output. 

The concept simulates the human nervous system, thus having many nodes (neurons).  

2.1.2.8. OVERVIEW OF DEEP LEARNING ALGORITHM  

 

2.1.2.8.1. KERASCLASSIFIER 

  

The KerasClassifier is a is Python compatible high-level deep neural networks API. It runs on 

top of TensorFlow, and its core data structures are layers of nodes, each of which has an activation 

function and parameters that are modified during training to create an optimal predictive model based 

on the training data. KerasClassifier is a Keras wrapper library from Scikit Learn that can be used 

for building deep network models for classification. The Keras-based classification algorithm 

follows the typical DL architecture; hence, it is a multi-layer (input, hidden, and output) artificial 

neural networks (ANN) variant. ANN, popularly known as “neural nets”, is a biology-inspired 

data processing concept. There are various types of activation techniques (functions), but the 

rectified linear unit (ReLU) and sigmoid functions dominate in binary classifications. Their 

potential performance could be assessed over any number of epochs, as specified by a 

hyperparameter given by the researcher. ReLU and Sigmoid functions are linear and non-linear 

activation functions respectively. ANN algorithms have shown demonstrable success in the 

obstetric modeling, such as [88], [78]. 

ReLU function: f(x) = max (0, x)                                                                    (3)           

Deep learning is a subdomain of supervised machine learning, and ANN modelling that has seen 

increasing use because it does not make assumptions about the independence or distribution of 

feature values and hence can do well even without feature selection or data augmentation. Deep 
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learning can also create decision models where relationships among features are non-linear, but 

using multiple layers of nodes that each use the training data to learn optimal weights for 

combining the inputs from other layers. 

 2.1.2.9. MODEL PERFORMANCE EVALUATION METRICS 

 

Research supports using multiple measures to gauge and summarize model performance as no 

single measure captures all the attributes of a model [89]. The techniques to use for such 

assessment include model accuracy, F-score, precision, recall (sensitivity), and the area under the 

receiver operating characteristic curve. 

Key: 

• Positive (P): class instance is Positive  

• Negative (N): class instance is Negative  

• True Positive (TP): class instance is Positive, and the model predicted it as Positive. 

• False Negative (FN): class instance is Positive, but the model predicted it as Negative. 

• False Positive (FP): class instance is Negative, but the model predicted it as Positive. 

• False Positive Rate (FPR) 

• True Positive Rate (TPR) 

2.1.2.9.1. PRECISION 

 

Precision, also known as Positive Predictive Value (PPV), is the proportion of the correctly 

predicted instances as belonging to class c among all class instances of which the classifier 

claims that they belong to class c. So, this measure evaluates the fraction of correctly 

classified instances among the instances classified as positive. It is mathematically expressed 

as:  
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Precision= TP/(TP+FP) *100                                                                                  (4) 

2.1.2.9.2. RECALL (SENSITIVITY) 

 

Recall is the ratio (percentage) of the total number of class instances correctly classified as 

positive instances, divided by the total number of class instances correctly classified as 

positive, plus total number of class instances correctly classified as negative instances. High 

recall score indicates the classifier has correctly identified many True positive class instances 

and a small number of FN. Recall can be mathematically as:  

Recall = TP/(TP+FN) *100                                                                            (5) 

2.1.2.9.3. MODEL ACCURACY 

 

The accuracy of a given algorithm is the overall correctness of the model. It refers to the 

proportion of correctly predicted instances for each class to the total number of sample cases. 

Therefore, the accuracy, A, of algorithm, m, can be mathematically expressed as: 

         Am=(s/N)*100                                                                                        (6a) 

, where s is the sum of correct predictions, and N is the total number of predictions made. 

Or,     [(FP +FN)/(TP+TN+FP+FN)]                                                          (6b) 

It is cautionary to indicate that model accuracy could be a misleading model evaluation 

metric, especially with an imbalanced data. So, the final decision about model performance is 

not commonly based on this measurement.   
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2.1.2.9.4. F1 

 

The F1, also known as F-Measure, represents both precision and recall. It is the harmonic 

mean of precision and recall. It uses the harmonic mean in place of the arithmetic mean to 

regularize the extreme values more. F1 is mathematically expressed as: 

F= (2*(Precision * Recall) /( Precision + Recall))                                       (7) 

2.1.2.9.5. AREA UNDER THE RECEIVER OPERATOR CHARACTERISTIC CURVE  

 

The area under the receiver operator characteristic curve of a model is an equivalence of the 

c-statistic. This metric is a probability curve of the model ability to separate the positive class 

from negative class. The measure is commonly being referred to as, AUC or ROC Curve. It 

is used to display the performance of a binary classification algorithm, but it could be 

modified for a multiclass as well. The closer the AUC score to 1 (maximum obtainable 

score), the better; and that shows the model is a well-performing one with a high chance 

(probability value) of good differentiation capability between positive and negative classes. 

A poor model would have its AUC near 0; implying the algorithm has a worst measure of 

separability (no class is selected). AUC score of 0.5 denotes the model is possibly merely 

interchanging the result by predicting 0s as 1s and vice vasa. ROC Curve is normally plotted 

with TPR against the FPR where TPR goes to the y-axis and FPR is on the x-axis.   

2.2. RELATED STUDIES 
 

2.2.1. RELATED MACHINE LEARNING BASED ANALYSES TO PREDICT GDHP 

  

One of the few machine-learning based studies of GDHP has been that of Du et al (2020) [90], 

where deep learning was the methodology of analysis. The authors conducted image analysis of 
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unstructured data (radiology dataset; n=548) of fetal lung to investigate GDM and preeclampsia 

individually and concurrently with the goal of predicting neonatal respiratory morbidity (NRM). 

The focus of the study clearly differs from that of the present study as it was more fetal-oriented 

than maternal, the dataset analyzed was unstructured data, and the sample size was small. 

However, the current study centers on maternal risk identification for GDHP, and the commonly 

obtained prenatal data was examined.   

In a nationwide prospective study [82] carried out in Indonesia in the year 2020, the authors 

adopted artificial intelligence (AI) techniques for a preliminary prediction of preeclampsia. The 

study analyzed the data of the preeclamptic/eclamptic (n = 3318) vs pregnant women with 

normal blood pressure (n = 19,883) with singleton pregnancy. There were 95 features in the 

dataset, ranging from demographic data to past medical histories (from 24 months prior to the 

event, to delivery as the event). Feature selection found only 17 predictors to be the most 

influencing factors as identified by random forest. We plan to test this algorithm out in feature 

selection processes of the GDHP modeling as well. SVM, LReg, DTree, RF, artificial neural 

networks and an ensemble learner (a combination of all other mentioned algorithms) were the six 

classification algorithms explored by the authors. AUC was employed to compare the models. 

Finding from the study indicates pre-conceptual health around one year (“9-12 months to the 

event”) is crucial to perinatal outcomes. Using precision, sensitivity, and specificity in the 

validation sets, the model built in Sufriyana et al.’s work [82] outperformed the existing ones. 

Although this obstetric modeling yielded a very informative result about preeclampsia 

prevention, excluding women with other variants of HDP and the gestational diabetic 

hypertensive (or vice versa) women is one of its limitations. This is especially the case; 
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considering the assertion that the factors responsible for HDP variants are very similar, and that 

the conditions carry an equal level of risk, which includes cardiovascular disease [4].  

Additionally, SML methods were applied to a genome-wide association study (GWAS) 

conducted by Kong and Choe (2019), where a female-specific metabolic syndrome predictive 

model was constructed (n=3,968) [91]. The GWAS research was devoted to finding fundamental 

genetic concepts in relation to MetSyn of the female gender. Model evaluation depicts the AUC 

of the ROC curve for female is significantly higher (AUC = 0.85) than that of male 

(AUC = 0.57). The results are consistent with literature as they imply that women are genetically 

more susceptible to MetSyn than men [15], [92]. The study, however, was data-restrictive 

because genetic risk factors were solely explored in the prediction of metabolic syndrome 

affecting women, while studies show disparate non-causal factors are responsible for HDP. Also, 

even though the study focused on women and MetSyn, pregnancy-related factors were not 

examined. 

2.2.2. RELATED NON-MACHINE LEARNING BASED ANALYSES TO PREDICT 

GDHP  

 

Earlier data-driven work on GDM and HDP co-occurrence did not use machine learning. Ling et 

al. (2018) [93] carried out a prospective study using conventional statistical methods to ascertain 

the individual and synergistic effect of GDM and HDP on postpartum cardio-metabolic risk. Of 

the 400 pregnant women who were recruited at their early pregnancy period (5-8 weeks), 276 of 

them eventually participated in the 5-year follow-up study. The authors described MetSyn as an 

abnormal glucose metabolism and hypertension. The results of the study show HDP and GDM 

individually and collectively impair postpartum cardiometabolic health. The study reported a 

Relative Risk of 2.6 (1.7-3.9) and 2.7 (1.6-4.9) for each case (individual condition and jointly) 
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respectively. Although, there is a thin line of difference between these relative ratios; with both 

having approximately threefold risk ratio, their slight difference cannot be overlooked. 

Meanwhile, due to the inherent drawbacks of the study design (longitudinal study), the result is 

not generalizable. For instance, there is a 5-year gap between the time when the study 

commenced and when it ended. Apart from the study recording nearly 50% (124 gravidae) 

response loss, much could have changed in the participants’ health status (and /risk factors) after 

the study started (during pregnancy), and after delivering their babies. For instance, some could 

have embarked on lifestyle modification, as various studies indicate these changes are necessary 

to prevent or minimize maternal cardiometabolic risk. The final sample size (276) is also too 

small for the finding to be applicable to the pregnant population.  

Another non-SML study within the paradigm of concurrent GDM and HDP was conducted in 

2018 by Cao et al. [94]. The co-existence of gestational diabetes mellitus and preeclampsia using 

the laboratory data (C-reactive protein (CRP) and interleukin-17/IL-35) was used, along with the 

BMI of four groups of pregnant women (139). The groups were assembled according to 

attributes, including preeclampsia, normal blood pressure, GDM and co-existing GDM and 

preeclampsia. Multiple conventional low-level data analysis methods were applied, including 

statistical significance of difference and Analysis of Variance with Post-hoc Turkey’s test to 

assess the difference of means of the four groups. Pearson correlation coefficient was also 

applied to examine the association between predictors. Its result shows there is a positive 

correlation between the following variables diastolic blood pressure with interleukin (IL)-17 

levels; BMI and triglyceride; and, between IL-17 levels with BMI and proteinuria in the group 

with comorbidity of GDM and preeclampsia. Results from the analysis demonstrate maternal 

hyperlipidemia (lipids), hyperglycemia, high BMI, high CRP levels and imbalanced interleukin-
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17/IL-35 may lead to the comorbidity of GDM and PE. This insight notwithstanding, the sample 

size is too small, and its scope is limited. A myriad of factors determining the co-existence of 

GDM and preeclampsia were left out by analyzing only maternal laboratory and BMI data. This 

is especially so because as Gaillard et al.’s work [73] reveals, laboratory tests may fail in certain 

situations; and its ability may not extend to certain risk factors of these diseases. However, the 

finding from Cao et al.’s work is consistent with the other research indicating GDM and HDP 

interrelate. It also shows the impact of GDHP extends beyond the pregnancy period.  

2.2.3. SUMMARY OF RELATED DATA-DRIVEN STUDIES ON GDHP 

  

As the discussed past machine learning research have shown, supervised machine learning 

clearly holds promise for identifying pregnant women who are at risk of developing GDHP. 

Generally, machine learning research centering on the comorbidity of GDM and HDP is rare. 

Therefore, the current study adds to the body of knowledge, and its superiority is in in many 

folds 1.) it is more comprehensive in terms of the disease component as it considers the six HDP 

fields and one GDM field that are available in WiseSubset to create the comorbidity field; 2.) it 

is also wide-ranging in methods because it simultaneously assessed the utility of five standard 

SML and a deep learning algorithm on routine prenatal care attributes. To the best of our 

knowledge, there is no published model that combines such methods to study GDHP; and 3.) this 

is also the first research to classify the gravid population as having GDHP or not, using a PeriData 

set or otherwise, and regardless of the methodology. These observations point to the uniqueness 

of our research in the domains of machine learning and obstetrics.  
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3. METHOD 

 

3.1. INSTITUTIONAL REVIEW BOARD 
 

We obtained an Institutional Review Board (IRB) approval (IRB No.21.250) from the University 

of Wisconsin, Milwaukee before embarking on this research. We also had Data Use Agreements 

with the clinical site. To be Health Insurance Portability and Accountability Act compliant, we 

obtained a waiver for the two PHI fields in our research protocol. For the purpose of this 

research, we named the sample as, “WiseSample”; and the extract of WiseSample was called, 

“WiseSubset”. Some of the fields in the sample were smoking, prepregnancy weight, fetal 

gender, mother’s blood group, mother’s calculated age, and mother’s reported age. 

 

3.2. DATA PREPROCESSING 
 

3.2.1. EXPLORATORY, DESCRIPTIVE DATA ANALYSIS AND DATA EXTRACTION 
 

A custom program was written in the Python programming language to analyze the WiseSample 

dataset for the binary classification of GDHP. We started the exploration of the WiseSample 

dataset with 9962 data entries, each with 79 fields. We first renamed all the fields, and certain 

value names that were not compatible with some of the data processing methods utilized in this 

study were converted to numeric values. Exploratory analysis showed the sample was noisy, and 

placeholder values were identified. We then replaced the placeholders with the token “Nan” for 

missing value (MV)s, and filtered the DataFrame by excluding from the sample all instances that 

lack an actual value for the following seven outcome fields used to determine the target 

(comorbidity) field: Preeclampsia (2 fields), with or without severe features; gestational 

hypertension (2 fields), from the maternal or from the child record; eclampsia (1 field); HELLP 
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syndrome (1 field); and gestational diabetes (1 field). This resulted in WiseSample having 4794 

instances and 79 fields.  

3.2.2. MISSING DATA ANALYSIS AND FEATURE ENGINEERING 
 

There were fields with missing values or low frequency count values in WiseSample. We 

merged some missing value fields to create a composite field appropriately. Such fields include 

1.) the 13 substance-abuse-related fields in the sample (formed Combo_Subst_Use field); 

smoking and secondhand smoking (created smoking_FirstSec field). In some fields with low 

frequent count values, such as mother’s primary race, we merged such values to create a 

combined value in their respective fields. This data manipulation increased the number of fields 

to 82 before we dropped the original fields that were combined. We set and utilized a data 

imputation threshold of a MV ≤ 30.00%, then applied the SimpleImputer method of Scikit Learn 

to address the numeric and categorical missing data. We then dropped fields not meeting the 

imputation cutoff point; the redundant fields; past obstetric history fields that were suggestive of 

previous GDM/HDP (a delivery history of macrosomia for instance, indicates previous GDM); 

and irrelevant fields (e.g. hysterotomy). In this phase, we were left with 4794 instances and 34 

fields in the sample. 

3.2.3. DATA EXTRACTION 
 

We applied two study participation eligibility criteria: no prepregnancy diabetes, and no chronic 

hypertension, and 4624 instances fulfilled the requirement, hence, WiseSample had 4624 

instances and 34 fields. Next, we engineered a binary comorbidity field, GDHP” (Yes [1]/ 

No[0]) by merging the seven GDHP-related outcome fields, (Section 3.3.1), thus extracting the 

WiseSubset dataset (4624 instances and 36 fields) from WiseSample. We then dropped the 
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merged primary fields; the participation criteria; and the merged fields that persistently have low 

frequent counts. The WiseSubset dataset then had 4624 instances and 24 fields.  

 

3.2.4. DATA TRANSFORMATION  
 

To normalize the numerical data, we utilized the MinMaxScaler method of Scikit Learn. We 

transformed the continuous data in multiple steps into categorical data to engineer new fields 

from their respective values. Mother’s reported age, husband’s reported age, prepregnancy 

weight, and pre-pregnancy BMI were among the fields that benefitted from this operation. 

Ordinal data such as mother’s educational status were transformed numerically to preserve and 

reflect their natural order, while the nominal data was transformed into numerical data using the 

LabelEncoder method of Scikit Learn as well. 

3.2.5. FEATURE ENGINEERING 

  

We carried out multiple feature engineering operations to create new fields from existing fields 

where necessary, to reduce the sparsity among value types for some features of the WiseSubset 

dataset and to add features that are implicit in the data, but not represented directly. Among such 

operations was the creation of a “Season” field from the month part of the “date of first prenatal 

care visit” field, and its four weather (United States) values were later turned into four new 

binary fields. Also, the “Year” in the “date of first prenatal care visit” field was utilized with the 

“Year of Last birth” field to engineer an interpregnancy interval field. The field of mother’s 

height in feet and the inches part of the height value, which was a separate field were merged to 

create a single field (feet.inches). We created two categorical fields from the new field. 

Additionally, we followed the adult BMI classification of the CDC [95] to categorize the 

prepregnancy BMI field, then, engineered five new fields from its five values. Mother’s reported 
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age, and husband’s reported age were also decomposed into three age ranges respectively. 

Another field that benefitted from this phase was prepregnancy weight, from which we created 

three new fields (small, medium, large). We similarly transformed the gestational week at first 

prenatal care visit field into three fields. In total, 24 new fields were derived from the existing 

fields in this phase, we call them, “TheNew24”. We dropped all primary/intermediate fields that 

were utilized during feature engineering, then, WiseSubset finally consisted of 4624 instances 

with 38 features and 1 target field.  

3.3. FEATURE SELECTION 

  

We assessed the utility of four different feature selection techniques to select the optimal feature 

subsets from the 38 features while the dataset was still imbalanced. The Scikit Learn pipeline 

was used to implement the embedded FSTs: Recursive Feature Elimination, Recursive Feature 

Elimination with Cross Validation, and the wrapper method (Genetic Algorithm). Pearson 

Correlation Coefficient and Variance Inflation Factor Analysis was also examined. 

3.3.1. PEARSON CORRELATION COEFFICIENT AND VARIANCE INFLATION 

FACTOR ANALYSES 
 

We started PCC-VIFA by obtaining a correlation matrix of the entire feature set (38), then, we 

divided the features into three themes: Obstetric, Maternal-paternal profile, and Environmental, 

and we obtained their correlation matrices. We then set three different thresholds for each of the 

three sequential steps in this FST: feature-feature multicollinearity check, feature-target 

correlation analysis, and an advanced multicollinearity analysis with VIF with the Statsmodel 

Python library. For feature-feature pairwise correlation, we utilized a correlation coefficient (r) 

threshold of abs(r < 0.75), thus giving considering both the positively and negatively correlated 

features. We similarly applied a threshold of abs(r < 0.00) in the feature-target correlation. The 
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intermediate result was an input data for VIF analysis, with a threshold: R Squared= 2.50. 

Features not meeting the cutoff point were automatically dropped. The 19 features that were 

finally selected by PCC-VIFA were named, “19PCC-VIFA”, and we later subjected them to 

information gain analysis with random forest. The selected features were the input data for, 

“Model Set 4”. 

3.3.2. RECURSIVE FEATURE ELIMINATION 

  

To implement RFE, we randomly split the data into 8:2 ratio of train and test sets. Then, 

we utilized the GridSearchCV algorithm to find the best parameters and their values for 

the GradientBoosting (XGB) classifier, which we used as an estimator inside the pipeline 

of the RFE algorithm, hence, RFE-XGB. We then fitted the pipeline on the training set 

and iterated over the range of the indices of the 38 features, starting from index 1. Model 

performance was generated per iteration as the model made predictions on the test set. No 

GDHP model was constructed through this FST.    

3.3.3. GENETIC ALGORITHM 

  

We first randomly split the data into 8:2 ratio of validation set, and TrainAndTest sets, 

the latter was then split randomly as train-test sets. The genetic algorithm framework 

employed was the Distributed Evolutionary Algorithms in Python (DEAP). We set the 

initial population size to 0, initialized the weight with 1 and 0 for bias, and we set 

population size to 100 per generation of 10. We implemented the tournament selection 

method for choosing individuals from a population. The crossover probability was also 

set to 0.5, and 0.2 for the mutation probability. A binary vector of 0 and 1 was created for 

all the features, where 1 implies the corresponding feature would be selected by the 

estimator, and 0 otherwise. We wrapped genetic algorithm on logistic regression, hence, 
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Gen-LReg, to build a model per iteration. A test accuracy score (fitness score) was 

obtained per iteration through a fitness function that evaluates each “individual” 

(combination of features). The Genetic Algorithm stopped when the population 

converged at an optimal solution, and that was an individual containing 22 features. We 

named the predictors, “22Gen”, and obtained their importance scores with random forest. 

A barh chart (a horizontal bar chart) was also generated to visualize their ranks. We 

called the model set that utilized the “22Gen” as input data, “Model Set 5”. 

3.3.4. RECURSIVE FEATURE ELIMINATION WITH CROSS-VALIDATION  
 

We utilized 10-fold StratifiedKFold cross-validation to satisfy the cross-validation 

parameter of the RFECV, while we passed random forest as its estimator, thereby 

creating an ensemble feature selection. This method selected 9 features that we called, 

“9RFECV-RF”. We obtained a Line chart for visualizing the CV scores and their 

corresponding numbers of selected features. A barh chart was also plotted for feature 

importance with RF. We utilized the 9RFECV-RF for constructing, “Model Set 6”. 

3.4. DATA AUGMENTATION 
 

We utilized SMOTE to resolve the class imbalance noted in the WiseSubset data exploration 

phase. For the four (LReg, DTree, RF and SVM) of the five standard classifiers, we implemented 

the resampling algorithm (SMOTE) on the “train” part of each of the stratified fold, thus 

preserving the gold standard (“test” part of each fold). This was done through the Imblearn 

pipeline. We, however, transformed the dataset externally with SMOTE when using Stack and 

Keras since they have no pipelines. In both SMOTE implementation types, the resampler was 

utilized both in its default and in an optimized mode. For clarity, we refer to the augmented 
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training data per mode as, “Augmented Dataset1” and “Augmented Dataset2” respectively. To 

optimize SMOTE, we tuned its k_neighbors (k) parameter by iterating over a range of k values 

(1-10) to select the best value of k in SMOTE per classifier. We set the strategy parameter to 

“auto” and examined the utility of the data augmentation algorithm through the models created 

with each augmented dataset. While Augmented Dataset1 was used to construct the models that 

we call, “Model Set 2”, its Augmented Dataset2 counterpart was utilized for creating Model Sets 

3, 4, 5, and 6. Meanwhile, the Keras model was only included in Model Sets 2 and 3 with 

SMOTE because FST outputs were the data input in the remaining four model sets, and feature 

selection is not a separate process in DL. 

3.5. CONFIGURING AND TESTING THE SUPERVISED MACHINE LEARNING 

MODELS 
 

We examined various models created using the following six types of classifiers: Logistic 

regression, random forest, decision tree, support vector machine, StackingClassifier, including a 

DL classifier known as KerasClassifier. All the algorithms, except the latter, were utilized in 

both their default and optimized modes. For each classifier (except for Stack), we utilized an 

hyperparameter tuning algorithm, known as GridSearchCV, to objectively search and find the 

best hyperparameters and their values from a list of parameters and some corresponding values 

that produce a model with good performance, thus optimizing the classifiers. We then examined 

the configuration quality of the classification algorithms, using standard performance measures. 

We developed a set of base models (Model Set 1) while the LReg, SVM, RF and DTree were in 

their default states through their respective full Scikit Learn pipelines. Model Set 2 was similarly 

built with the listed classifiers still in their default states, but Imblearn pipeline was utilized, and 

SMOTE (default) was added. We constructed four different model sets (Model Sets 3-6) with the 
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optimized classifiers (and an optimized SMOTE), all implemented through the Imblearn 

pipelines of each of the classifiers. For the StackingClassifier, we set RF, DTree, and SVM as the 

base learners, while LReg was utilized as the final estimator (meta learner). This configuration 

was implemented and tested in 6 scenarios to build Model Set 1-6. The deep learning algorithm 

was developed with KerasClassifier. The model was configured as follows: 4 layers of 1 input 

layer (38 input data), 2 hidden layers, and 1 output layer. The layers had 16,16,16 and 1 node 

respectively: with a corresponding ReLU activation function, except for the last layer where 

Sigmoid was utilized as the activation function; an optimizer (Adam); a loss function (binary 

crossentropy); and a scorer (accuracy).  

For building the Keras baseline model, we used 400 epochs and 2000 batchsize, and the 

imbalanced data was analyzed with the 38 features. We then tested the configuration with one 

case, the baseline (Model Set 1). Then, we included hyperparameter tuning in the DL classifier 

configuration of subsequent modeling by setting a range of epochs between 2 and 10, and 

batchsize to 100 and 1000, and incorporated GSCV to automatically test and update the 

respective values during learning. We tested the tuned configuration with Model Sets 2-3.  

3.6. MODEL TRANSPARENCY WITH DECISION TREE 

 

We constructed 33 decision tree models in this analysis. To promote transparency (Section 

2.1.2.3.1), a single tree structure was obtained as a representation for visualization from the 

model set where the DTree algorithm recorded the best performance (Model Set 4), based on 

recall and AUC. This represents/ portrays the concept of model transparency that is common to 

medical modeling, and Entropy (Section 2.1.2.3.2) was utilized in the DTree algorithm. 
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3.7. SUMMARY OF EXPERIMENTS 
 

All the six classifiers in this analysis utilized the full set of features in 18 scenarios (Model Sets 

1-3), while we additionally tested each of the five standard SML algorithms using each of the 

four derived feature sets from the FSTs in 15 scenarios (Model Sets 4-6). Therefore, a total 

number of 33 predictive modeling scenarios were created in this binary classification of the 

WiseSubset dataset for GDHP. The Sklearn pipeline was used in 4 (LReg, RF, DTree, and SVM in 

Model Set 1) of the 33 tests, while the Imblearn pipeline was utilized 20 times. Testing Stack (6 

cases) and Keras (3 cases) with no pipeline created the remaining 9 scenarios. The SKFCV 

cross-validation method was applied to evaluate every model constructed. To measure and 

summarize model performance, we utilized accuracy, F1, precision, recall (sensitivity), and 

AUC; ROC plots were also generated. All the models in this research were systematically 

designed and grouped by input data.  

  



42 
 

4. RESULTS 

 

4.1. DATASET 
 

The exploratory analysis of WiseSample showed the dataset contained actual, missing, and 

placeholder values. Missing data analysis also revealed 31.09% and 31.87% of the dataset had a 

missing value (before and after replacing the placeholder values with a token “Nan” for missing 

data). Part of the results (Figure 3) of the descriptive analysis of the WiseSample is the 

imbalanced distribution of the seven outcome fields that were utilized in creating the GDHP. 

This resulted in the class imbalance of the WiseSubset against the positive class as shown in the 

GDHP chart inside Figure 3. The imbalance is approximately ratio 1.1:100 for the positive class 

and the negative class respectively. Table 1 summarizes the descriptive results of the 

WiseSubset, and the new 24 fields created during feature engineering are displayed in Table 2. 

Also, a full list of the starting fields is available in Appendix A.  

Table 1: Summary of descriptive analysis of WiseSubset 
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Table 2: List of the new 24 features created in WiseSubset 

 

 

4.2. FEATURE SELECTION 
 

Using the RFE-XGB feature selection method, the test accuracy was 98.56% from index 1 to 38, 

hence, this method selected no feature and, thus, no model set. The three steps in the PCC-VIFA 

approach eliminated 6, 1 and 12 features respectively. The thresholds were abs(r<0.75), 

abs(r<0.00), and R Squared=2.50 accordingly; and PCC-VIFA eventually selected 19 features.  

The correlation matrices obtained are in Appendix C-F. The Gen-LReg method selected 22 

features as the best explanatory factors for GDHP. The RFECV-RF strategy identified 9 best 

features, and a Line chart displaying the cross-validation scores per number of features selected 

is available in Figure 4. Also, a barh chart (horizontal bar chart) is in Figure 5 to visualize the 

importance (normalized feature ranking) of the “9RFECV-RF” selections. The results of the 

feature importance analysis conducted with random forest on each feature representative set 
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selected by the three FSTs that selected a feature subset is in a combined Table (Table 3). There 

is also a Table (Table 4) displaying the entire 38 features, and the selected features per feature 

selection method, together with their non-normalized ranks. However, Appendix B is a unified 

view of any information pertaining to all the features and their selections. 

 

Figure 3: Multiple charts showing class imbalance of the GDHP field and its origins. 

            

              

                 
 

             
. 
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Figure 4: Line chart of the RFECV-RF feature selection process 

 

 

Table 3: Normalized feature ranking (importance) of the selected features per FST 
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Figure 5: Barh chart showing the importance of the features selected by RFECV-RF  
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Table 4: All features, their selected subsets per FST, and their non-normalized ranks 

 

  



48 
 

4.3. OVERALL MODEL COMPARISON 
 

We used the following six SML algorithms; LReg, SVM, RF, DTree, Stack, and Keras for 

constructing predictive multiple binary classification models for GDHP. The results of the 

overall model comparison (Figure 6) show SVM recorded the best mean recall (100.00%) in 

Model Set 6. The optimal features were identified by the RFECV-RF feature selection method 

The ROC plot per model in Model Set 6 is available in Appendix G-K. 

Figure 6: Results of overall model comparison 

 

 

 

 

  

Metric(Mean %) Model Set 2 Model Set 4 Model Set 5 Model Set 6

Accuracy 94.81 64.77 52.68 1.19

Precision 2.61 1.43 0.86 1.06

Recall 8.00 46.50 39.00 100.00

F1 3.87 2.78 1.69 2.10

AUC 67.03 54.98 46.20 48.62
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4.4. MODEL PERFORMANCE COMPARISON BETWEEN ALL MODEL GROUPS 
 

The results (Table 5) indicate Model Set 6 produced the largest mean recall score (100.00%) 

through SVM, using the 9 features selected by the RFECV-RF feature selection method. The 

highest mean AUC score recorded in this study was from Model Set 1, where LReg recorded 

76.67% by utilizing the entire 38. Model Set 2 and 3 recorded the highest mean precision 

(5.00%) through LReg as well. In both model sets, the 38 features were utilized with the 

Augmented Dataset1 and Augmented Dataset2 respectively. For F1, its highest mean score was 

from DTree Model Set 2 (4.93%), utilizing the Augmented Dataset1 and the 38 features.  

Table 5: Results of comparison between all the classifiers assessed 

 

Classifier Model Group      Accuracy      Precision           Recall         F1      AUC

SVM

Model Set 1 98.94 0.00 0.00 0.00 49.69
Model Set 2 94.81 2.61 8.00 3.87 67.03

Model Set 3 55.93 0.58 25.50 1.13 36.57

Model Set 4 64.77 1.43 46.50 2.78 54.98

Model Set 5 52.68 0.86 39.00 1.69 46.20

Model Set 6 1.19 1.06 100.00 2.10 48.62

LReg

Model Set 1 98.94 0.00 0.00 0.00 76.67
Model Set 2 98.57 5.00 2.00 2.86 65.14

Model Set 3 98.79 5.00 2.00 2.86 69.67

Model Set 4 80.02 1.53 26.50 2.78 54.98

Model Set 5 85.99 2.05 22.00 3.68 69.73

Model Set 6 73.47 2.31 57.00 4.44 48.19

RF

Model Set 1 98.94 0.00 0.00 0.00 60.67

Model Set 2 98.92 0.00 0.00 0.00 64.71

Model Set 3 98.70 0.00 0.00 0.00 72.10

Model Set 4 87.15 1.29 12.00 2.28 58.91

Model Set 5 90.94 2.38 12.50 3.85 65.50

Model Set 6 85.23 1.11 16.00 2.07 66.27

DTree

Model Set 1 97.19 3.08 6.00 4.05 52.08

Model Set 2 97.45 4.44 6.00 4.93 52.21

Model Set 3 92.06 2.58 16.50 4.39 59.62

Model Set 4 76.58 1.86 39.00 3.52 61.09

Model Set 5 80.25 1.91 35.00 3.85 60.38

Model Set 6 76.28 1.47 36.50 2.82 56.64

Stack

Model Set 1 98.50 0.77 1.50 1.01 60.59

Model Set 2 97.42 1.08 3.00 1.56 70.23

Model Set 3 86.53 0.93 1.37 1.60 72.06

Model Set 4 79.11 1.37 24.38 2.51 58.43

Model Set 5 79.81 1.30 18.38 2.24 64.54

Model Set 6 80.15 1.40 28.38 2.66 64.30

Keras

Model Set 1 98.94 0.00 0.00 0.00 68.82

Model Set 2 98.03 4.10 6.00 4.75 65.23

Model Set 3 96.54 3.16 8.00 3.93 66.40

Comparison Between The Six SML Algorithms Explored in Predicting GDHP
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4.5. MODEL TRANSPARENCY: VISUAL INTERPRETATION OF DECISION TREE 

 

The best mean recall (39.00%) recorded by the DTree algorithm in this analysis was from Model 

Set 4), hence, we generated a representative DTree visualization (Figure 7) from this model set. 

The diagram is a sample visualization of the information gain analysis (with Entropy criterion) 

mechanism that the DTree uses in class assignment. We obtained the visualization from the 10th 

iteration of the 10-fold StratifiedKFold cross-validation model evaluation method explored in 

this study. To simplify the representation and enhance understanding, we limited the tree depth 

to 3 (typically excluding the root node in the count), but the actual maximum depth utilized in 

building the DTree model in Model Set 4 is 50. In the diagram below (Figure 7), infant gender 

was automatically considered to be the root node because the DTree algorithm found the feature 

as having the highest Entropy score (1.0), hence, the rule-based random split (True/False) starts 

from the root node. Rules are human interpretable conditional statements used by the DTree 

algorithm. The internal nodes (11) are where other features and their values were tested against 

other partitioning rules. In total, the DTree tested 12 rules (including the root node). For the 

dichotomous nodes (features with binary values e.g. 0,1), the data-split rule applied by the 

classifier is the feature value ≤ 0.5. However, for the non-binarized categorical features 

(mother_blood_group for instance) with nominal values (0, 1, 2, 3 values, representing the four 

blood group types, ordered as {A, AB, B, O} for example), the algorithm decides and uses the 

best splitting point that gives the minimum error. In the same mother_blood_group example, that 

point was found in mother’s blood group value ≤ 2.5, which corresponds to the subset {A, AB, 

B}. Thus, in Figure 7, the left branch corresponds to a blood type within this set, while the right 

branch corresponds to a blood type outside the set, and that is, blood group O. The splitting point 

of a feature may vary when evaluated in different subtree(s). “Samples” is the total number of 
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instances in each node, and the number of instances per target class (“Yes_GDHP”, and “No_ 

GDHP”) after splitting is considered by the algorithm when deciding about intermediate class 

assignment. A node with an even data split is regarded as an impure node (Entropy =1), hence, 

the near the Entropy score to 1, the more the uncertainty or impurity of the node. A node with an 

Entropy score nearing 0 is almost pure, and no further splitting is possible from a pure node (the 

purer the node, the less the information needed for its description). Therefore, the DTree 

algorithm continues to recursively traverse through the impure path(s) for further assessment, 

splitting the data at any node possible. For the ultimate or overall class assignment, the DTree 

classifier applies a majority rule to determine its prediction at the leaf nodes (1 leaf node is 

shown below, generated by the Underweight_bmi node). Majority rule involves the assignment 

of the most occurring class (mode) to a given instance. 

                                                                                                                                                              

 

Figure 7: A sample decision tree visualization  
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4.6. ANSWERING RESEARCH QUESTIONS  

 

4.6.1. RESEARCH QUESTION 1 
 

As shown in Table 5, the best supervised machine learning tool for GDHP risk assessment was 

designed using the features selected by the RFECV-RF feature selection approach (Model Set 6), 

and not those identified by the Gen-LReg technique (Model Set 5). Therefore, there is a feature 

selection method capable of outperforming Gen-LReg in identifying the optimal feature subsets 

for modeling GDHP with the analyzed dataset, and that method is recursive feature elimination 

with cross validation with random forest. 

4.6.2. RESEARCH QUESTION 2 
 

Based on recall, the results (Table 5) show the optimal SML model for predicting GDHP is 

Support Vector Machine, thus, comparatively outperforming the Keras model on WiseSubset. 

4.6.3. RESEARCH QUESTION 3 
 

Compared to the model performance observed in Model Set 1 (Baseline); where the imbalanced 

WiseSubset was utilized for GDHP modeling, all other model Sets; where the SMOTE algorithm 

was applied, showed a demonstrable improvement (Table 5). Therefore, SMOTE was effective 

in resolving the class imbalance, thus, improving WiseSubset for GDHP model construction.  
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5.   DISCUSSION OF RESULTS AND LIMITATION OF THE STUDY 

 

5.1. DISCUSSION OF RESULTS 
 

Considering our goal of designing a predictive SML tool (model) that optimally identifies the 

sub-population of pregnant women who are at risk for GDHP using the routine prenatal 

attributes, our model generalization and isolation decision was based on recall. The support 

vector machine objectively emerged as the best model to predict GDHP. The model recorded a 

mean recall score of 100.00%, utilizing the nine subsets of features selected by the recursive 

feature elimination with cross-validation with random forest as input data. This optimal model, 

however had a low precision score (1.06%, mean) as a tradeoff for recall, resulting in low mean 

F1 score (2.10%), and six negative examples were correctly labelled. Therefore, an additional 

screening step/further study may be needed to rule out the risk of GDHP in those falsely 

identified (4569) as being likely to develop the comorbidity. During the experiments, 

thresholding with Youden’s J-Statistic was assessed, but the method did not improve the model.  

Furthermore, the feature ranking results (Table 2) show six of the nine most predictive factors of 

GDHP identified by RFECV-RF were also among the top six selections made by at least one 

other feature selection approach. This lends confidence to focusing on the six risk factors namely 

healthy weight prepregnancy BMI, mother’s educational status, husband’s educational status, 

husband’s occupation one year before the current pregnancy, mother’s blood group, and 

mother’s age range between 34 and 44 years.   

Healthy weight prepregnancy BMI (18.5-24.9kg/m2) ranked 5th among the 9 strongest risk 

factors of GDHP, and it’s the 2nd of the 22 features selected by the Gen-LReg. We found the 
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selection and the rank of this predictor to be the most striking exposition from this study. This 

finding, however, agrees with prior assertions of a machine learning-based study on metabolic 

syndrome of the general population [19], indicating that the non-obese do sometimes develop 

metabolic impairments. With obesity being a traditional factor for GDM, HDP, and MetSyn, 

there is a tendency for its presence (or the lack thereof) to be the sole consideration for GDHP-

related preventive/screening/interventional programs, thus increasing the chance of the pregnant 

women with a prepregnancy BMI between 18.5-24.9kg/m2 not receiving timely assessment for 

GDHP, a closely related disorder with metabolic syndrome. Mother’s and husband’s educational 

statuses ranked second and sixth respectively among the nine most predictive factors of GDHP. 

Although, the academic profile of a pregnant woman is as crucial as that of her husband in 

lowering or eliminating the women’s risk of developing simultaneous occurrence of GDM and 

HDP, that of the woman has a stronger influence. Both risk factors, however, belong to the same 

theme (education), thus emphasizing the necessity for a joint effort of the educational and the 

obstetric stakeholders over this impactful obstetric morbidity. Additionally, our study makes it 

clear that mother’s blood group (4th of the 9 most predictive factors of GDHP) plays a crucial 

role in predicting the co-existence of GDM and HDP. This finding is consistent with literature 

indicating that maternal blood group is linked to HDP [48] and GDM individually [50]. 

Additionally, mother’s age (34-44 years) ranked 8th among the 9 most influencing factors of 

GDHP. This finding is particularly useful for planning preventive/interventional targeted 

programs against the comorbidity. The 9th strongest risk factor (husband’s occupation one year 

before the current pregnancy) may be related to the family’s socio-economic status (income). 

Lastly, the 1st (inter-pregnancy interval) and the 2nd (number of pregnancies plus current) of the 9 



55 
 

best predictors, though they were only selected by RFECV-RF, are very important obstetric 

factors associated with GDHP.   

5.2. LIMITATION OF THE STUDY 
 

This study has the following limitations: Both the sample size (9962) and that of its extracted sub-

sample (4624) were small. The sample is also geographically limited to a hospital in WI, and the 

site is a member of a database in the State of WI, therefore, we do not know how well the results 

will generalize to other locales. Another limitation is the inability to identify the subset of 

features utilized by the deep learner in constructing the Keras model, but this limitation is typical 

of DL, hence, not a unique limitation of this research.  

Lastly, based on literature, there are a few other GDM /HDP-related factors that may influence 

the development of GDHP, but such information was unavailable in the analyzed dataset; 

mother’s occupation is one of such data.  
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6. CONCLUSION 

 

We tested six commonly used supervised machine learning algorithms and a representative 

model that employs a deep learning architecture. The results showed that our study has clinical 

(obstetric) utility as such automated methods could be used to augment current prenatal 

screening to find GDHP-at-risk expectant mothers who might not otherwise draw the attention of 

their care provider, especially when they are 1.) primigravidas because such pregnant women 

would have no previous obstetric history that could prompt their care providers for MCH 

medical surveillance; and 2.) multigravidas with no GDHP-related past obstetric history. 

Therefore, the designed GDHP model, the first of its kind, would likely improve pregnancy 

outcomes; and ultimately be lifesaving for the gravidae and their unborn babies. The results of 

this research would also potentially promote an effective targeted preventive /interventional care 

plan; and resource distribution to the most needful (thus, saving costs) because our non-invasive 

ML tool additionally identified the specific and the strongest non-causal factors of GDHP.  
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