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Abstract

The detailed mechanisms coupling the solar wind to Earth’s magnetosphere are not

yet fully understood. Solar wind plasma is heated non-adiabatically as it penetrates

the magnetosphere, and this process must span scale sizes. Reconnection alone is not

able to account for the observed heating; other mechanisms must be at work. One

potential process is the Kelvin-Helmholtz instability (KHI). The KHI is a convec-

tive instability which operates at the fluid scale in plasmas, but is capable of driving

secondary process at smaller scales. Previous work has shown evidence of magnetic

reconnection, various ion scale wave modes, mode conversion, and turbulence associ-

ated with the KHI, all of which can contribute to heating and/or plasma transport

across the magnetopause boundary.

The launch of the Magnetosphere Multiscale (MMS) mission in 2015 offered a

new opportunity to study secondary processes associated with the KHI down to the

electron scale. The MMS mission’s goal was to study the microphysics of magnetic

reconnection at the dayside magnetopause and in the magnetotail. It comprises 4

identical spacecraft, which fly in formation and are equipped with the highest resolu-

tion instrumentation available. MMS is the first mission capable of resolving electron

scale processes due to its combination of high temporal resolution instrumentation
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and its record breaking spacecraft separation. The work presented in this dissertation

focuses on the fluid and ion scale behavior of the KHI as a proof of concept for the

techniques used. Future work will apply these methods to smaller scales to fully take

advantage of MMS’s capabilities.

This work uses MMS observations of 45 KHI events between September 2015 and

March 2020 to determine the influence of the KHI on magnetosphere dynamics and

solar wind-magnetosphere coupling. The observed events are well distributed along

the magnetopause, and occur for the full range of solar wind conditions and IMF

orientations. The KHI growth rates and the percent of the solid angle unstable to

the development of the KHI (which we term the unstable solid angle) are not effected

by the solar wind conditions or IMF strength. The observed KHI grow more quickly

and in more unstable regions the farther downtail they occur.

Ion scale wave intervals observed within the KHI are consistent with the ion

cyclotron, kinetic Alfvén, and kinetic magnetosonic wave modes, all of which can

contribute to enhanced ion heating across the magnetopause. These ion scale wave

intervals are compared with observations made when the KHI is not active. The KHI

is associated with strong increases in quasi-perpendicular (quasi-parallel) ion scale

wave activity in the magnetosphere (magnetosheath), consistent with previous studies

of data from the Cluster spacecraft. Observations show electron beta is decreased

and ion temperature anisotropy is increased in the magnetosheath when the KHI

is present, which can help explain a KHI associated increase in quasi-parallel wave

activity in the sheath. Additionally, parallel velocity shears are increased when the

KHI is active, which may further drive wave activity in all regions.

Ion scale wave intervals show enhanced Poynting flux in all regions and at all wave

vii



angles when the KHI is active, suggesting more energy is available to drive ion heating

during the KHI. Increased Poynting flux is also well correlated with larger changes in

energy during KH associated ion scale waves. The rate of heating, described by the

characteristic heating frequency, also increases for ion scale waves associated with the

KHI. These findings suggest that plasma heating is both increased and more efficient

in the presence of the KHI.
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Chapter 1

Introduction

1.1 The Plasma State

Despite what science fiction authors would have you believe, space is not a vacuum.

The vast distances between planets, stars, and galaxies is filled with plasma. Plasma

is a fourth state of matter, often ignored in elementary science classes. In the same

way that energy may be added to a solid to melt it to a liquid, energy added to a gas

may separate electrons from their atomic nuclei to create a plasma. The free ions and

electrons are responsive to electric and magnetic fields, giving rise to unique processes

which define the plasma state.

Consider an example: a positive test charge in a vacuum creates an electric poten-

tial, which decays with distance. If the same positive charge were placed in a plasma,

the electrons of the plasma would be attracted to it, and the positive particles in

the plasma would be repelled. The movement of charge particles within the plasma

would shield the test charge, and the observed potential would decay exponentially,
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rather than as the inverse of distance. This change in the observed electric effect of

a test charge is just one of the collective effects defining the plasma state.

In the presence of a magnetic field, charged particles in plasma are subject to

several types of motion. A single particle in a constant magnetic field is subject to

the Lorentz force and will gyrate about the field lines. In the case of a magnetic field

gradient, the particle will bounce between regions of high field strength. Curvature

in the magnetic field causes particles to drift perpendicularly to the field lines. The

time and spatial scales of any of these movements is dependent upon the mass of

the particles within the plasma. In the case of a fully ionized plasma made up of

protons and electrons, the much more massive protons will move more slowly and

cover much larger distances than the less massive electrons. The different masses of

particles within a plasma give rise to different scale sizes, in this case the ion and

electron scales.

Scales defined by the movements of single particles are often refered to as kinetic

scales. If we now zoom out from single particles to treat the whole plasma like a

fluid, as is the case in magnetohydrodynmics (MHD), a much larger scale becomes

apparent: the fluid scale. Figure 1.1 demonstrates the different scale sizes common in

space plasmas. Physical processes across all plasma scale sizes play an important roll

in the movement of mass and energy throughout our solar system, and indeed our

universe. The work in this dissertation will focus on the physics of space plasmas near

Earth and the ability of different physical processes to drive heating and energization

across scale sizes.
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Figure 1.1: Different processes in plasma happen at different scales. Fluid or MHD
scale processes occur over a long time and cover large distances, while kinetic scale
processes happen quickly and over smaller amounts of space. Image from Nykyri et al.
[2021a].
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1.2 The Sun Earth System

Most fourth graders encountering their first lesson of biology will tell you that the

sun is the source of all life on Earth. Plants use energy from the sun to grow, animals

eat the plants, and so on up the food chain. At the most basic level, the sun is the

source in biology. This is also true in space plasma physics: the Sun is the driving

source of all the phenomena we study.

The Sun and Solar Wind

As observed by the naked eye, the sun is a boring, albeit, bright blob in the sky.

But with just a little assistance, we discover the sun is much more dynamic than

our eyes would have us believe. Galileo recorded his observations of dark spots on

the sun’s surface in the 17th century using his newly invented telescope [Sakurai ,

1980]. However, Galileo was not the first scientist to observe such sunspots. There

is strong evidence of sunspot observations made in the 9th century C.E., with some

scholars speculating that sunspots were observed as early as the 5th century B.C.E.

[Sarton, 1947; Bicknell , 1968]. Sunspots are visible evidence of the sun’s magnetic

field. The solar dynamo drives a complex field, which is further complicated by the

sun’s differential rotation. The equator of the sun completes a full rotation in about

27 days, while its poles take roughly 31 days to complete a rotation. As field lines

are twisted, active regions develop, and are visible as sunspots, as shown in Figure

1.2. These active regions can produce solar flares and coronal mass ejections which

release large amounts of mass and energy into the interplanetary space.

In addition to acute processes like flares, the sun is also constantly ejecting plasma

in the form of the solar wind. The solar wind is a low density plasma made up
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Figure 1.2: The Sun as seen in extreme ultraviolet light (left) and visible light (top
right). Visible sunspots develop near active regions in the solar magnetic field (bottom
right). Images from NASA’s Solar and Heliospheric Observatory (SOHO).
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Figure 1.3: The density and velocity of the solar wind which impacts Earth is highly
dependent upon processes on the solar surface. In this ENLIL model from NOAA’s
Space Weather Prediction Center, a high density, high velocity region is about to
impact Earth.

protons, electrons, and the occasional alpha particle. Due to the solar wind plasma’s

high electrical conductivity, the solar magnetic field is “frozen” into the plasma as

it leaves the sun and is carried to the edge of our solar system. The solar wind

and its embedded magnetic field, called the interplanetary magnetic field, were first

hypothesized by Eugene Parker [Parker , 1958]. The solar wind is constantly flowing,

but its speed, density, and the strength and orientation of the embedded field are

ever changing. Transient events on the solar surface, such as flares and coronal mass

ejections can dramatically affect the solar wind that makes its way to Earth.

Embedded within the solar wind plasma is the interplanetary field (IMF). As solar
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wind plasma flows radially away from the sun, high electrical conductivity “freezes”

the magnetic field into the plasma while still maintaining a magnetic foot print on the

rotating sun. In the simplest models, this results in an Archimedean spiral, known

as the “Parker Spiral.” The simple model is, of course, not reality, and the IMF

may actually take any orientation. At Earth, we observe the IMF and solar wind

conditions with a suite of spacecraft at the L1 Lagrange point between the sun and

Earth. IMF is often reported in geocentric solar magnetic (GSM) coordinates. in this

coordinate system, the origin is at Earth’s center and the X−axis points towards the

sun. The Z−axis points north along Earth’s magnetic axis. The Y−axis completes

the right-handed system. IMF orientation is usually described as Parker Spiral (BX

and BY dominate with opposite signs), ortho-Parker Spiral (BX and BY dominate

with the same sign), northward (strong positive BZ), southward (strong negative BZ),

radial (BX dominates), duskward (strong positive BY ), or dawnward (strong negative

BY ).

Earth’s Magnetosphere

Earth is protected from the onslaught of the solar wind and IMF by its own magnetic

field. Earth’s internal dynamo generates a near dipolar field, similar to a common

bar magnet, that forms a bubble of protection called the magnetosphere. As the solar

wind flows around the magnetosphere, the dayside closest to the sun is compressed

and the nightside is stretched to form a long tail. Thus Earth’s magnetosphere more

closely resembles a jellyfish than the typical dipole field. Contained within the mag-

netosphere is a mostly independent system of magnetized plasma and currents, as

can be seen in Figure 1.4. At the boundary of the magnetosphere, called the mag-
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Figure 1.4: Schematic illustration of the magnetosphere and current systems from
Pollock et al. [2003].

netopause, a variety of physical processes operate to couple the solar wind to the

magnetosphere.

The solar wind flows super-Alfvénicly: it moves forward faster than information

about upcoming obstacles can travel back. Much like an airplane traveling superson-

ically, this results in shock waves around obstacles. At the Earth, this is known as

the bow shock. Just inside the bow shock is a layer of shocked solar wind known as

the magnetosheath. Plasma within the magnetosheath is typically colder and denser

than the plasma within the magnetosphere. Though the solar wind is slowed im-

mediately after the bow shock, it re-accelerates as it flows around Earth. Thus the
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plasma in the flank and tail magnetosheath flows much faster than plasma within the

magnetosphere.

The magnetosphere is not a single homogeneous region. Just inside the magen-

topause is the low-latitude boundary layer (LLBL). The LLBL is essentially a tran-

sition region where plasma parameters change from magnetosheath values, to values

in line with the inner magnetosphere. The properties of the LLBL vary with location

and IMF conditions. The LLBL is thinner on the dayside magnetosphere than in the

tail, and, as the name suggests, is most prominent at low latitudes near the equator

[Eastman and Hones Jr , 1979].

The magnetotail is separated into northern and southern lobes by the plasma

sheet which contains the cross tail current. The plasma sheet is much hotter and

more tenuous than the magnetosheath and LLBL, but not uniformly so. Observations

from Defense Meteorological Satellite Program (DMSP) and Time History of Events

and Macroscale Interactions during Substorm (THEMIS) spacecraft have established

that the cold component ions of the plasma sheet are 30-40% hotter in the dawn

flank than in the dusk [Hasegawa et al., 2003; Wing et al., 2005; Dimmock et al.,

2015]. Dimmock et al. [2015] conducted a statistical study of the magnetosheath

source population as observed by THEMIS spacecraft over seven years which showed

ions in the dawn flank are on average 10% hotter than those in the dusk flank.

This asymmetry is more pronounced under fast (> 400 km/s) solar wind conditions

[Dimmock et al., 2015]. However, even for fast solar wind, the asymmetry of the

magnetosheath source plasma is insufficient to produce the observed asymmetry in

the plasma sheet. MHD simulations are unable to reproduce the observed sheath

asymmetry, but it is apparent in hybrid models, suggesting a kinetic scale mechanism
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is responsible for asymmetrically driving the heating of cold component ions in the

sheath and farther into the magnetosphere [Dimmock et al., 2015]. The exact nature

of mechanism has not yet been determined.

Solar Wind - Magnetosphere Coupling

The coupling of the solar wind to Earth’s magnetosphere and its impacts on local

space weather are a fundamental question of space physics. Several mechanisms

operating at the magnetopause boundary, such as magnetic reconnection [Paschmann

et al., 1979; Sonnerup et al., 1981; Gosling et al., 1986; Burch and Phan, 2016] and

viscous interactions [Axford and Hines , 1961; Otto and Fairfield , 2000; Fairfield et al.,

2000], are responsible for the transfer of mass and energy from the solar wind to

the magnetosphere. Understanding the detailed effects of these processes is vital to

predict and help prevent negative outcomes from space weather.

In the most simplistic model of magnetic reconnection, antiparallel magnetic field

lines very near each other break and reconnect in an explosive process in which energy

previously stored in the field is converted to kinetic and thermal energy in the plasma.

Figure 1.5 depicts antiparallel field lines before, during, and after reconnection occurs.

In practice, magnetic fields in space plasmas are usually not strictly antiparallel.

Reconnection occurring for non-antiparallel fields is known as component or guide

field reconnection.

We typically assume the magnetic field is “frozen” into the plasma as a result of

high conductivity. However this frozen in condition must be violated for reconnection

to occur. Historically, several models have been developed which explain how the

frozen in condition is violated, and each describes a different “type” of reconnection.
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Figure 1.5: Magnetic reconnection is the explosive realignment of magnetic field lines,
often from antiparallel to more efficient configurations. The small scale physics driving
reconnection remains an open question.

The first, Sweet reconnection, relies on resistivity to break the frozen in condition

[Sweet , 1958]. As regions of oppositely directed fields collide, a thin current sheet

forms between them. Resistivity in the current sheet dissipates the magnetic field

and plasma is ejected through long, thin exhaust regions. Sweet reconnection has

been observed in laboratory plasmas, but proceeds too slowly to explain observations

of reconnection in space plasmas [Burch and Drake, 2009].

In order to increase the speed of reconnection, Parker [1957] proposed an adden-

dum to Sweet type reconnection. Sweet-Parker reconnection includes strong magnetic

field gradients in the exhaust regions which result in faster plasma expulsion [Parker ,

1957]. While Sweet-Parker reconnection is faster than Sweet reconnection, it is still

not fast enough to explain observations in space plasmas [Burch and Drake, 2009].

In 1964 Petschek [1964] proposed the presence of Alfvén waves leading to shocks at

the edges of the exhaust region. Such shocks shorten the exhaust region, and because

plasma does not travel as far, the reconnection rate is increased. The presence of

waves also helps dissipate the magnetic field faster than resistivity alone [Burch and

Drake, 2009]. The Petschek model explains most observations of reconnection in

space plasmas, but the expected shocks are not commonly observed [Drake et al.,
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2009; Burch et al., 2016].

The final major development in reconnection theory was the recognition that ions

and electrons are decoupled from the magnetic field at different points [Biskamp

et al., 1995; Burch et al., 2016]. Massive ions, with their larger inertia, are decoupled

from the magnetic field before electrons. While the electrons are still bound to the

field without ions, Hall currents will develop perpendicular to the reconnecting fields,

as shown in Figure 1.6. Such currents help to dissipate the magnetic field at the

reconnection site [Biskamp et al., 1995; Burch et al., 2016].

While the exact mechanisms which violate the frozen in condition and trigger

reconnection are still debated, the effects of reconnection are well understood: energy

stored in the magnetic field is converted rapidly to kinetic energy of the ions and

electrons. This is often observed in the form of reconnection jets and crescent shaped

distribution functions. Reconnection also allows for mass transport from one region

to another. This is particularly important for coupling the solar wind to Earth’s

magnetosphere and convection within the magnetosphere.

The Dungey cycle, as decribed by Dungey [1961], consists of reconnection at the

subsolar magnetopause and in the magnetotail. When the IMF is in a southward ori-

entation, mostly antiparallel to Earth’s steady northward field, reconnection occurs

near the subsolar point. This results in Earth’s magnetic field lines being dragged tail-

ward with the solar wind and a more diffuse boundary region. This causes a buildup

of flux in and around the magnetotail, triggering reconnection. Tail reconnection then

drives the convection of flux back to the dayside magnetosphere.

The location of reconnection on the dayside magnetopause is highly dependent

on the orientation of the IMF. In the case of primarily southward IMF, which is
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Figure 1.6: The basic geometry of reconnection (a) includes inflow regions, the ion
(and electron) diffusion region(s), and the exhaust regions where plasma is expelled.
The inclusion of Hall currents in the diffusion region (b) was a major break though
for reconnection theory. Image from Burch et al. [2016].
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antiparallel to the magnetosphere’s steady northward field, reconnection will occur

at the subsolar point. Additionally, high latitude reconnection at the cusps of the

magnetosphere can occur for all IMF orientations. In any case, it is also important

to remember the IMF is never purely in a single orientation, and thus reconnection

between the solar wind and magnetosphere will often be component reconnection

influenced by a guide field.

There are other processes at work at the magnetopause in addition to reconnection.

Many transient processes, such as surface waves and foreshock bubbles, are active at

the magnetopause boundary. The work presented in this dissertation will focus on

just one of these transient processes: the Kelvin-Helmholtz Instability.

1.3 The Kelvin-Helmholtz Instability

The Kelvin-Helmholtz Instability (KHI), as first described in the mid 19th century by

Kelvin [Kelvin and Thomson, 1871] and Helmholtz [Helmholtz , 1868], is a convective

instability occurring in regions of large shear flow. A small perturbation at the inter-

face of two differentially flowing fluids is acted upon asymmetrically on either side of

the boundary. Free energy within the shear flow drives the growth of the instability,

as can be seen in Figure 1.7. The KHI may be observed in clouds, river confluences,

or even as cream is poured into a cup of coffee. Normal, non-magnetized fluids are

unstable to the development of the KHI at any shear flow boundary [Chandrasekhar ,

1961]. The development of the KHI is not so simple, however, in magnetized fluids

like space plasmas.

The KHI occurs in regions of large shear flow [Chandrasekhar , 1961], such as the
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Figure 1.7: The KHI develops at regions with large velocity shears (red arrows). As
the vortex develops, the magnetic field (white lines) will be twisted and compressed,
and plasmas with different densities (colorscale) on either side of the boundary can
be mixed.

boundary between magnetosheath plasma flowing with the shocked solar wind and

the relatively stagnant magnetosphere [Miura and Pritchett , 1982]. However, the

orientation of the plasma’s background magnetic field can have a stabilizing effect on

the KHI [Miura and Pritchett , 1982]. This can be expressed mathematically by the

Kelvin-Helmholtz (KH) instability criterium, which will be discussed in more detail

in Chapter 2. Despite the stabilizing effects of the magnetic field, the KHI occurs

regularly at the magnetopause boundary and plays an important roll in coupling the

solar wind and magnetosphere [Otto and Fairfield , 2000; Fairfield et al., 2000; Nykyri

et al., 2003a; Hasegawa et al., 2004; Nykyri et al., 2006a; Taylor et al., 2008; Foullon

et al., 2008; Merkin et al., 2013; Lin et al., 2014; Ma et al., 2014a,b; Nykyri et al.,

2017; Ma et al., 2017; Sorathia et al., 2019].

The KHI was initially understood to be an ideal instability, which could transfer
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energy and momentum from the solar wind to the magnetosphere, but not mass

[Miura, 1984, 1987]. However, later simulations indicated non-linear stages of the

KHI could twist the magnetic field to produce reconnection leading to mass transport

[Nykyri and Otto, 2001, 2004; Otto and Fairfield , 2000]. Observations with the Cluster

spacecraft [Nykyri et al., 2006a; Hasegawa et al., 2004] confirmed the presence of

reconnection within KH vortices. Further, simulations and observations have shown

that the KHI can drive several secondary processes in addition to reconnection, such

as kinetic Alfvén waves [Moore et al., 2016, 2017], ion-acoustic waves [Wilder et al.,

2016], wave mode conversion [Johnson et al., 2001; Chaston et al., 2007], and turbulent

heating [Stawarz et al., 2016].

Reconnection in the KHI can occur even when the magnetic field is initially par-

allel on either side of the boundary. As can be seen in Figure 1.8, initially parallel

field lines are twisted within the KH vortex. As the field is twisted, regions of an-

tiparallel field develop and reconnect. The resulting “magnetic islands” of cold, dense

magentosheath plasma are mixed into the hot and tenuous magnetosphere, effectively

transferring energy and mass across the magnetopause boundary. Such reconnection

has been observed by the Cluster [Nykyri et al., 2006a; Hasegawa et al., 2004], and

MMS missions [Eriksson et al., 2016]. In addition to direct plasma entry to the mag-

netosphere, reconnection within the KHI can produce ion beams which drive smaller

scale wave modes (e.g. the fast magnetosonic wave) capable of effectively heating ions

within the plasma.

The strongly fluctuating magnetic fields within the KHI can also lead to wave

mode conversion [Johnson et al., 2001; Chaston et al., 2007]. Within a KH vortex,

magnetic field lines are twisted and compressed, resulting in rapid changes in the
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Figure 1.8: Magnetic reconnection within a KH vortex, as depicted in Nykyri and
Otto [2001], leads to plasma heating and transport from the magnetosheath to the
magnetosphere.

magnetic field strength. The Alfvén velocity, which is a function of the magnetic

field, will also change rapidly with the field strength. The rapid change in Alfvén

velocity can lead to the development of an Alfvén resonance point, where surface

mode waves are converted to kinetic Alfvén waves. Kinetic Alfvén waves are capable

of heating and transporting plasma across the magnetopuase boundary. Recent work

by Nykyri et al. [2021b] has shown that these can even contribute to parallel electron

heating, but in that case did not account for the total observed heating.

Work by Moore et al. [2016, 2017] also observed evidence of kinetic Alfvén and fast

magnetosonic waves inside KH vortices. The observed KH associated wave activity

provided increased energy which could contribute to enhanced ion heating during the

KHI but is not available when the KHI is not active [Moore et al., 2017].

Observations have shown the KHI may form on both the dawn and dusk flanks

under any orientation of the interplanetary magnetic field [Kavosi and Reader , 2015],
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but simulations have shown a preference for dawn flank formation when the IMF is in

a Parker Spiral (PS) orientation [Nykyri , 2013; Adamson et al., 2016]. Recent work

by Henry et al. [2017] analyzed the events presented in Kavosi and Reader [2015]

and confirmed this preference observationally. Henry et al. [2017] also confirmed a

preference for KHI formation at the dusk flank for high solar wind speeds under

northward IMF (NIMF). As PS is the most statistically common IMF orientation, it

follows that the associated preference for dawn-side KHI development would also be

statistically more common. Such asymmetry in the formation of KHI, combined with

KH-driven secondary processes like reconnection and kinetic scale waves, make the

KHI a strong candidate to drive the dawn-dusk asymmetry of cold-component ions

in the plasma sheet.

Prior to 2015 observational studies of secondary processes within the KHI had

been limited to the ion scale due to spacecraft and technical capabilities. The launch

of the MMS mission in 2015 presented a new opportunity to finally investigate KHI

associated processes below the ion scale. The work presented in this dissertation takes

advantage of the MMS capabilities, described in the next section, to identify ion scale

wave modes within the KHI and their contribution to heating (see Chapter 4). The

techniques developed in Chapter 2 to analyze the MMS data can, in future work, be

used to identify wave modes at smaller scales.

1.4 The Magnetosphere Multiscale Mission

Launched in March 2015, the Magnetosphere Multiscale (MMS) mission was designed

to “understand the microphysics of magnetic reconnection” [Burch et al., 2016]. In
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order to understand the physics which violates the frozen in condition and drives

reconnection, MMS must be able to resolve plasma processes down to the electron

scale. The design of the MMS mission reflects this goal.

MMS is a constellation of four identical spacecraft, each equipped with the most

complete and capable suite of instruments available for observing the details of mag-

netic reconnection. Spacecraft separations of less than 10 km are an order of mag-

nitude closer than previous missions. The instruments on board MMS also operate

with temporal cadences several orders of magnitude faster than previous satellite mis-

sions. Four spacecraft flying in close formation allow for the separate identification

of temporally and spatially varying phenomena; for example, MMS is capable of dis-

tinguishing a moving site of ongoing reconnection from a stationary site of patchy

reconnection [Burch et al., 2016]. The high spatial and temporal resolution of MMS

may also be employed to identify sub-ion scale processes and waves developing within

a KH vortex.

Due to its reconnection specific objectives, the MMS mission’s orbits were selected

to maximize its time near likely reconnection sites, namely the subsolar dayside mag-

netopause and the plasma sheet in the magnetotail. These two areas were targeted

separately by different phases of the MMS mission. In Phase 1, the dayside mag-

netopause was observed using a highly elliptical orbit with apogee ≈ 12 Earth radii

(RE). The apogee was increased to ≈ 25RE to better observe tail reconnection in

Phase 2 [Burch et al., 2016]. Figure 1.9 depicts approximate orbits in both Phase 1

and 2. While the KHI is not expected to be observed at either the subsolar magne-

topause or the in plasma sheet, the MMS orbits encounter the flank magnetopause

frequently in both Phase 1 and 2. Thus, MMS is expected to observed the KHI with
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Figure 1.9: MMS orbits for Phase 1 (left), targeting the dayside magnetopause, and
Phase 2 (right), targeting tail reconnection, from Burch et al. [2016]. Both orbits
provide ample opportunity to observe the KHI developing on the flank magnetopause.

some regularity.

The MMS mission’s combination of high cadence measurements and small space-

craft separation allows for the observation of plasma behavior down to the electron

scale. While this design was created with magnetic reconnection in mind, it also pro-

vides the opportunity to study the influence of the KHI on small scale waves, heating,

and plasma transport. The MMS orbit is also excellent for the observation of the KHI.

Phase 1 orbits are capable of observing KH waves along the dayside flanks, and the

Phase 2 orbit allows the search for KH events to extend into the tail flanks.

Within a year of its launch, MMS yielded an excellent case study of sub-ion scale

processes within the KHI. Eriksson et al. [2016] reported reconnection within a KH

vortex on the dayside dusk flank. Further investigations of the same event showed

evidence of ion-acoustic waves [Wilder et al., 2016] and turbulence [Stawarz et al.,

2016]. These secondary processes can contribute to ion heating and plasma transfer
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across the magnetopause boundary.

1.5 Motivation

Case studies, like those done by Eriksson et al. [2016]; Wilder et al. [2016] and Stawarz

et al. [2016] are useful in identifying the fine-scale secondary processes associated

with the KHI, but statistical studies are necessary to fully understand the role these

processes play in driving solar wind-magnetosphere coupling. The work presented

in this dissertation gathers MMS observations of 45 KHI events between September

2015 and March 2020 in an effort to determine the influence of small scale waves

within the KHI on magnetospheric dynamics.

In order to better understand the role the KHI and its secondary process play

in driving solar wind-magnetosphere coupling it is imperative, as a first step, to

build a database of MMS encounters with the KHI. The methods and tools used

to identify and analyze KH events in MMS data are presented in Chapter 2. In

Chapter 3, the large scale characteristics of each event are correlated with solar wind

conditions and observation location to establish patterns which may prove informative

in understanding the role the KHI plays in magnetospheric dynamics. A statistical

study of small scale wave intervals associated with the KHI and a discussion of their

generation mechanisms are presented in Chapter 4.
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Chapter 2

Research Methodology

The methodology presented in this chapter has been published, in part, in Rice et al.

[2022]. Portions are still in preparation for submission to Geophysical Research Let-

ters.

2.1 Data

2.1.1 MMS Instrumentation and Data Products

The MMS data used in this work is publicly available via the MMS Science Data

Center (SDC). MMS data is classified as either Level 1, Quicklook, or Level 2 data.

Level 1 data is the raw, uncalibrated measurements taken directly from instruments

onboard the spacecraft; it is not publicly available because it has not been calibrated

or processed. Quicklook data has undergone some preliminary processing, and is

made available via Quicklook plots within days of receipt from the spacecraft. Level

2 data is science ready data; it has been calibrated and processed for use in detailed
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analysis. Level 2 data is made publicly available within 30 days of downlink [Baker

et al., 2016]. The work presented here uses Level 2 data, though Quicklook data was

also referenced in order to identify large scale features which merited more detailed

analysis.

MMS has two main operational modes: burst and survey. In survey mode, data

is collected at “low to medium” resolution [Baker et al., 2016]. The low-medium

resolution data provided by MMS is in line with previous missions such as Cluster

and THEMIS. Burst mode data is the highest resolution data from MMS and provides

orders of magnitude better resolution than previous missions. All data collected by

MMS must be temporarily stored onboard the spacecraft before it is downloaded. Due

to its high measurement cadence, burst mode data is computationally expensive to

collect and store. Therefore MMS only operates in burst mode in scientific “regions of

interest.” Additionally, data quality values and a Scientist in the Loop (SITL) select

only the burst segments with the most promising scientific value for download [Baker

et al., 2016]. As the KHI is a fluid scale instability, survey mode observations are more

than sufficient to resolve its general structure. Survey mode data is also sufficient to

resolve ion scale processes within the KHI, for which time scales are typically on the

order of 1 Hz. Much below the ion scale, burst mode data is required.

The MMS instruments used for the bulk of this work are the fast plasma inves-

tigation (FPI), which measures ion and electron distribution functions and moments

[Pollock et al., 2016]; the flux gate magnetometer (FGM), which measures the 3

dimensional direct current magnetic field [Russell et al., 2016]; the search coil mag-

netometer (SCM), which measures the 3 dimensional alternating current or wave

magnetic field [Le Contel et al., 2016]. The 3 dimensional electric field is measured
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Table 2.1: The MMS instruments used in this study, along with their operational
modes and observational cadences.

Instrument Measurements Modes Cadence
FPI Ion and electron distributions Fast 4.5s

and moments Burst 30 ms electrons,
150 ms ions

FGM 3D direct current Slow Survey 8 Hz
magnetic field Fast Survey 16 Hz

Burst 128Hz
SCM 3D alternating current Survey 8 Hz

(wave) magnetic field Slow 32 Hz
Fast 1024 Hz
Burst 8192 Hz

EDP 3D electric field Survey 8 Hz
Slow 32 Hz
Fast 1024 Hz
Burst 8192 Hz

HPCA Ion distributions and Survey 10-15s
moments by species Burst

by the spin-plane and axial double probes (SDP, ADP, respectively) and electron

drift instrument (EDI), which together make up the Electric Double Probe (EDP)

[Lindqvist et al., 2016; Ergun et al., 2016; Torbert et al., 2016a]. The FGM, SCM,

and EDP are all part of the larger FIELDS instrument suite [Torbert et al., 2016b].

Data from the hot plasma composition analyzer (HPCA), which measures distribu-

tion functions separately for various ion species, is also used to determine the effects

and significance of minor ion species to the behavior of the overall plasma population

[Young et al., 2016]. Details of the measurements and observation cadences for all of

the instruments we use are listed in Table 2.1.
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2.1.2 Upstream Solar Wind Observations

Solar wind data is taken from the OMNI database, maintained by NASA’s Goddard

Space Flight Center. The OMNI database comprises solar wind data from 20 satel-

lites, spanning nearly 60 years of observations [King and Papitashvili , 2005]. High

resolution (1 minute) observations of the solar wind near Earth are made using the

ACE, Wind, and ISEE-3 satellites [King and Papitashvili , 2005]. These observations

include plasma parameters, such as density and flow speed, and measurements of the

embedded IMF strength and orientation. As this work primarily uses the IMF and

solar wind data to determine average conditions under which the KHI develops, the

1 minute resolution of OMNI data is sufficient.

2.2 Data Analysis

2.2.1 KHI Analysis Tools

Observational Signatures and Detection of the KHI

In the 4.5 years after it began observations in 2015, MMS made thousands of cross-

ings and partial crossings of the magnetopause. In order to narrow down the many

magnetopause crossings to those in which KHI is active, we first consult the MMS

Mission Event database available as part of the MMS SDC. In that time frame, the

SITL responsible for selecting burst mode data for download and noting potential

events marked approximately 80 timespans as potentially containing KH activity.

Quicklook plots were also searched for unstable boundary crossings not marked in

the SITL notes as KHI. In total, around 100 intervals were selected and checked by
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eye for the characteristic signatures of the KHI. The six primary signatures used to

identify the KHI within MMS data are

1. Quasi-periodic fluctuations in the omnidirectional ion energy spectrogram be-

tween magnetosheath and magnetospheric energies,

2. Quasi-periodic, anti-correlated fluctuations in ion density and temperature,

3. Large velocity shears, on the order of 100s of km/s,

4. Fluctuations in the total magnetic field as it is twisted and compressed within

the KH vortex,

5. Bipolar signatures in the normal component of the magnetic field, BN , and

6. Fluctuations in total pressure, particularly with maxima near the edges of the

KH vortex and minima at the center of the KH vortex where the normal com-

ponent of the magnetic field in near 0.

When MMS crosses a stable magnetopause boundary, we expect to see a smooth

transition from plasma with energy typical of the magnetosheath, through a region of

intermediate energy plasma, to plasma with typical magnetospheric energy (or vice

versa). When the boundary is not stable, this transition will not be smooth, and

may show alternating regions of plasma with energies typical of the magnetosheath

and magnetosphere, as well as mixed energies. For the case of a boundary disturbed

by a periodic instability like the KHI, these alternating regions should be relatively

periodic (Signature 1). The periodic observation of magnetosheath and magneto-

spheric regions will also be evident in the ion density and temperature, as MMS
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alternately encounters regions of plasma from the cold, dense magnetosheath and the

hot, tenuous magnetosphere (Signature 2).

Large velocity shears are common at the flank magnetopause, where the magneto-

sphere is relatively stagnant and the magnetosheath plasma is accelerating from low

speeds immediately after the shock to “catch up” with the solar wind speed farther

downtail [Dimmock and Nykyri , 2013]. Velocity shears are also a necessary condition

for the development of the KHI [Chandrasekhar , 1961; Miura, 1984, 1987] (Signature

3).

As the KHI develops, is begins to twist the boundary and compress the magnetic

field lines. The total magnetic field strength will fluctuate as the field lines are

compressed (Signature 4). In particular, these fluctuations should appear as bipolar

variations in the normal component as the KH vortex twists the field lines (Signature

5). Changes in the normal component and total field strength help distinguish the

KHI from a shifting boundary, such as a response to solar wind dynamic pressure

variations.

The rotational nature of the KHI creates an outward force which is balanced by

a pressure gradient, resulting in a decrease in total pressure at the center of the KH

vortex. Thus, observations of the KHI show a lower total pressure near the center of

the vortex (where BN is zero) and a higher pressure in the spine regions (Signature

6). This signature allows us to distinguish the KHI from a flux transfer event in which

total pressure typically increases when BN is zero [Nykyri et al., 2006a; Zhao et al.,

2016].

All six characteristic signatures may be seen in the example observation show in

Figure 2.1. From 16:35 to 19:07 UT on 26 September 2017, MMS1 encountered the
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KHI as it crossed the magnetopause on the dusk flank of the tail magnetosphere.

MMS1 observed alternating regions of magnetosheath and magnetospheric energy

plasma with a periodicity of about 3.5 minutes. Anti-correlated fluctuations in ion

density and temperature have a similar periodicity. Velocity shears on the order of

200 km/s are seen primarily in the GSM X−component, as is expected for a KHI

occurring along the tail magnetopause. The total magnetic field strength varies by

as much as 10 nT throughout the observations. Bipolar fluctuations in the normal

component of the field are present for the duration of the event as well. Decreases in

total pressure correspond well with times at which BN is near 0.

Ideally, a single KHI will exhibit all six signatures, but real observations are rarely

ideal and one or more signatures may not be present. For example, MMS may skim

the magnetopause boundary while KHI is operating, without fully crossing the bound-

ary. In this case, MMS may observe quasi-periodic fluctuations in the omnidirectional

ion energy, but those fluctuations may not represent typical magnetosheath or mag-

netosphere energies. Such a skimming encounter may also miss the center of the KH

vortex, and thus the changes in total pressure may not be evident or well aligned with

times when BN is near 0.

Our initial search for KHI observations uses only single spacecraft observations

of the magnetic field and proton moments. The fluid scale KHI is much larger than

the ion scale and the MMS spacecraft separation, therefore observation of the bulk

ion behavior from a single spacecraft is sufficient to identify the KHI and all four

spacecraft are expected to observe nearly identical signatures over the several Earth-

radii scale of the KHI. Heavier ion species, such as He+ and O+ are not considered

in our initial search for the KHI. At the magnetopause where KHI operates, these
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Figure 2.1: MMS observations of the KHI from 16:35 to 19:07 UT on 26 September
2017.
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heavier species make up only a small fraction of the total plasma population and

make an insignificant contribution to the overall behavior of the fluid-scale KHI.

Events from September 2015 to March 2020

From the beginning of its operation in September of 2015 to March 2020, MMS made

thousands of full and partial magnetopause boundary crossings. Approximately 100

of those crossings contained signatures of transient phenomena and instability resem-

bling the KHI. More detailed checks of pressure and the boundary-normal components

of the magnetic field allowed us to narrow this list of potential KH encounters to 45

confirmed observations, only two of which had been reported prior to the publica-

tion of Rice et al. [2022] [Eriksson et al., 2016; Nykyri et al., 2021b; Michael et al.,

2021]. All 45 observations exhibit the six expected signatures, though total pressure

decreases could not always be aligned with points at which the magnetic field normal

component is near 0. For events when BN and total pressure were not well aligned,

orientation of the IMF is checked. We keep only events for which the IMF is unlikely

to support foreshock transients at the flank on which the event is observed.

Table 2.2 details the date, onset time, duration, location, and approximate KH

wavelength of each of the 45 events. Here the “onset time” refers to the time at which

MMS first observed the KHI. It is likely the KHI had already been operational for

some time prior to observation by the MMS, but it is not possible to estimate how

long the KHI may have persisted from observations alone.

The 45 MMS observations of the KHI are well varied, ranging in duration from

10 minutes to nearly 13 hours. There are more observations on the dusk flank (29

events) than the dawn (16), but without weighted comparisons based on solar wind
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conditions and spacecraft orbit patterns, the difference in observations between the

two flanks does not indicate a preference for KHI development at dusk. Observations

are evenly split between the dayside and tail magnetopause: 22 (23) events occur

sunward (tailward) of the terminator. Nightside KHI are all observed in or after May

2017. This is primarily due to a sampling effect of the MMS orbit change from Phase

1, which targeted the dayside magnetosphere, to Phase 2, which targeted the tail.

Burst mode data is available for portions of all 45 events, which is crucial for the

study of wave activity below the ion scale.

Table 2.2: The date, onset time, duration, GSM location, and estimated wavelength
of the 45 KHI events observed by MMS from September 2015 to March 2020. Burst
mode data is available for portions of all events.

Event Onset Time Duration GSM KH Wave-

No. Date UT [min] Location [RE] length [RE]

01 08 Sep 15 09:00 170 [5.0, 7.4, -4.5] 2.80

02 15 Sep 15 10:45 240 [5.1, 8.7, -5.5] 5.00

03 11 Oct15 10:30 30 [8.7, 6.5, -4.7] 3.71

04 15 Oct 15 06:00 60 [9.0, 4.1, -2.3] 2.29

05 17 Oct 15 16:00 28 [6.4, 7.8, -4.1] 4.94

06 18 Oct 15 15:00 25 [7.2, 7.5, -4.4] 8.18

07 22 Dec 15 22:15 35 [7.9, -5.7, -1.8] 2.58

08 11 Jan 16 20:52 18 [6.2, -7.6, -3.4] 1.99

09 19 Jan 16 19:57 38 [5.3, -8.2, -3.9] 3.25

10 05 Feb 16 18:55 35 [3.3, -9.3, -5.0] 5.97

11 07 Feb 16 03:45 55 [7.0, -6.9, -3.5] 4.20

Continued on next page
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Table 2.2: Continued from previous page

Event Onset Time Duration GSM KH Wave-

No. Date UT [min] Location [RE] length [RE]

12 18 Feb 16 19:30 70 [2.5, -9.7, -6.3] 6.81

13 25 Feb 16 18:55 70 [1.3, -9.9, -6.5] 2.26

14 26 Sep 16 14:15 70 [2.7, 8.5, -5.4] 11.85

15 27 Sep 16 19:50 20 [0.3, 11.5, -3.4] 2.62

16 04 Oct 16 18:20 70 [1.8, 11.2, -3.6] 9.51

17 10 Oct 16 14:40 60 [4.3, 9.3, -5.0] 9.43

18 24 Oct 16 10:50 30 [6.8, 6.1, -4.3] 1.09

19 04 Nov 16 11:45 75 [8.1, 7.2, -3.8] 2.28

20 03 May 17 02:00 150 [-12.9, -19.7, -3.9] 17.39

21 08 May 17 13:00 110 [-14.8, -17.2, 0.3] 11.50

22 11 May 17 12:00 150 [-15.6, -18.2, 1.4] 18.47

23 11 May 17 15:44 31 [-15.3, -19.2, -0.3] 7.75

24 19 May 17 23:58 107 [-17.8, -16.6, -2.1] 20.72

25 20 May 17 02:00 150 [-17.6, -17.4, -0.6] 26.65

26 20 Sep 17 22:32 43 [-10.8, 20.9, 1.3] 8.20

27 26 Sep 17 16:35 152 [-9.3, 19.6, -0.9] 6.47

28 16 Oct 17 14:30 50 [-4.0, 18.6, -2.7] 7.71

29 30 Oct 17 19:05 35 [-0.6, 17.3, 1.6] 4.20

30 02 Nov 17 17:25 50 [-0.9, 14.8, 0.8] 6.38

31 03 May 18 00:15 35 [-9.3, -17.5, -2.3] 8.43

Continued on next page
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Table 2.2: Continued from previous page

Event Onset Time Duration GSM KH Wave-

No. Date UT [min] Location [RE] length [RE]

32 18 Sep 18 15:50 25 [-14.1, 20.6, -1.0] 5.17

33 24 Sep 18 14:10 195 [-14.1, 20.3, -1.6] 19.35

34 02 Oct 18 23:45 35 [-10.8, 22.5, 2.1] 11.25

35 04 Oct 18 17:25 10 [-0.8, 16.2, -0.2] 2.50

36 13 Apr 19 07:45 30 [-0.6, -17.5, 2.4] 9.68

37 03 Jun 19 23:05 75 [-2.2, -14.9, -3.8] 7.46

38 25 Sep 19 13:45 765 [-16.7, 22.0, -0.2] 12.33

39 02 Oct 19 08:15 165 [-9.9, 21.5, -4.5] 8.54

40 02 Oct 19 16:00 80 [-12.9, 23.5, -2.1] 13.03

41 02 Oct 19 21:40 25 [-14.6, 24.0, 1.1] 7.11

42 06 Oct 19 14:50 175 [-14.8, 24.4, -4.2] 17.10

43 15 Oct 19 19:00 75 [1.2, 12.8, 2.9] 8.81

44 22 Oct 19 22:00 20 [1.8, 15.3, 3.8] 3.76

45 12 Nov 19 20:30 75 [6.7, 11.8, 5.2] 7.04

Solar wind and IMF data from OMNI is available for 44 of the 45 KHI events,

which occur under the full range of typical conditions. We consider the planar (BX

and BY ) and BZ components of the IMF separately. At the onset time, the pla-

nar components of the IMF show a preference for Parker Spiral Orientation (17).

Less common orientations include radial, duskward, and dawnward (8 each). The re-

maining three events are first observed during Ortho-Parker Spiral orientations. The
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average IMF orientation for the duration of each event is most often the Parker Spi-

ral (17), followed by radial and dawnward (8 each). Duskward (6) and ortho-Parker

Spiral (5) orientations are less common. At the time of first observation, the BZ

component of the IMF is more often northward (27) than southward (17). This holds

true over the duration of the events as well: 26 (18) of the observations are made

during average BZ positive (negative).

More details about the 45 observed events and their large scale properties are

discussed in Chapter 3.

Challenges in Event Identification

The identification of transient phenomena in satellite data is difficult. Several bound-

ary processes may create signatures which resemble those of the KHI. For example

flux transfer events (FTEs) are large ropes of magnetic flux which can produce bipolar

signatures in the normal component of the magnetic field, much like the KHI. Pres-

sure gradients in a FTE are different than those in the KHI. Within the KHI, pressure

decreases at the center of the rotational vortex, where the normal component of the

magnetic field is near 0. At the edges of the KH vortex the total pressure is larger and

the plasma is compressed, which can correspond with increases in both density and

magnetic field strength. Within a FTE, however, pressure minima correspond with

times of enhanced magnetic field strength [Nykyri et al., 2006a; Zhao et al., 2016].

Surface wave modes may also resemble the linear stages of the KHI. A shifting

magnetopause boundary caused by dynamic pressure pulsations in the solar wind

may also mimic the KHI. In both cases, we rely on fluctuations in the magnetic

field to help us distinguish the KHI from other processes. We may also consult solar
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wind observations to determine if any pressure pulsations are ongoing during the

observations. Additionally, IMF orientation can help rule out foreshock transients

creating signatures similar to the KHI.

Absolute certainty in event identification is simply not possible; too many com-

peting explanations can account for some of the signatures associated with the KHI.

The observed KH events in this work are no different. Alternate explanations exist

and may be true for any single event. We believe, however, the events presented and

analyzed in this work are more likely than not to be the KHI.

Automated Region Sorting

When analyzing the KHI, it is often necessary to separate plasma populations orig-

inating on either side of the boundary. In case studies, or studies of only a handful

of events, this is typically done manually. A few minutes of apparently pure mag-

netosheath and magnetospheric observations are used to characterize the different

populations. This works well enough on a case by case basis, but is not efficient or

easily reproducible over the many events included in a statistical study. Instead, we

seek to develop a method which will automatically identify regions of magnetosheath

and magnetospheric plasma which may be used to characterize the populations in

calculations and analysis.

The magnetosheath, comprising the shocked solar wind, is typically cold, dense,

and flowing quickly along the flanks. In contrast the magnetosphere is hot, tenuous,

and relatively stagnant. Therefore we have three parameters with distinct values on

either side of the boundary: density, temperature, and velocity. Used in combination

they are able to distinguish the two regions
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We developed six sorting parameters to describe the regions, which are summa-

rized in Table 2.3 and detailed below.

• The ratio of density to temperature, n/T .

The ratio of density and temperature is large in the cold, dense magnetosheath and

small in the hot, tenuous magnetosphere. This parameter does not consider the ve-

locity of the regions, but a constraint may be enforced such that any point considered

to be in the magnetosphere has a tailward velocity component at least one standard

deviation less than the mean tailward velocity of the magnetosheath. In this way less

dense plasma that has already undergone mixing and is being dragged tailward with

the magnetosheath is excluded from the identified pure magnetospheric region.

• Specific entropy, S = T/n2/3.

Specific entropy is small in the cold, dense magnetosheath and large in the hot,

tenuous magnetosphere. Again, the velocity is not considered with this parameter,

but a velocity constraint may be applied in the same manner as for the ratio of density

and temperature.

• The product of density and GSM−X velocity, nvx.

The product of density and GSM−X velocity, essentially the number flux of parti-

cles, is large and negative in the dense, fast-flowing magnetosheath and small, either

positive or negative, in the tenuous and stagnant magnetosphere. This method does

not include any information about the temperature.

In order to simplify the inclusion of velocity in the sorting parameters, we derive a

“tailward” velocity from the GSM X component, such that vtail = |vx−max vx|. Thus
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the tailward velocity is strictly positive, with the magnetosphere velocity defined to

be 0.

• The ratio of the product of density and tailward velocity and temperature,

nvtail/T .

The tailward velocity is multiplied with the previously described ratio of density and

temperature, creating a new parameter, nvtail/T , which is large in the magnetosheath

and small in the magnetosphere. This parameter is dependent on all three quanti-

ties, and simplifies the methodology over applying a velocity constraint to already

separated regions.

• The ratio of entropy and tailward velocity, S/vtail.

The ratio of entropy and tailward velocity is small in the magnetosheath and large

in the magnetosphere. However, due to the definition of the tailward velocity, there

is always a point at which vtail = 0 and the ratio is singular. This point is ignored in

our analysis and not sorted into either region.

• The ratio of tailward velocity and entropy, vtail/S.

We also consider the ratio of tailward velocity and specific entropy, vtail/S, which is

large in the magnetosheath and small in the magnetosphere. This sorting parameter

neatly avoids the singularity inherent in S/vtail.

To apply the sorting parameters, we must first determine a magnetopause value.

For each parameter, values are sorted, and a certain percentage of both extremes are

used to calculate a mean, which is termed the magnetopause value, mp, of that sorting
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Table 2.3: A summary of the sorting parameters developed here and their relative
values in each region.

Parameter MSH MSP Notes
n/T Large Small Additional vx constraint added separately
S Small Large Additional vx constraint added separately
nvx Large (−) Small (−/+) No influence from temperature
nvtail/T Large Small
S/vtail Small Large Singularity at vtail = 0
vtail/S Large Small

parameter. The percent of data used to find this value ranged from 2.5% to 25% of

both extremes, resulting in a mean calculated using between 5% and 50% of the

total data contained in any one event. The mean of the entire dataset is unsuitable,

because the spacecraft rarely observes the two regions in equal measure, thus mp

would be an over (under) estimate of the magnetopause value for cases in which the

spacecraft spent more time in the region where a sorting parameter is expected to

be large (small) than the other. Using only a fraction of the entire event, and the

extreme values representative of the most pure magnetosheath and magnetospheric

regions gives a more reasonable value for mp.

Given the magnetopause value, we next determine cutoff values defining the mag-

netosheath and magneosphere relative to mp. In the most simple method, data points

with a sorting parameter value greater than or less than the magnetopause value

would be assigned to the appropriate region. However, this ignores the physical im-

plications of intermediate values very near mp. As the KHI operates, it mixes plasma

and makes the boundary more diffuse, and any plasma with a sorting parameter value

near mp has already been mixed, and is not representative of the pure magnetosheath

or magnetosphere. Therefore, we must select cutoff values which better isolate the
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pure magnetosheath and magnetosphere.

In the region in which a given sorting parameter is expected to be large, cutoff

values are varied from 1.0 ∗mp to 1.9 ∗mp. The most restrictive values (> 1.7 ∗mp)

are ruled out because they do not return a reasonable or sufficient number of data

points in the region. For some events, MMS never observed plasma which would fulfill

the more restrictive criteria. The most relaxed cutoff values (< 1.3 ∗mp) include too

much mixed plasma from regions already strongly affected by the KHI. The inclusion

of such mixed plasma has a significant but unpredictable effect. Marginal cutoff

values, from 1.4 ∗mp to 1.6 ∗mp appear to be the best choice.

In the region in which a given sorting parameter is expected to be small, cutoff

values were varied from 0.1∗mp to 1.0∗mp. As was true for the previous case, the most

restrictive (< 0.3∗mp) and the most relaxed (> 0.7∗mp) cutoff values are unsuitable.

The more restrictive values yield too little, and occasionally no, observations in the

region. The more relaxed values include too much plasma already affected by mixing

and heating processes in the KHI. The marginal cutoff values (0.4 ∗mp to 0.6 ∗mp)

again seem to be the best choice.

The percentage of data used to determine mp and the cutoff values were varied

in parallel. Plots of the density and temperature for both regions were created for all

combinations ofmp and cutoff values. Figures 2.2 and 2.3 show examples of these plots

for the magnetosheath and magnetosphere density, respectively, for the KHI observed

on 15 October 2015. As can be seen in Figure 2.2, the sorting parameters which are

expected to be large in the sheath (n/T , nvx, nvtail/T and vtail/S) return density

values between ≈ 9 and 12 /cc, in line with expectations for typical magnetosheath

densities. Sorting parameters expected to be small in the sheath (S and S/vtail)
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return density values less than 6 /cc, which is lower than expected. We see a similar

pattern in the magnetosphere, as is shown in Figure 2.3. Sorting parameters which are

expected to be large (S and S/vtail), return density values in line with expectations,

≈ 0.5 /cc. Sorting parameters expected to be small in the magnetosphere (n/T ,

nvtail, nvtail/T and vtail/S), overestimate density, with results between 1 and 2 /cc.

In both regions, the sorting parameters which are expected to be large perform much

better than sorting parameters which are expected to be small. Thus, we find it best

to use two sorting parameters in our automated region sorting method, one expected

to be large in the magnetosheath and one expected to be large in the magnetosphere.

Additionally, Figures 2.2 and 2.3 show that the percent of data used to determine

the magnetopause value, mp, has only a small effect on the mean density value in

each identified region. As such, we choose to use the smallest and largest 12.5% (25%

total) of all data for a given sorting parameter when determining mp. This ensures

we are not only considering outliers, as would be the case if too little data were

considered. Further, our value of mp will not be strongly effected if the spacecraft

spends more time on one side of the boundary than the other, which would be the

case if all the available data was included in determining mp.

Because no sorting parameter performed well in the region in which it is expected

to be small, we must use two separate sorting parameters: one large in the mag-

netosheath and one large in the magnetosphere. We choose nvtail/T as our sheath

sorting parameter and specific entropy, S, as our magnetosphere sorting parameter.

Both of the chosen sorting parameters produce consistent results over the range of

marginal cutoff values (1.4∗mp to 1.6∗mp), suggesting they are robust and not overly

sensitive to the selection of cutoff value. In order to balance our desire to select the
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Figure 2.2: Sorting parameters which are expected to be large in the magnetosheath
(n/T , nvx, nvtail/T , and vtail/S) provide reasonable density results. Parameters which
are expected to be small in the magnetosheath (S and S/vtail) yield densities much
lower than expected. Overly restrictive and overly relaxed cutoff values can negatively
effect results. Sorting parameters are less sensitive to the percent of data used to
determine the magnetopause value.
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Figure 2.3: Sorting parameters which are expected to be large in the magnetosphere
(S and S/vtail) produce reasonable density results. Parameters which are expected
to be small in the magnetosphere (n/T , nvx, nvtail/T , and vtail/S) yield densities
much higher than expected. Overly restrictive and overly relaxed cutoff values can
negatively effect results. Sorting parameters are less sensitive to the percent of data
used to determine the magnetopause value
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most pure plasma from each region and the need to a have a significant number of

observational data points in each region, we select a cutoff value of 1.5 ∗mp for both

regions.

In summary, to identify regions of magnetosheath plasma, a time series of nvtail/T

is calculated for a KH event. The mean of the largest 12.5% of all nvtail/T values

and the smallest 12.5% of all nvtail/T values are used to determine the magnetopause

value mp. Any observation with nvtail/T > 1.5 ∗mp is labelled the magnetosheath.

The magnetosphere is identified in the same way, using S in place of nvtail/T . Any

observation which does not meet the criteria of either region is considered “mixed.”

The sorting parameters, cutoff values, and identified regions are shown for the example

KH event (26 September 2017) in Figure 2.4.

It is important to note, the effectiveness of the automated region sorting method

is dependent upon the path of MMS through the KHI. The method works best when

the spacecraft spends a significant portion of the event duration on both sides of the

boundary. Events in which MMS only skims the KHI or spends significantly more time

in one region than the other tend to result in identified regions with less contrast than

typically expected of the pure magnetosheath and pure magnetosphere. The effects of

observation geometry on the automated region sorting method are discussed in more

detail in Section 2.3.

The new region sorting method was also compared with a region sorting technique

previously published in Moore et al. [2017]. In that study, histograms of the most

commonly observed energy channel at each time step are used to determine the typical

energy values of the magnetosheath and magnetosphere, marked by the bright blue

and red bins in the top panel of Figure 2.5. The log mean average of the two regions’
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Figure 2.4: The sorting parameters, S and nvtail/T are shown as a time series for the
example event on 26 September 2017. Any plasma with S or nvtail/T above the cut-
off value (colored lines) is sorted in the magnetsphere or magnetosheath, respectively.
The results of the automated region sorting method are in good agreement with ex-
pectations based on the omnidirectional ion energy and ion density and temperature.

44



energies is considered representative of the mixed plasma region. Each time step

is then sorted into the region to which its weighted mean energy is closest. For

KHI where the magnetosheath and magnetospheric energies are well separated, this

method works well. In such cases, the Moore method produces results similar to the

method developed here, as can be seen in Figure 2.5 for the example KH event on

26 September 2017. For the 45 MMS observations of the KHI, the new method sorts

more plasma into the mixed region than the Moore method, as can be seen when

comparing Figures 2.4 and 2.5. This is preferred, as the resulting regions are more

representative of the “pure” magnetosheath and magnetosphere.

The KH event observed on 26 September 2016, shown in Figure 2.6, is a good

example of the new region sorting method’s selection of only pure magnetosheath

plasma. Plots of the MMS orbit show the spacecraft skimming the magnetopause

boundary, primarily on the magnetosphere side, with only a brief excursion into the

magnetosheath. Solar wind density is ≈ 8 /cc, corresponding to a magnetosheath

density of ≈ 32 /cc per MHD shock physics. MMS observes density ≈ 30 /cc only af-

ter 15:15 UT, suggesting that MMS only observes pure sheath for around 10 minutes

at the end of the observation interval and is otherwise in mixed or magnetospheric

plasma. As can be seen in Figure 2.6, the new method identifies as the pure magne-

tosheath only the portion of MMS observations where density is nearly 30 /cc. The

Moore method selects an early portion of the data as magnetosheath plasma based on

its energy, even though the density and temperature are more consistent with mixed

plasma.

The new method developed here has additional benefits over the Moore method.

First, it is fully automated. The Moore method requires manual selection of the
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Figure 2.5: A region sorting technique from Moore et al. [2017] uses weighted averages
of the ion energy to identify magnetospheric, mixed, and magnetosheath regions.
Results are in general agreement with the omnidirectional ion energy and ion density
and temperature, but identify less mixed plasma than the newly developed method.
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Figure 2.6: On 26 September 2016, MMS observed the KHI while skimming the mag-
netopause boundary (bottom). Solar wind density (top) suggests a magnetosheath
density ≈ 30 /cc, which is only observed at the end of the interval. The new region
sorting method developed here selects only the pure sheath, where density ≈ 30 /cc,
while the method used in Moore et al. [2017] includes mixed plasma earlier in the
interval (right).
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magnetosheath and magentospheric energies in the energy channel histograms. The

energy channel histogram presents its own challenges. When the magnetosheath and

magnetospheric energies are well separated, the two peaks in energy channels are

obvious. If the characteristic energies are not as well separated, as is often the case

for boundaries effected by the KHI, peak energies may not be clear. In more extreme

cases, there may only be one peak energy channel, making the selection of both

magnetosheath and magnetosphere energies very difficult, if not arbitrary. For these

reasons, the automated region sorting method developed here is the best option for

our analysis.

Though we are generally satisfied with the performance of the new automated

region sorting method, work is still ongoing to ensure it is optimized. Comparison with

high frequency field data from the SCM and EDP instruments may reveal signatures

unique to the magnetosphere and magnetosheath. These signatures in the field may

be used to separate the two regions independently of the ion moments. Alternatively,

they may be used in conjunction with the new region sorting method to produce a

more holistic definition of the sorted magnetosheath and magnetospheric plasmas.

The KHI Growth Rate and Unstable Solid Angle

Assuming an infinitely thin boundary layer, a region unstable to the KHI will satisfy

the KH instability criterium

[k · (v1 − v2)]2 ≥ n1 + n2

4πm0n1n2

[(k ·B1)2 + (k ·B2)2] (2.1)
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where vi, ni, and Bi are the velocity, density, and magnetic field on either side of the

velocity shear layer and k is the wave vector [Chandrasekhar , 1961].

Equation 2.1 may be rearranged to determine the normalized growth rate of the

KHI in a particular region, which is defined as

Q/k =

√
a1a2(∆v · k̂)2 − a1(vA1 · k̂)2 − a2(vA2 · k̂)2 (2.2)

where ai is a density parameter on either side of the boundary, defined by ai =

ρi/(ρ1 + ρ2), vAi is the Alfvén velocity, and k̂ is the unit wave vector (thus the

growth rate is normalized to the wavelength) pointing in the direction of maximum

growth. We use only proton data to determine the values in Equation 2.2 as the

low mass electrons have no meaningful influence on the growth rate, and minor ion

species are not abundant enough to contribute significantly. Values for each region

are determined using the automated region sorting method as described in Section

2.2.1.

Equation 2.2 is an upper limit of the growth rate for an observed event due to the

assumption of an infinitely thin boundary, which is not true for the magnetopause.

Equations 2.1 and 2.2 also assume an incompressible plasma, yet for very high (> 600

km/s) solar wind speeds, the compressibility is generally sufficient to stabilize the

development of the KHI. Due to these assumptions, the growth rate as determined

by Equation 2.2 is an overestimate of the growth rate for an observed KHI. It must

also be noted that MMS is unlikely to observe the source region of the KHI and local

conditions may not match those of the source region. The difference in growth rate

from the source region to the observation point is not predictable from observations.
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In order to compare KHI events observed at various locations and under a variety

of solar wind conditions and IMF orientations, we make the growth rate unitless via

normalization to the local fast mode speed, vfm =
√
v2A + c2s. Both magnetic tension

and compressibility have stabilizing effects on the KHI. Likewise, the fast mode speed

is dependent on magnetic tension via the Alfvén velocity, vA, and compressibility via

the sound speed, cs. Further, Miura and Pritchett [1982] showed the KHI growth rate

is strongly correlated to the fast mode speed, and the KHI is stabilized if Q/k > vfm.

Thus it is more physically meaningful to normalize to the fast mode speed than

another characteristic speed.

It is also important to note, our expression of the fast mode speed here is an upper

limit which assumes the magnetic field is perpendicular to the bulk velocity. When

the field and velocity are parallel, the larger of the sound or Alfvén speed is used

as the fast mode speed. This means the unitless growth rate we present is a lower

bound, and may be larger depending upon the relative geometry of the magnetic field

and bulk velocity.

The fast mode speed is not equal in the magnetosheath (sub-index msh) and

magnetosphere (sub-index msp), so we normalize to the mean of the two, such that

Qunitless =
Q/k

vfm

where vfm = (vfmmsh + vfmmsp)/2.

In Equation 2.2 the direction of k̂ is chosen to maximize the normalized growth

rate, but many directions of k̂ may satisfy the instability criterium. This range of

wave vector directions capable of satisfying the instability criterium can be used to
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determine just how susceptible a region is to the development of the KHI.

The KHI may propagate in any direction k̂ for which Q/k is real (the right hand

side of Equation 2.2 is positive under the square root). If we express k̂ in terms of

the spherical angles φ and θ, the percent of the 4π solid angle that satisfies the KHI

instability criterium at a given location may be calculated. We term this percentage

the “unstable solid angle” [Burkholder et al., 2020; Nykyri et al., 2021b]. Figure 2.7 is

a visualization of the unstable solid angle for the example KH event on 26 September

2017. On the total 4π solid angle sphere, blue points indicate directions which are

unstable to the development of the KHI. Events with larger unstable solid angles are

likely to be KHI.

The growth rate, unitless growth rate, and unstable solid angle all help character-

ize an observed KH event. Chapter 3 reports the growth rate, unitless growth rate,

and unstable solid angle for all 45 KH events observed by MMS between September

2015 and March 2020.

2.2.2 Kinetic Scale Wave Analysis Tools

Variance Analysis

Though MMS data is typically reported in GSE or GSM coordinates, it is often useful

to rotate the data into coordinate systems dependent upon the local boundary ge-

ometry. Boundary normal, or LMN, coordinate systems consist of three orthonormal

vectors: one vector, N, normal to the boundary and two vectors, L and M, tangential

to it. Boundary normal coordinates are determined using variance analysis. The gen-

eral method of variance analysis techniques is given in Sonnerup and Scheible [1998].

In this work, we make use of two forms of variance analysis: maximum variance anal-
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Figure 2.7: The unstable solid angle is the fraction of the total 4π solid angle sphere
which can support the growth of the KHI. The directions in which the KHI is able
to grow are shown in blue for the September 26 2017 event.
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ysis of the electric field (MVA-E) and minimum variance analysis of the magnetic

field (MVA-B).

The MVA-E technique is used to determine the unit vector, N, normal to the

magnetopause boundary at which the KHI is operating. A variance matrix is con-

structed from the convective electric field, E = −v ×B. The direction of maximum

variance of the field is determined as an eigenvalue problem of the variance matrix.

The direction of maximum variance is defined by the maximum eigenvector of the

variance matrix and corresponds to N. Directions tangential to the boundary corre-

spond to the intermediate and minimum eigenvectors. The MVA-E technique is used

when determining the “global” normal of the boundary during an observation of the

KHI. The normal component of the magnetic field, BN , in which KH waves create

bipolar signatures, is calculated using the MVA-E method.

The MVA-B technique follows a similar procedure. A variance matrix is con-

structed from the measured magnetic field, and solved as an eigenvalue problem. In

this case, the normal direction is the direction in which the variance is minimized,

i.e. the direction of the minimum eigenvector of the variance matrix. The tangential

directions correspond to the intermediate and maximum eigenvectors. In this work

MVA-B is used to determine the direction of propagation for small scale waves. In

this application, the minimum variance direction, Bmin, corresponds with the direc-

tion of the wave vector, k. The intermediate and maximum variance directions, Bint

and Bmax are tangential to the plane of the wavefront.

The quality of a boundary normal coordinate system is indicated by the ratio of

the variance matrix’s eigenvalues. In MVA-E, the coordinate system is well defined

if the ratio of the maximum and intermediate eigenvalues, λmax/λint, is large. For
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MVA-B, the coordinate system is well defined if the ratio of the intermediate and

minimum eigenvalues, λint/λmin, is large. For the application of MVA-B to the wave

field, eigenvalue ratios indicate how well polarized the wave may be. The statistical

analysis of ion scale waves presented in Chapter 4 considers only well polarized wave

intervals, such that λint/λmin > 5 and
√
λint/λmax > 0.5.

It must be noted the normal direction identified using variance analysis techniques

is subject to a 180◦ ambiguity. When used to determine the normal component of the

magnetic field, we require the normal direction point outward from the magnetopause

into the magnetosheath. When used to determine the direction of the wave vector, the

180◦ ambiguity cannot be resolved with a single spacecraft. It is possible to identify

the exact wave vector direction if multiple spacecraft observe the same wave packet

at different times, but such analysis is beyond the scope of the current work.

Isolating Wave Fields

Generally, the electric and magnetic fields can be expressed as the sum of a steady

background field and a component wave field, E = E0 + δE, B = B0 + δB. There

may be many wave fields, each at a different frequency. To isolate only the wave field

near a certain frequency of interest, the ion cyclotron frequency for example, we use

band pass filtering via a fast Fourier transform (FFT).

Consider the case in which we wish to isolate the wave field around the ion cy-

clotron frequency, fIC . Over the course of a KH event, fIC varies form fICmin = 2j to

fICmax = 2k where j and k can be any number. The FFT requires frequency bounds

which correspond to integer powers of 2, thus we select the bounds of the band pass

filter such that fmin = 2bjc−1 and fmax = 2dke+1.
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Figure 2.8: The total magnetic field, ion cyclotron frequency, and filtered wave mag-
netic field for the example event on 26 September 2017. Dashed lines indicate the
upper and lower boundaries of the band pass filter used to isolate the wave field.

The selection of upper and lower bounds of the band pass filter for the example

KH event observed on 26 September 2017 is depicted in Figure 2.8. For the example

shown, fIC varies from a minimum of fICmin = 0.049 = 2−4.34 Hz to a maximum

of fICmin = 0.32 = 2−1.60 Hz. The bounds of the band pass filter, marked with

dashed lines in Figure 2.8, are thus fmin = 2b−4.34c−1 = 2−6 = 0.016 Hz and fmax =

2d−1.60e+1 = 20 = 1 Hz. The total and filtered wave magnetic fields are also shown in

Figure 2.8.
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Wave Mode Identification

Several characteristics of a wave may be used to identify its wave mode. We take

advantage of a few, namely the wave frequency, the angle of wave propagation relative

to the background magnetic field, the electromagnetic or electrostatic nature of the

wave, and the ellipticity.

In this work, we search for waves only in a set frequency range, specifically waves

about the ion cyclotron frequency. Therefore, the potential wave modes which we

expect to observe are narrowed to the ion cyclotron wave, the kinetic Alfvén wave,

and the kinetic magnetosonic wave. More details about the generation mechanisms,

effects, and signatures of the wave modes near the ion cyclotron frequency are given

in Chapter 4.

The direction at which observed waves propagate is determined using MVA-B

analysis on the wave field, as described in section 2.2.2. The direction of minimum

variance is in line with the wave vector, k. Kinetic Alfvén waves tend to propa-

gate parallel to the background field while the kinetic magnetosonic wave propagates

perpendicular to the field.

Both the kinetic Alfvén and kinetic magnetosonic waves are electromagnetic waves

in which oscillations of both the electric and magnetic field are present. We may de-

termine the if a wave is electromagnetic or not using the ratio of the wave electric and

wave magnetic fields (δE/δB). For electrostatic waves, oscillations of the electric field

dominate and the ratio is greater than the Alfvén velocity i.e. (δE/δB)/vA > 1. For

electromagnetic waves, the ratio is less than the Alfvén velocity and (δE/δB)/vA < 1.

Ellipticity describes the polarization of the observed wave field. Linearly polar-

ized waves have ellipticity ε = 0. Exactly circularly polarized waves have elliptic-

56



ity ε = ±1 depending on their handedness. Waves which rotate rotate about the

background magnetic field according the right-hand rule are right-handed circularly

polarized with ellipticity ε = 1. Left-handed circularly polarized waves, with ε = −1,

obey the left-hand rule relative to the background magnetic field. Observations more

typically have intermediate values of ellipticity. Ellipticity can be determined using

hodograms, or calculated directly, using methods developed by Krauss-Varban et al.

[1994]. Mathematically, ellipticity is the ratio of the right- and left-handed circularly

polarized wave field powers:

ε = <Bξ − iBy

Bξ + iBy

(2.3)

Where Bξ and By are the components of the wave field perpendicular to the wave

propagation direction. The determination of these components requires the rotation

of the wave field into a coordinate system aligned with the wave vector. The unit

vector ξ̂ is coplanar to both the wave vector direction, k̂, and the direction of the

background magnetic field, B||. Additionally, ξ̂ is perpendicular to the wave vector.

The third unit vector direction completes the right-handed system such that k̂×ξ̂ = ŷ

[Krauss-Varban et al., 1994].

The kinetic Alfvén wave is polarized in the left-handed sense, as is the ion cyclotron

wave [Krauss-Varban et al., 1994]. The kinetic magnetosonic wave is right-handed

polarized [Krauss-Varban et al., 1994].

In conjunction with frequency, propagation direction, and δE/δB ratios, ellipticity

is useful in classifying observations as consistent with a particular known wave mode.

It is important to note, calculating ellipticity or frequency directly from spacecraft

measurements will yield results in the spacecraft frame. The spacecraft, however, is
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moving with respect to the field, and Doppler shift effects can play an important role.

Large Doppler shift effects may even change the sign of an observed wave’s ellipticity,

such that a wave appearing to be a right-handed in the spacecraft frame is truly

left-handed (or vice-versa).

Doppler Shift Effects

All MMS observations are made in the reference frame of the spacecraft as it moves

through the plasma of the near Earth space. The observed waves, however, occur in

the inertial plasma frame. The relative motion of the spacecraft and plasma frames

means the wave properties, such as frequency and ellipticity, observed by MMS are

not likely to be the true properties of the wave. We may account for some of this

discrepancy by calculating the Doppler shifted frequency. The Doppler shift of angular

frequency from the spacecraft to the plasma frame is described by Equation 2.4,

ωp = ωsc − k · vbulk (2.4)

where ωp and ωsc are the angular frequency in the plasma and spacecraft frames,

respectively, k is the wave vector, and vbulk is the bulk plasma velocity. The direction

of the wave vector is determined using MVA-B analysis (see Section 2.2.2). The

magnitude of the wave vector is dependent upon the wave mode, though for waves

near the ion cyclotron frequency, the thermal ion gyroradius is a reasonable estimate.

A full account of the Doppler shift effects on ellipticity is dependent upon the

perpendicular and parallel components of the wave vector and each wave mode’s

unique dispersion relation. This work is ongoing (see Chapter 5).
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2.3 MHD Simulations

MHD Theory

In the magnetohydrodynamic (MHD) description, plasma is treated as a fluid made

of several species of particles, though species are typically limited to protons and

electrons for magnetospheric space plasmas. Like a normal fluid, the plasma must

obey the laws of hydrodynamics, i.e. the conservation of mass and momentum via

the continuity equation, 2.5 and the momentum equation, 2.6.

∂ρ

∂t
+∇ · ρv = 0 (2.5)

assuming no sources or losses;

∂(ρv)

∂t
+∇ · ρvv = −∇p (2.6)

where the very small the electron mass is considered negligible

However, because plasma is made of charged particles with an embedded magnetic

field, the velocity and density cannot be arbitrarily specified as they could be for an

unmagnetized fluid. Consider a magnetized, quasi-neutral plasma in which a new set

of particles is introduced with an arbitrary velocity. The new particles’ velocity is

effected by the magnetic field via the Lorentz force. The change in particle motion

induces a current, which in turn affects the magnetic field. The velocity and magnetic

field are co-dependent, therefore we must develop a self-consistent set of equations to

describe the fluid motion and field behavior of the plasma. This system of equations

combines the continuity and momentum equations of hydrodynamics with Maxwell’s
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Equations governing electric and magnetic fields (2.7-2.9) along with the Generalized

Ohm’s Law (2.10).

∂B

∂t
= −∇× E (2.7)

∇×B = µ0J (2.8)

∇ ·B = 0 (2.9)

E + v ×B = ηJ +
J×B

en
+
∇ ·P
en

+
me

e

dve
dt

(2.10)

However, in the ideal MHD description, we treat the plasma as fluid and ignore

the smaller scale behavior of single particles (i.e. the ion and electron inertial scales).

Thus the Generalized Ohm’s law is reduced to

E + v ×B = 0 (2.11)

The ideal MHD description relies on several assumptions for its validity. For

example, ideal MHD only applies when the time and length scales under consideration

are much greater than the characteristic scales (e.g: the gyroradius for length and

inverse of the plasma frequency for time). Ideal MHD also assumes the plasma has

infinite conductivity. For infinitely conductive plasmas the magnetic field is “frozen”

into the fluid. In short, ideal MHD describes the plasma as a fluid and is entirely

dependent on the bulk properties. At small scales where particle motion is dominant,
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or the if the frozen in condition is violated, ideal MHD will no longer hold. For this

reason, we can study the fluid scale KHI via ideal MHD simulation and approximation,

but not the small scale waves associated with the KHI.

The ideal MHD description is not capable of resolving many important processes

in space plasma which occur at smaller scales, such as reconnection, which requires the

violation of the frozen in condition. In order to capture small scale processes, ideal

MHD is often modified to include terms on the right hand side of the generalized

Ohm’s law. Common modifications of MHD include Hall-MHD and resistive MHD.

In Hall-MHD, the Hall term, which describes the effects of currents perpendicular

to the background field, is preserved. Ohm’s law for Hall-MHD is

E + v ×B =
J×B

en
(2.12)

The resistivity term may also be included to yield Hall-MHD with anomalous

resistivity, in which Ohm’s Law is

E + v ×B = ηJ +
J×B

en
(2.13)

The Hall and resistivity terms are able to support smaller scale process than the

ideal MHD description. This work makes use of resistive Hall-MHD simulations, as

described in the following section.

Application of MHD Simulations

To verify the automated region sorting method developed in section 2.2.1 was truly

robust, it was applied to parameters generated by 2 dimensional Hall-MHD simula-
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tions of the KHI. A simulation case for the KHI developing under northward IMF

(NIMF) orientation was initiated using conditions comparable to those of the KH

event observed on 08 September 2015. A second simulation of the KHI developing

during Parker Spiral IMF (PSIMF) orientation was created using initial conditions

similar to those of the event observed on 18 October 2015.

The simulations, after Ma et al. [2019], solve the full set of resistive Hall-MHD

equations using a leapfrog scheme [Potter , 1973; Birn, 1980; Otto, 1990]. All physical

quantities are normalized to their typical scale. Length, L, is normalized to the half

width of the initial shear flow, L0; number density, n, to n0; the magnetic field, B,

to B0; velocity, v to the Alfvén velocity, vA = B/
√
µ0ρ0; and time, t, to the Alfvén

transit time, TA = L0/vA. Exact values of the normalizations for both simulation

cases are listed in Table 2.4.

Table 2.4: Normalization constants for the 2D MHD simulations.

Quantity Northward Parker spiral
Magnetic field B0 (nT) 71.5 30.23

Number Density n0 (/cc) 12.36 2.78
Length scale L0 (km) 640 640
Velocity VA (km/s) 443 395.21

Time t0 (s) 1.35 1.62

As shown in Figure 2.9, a cut is taken through the simulation box at every time

step, simulating the way a spacecraft would move through the KHI at the magne-

topause. Data recorded along the cut is separated into magnetospheric and magne-

tosheath regions using the automated region sorting method. Plasma parameters in

the identified regions agreed well with the known values. The density in each region

at every time step of the simulation can be seen in Figure 2.9. For the duration of

a simulation of NIMF conditions, the automated region sorting produces a density
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within 0.15 /cc of the known values in either region. The automated method yields

density values within 0.3 /cc of the known values for a simulation under PSIMF con-

ditions. This indicates the automated region sorting method works well, even for late

stages of the KHI with significant mixing.

Simulations also underscore the dependence of the region sorting method on the

path of the spacecraft through the observation (or the geometry of the cut in sim-

ulation space). Four cuts with different geometries were taken at each time step:

one perpendicular to the boundary, one oblique to the boundary, one parallel to the

boundary on the magnetosheath side, and one parallel to the boundary on the mag-

netospheric side, as can be seen for the PSIMF simulation on the left of Figure 2.10.

The automated region sorting method was applied to data from each of the cuts and

used to calculate plasma parameters for each region. The density in both regions is

plotted on the left of Figure 2.10 along with the known value. The perpendicular

and oblique cuts match the known value throughout the simulation. As discussed

previously, the regions identified from the oblique cuts are, at worst, within 0.3 /cc

with the known density for each region (see Figure 2.9). The perpendicular cut pro-

duces comparable results to the oblique cut. The parallel cuts, as expected, do not

isolate regions matching with known values until they observe both regions. As the

instability develops, and more plasma from both regions is captured by the cut, the

results improve drastically, as can be seen between simulation time steps 150 and 200

in Figure 2.10. Prior to this point, each parallel cut yields density values similar to the

region it is in for both regions. After time step 200, the boundary has been twisted

enough that the parallel cuts observe significant amounts of plasma associated with

both regions, and the automated region sorting method yields much better results.
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Figure 2.9: The automated region sorting method yields regions in which measured
density (red, dashed lines) agrees well with the known value (black, solid lines) even
as the simulations develop and the plasma is mixed.
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Figure 2.10: The results of the automated region sorting method depend on cut
geometry in simulation space. Cuts which spend significant portions of the event on
both sides of the boundary produce the best results. The known density value for
each region is indicated by the solid black line, the measured densities are indicated
by dashed lines with colors corresponding to the cut geometries shown on the right.
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2.4 Conclusions

Based on the signatures described in Section 2.2.1, we identified 45 MMS observations

within the MMS data. Initial analysis indicates these observations are well distributed

along the magnetopause and span the full range of IMF orientations. More details

about the large scale properties of the KHI are presented in Chapter 3.

A new automated region sorting technique was developed to aid in the charac-

terization of the KH events observed by MMS. This technique uses specific entropy,

S = T/n2/3, and nvtail/T to isolate pure magnetosphere and pure magnetosheath

plasma, respectively. When the new technique was tested on simulated data, the

resulting plasma regions were in excellent agreement with known properties of the

simulation. Comparison with a previous region sorting method from Moore et al.

[2017] shows general agreement in the resulting regions, but the new method bet-

ter selects the most pure magnetosheath and magnetospheric plasma. The newly

developed method also has the benefit of being fully automated.

The kinetic scale wave analysis described in this Chapter is used to isolate well

polarized wave intervals within the KHI. Chapter 4 details the results of that analysis.
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Chapter 3

Statistical Results of KHI

Properties

The results presented in this chapter are published in Rice et al. [2022].

3.1 KHI Growth Rates and Unstable Solid Angles

The 45 KHI events observed by MMS were sorted into regions of magnetosheath,

mixed, and magnetospheric plasma using the method described in Section 2.2.1. In

order to characterize and compare the KHI observations, the growth rate, unitless

growth rate, and unstable solid angle of each event were calculated as described in

Section 2.2.1. The results of these calculations are listed in Table 3.1.

Growth Rate ranges from 3.93 km/s to 103.16 km/s. When normalized to the

local fast mode speed, unitless growth rate ranges from 0.005 to 0.325, but is more

typically between 0.010 and 0.200. That is, the KHI typically develops at 1 to 20%

of the local fast mode speed; only eight events fall outside this range (seven below
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and one above).

Unstable solid angle ranges from 0.06 to 39.51%. Two of the events have unstable

solid angles less than 1% of the total 4π solid angle. Unstable solid anlge is between

1% and 10% for 23 events, and between 10% and 25% for 17 events. Three events

have unstable solid angles greater than 25% of the total 4π solid angle.

At its maximum, the normal component of the velocity often accounts for more

than 60%, and occasionally all, of the total velocity, indicating the observed KH waves

have significantly twisted the boundary.

Table 3.1: Growth rates (GR), unitless growth rates (UGR), unstable solid angles
(USA), and the relative value of the maximum normal velocity component for each
of the 45 KHI events observed by MMS from September 2015 to March 2020.

Event No. Date GR [km/s] UGR USA [%] vNmax/vtot

01 08-Sep-15 81.63 0.081 6.37 0.96

02 15-Sep-15 16.27 0.019 0.82 0.99

03 11-Oct-15 15.68 0.016 0.42 0.58

04 15-Oct-15 8.83 0.007 0.11 0.85

05 17-Oct-15 25.05 0.032 4.01 0.92

06 18-Oct-15 52.31 0.063 9.07 0.83

07 22-Dec-15 10.41 0.010 0.29 0.83

08 11-Jan-16 17.47 0.015 0.27 0.89

09 19-Jan-16 13.78 0.025 0.12 0.52

10 05-Feb-16 22.31 0.028 5.74 0.93

11 07-Feb-16 13.36 0.019 0.16 0.66

12 18-Feb-16 34.90 0.038 8.96 1.00

Continued on next page
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Table 3.1: Continued from previous page

Event No. Date GR [km/s] UGR USA [%] vNmax/vtot

13 25-Feb-16* 5.01 0.012 0.08 0.69

14 26-Sep-16 51.46 0.068 7.26 0.99

15 27-Sep-16 84.07 0.117 8.37 0.96

16 04-Oct-16 54.67 0.063 7.17 0.70

17 10-Oct-16 43.30 0.059 8.98 0.75

18 24-Oct-16 3.93 0.005 0.06 0.71

19 04-Nov-16 16.78 0.019 0.78 0.95

20 03-May-17 56.65 0.197 39.51 0.85

21 08-May-17 84.15 0.278 29.87 1.00

22 11-May-17 45.56 0.103 12.07 0.87

23 11-May-17 49.99 0.198 13.33 0.33

24 19-May-17 90.54 0.186 29.00 0.93

25 20-May-17 47.42 0.066 30.22 0.75

26 20-Sep-17 53.99 0.145 18.75 0.19

27 26-Sep-17 52.01 0.189 24.23 0.83

28 16-Oct-17 26.03 0.047 6.74 0.79

29 30-Oct-17 11.51 0.023 4.70 0.97

30 02-Nov-17 39.55 0.109 5.95 0.67

31 03-May-18 95.59 0.325 23.37 0.97

32 18-Sep-18 40.87 0.090 9.96 0.91

33 24-Sep-18 71.16 0.227 36.91 0.73

Continued on next page
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Table 3.1: Continued from previous page

Event No. Date GR [km/s] UGR USA [%] vNmax/vtot

34 02-Oct-18 41.17 0.111 10.18 0.65

35 04-Oct-18 31.26 0.081 6.16 0.50

36 13-Apr-19 48.93 0.089 15.66 0.76

37 03-Jun-19 42.25 0.108 16.63 0.94

38 25-Sep-19 74.22 0.198 28.04 0.91

39 02-Oct-19 29.28 0.083 6.10 0.58

40 02-Oct-19 96.46 0.209 26.71 0.82

41 02-Oct-19 37.12 0.111 18.09 0.52

42 06-Oct-19 82.43 0.210 34.49 0.98

43 15-Oct-19 94.08 0.296 18.37 0.98

44 22-Oct-19 52.52 0.110 12.00 1.00

45 12-Nov-19 103.16 0.250 14.34 0.90

A few of the observed events occur in apparently stable regions with very low

growth rates (e.g: the high-latitude case on 25 Feb 2016 [Nykyri et al., 2021b; Michael

et al., 2021]). This does not preclude the observed events from being the KHI. Con-

vective instabilities, like the KHI, dissipate energy stored in unstable regions and

systems. As excess energy is dissipated, the region becomes more stable, therefore

maximum instability and growth rate occur just prior to the formation of the instabil-

ity. Because it is difficult to identify the KHI in observational data until it is relatively

well developed and has dissipated some of the excess free energy, observations will

only be made after growth rate has decreased from its maximum. We believe those
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events occurring in apparently more stable regions may be later in development than

faster growing KHI in less stable areas.

We also note the path MMS takes through the KHI event can have a significant

effect on the growth rate determination, as discussed in Sections 2.2.1 and 2.3. En-

counters which skim the KH vortex rather than passing directly through it may grow

faster than our calculations would indicate.

3.2 Solar Wind and IMF During the KHI

The IMF orientations for which KHI are observed are compared with those observed

for the entirety of the 4.5 year interval from September 2015 to March 2020. OMNI

data is available for 44 of the 45 KH events observed by MMS and is listed in detail

in Appendix A. As can be seen in Figure 3.1, the IMF magnitude and orientations

during KHI observations match well with the distribution of observations for the

full 4.5 year interval. KHI are observed slightly less than expected for the most

common IMF magnitude, and more than expected for very large IMF. This is due to

a single outlier event which occurred during IMF ≈ 20 nT [Eriksson et al., 2016]. The

planar, BX and BY , components of the IMF show no conclusive variation in the KHI

observations relative to the complete 4.5 year interval. However, northward IMF is

more common during KHI observations than for the full time range. Southward IMF

is correspondingly less common during KHI intervals than otherwise. This is likely

due to subsolar reconnection during southward IMF, which creates a more diffuse

boundary layer which is less prone to the development of the KHI.

Solar wind conditions for the KH observations cover the full range of typical
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Figure 3.1: The normalized distributions of IMF strength and normalized IMF com-
ponents for KHI observations (red) and the full 4.5 year interval from September 2015
to March 2020 (black) are similar, though the KHI occurs more frequently when the
BZ component is positive.
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parameters, as can be seen in Figure 3.2. The distribution of solar wind density,

temperature, flow speed, and Alfvén mach number during KHI observations generally

agree with the distributions for the full 4.5 year interval from September 2015 to

March 2020. The most pronounced discrepancy is in solar wind flow speed: KHI

observations overrepresent high solar wind speeds, particularly between 350 and 450

km/s. This is unsurprising, as the KHI develops preferentially for high (> 400 km/s)

solar wind speeds while magnetic compressibility at very high speeds (> 600 km/s)

can have a stabilizing effect.

While the KHI occurs for the full range of solar wind conditions and IMF ori-

entations, the solar wind and IMF have no apparent effect on the KHI growth rate,

unitless growth rate, or unstable solid angle. Figure 3.3 plots the growth rate, unitless

growth rate, and unstable solid angle of 44 of the 45 KHI observations as functions of

solar wind density, temperature, flow speed, Alfvén Mach number, and IMF magni-

tude. The color bar indicates the event number (listed in both Tables 2.2 and 3.1) so

each event is plotted with the same color across all plots for direct comparison. No

correlation is apparent between growth rate, unitless growth rate, or unstable solid

angle and any of the solar wind and IMF parameters, with the exception of solar

wind flow speed, in which there appears to be a selection window between 295 and

610 km/s.

The apparent selection window in solar wind flow speed fits with expectations that

low velocity shears between the magnetosheath and magnetosphere are not unstable

to the KHI and compressibility effects for very large shears stabilize the KHI [Miura

and Pritchett , 1982]. However, the distribution of solar wind speeds for the 4.5 year

interval from September 2015 to March 2020 shown in Figure 3.2 indicates the solar
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Figure 3.2: Normalized distributions of solar wind density, temperature, flow speed,
and Alfvén Mach number for KHI observations (red) and the full 4.5 year interval
from September 2015 to March 2020 (black) are generally similar, though the KHI
observations overrepresent solar wind speeds between 350 and 450 km/s.
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Figure 3.3: KHI growth rate (top), unitless growth rate (middle), and unstable solid
angle (bottom) as functions of solar wind density (far left), temperature (center left),
flow speed (center), Alfvén Mach number (center right), and IMF magnitude (far
right). There is no obvious correlation between KH characteristics and solar wind
conditions
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wind speed is rarely below 300 km/s or above 600 km/s. Therefore, the apparent

selection window is likely not significant.

3.3 KHI Observation Locations

The KHI growth rate, unitless growth rate, and unstable solid angle show some

dependence on location. Figure 3.4 plots the location of the 45 MMS observations of

the KHI in the GSM X–Y, X–Z, and Y–Z planes. Growth rate, unitless growth rate,

and unstable are indicated by the color bars for each row. The KHI observations

near the subsolar point tend to have lower growth rate than those observed farther

along the tail. This trend is still apparent event when growth rate are normalized

to the local fast mode speeds. This is likely due to the low velocity shear near the

subsolar point. Immediately after encountering the bow shock, magnetosheath plasma

is slowed significantly from solar wind speeds, and the shear between the sheath and

the magnetosphere is much lower than farther downtail, where the magnetosheath

plasma has accelerated and returned to solar wind velocity. The low velocity shear

near the subsolar point will yield lower growth rates and unitless growth rates, as can

be seen from Equation 2.2.

Unstable solid angle shows a similar pattern; larger values are observed farther

downtail. Again, this is explained by the large velocity shears encountered along the

tail magnetopause. On the dayside, the shocked solar wind of the magnetosheath

is still accelerating back up to solar wind speed after encountering the obstacle of

Earth’s magnetosphere and bow shock, therefore velocity shears between the sheath

and magnetosphere are smaller. Farther downtail the magnetosheath plasma has re-
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Figure 3.4: KHI growth rate (top), unitless growth rate (middle), and unstable solid
angle (bottom) with respect to the KHI’s observation location in the GSM X–Y (left),
X–Z (center), and Y–Z (right) planes. KH events occurring farther downtail tend to
grow faster and in less stable regions.
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achieved solar wind flow speed, increasing the shear between the two regions. For

larger velocity shears, the stabilizing effects of the magnetic field are less influential

in the development of the KHI, and a larger solid angle is unstable to the growth of

the KHI.

A cluster of KHI observations were made at high southern magnetic latitudes

(GSM Z ≤ −4.5 RE), show the KHI is not limited to the lower equatorial latitudes.

This is a new finding as previous missions, such as THEMIS, remained at lower

magnetic latitudes. Only three prior observations, two made by Cluster [Hwang

et al., 2012; Ma et al., 2016] and one made by MMS [Nykyri et al., 2021a; Michael

et al., 2021], have been studied as examples of the KHI at high latitudes near the

flanks of the magnetospheric cusp.

3.4 Conclusions

The main conclusions of the statistical study of fluid scale KHI properties may be

summarized as follows.

• The automated region sorting method developed in Chapter 2 was used to

isolate regions of magnetosheath and magnetospheric plasma for the 45 KHI

events observed by MMS. Plasma parameters from each region were used to

calculate KHI growth rate, unitless growth rate, and unstable solid angle for

the 45 events in our database.

Growth rates, unitless growth rates normalized to the local fast mode speed, and

unstable solid angles for the 45 KHI events in our database are reported in Table 3.1.
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Growth rates range from a minimum of 3.93 km/s to a maximum of 103.16 km/s.

When normalized to the fast mode speed, the unitless growth rate ranges from 0.005

to 0.325 in the extremes, with most events in the 0.01 to 0.20 range. That is, most

of the observed KHI grow at speeds between 1% and 20% of the local fast mode

speed. Increased growth rates and unitless growth rates are usually observed farther

downtail where the velocity shear between the magnetosphere and magnetosheath is

larger than on the dayside.

Two of the observed KHI have unstable solid angles less than 1% of the total

4π solid angle. Unstable solid angles are between 1% and 10% for 23 events, and

between 10% and 25% for 17 events. Three events have unstable solid angles greater

than 25% of the total 4π solid angle. Larger solid angles are more common farther

down tail where the velocity shear from the magnetosheath to the magnetosphere is

greater and thus the stabilizing effects of the magnetic field are less influential.

We note a few of the observed events occur in apparently stable regions with

very low growth rates, but these events are still likely to be the KHI. Convective

instabilities, like the KHI, dissipate energy stored in unstable regions and systems.

As excess energy is dissipated, the region becomes more stable, and growth rate

and unstable solid angle will decrease. Growth rate and unstable soild anlge are

maximized just prior to the formation of the instability. Identification of the KHI in

observational data is difficult until it is relatively well developed and has dissipated

some of the excess free energy. Therefore, observations will most likely be made after

growth rate and unstable solid angle have decreased from their maxima. We believe

those events occurring in apparently more stable regions may be later in development

than faster growing KHI in less stable areas.

79



We also note the path MMS takes through the KHI can have a significant effect

on the calculated growth rate. Encounters which merely skim the KH vortex rather

than passing directly through it may actually grow faster than our calculations would

indicate.

• The KHI is observed for the full range of solar wind conditions and IMF ori-

entations. Growth rate, unitless growth rate, and unstable solid angle show

no obvious correlation to solar wind conditions or IMF strength. An apparent

selection window in solar wind flow speed is likely insignificant.

Values of the growth rate, unitless growth rate, and unstable solid angle for each

event are listed in Table 3.1. As can be seen in Figure 3.3, growth rate, unitless growth

rate, and unstable solid angle appear to be independent of solar wind conditions, with

the exception of solar wind flow speed. All of the observed events occurred when the

solar wind speed was between 295 km/s and 610 km/s. At flow speeds much below 295

km/s, the velocity shear is too low to satisfy the KHI onset condition (Equation 2.1).

At solar wind speeds above 610 km/s magnetic compressibility will usually stabilize

the KHI [Miura and Pritchett , 1982]. Within this selection window between 295 km/s

and 610 km/s, however, flow speed is not correlated with growth rate, unitless growth

rate, or unstable solid angle. Additionally, as can be seen in Figure 3.2, this selection

window likely reflects the distribution of solar wind speed throughout the entire 4.5

year time range considered in this study, and is thus insignificant.

While the KHI was observed for the full range of IMF orientations, positive BZ

components are overrepresented during KH events when compared with observations

for the entire 4.5 year interval from September 2015 to March 2020. This is in line

with expectations, as IMF orientations with a negative BZ component may trigger
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subsolar reconnection, creating a more diffuse boundary layer which is less prone to

the development of the KHI.

• KHI observations are well distributed along the magnetopause. Growth rates,

untiless growth rates, and unstable solid angles are consistently larger along the

tail magnetopause than on the dayside flanks.

The MMS made more observations of the KHI on the dusk flank (29) than on the

dawn (16). Though Henry et al. [2017] reported a general preference for dawn flank

formation of the KHI, we do not believe the MMS observations are in contradiction of

the Henry et al. [2017] results. A conclusion about dusk flank preferential development

would require normalization to observation time spent on each flank and detailed solar

wind conditions, which is beyond the scope of this dissertation. Further, the change

in MMS orbit from Phase 1 to Phase 2 occurred while MMS apogee precessed along

the dayside dusk flank. As a result, MMS had one more dusk observation “season”

than dawn “season” while its apogee was ideal for the observation of KH waves on

the dayside flanks. This could account for the large discrepancy in dusk and dawn

side observations of the KHI.

Observations of the KHI are evenly split on either side of the terminator: 22 events

occurred on the dayside, and 23 events were observed along the tail. Events occurring

farther downtail consistently have larger growth rates, unitless growth rates, and

unstable solid angles than those occurring sunward of the terminator. This is expected

as velocity shears between the magnetosheath and magnetosphere are smaller on the

dayside where the solar wind is slowed immediately after the bow shock. Velocity

shears increase as the magnetosheath plasma flows downtail and reaccelerates to

match solar wind speeds. Large velocity shears are expected to increase growth rate
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and decrease the stabilizing effects of the magnetic field, resulting in increased growth

rates, unitless growth rates, and unstable solid angles.

• A cluster of KHI events were observed at high southern magnetic latitudes.

MMS observed a cluster of nine KH events at high southern magnetic latitudes

(GSM Z ≤ −4.5 RE). This is a new finding, as previous magnetospheric missions

were constrained to more equatorial orbits. Prior to the launch of MMS, only two

studies of high latitude KHI had been conducted using Cluster data [Hwang et al.,

2012; Ma et al., 2016]. One of the high latitude events listed in this work has been

the subject of case studies by Nykyri et al. [2021b] and Michael et al. [2021].
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Chapter 4

Ion Scale Waves within the KHI

At the time of submission, the work presented in this Chapter is in preparation for

submission to Geophysical Research Letters.

4.1 Expected Wave Modes

Plasmas are able to support a veritable “zoo” of wave modes, each with its own unique

properties and generation mechanisms. At the ion scale, the wave modes we most

expect to observe within the KHI are ion cyclotron waves, kinetic Alfvén waves, and

kinetic magnetosonic waves. The generation mechanisms and characteristic behavior

of each wave mode are described in the following sections and summarized in Table

4.1.
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4.1.1 Ion Cyclotron Waves

In the plasma frame, ion cyclotron (IC) waves propagate up to, but not above, the

ion cyclotron frequency: the frequency at which ions gyrate about the magnetic field.

The electrostatic IC wave mode arises from the kinetic description of a cold, adiabatic

plasma in which the magnetic field is constant and wave propagation is assumed to

be parallel to the field [Nicholson, 1983]. However, the IC waves are not limited to

parallel propagation and may, in fact, be as close as 2◦ from perpendicular to the

background field [Nicholson, 1983].

It is also possible to derive an electromagnetic ion cyclotron (EMIC) wave mode if

one does not assume a cold, adiabatic plasma [Peñano and Ganguli , 2002]. This EMIC

wave is limited to parallel or quasi-parallel propagation. Both the electrostatic IC and

EMIC wave modes are left-hand polarized with respect to the magnetic field. We may

distinguish between the electrostatic and electromagnetic modes via comparison of

the electric and magnetic wave fields. The ratio of the wave fields δE/δB is expected

to at most on the order of the Alfvén velocity for electromagnetic waves, and larger

for electrostatic waves [Peñano and Ganguli , 2002].

As the frequency of the IC wave mode approaches the ion cyclotron frequency

of the plasma, ions can be energized via resonance. Left-handed EMIC waves are

also capable of energizing electrons, despite the right-handed nature of the electron

motion [Peñano and Ganguli , 2002].

Both the electrostatic IC and EMIC wave modes may be driven by ion beams,

such as those produced at reconnection sites within KH vortices. Gradients in par-

allel velocity parallel (perpendicular) to the magnetic field can drive electrostatic

(electromagnetic) IC waves [Nykyri et al., 2003b, 2006a; Peñano and Ganguli , 2002;
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Kim et al., 2004]. Due to the twisting of magnetic field lines in the KH vortex, we

may expect both electrostatic and electromagnetic IC waves to develop, perhaps even

in different regions of the same KH wave as the relative geometry of the velocity

shear and magnetic field changes. EMIC waves may additionally be driven by the

overlap of hot anisotropic plasma with another cold, dense plasma population [Zhang

et al., 2017]. Such overlaps would be expected around KH vortices where the hot

magnetosheath plasma is mixed with the cold, dense magnetosphere.

4.1.2 Kinetic Alfvén Waves

In the literature, the Kinetic Alfvén wave is often abbreviated as “KAW.” For con-

sistency with the other wave modes presented in this work, we will refer to the “KA

wave.”

The kinetic Alfvén (KA) wave mode bridges the gap between kinetic wave modes

and other Alfvén waves described by MHD physics [Nykyri et al., 2006b]. Though

it is often described as a left-handed, parallel propagating wave [Moore et al., 2016,

2017], the KA wave can propagate across a range of angles, and at high propagation

angles and high values of β, the handedness of the KA wave changes from left to

right [Nykyri et al., 2006b; Krauss-Varban et al., 1994]. The KA wave can develop

in plasmas with me/mi < βe < 1, that is, plasma with electron beta less than one

and greater than the electron to ion mass ratio (≈ 0.0005 in space plasmas in which

protons are the dominate ion species).

Within KH vortices, KA waves can be generated via mode conversion. At points

of Alfvén resonance where the speed of the surface mode wave matches the local

Alfvén speed, surface waves can be converted to KA waves [Chaston et al., 2007;
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Johnson et al., 2001]. These Alfvén resonance points are more common within KHI

due to the varying magnetic field strength caused by the rotating vortex twisting and

compressing field lines.

KA waves are capable of driving ion energization into the magnetosphere [Hasegawa,

1976]. A component of the KA wave mode’s electric field is parallel to the background

magnetic field, which leads to both effective ion acceleration and electron heating par-

allel to the field [Hasegawa, 1976; Nykyri et al., 2021b]. Theoretical work has also

shown KA waves driving perpendicular heating via turbulence [Johnson and Cheng ,

2001].

4.1.3 Magnetosonic Waves

The fast magnetosonic (FM) wave mode is one of three wave modes which arise from

the MHD description of plasma. FM mode waves are incredibly important because

they can carry energy perpendicularly across magnetic field lines. Models have shown

the FM wave mode can be triggered by a combination of fast magnetosheath flows

and perturbations in total pressure, such as those seen near the center of KH vortices

[Mann et al., 1999]. The kinetic counterpart of the MHD FM wave is the kinetic

magnetosonic (KM) wave mode. KM waves may be driven by ion shells, such as

those generated by mid-latitude reconnection within the KHI [Moore et al., 2016;

Nykyri et al., 2021c].

Unlike the IC and KA wave modes, the FM and KM waves may propagate both

above and below the local ion cyclotron frequency. FM waves above the ion cyclotron

frequency and below the lower hybrid frequency have been shown in models to ef-

fectively heat ions [Lembege et al., 1983]. Similar heating has also been shown for
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large amplitude KM waves propagating below the ion cyclotron frequency [Terasawa

and Nambu, 1989]. More recent observational studies have confirmed that KM wave

modes associated with the KHI do indeed contribute to ion heating in space plasmas

[Moore et al., 2016, 2017].

KM waves typically propagate perpendicularly or quasi-perpendicularly to the

background field and are consistently right-handed with respect to the background

magentic field [Krauss-Varban et al., 1994; Moore et al., 2016].

By comparing the propagation angle, ellipticity, and electromagnetic or electro-

static nature of an observed wave interval, we may determine which wave mode it is

most likely to be. The characteristic behavior of these parameters is summarized in

Table 4.1 for the electrostatic IC, EMIC, KA, and KM wave modes considered in this

work.

Table 4.1: Characteristic behavior of the electrostatic and electromagnetic ion cy-
clotron, kinetic Alfvén, and magnetosonic wave modes.

Wave Mode Propagation Angle Ellipticity EM or ES
Ion Cyclotron Parallel & Perpendicular Left Electrostatic

(Quasi-)Parallel Left Electromagnetic
Kinetic Alfvén (Quasi-)Parallel Left or Right Electromagnetic
Kinetic Magnetosonic (Quasi-)Perpendicular Right Electromagnetic

4.2 Example Interval

As previously described in Section 2.2.2, we use the minimum variance of the magnetic

field (MVA-B) technique to identify intervals of well polarized wave activity. The wave

vector direction, k̂, is calculated for each wave interval by applying a sliding window

to the high pass filtered magnetic field. The high pass filtered field is obtained using
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a cutoff frequency of 0.005 Hz to remove low frequency oscillations in the field caused

by the KHI. The length of the MVA-B window is proportional to the maximum

observed ion cyclotron frequency, such that the window length, twin = 1/fICmax. The

sliding window is shifted one-half the window length, twin/2, to ensure some overlap

in analysis. We are concerned only with well determined wave vectors during well

polarized wave intervals. For the purpose of the current work, a well determined wave

vector direction has an intermediate to minimum eigenvalue ratio λint/λmin > 5. Well

polarized intervals additionally have intermediate to maximum eigenvalue ratios such

that
√
λint/λmax > 0.5. One such well defined wave interval occured during the

example KHI event on 26 September 2017 from 16:43:03 to 16:43:06 UT.

From 16:43:03 to 16:43:06 UT, MMS was in the magnetosheath and observed a

well polarized wave field. Figure 4.1 depicts the hodogram of the perpendicular wave

components, Bξ and BY (as described in Section 2.2.2) traced in time from the start

(green circle) to the end (red square) of the interval. The perpendicular components

rotate in a right-handed sense about the background magnetic field, which points into

the page. The calculated ellipticity, ε = 0.66, is in agreement with the hodogram.

The wave vector during this interval propagates at about 122◦ from the background

electric field. The right-handed polarization and quasi-perpendicular propagation of

the wave field in this interval are consistent with a KM wave.

Additionally, we note the perpendicular wave field components complete nearly

two full revolutions within the interval. As the interval is proportional to the ion

cyclotron frequency, this indicates the wave frequency is greater than fIC , which

is further evidence that we are indeed observing a KM wave. The wave mode

is also strongly electromagnetic, with a normalized electric to magnetic field ratio
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Figure 4.1: The trace of perpendicular components (see Section 2.2.2) of the wave field
observed from 16:43:03 (green circle) to 16:43:06 (red square) on 26 September 2017.
The wave field is right-handed polarized with respect to the background magnetic field
(into the page) and propagates quasi-perpendicularly (θkB = 122◦) to the background
field.
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(δE/δB)/vA = 0.008, consistent with the KM mode.

We next attempt to determine the driving source of the observed wave. As de-

scribed in Section 4.1.3, the FM wave may be driven by ion shells. The ion distribution

function as observed by the FPI during the interval from 16:43:01 to 16:43:06 UT is

shown in Figure 4.2. There is no clear evidence of ion shells in the distribution,

which would appear in the distribution as a crescent of energetic particles shifted in

single direction from the origin. Instead, the cold population (smaller velocities) is

only slightly shifted in the negative parallel direction. The high energy population

(larger velocities) is somewhat cigar shaped: the parallel velocity is larger than the

perpendicular. However, the ion population as a whole is very nearly isotropic, with

T⊥/T|| = 1.06.

We also consult the distribution of H+ ions observed by the HPCA instrument

during the wave interval, shown in Figure 4.3. The ions observed by HPCA are cooler

than those observed by FPI (the maximum velocity observed by HPCA is ≈ 200 km/s

compared to ≈ 1000 km/s observed by FPI), so we are able to see more detail in the

distribution of the cold ions. As can be seen in Figure 4.3, there is some evidence of

ion shells in both the upper and left quadrants of the distribution. These shells may

be the source of the KM wave observed in the interval from 16:43:03 to 16:43:06 UT.

The KM wave observed from 16:43:03 to 16:43:06 on 26 September 2017 can be an

important contributor to ion heating within the KHI. We suspect this wave is driven

by shell distributions of the cold ions. Efforts to confirm this suspicion using the

Waves in Homogenous Anisotropic Magnetized Plasma (WHAMP) dispersion solver

are ongoing [Rönnmark , 1982]. We also cannot, at this time, discount the potential

for a remote generation mechanism, such that the wave is convected to the observation

90



Figure 4.2: The ion distribution function from the FPI instrument aboard MMS1
during the example wave interval is very slightly anisotropic (T⊥/T|| = 1.06). The
cold ions are shifted slightly in the negative B|| direction while the hotter ions are
more cigar shaped.
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Figure 4.3: The H+ ion distribution function from the HPCA instrument aboard
MMS1 during the example wave interval shows some evidence of shells in the cold
ions which could drive a KM wave.
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point and the driving ion shells are not observed.

While the exact driving mechanism of the example wave interval is not yet deter-

mined, we may still contextualize the small scale waves observed during the KHI via

comparison with similar observations when the KHI is not active.

4.3 Comparison of KHI and non-KH Observations

In order to determine the contribution of the KHI to heating, it is necessary to

compare KHI observations to those made when the KHI is not active. As described

in Chapter 2 for the KHI events, non-KHI events were also identified by searching

the MMS event database, SITL notes, and Quicklook plots to find MMS crossings of

the magnetopause during which the signatures of the KHI are not present. One such

“quiet” crossing is shown in Figure 4.4. MMS crossed the dayside dusk flank from the

magnetosheath to the magnetosphere in the two hours between 16:00 and 18:00 UT on

01 November 2018. There is a single, smooth transition from magnetospheric energy,

density and temperature to magnetosheath values shortly after 16:50 UT rather than

the many quasi-periodic fluctuations associated with the KHI. A single, large velocity

shear is observed at the same time, as is expected during a quiet magnetopause

boundary crossing. Magnetic field and total pressure signatures are also not indicative

of the KHI.

It is important to note that while the quiet crossings do not show signatures of

active KHI, there is no way to ensure that the KHI was not previously operational.

A prior KHI at the location may have affected the characteristics (e.g. thickness,

density) of the boundary region. However, because we are concerned only with the ion
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Figure 4.4: MMS observations of a quiet magnetopause crossing from 16:00 to 18:00
UT on 01 November 2018 in which no signatures of the KHI were observed.
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scale waves generated by the active KHI, the potential effects of previously operational

KHI are ignored.

The 45 KH events presented in Chapters 2 and 3 total 66 hours and 52 minutes

of MMS observations. 47 hours and 33 minutes of observation are on the dusk flank,

while 19 hours and 19 minutes are on the dawn flank. A total of 33 non-KH crossings

were collected for comparison, comprising 66 hours and 20 minutes of MMS observa-

tions. 47 hours and 20 minutes of the non-KHI observations are on the dusk flank

and 19 hours are on the dawn flank. We account for the slight inequality in KHI and

non-KH observations by normalizing results for both observation types. More details

about the non-KH observations may be found in Appendix B.

The automated region sorting method described in Section 2.2.1 is applied to the

non-KH events as well. The region sorting results for the example KHI and non-

KH events are shown in Figure 4.5. As expected, the mixed region is much more

prominent during the KHI. Because MMS does not observe each region equally for

both KHI and non-KH events, results presented in the statistical study (Section 4.4)

are normalized to the number of well polarized wave intervals in each region for direct

comparison.

4.4 Statistical Results

Within all well polarized intervals, for both KHI and non-KH observations, the mean

total power, the normalized ratio of the electric and magnetic wave fields, and total

integrated Poynting flux are calculated. The angle between k̂ and the background

magnetic field and the ellipticity as described in Section 2.2.2 are also determined.
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Figure 4.5: The region sorting parameters, S and nvtail/T , automatically sorted
regions, omnidirectional ion energy, and ion density and temperature for the example
KHI event on 26 September 2017 (left) and the example quiet crossing on 01 November
2018 (right). As expected, the quiet crossing contains much less mixed plasma than
the KH event.

In order to discern potential driving mechanisms, we also examine the mean ion

temperature anisotropy, mean electron beta, and maximum parallel velocity shear in

each wave interval. We attempt to quantify the contribution to heating made by ion

scale waves in the KHI using the characteristic heating frequency and the change in

energy across well polarized wave intervals.

4.4.1 Wave Angle and Ellipticity

Results of the wave angle and ellipticity in each of the well polarized wave intervals are

shown as 2D histograms in Figure 4.6. All wave intervals are sorted into bins according

to their propagation angle and mean ellipticity, and all bins are normalized for ease

of comparison. Observations from the magnetosphere, mixed, and magnetosheath

regions for the KHI events are shown from left to right along the top of Figure 4.6.

Observations from the non-KH events are order in the same format across the bottom
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Figure 4.6: Normalized histograms of wave angle and ellipticity in the magnetosphere
(left), mixed region (center), and magnetosheath (right) for KHI (top) and non-KH
(bottom) observations.

of Figure 4.6.

For KHI observations in the magnetosphere (top left), most wave intervals are

quasi-perpendicular to the field. Of those quasi-perpendicular intervals, most have

right-handed polarization, but some are left-handed. The perpendicular right- and

left-handed wave intervals are consistent with the KM and electrostatic IC wave

modes, respectively. In contrast, wave intervals in the magnetosphere during non-

KH observations (bottom left) are primarily quasi-parallel propagating. The parallel

intervals are more often right-handed polarized, which is not consistent with any of

the 3 expected wave modes. This may be due to Doppler shift effects as we observe

these waves in the spacecraft frame moving through the plasma.

In the magnetosheath during KHI observations (top right), most wave intervals are
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parallel propagating and left-handed polarized, consistent with the KA or EMIC wave

mode. A smaller fraction of wave intervals are right-handed polarized, propagating

both parallel and perpendicular to the background field, consistent with either KM

or electrostatic IC waves. For the non-KH observations in the sheath (bottom right),

wave intervals are mostly quasi-perpendicular. These perpendicular wave intervals

are both right- and left-handed polarized, consistent with the KM and electrostatic

IC wave modes, respectively.

In the mixed region, wave intervals for both KHI and non-KH (top and bottom

center, respectively) observations are primarily right-handed polarized. The right-

handed wave intervals span the range of propagation angles, though are slightly more

common for parallel propagation. A smaller fraction of wave intervals are left-handed

polarized at parallel propagation angles for both KHI and non-KH observations, in-

dicative of KA or EMIC waves. The non-KH observations show an additional group-

ing of left-handed perpendicular wave intervals consistent with electrostatic IC waves.

We note some of the observed wave angle and ellipticity observations are not con-

sistent with any of the electrostatic or electromagnetic IC, KA, or KM wave modes,

namely the right-handed quasi-parallel waves seen in the magnetosphere (magne-

tosheath) during non-KH (KHI) observations and in the mixed region for both obser-

vation types.This may be due to the 180◦ ambiguity in the wave propagation direction

(see section 2.2.2). Unfortunately, this ambiguity cannot be resolved via single space-

craft methods. Observations of the wave packet by multiple spacecraft at different

times can be used to unambiguously identify k̂, but such analysis for the hundreds of

thousands of wave intervals considered here is beyond the scope of this work.

Additionally, the ongoing detailed analysis of Doppler shift effects should be illu-

98



minating for these right-handed quasi-parallel wave intervals. Extreme Doppler shift

effects may change the sign of ellipticity, which would make such observations consis-

tent with the left-handed quasi parallel EMIC and KA wave modes. If Doppler shifts

are not sufficient to change the sign of ellipticity, then these waves may in fact be low

frequency Whistler waves.

4.4.2 Mean δE/δB Ratio

Difference histograms, like those shown in Figure 4.7, directly compare wave inter-

vals during KHI and non-KH observations. All difference histograms in this chapter

depict KHI dominated wave activity in red and non-KH dominated activity in blue.

Green regions indicate there is no significant difference between KHI and non-KH

observations.

Figure 4.7 depicts the normalized electric to magnetic wave field ratios, which

are well below 1 for all angles, regions, and observation types. This suggests all the

observed wave intervals are strongly electromagnetic, consistent with the EMIC, KA,

and KM wave modes. In the magnetosphere (top), quasi-perpendicular KM waves

dominate during KHI activity while parallel EMIC or KA waves dominate when the

KHI is not active. This activity is reversed in the magnetosheath (bottom), where

parallel EMIC or KA waves are more common when KHI is active and perpendicular

KM waves are more common when no KHI is present. In the mixed region (middle) a

small preference for parallel waves during the KHI can be seen, though the distinction

between KHI and non-KH observations is much less clear, suggesting wave modes in

the mixed region are not as strongly effected by the presence of KHI as those in either

the magnetosphere or magnetosheath.
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Figure 4.7: Normalized difference histograms comparing mean electric to magnetic
wave field ratio and wave angle for the KHI and non-KHI observations in the magn-
teosphere (top), mixed region (middle), and magnetosheath (bottom).
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Figure 4.8: Normalized difference histograms comparing mean total wave power and
wave angle for the KHI and non-KHI observations in the magnteosphere (top), mixed
region (middle), and magnetosheath (bottom).

4.4.3 Mean Total Power

Figure 4.8 depicts the propagation angle and mean total power in each wave interval.

In the magnetosphere (top), quasi-perpendicular waves are more common when the

KHI is present and have total power between 0.1 nT2 and 100 nT2. Parallel waves

are more common during non-KH observations, though with consistently lower power,

typically less than 10 nT2. There is, however, a band of very high power waves, greater

100 nT2 for all propagation angles during the non-KH observation.
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In the magnetosheath (bottom), KHI associated wave activity has power between

0.1 nT2 and 10 nT2 with quasi-parallel propagation. Another smaller region of KHI

dominance is observed for parallel waves with power around 100 nT2. Non-KH wave

activity is generally perpendicular with power between 1 and 100 nT2.

In the mixed region (middle), parallel wave intervals with power between 1 nT2

and 10 nT2 are more common during non-KH observations. Waves with power be-

tween 10 nT2 and 100 nT2 are more commonly associated with the KHI for all prop-

agation angles. Wave intervals with power above 100 nT2 at any angle are more

commonly observed during non-KH observations. The differences between KHI and

non-KH observations are much less pronounced in the mixed region than in either

the magnetosphere or magnetosheath.

4.4.4 Integrated Poynting Flux

Integrated over time, the Poynting flux describes the total energy in an electromag-

netic wave which is available to do work, such as heat the plasma, during the interavl

in which the wave is observed. As shown in Figure 4.9, the total Poynting flux inte-

grated over time in well polarized wave intervals is larger for KHI observations than for

non-KHI observations in all regions. In the magentosphere (top), quasi-perpendicular

wave activity associated with the KHI commonly has higher integrated flux than the

quasi-parallel activity associated with non-KH observations. In the magnetosheath

(bottom), the main groupings of wave intervals associated with KHI and non-KH

observations have similar total integrated fluxes, but a band of higher flux waves is

observed at all propagation angles when the KHI is active. At all propagation an-

gles in the mixed region (middle), flux is larger during the KHI, though this is less
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Figure 4.9: Normalized difference histograms comparing integrated total Poynting
flux and wave angle for the KHI and non-KHI observations in the magnteosphere
(top), mixed region (middle), and magnetosheath (bottom).

pronounced than in either the magnetosphere or magnetosheath.

The observed increase in integrated total Poynting flux during wave intervals

associated with the KHI suggests more energy is available during KH activity to

heat the plasma. We attempt to describe and quantify this potential heating in the

following two sections.
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4.4.5 Characteristic Heating Frequency

We may characterize the rate of heating within well polarized wave intervals using

recent work from Nykyri et al. [2021b] which derived the characteristic heating fre-

quency (CHF) to describe the time-scale of non-adiabatic heating within the KHI,

fheat =
1

S

dS

dt
=

ηJ2

P/(γ − 1)
. (4.1)

That is, the frequency at which heating occurs is the ratio of the anomalous Ohmic

heating and the plasma thermal energy density, with results in units inverse time,

t−1. For mono-atomic plasma the ratio of specific heats, γ, is 5/3.

Using the generalized Ohm’s Law from Hall-MHD (see section 2.3), we can com-

pute the anomalous Ohmic heating, ηJ2, directly from spacecraft measurements, such

that

ηJ2 = (E + ve ×B) · J (4.2)

where J is the current density computed using the curlometer technique, and all other

quantities are measured at each of the four MMS spacecraft and interpolated to the

center of the spacecraft tetrahedron. The electron velocity and magnetic field mea-

surements are interpolated to match the cadence of the survey mode EDP electric field

measurements. It is important to note, the heating frequency can be either positive

or negative, indicative of heating or cooling, due to off-diagonal components of the

electron pressure tensor and electron inertial terms contained within the generalized

Ohm’s Law which are capable of breaking the frozen in condition. We consider only

the absolute value of the heating frequency when characterizing the heating within a
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well polarized wave interval.

The median CHF within each wave interval is shown in Figure 4.10. The calcu-

lation of the CHF requires both ion and electron data from all four MMS spacecraft,

however, the MMS mission suffered a brief outage in ion measurements from MMS3

in 2017 and a loss of electron measurements from MMS4 for all events after July 2018.

Therefore, we are able to calculate the CHF for only 28 of the 45 KHI and 22 of the

33 non-KH observations. The results shown in Figure 4.10 are for only those events

with ion and electron data available from all four spacecraft.

In the magnetosphere (top) quasi-perpendicular waves associated the KHI and

quasi-parallel waves associated with non-KH observations have similar median CHF

values. There is, however, a prominent band of KHI associated wave intervals across

all propagation angles in which the median CHF is increased. Within the magne-

tosheath (bottom), the quasi-parallel waves associated with the KHI tend to have

slightly higher median CHF values than the non-KH quasi-perpendicular wave inter-

vals. We also see a band of KHI associated wave intervals covering the full range

of propagation angles in which the median CHF is increased. This increase in CHF

during KHI associated wave intervals is also observed in the mixed region (middle),

though it is not as pronounced as either the magnetosphere or magnetosheath. The

increased CHF within KHI wave intervals indicates that the waves associated with

KHI are able to heat plasma more efficiently than the waves observed when there is

no KHI activity.
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Figure 4.10: Normalized difference histograms comparing the median characteristic
heating frequency and wave angle for the KHI and non-KHI observations in the
magnetosphere (top), mixed region (middle), and magnetosheath (bottom). Due to
data outages on MMS3 and MMS4, the heating frequency is only available for 28 of
the 45 KHI observations and 22 of the 33 non-KH observations.
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4.4.6 Energy Analysis

We also consider the observed change in energy across well polarized wave intervals.

The absolute change in average energy is shown in Figure 4.11. Within the magneto-

sphere (top), wave intervals associated with the KHI at all propagation angles show

greater changes in energy than the quasi-parallel wave intervals associated with the

non-KH observations. Similarly, the KHI associated wave intervals at all propagation

angles in the magnetosheath (bottom) have greater energy changes than the quasi-

perpendicular wave intervals observed when the KHI is not active. This trend is also

observed in the mixed region, though the difference is not quite so pronounced as it

is the magnetosphere or magnetosheath.

It is also worthwhile to test our assumption that increased Poynting flux will

lead to greater heating within wave intervals. Figure 4.12 depicts 2D histograms

comparing the change in average energy with total integrated Poynting flux in the well

polarized wave intervals. In the magnetosphere (top) and magnetosheath (bottom),

Poynting flux and energy changes are positively correlated. The KHI associated waves

dominate the upper right quadrant, where both integrated flux and change in energy

are high. The wave intervals associated with non-KH observations sit lower and to the

left, indicating both lower integrated flux and energy changes. In the mixed region

integrated flux is not as well separated for the KHI and non-KH observations, though

the change in energy is much larger for KH associated wave intervals.

The larger changes in energy combined with the observed increases in Poynting

flux associated with the KHI supports our conclusion that ion scale waves driven by

the KHI are better able to heat the plasma than similar waves which develop when

the KHI is not active. We note that some change in energy is expected across any
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Figure 4.11: Normalized difference histograms comparing the change in average en-
ergy across wave intervals and the wave angle for the KHI and non-KHI observations
in the magnetosphere (top), mixed region (middle), and magnetosheath (bottom).
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Figure 4.12: Normalized difference histograms comparing the change in average en-
ergy across wave intervals and the total integrated Poynting flux for the KHI and
non-KHI observations in the magnetosphere (top), mixed region (middle), and mag-
netosheath (bottom).
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ion scale interval, regardless of the presence of well polarized waves. Ongoing work

attempts to quantify the expected energy change across intervals without ion scale

wave activity which will be used to normalize the energy changes in well polarized

wave intervals.

We next consider generation mechanisms which may explain the observed ion scale

wave behavior.

4.4.7 Mean Temperature Anisotropy

Ion temperatures anisotropies, that is increases in the perpendicular component of ion

temperature relative to the parallel component, are known drivers of EMIC waves. Ion

temperatures are mostly isotropic during KHI observations in all regions, as can be

seen in Figure 4.13, with T⊥/T|| between 0.7 and 1.5 in almost all wave intervals. There

is, however, a significant number of wave intervals in the magnetosheath (bottom) in

which the perpendicular ion temperature is 2 to 2.5 times hotter than the parallel ion

temperature. These anisotropic ions may be the source of the increased parallel and

quasi-parallel EMIC wave activity in the magnetosheath during KHI observations.

During non-KH observations, the perpendicular ions are consistently warmer than

the parallel ions in all regions: anisotropy is between 1 and 1.5 in all regions for non-

KH wave intervals.

4.4.8 Mean Electron Beta

The propagation of KA waves requires electron beta between the electron to ion mass

ratio and one, that is me/me < βe < 1. Observations of mean electron beta during

well polarized wave intervals is depicted in Figure 4.14. Magnetosheath electron beta
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Figure 4.13: Normalized difference histograms comparing mean temperature
anisotropy, T⊥/T||, and wave angle for the KHI and non-KHI observations in the
magnteosphere (top), mixed region (middle), and magnetosheath (bottom).
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Figure 4.14: Normalized difference histograms comparing mean electron beta, βe, and
wave angle for the KHI and non-KHI observations in the magnteosphere (top), mixed
region (middle), and magnetosheath (bottom).

(bottom) is lower when the KHI is active relative to the non-KH observations. Thus,

parallel propagating KA waves are supported in the sheath during active KHI whereas

they would not necessarily be supported when there is no KH activity.

Magnetosphere electron beta (top) is typically below 1 for both KHI and non-KH

observations, thus KA waves would be supported in either case. During the KHI,

wave intervals in the mixed region (middle) typically have βe ≈ 0.1 and propagate

at all angles relative to the background field. When the KHI is not active, there
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are two subsets of wave activity in the mixed region: one with low beta (βe ≈ 0.01)

propagating parallel to the field, and another with higher beta (βe between 0.1 and

1) propagating perpendicular to the field.

4.4.9 Maximum Parallel Velocity Shear

Gradients in the coponent of velocity parallel to the background magnetic field are

capable of driving electrostatic IC and EMIC waves. The change in parallel velocity

between MMS1 and each of the other MMS spacecraft was calculated during well

polarized wave intervals as observed by MMS1. Figure 4.15 compares the parallel

shear between MMS1 and MMS2 (left), MMS1 and MMS3 (center), and MMS1 and

MMS4 (left) with wave propagation angle. As previously mentioned, ion velocity

data is not available from MMS3 during three (one) KHI (non-KH) events, so the

velocity shear results for the MMS1-MMS3 pair include only the 42 (32) KHI (non-

KH) observations for which data is available.

In all regions the parallel velocity shear is consistently higher during KHI activity.

Shear in the magnetosheath (bottom) is typically an order of magnitude larger for KHI

observations than the non-KH observations. A similar, though less stark, contrast is

also observed in the mixed region (middle). Within the magnetosphere (top), velocity

shears during KHI and non-KH observations are closer, but the KHI observations are

still dominate for shears around and above 10 km/s. The increased shear during KHI

may be the source of both the perpendicular and parallel wave activity observed in

the magnetosphere and magnetosheath, respectively, during the KHI.
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Figure 4.15: Normalized difference histograms comparing the difference in parallel
velocity from MMS1 to MMS2 (left), MMS3 (center), and MMS4 (right) and wave
angle for the KHI and non-KH observations in the magnteosphere (top), mixed region
(middle), and magnetosheath (bottom). Ion velocity data is not available from MMS3
for 3 (1) KHI (non-KH) events. The MMS1-MMS3 results shown include only the 42
(32) events for which data is available.
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4.5 Conclusions

Well polarized wave intervals during observations of the KHI are identified using

MVA-B analysis as described in Section 2.2.2. We present analysis of a single wave

interval from 16:43:03 to 16:43:06 UT during the KHI event on 26 September 2017. A

hodogram of the perpendicular field components showed a right-handed wave propa-

gating quasi-perpendicularly to the background magnetic field in the magnetosheath.

The trace of the perpendicular components completes nearly two full revolutions

within a single ion gyroperiod, suggesting the observed wave is a kinetic magne-

tosonic wave propagating with a frequency greater than the local ion cyclotron fre-

quency. The wave field is also electromagnetic ((δE/δB)/vA = 0.008), consistent

with the KM wave mode.

The source of the particular wave observed from 16:43:03 to 16:43:06 UT has

not been positively determined, but the H+ ion distribution observed by the HPCA

instrument shows some evidence of shells, which may be the source of the observed

KM wave activity. Ongoing analysis of the distributions from both HPCA and FPI

using the WHAMP distribution solver could confirm if they are indeed the source of

the observed KM wave.

Well polarized wave intervals within KHI observations are also compared with

wave intervals observed when the KHI is not active. Within each wave interval

we calculate propagation angle, ellipticity, the normalized wave field ratio (δE/δB),

the mean total power, and integrated Poynting flux. We attempt to describe the

heating within well polarized wave intervals using the characteristic heating frequency

and change in average energy. We also make an effort to determine the generation

mechanism of the observed waves. In order to do so, we calculate the ion temperature
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anisotropy, electron beta, and parallel velocity shear in each wave interval.

Observations of the well polarized wave intervals are consistent with electromag-

netic ion cyclotron (EMIC), kinetic Alfvén (KA), and kinetic magnetosonic (KM)

waves during KHI and non-KH boundary crossings. A few of the wave intervals have

combined ellipticity and propagation angles inconsistent with any of the expected

wave modes, though this may be due to the 180◦ ambiguity in the wave propagation

direction which could change the observed right- or left-handed ellipticity of the wave

field. Extreme Doppler shift effects may also be able to change the sign of ellipticity.

If ongoing work regarding the wave propagation direction and Doppler shift effects

is unable to explain the quasi-parallel right-handed wave observations, then we may

need to expand our expectations of ion scale waves to include low frequency Whistler

waves.

During times when there is no KH activity, the magnetosphere is dominated by

quasi-parallel propagating EMIC and/or KA waves. The magnetosheath is dominated

by quasi-perpendicular KM waves when the KHI is not active. In contrast, the

magnetosphere is dominated by the quasi-perpendicular KM wave mode and the

sheath by the quasi-parallel EMIC and/or KA wave modes when the KHI is active.

The increased presence of KA waves, which are known to effectively heat ions, in

the sheath during KHI may contribute to enhanced heating across the magnetopause

boundary. The preferential observation of perpendicular (parallel) propagating waves

in the magnetosphere (magnetosheath) during active KHI is consistent with previous

work done by Moore et al. [2017] using Cluster data.

Poynting flux is enhanced in all regions and at all wave angles during the KHI,

which suggests more energy is available to drive heating. Observations of the char-
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acteristic heating frequency suggest that waves associated with the KHI are able to

more efficiently heat plasma than waves observed when there is no active KHI. This

is further supported by the change in energy across wave intervals. Wave intervals

associated with the KHI tend to show greater increases in average energy than those

wave intervals associated with non-KH observations. The increased change in en-

ergy is also well correlated with increased Poynting flux in the magnetosphere and

magnetosheath. These results are consistent with the findings of Moore et al. [2017].

Ion temperature anisotropy is increased in the magnetosheath during active KHI.

This anisotropy may be responsible for the driving of EMIC waves in the sheath.

Additionally, electron beta is decreased by approximately an order of magnitude in

the magnetosheath during active KH. The decreased βe allows the plasma to support

KA waves which would not supported when the KHI is not present and beta is nearer

to 1. Again, these findings are consistent with Moore et al. [2017].

Velocity shears parallel to the background magnetic field are consistently higher

during the KHI observations than in non-KH observations. Increased shears occur in

both the magnetosphere and magnetosheath and may be responsible for the enhanced

perpendicular (parallel) wave activity in the magnetosphere (magnetosheath). As

KHI may only develop in regions of large velocity shear, it is possible the observed

velocity shears existed prior to the development of the KHI.

The results of this Chapter should be considered preliminary pending a full anal-

ysis of the Doppler shift effects as discussed in Section 2.2.2.
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Chapter 5

Summary and Discussion

5.1 Summary

The main results of this dissertation may be summarized as follows:

• MMS observed 45 KH events between September 2015 and March 2020.

• The observed KHI were well distributed along the magnetopause. More obser-

vations of the KHI were made along the dusk flank than the dawn flank, likely

due to the apogee raising maneuvers used to transition the MMS orbit from

Phase 1 to Phase 2 which took place on the dawn flank. Observations were

evenly distributed on either side of the day-night terminator.

• MMS observed a cluster of nine KHI events at high southern magnetic latitude

(GSM Z ≤ −4.5 RE). Such high latitude KHI observations have been rare prior

to the launch of MMS.

• A new automated region sorting technique was developed to isolate regions
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of pure magnetosheath and magnetospheric plasma within observations of the

KHI. The method was compared with a previous technique used in Moore et al.

[2017] and with MHD simulations. The new technique is apparently robust and

reliable.

• KHI growth rates, unitless growth rates, and unstable solid angles are consis-

tently larger along the tail magnetopause than on the dayside.

• Observations of the KHI were made for the full range of solar wind conditions

and IMF orientations. An apparent selection window in solar wind flow speed

between 295 km/s and 610 km/s is likely insignificant and merely a reflection of

the distribution of solar wind speeds for the full 4.5 year interval from September

2015 to March 2020. More observations of the KHI were made when the BZ

component of the IMF was northward than southward.

• KHI growth rates, unitless growth rates, and unstable solid angles are indepen-

dent of solar wind conditions and IMF magnitude.

• Observations of ion scale wave intervals during the KHI are consistent with ion

cyclotron, kinetic Alfvén, and kinetic magnetosonic wave modes. Normalized

wave field ratios, δE/δB, indicate the observed wave intervals are electromag-

netic.

• During KHI observations ion scale wave intervals in the magnetosphere are

dominated by quasi-perpendicular waves and the magnetosheath is dominated

by quasi-parallel waves. This is a reversal of the pattern of observations when

the KHI is not active. Our observations of ion scale wave activity are consistent
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with findings from Moore et al. [2017].

• During KHI observations Poynting flux within ion scale wave intervals is en-

hanced for all regions and all wave angles, suggesting there is more energy

available for ion heating when the KHI is active.

• Characteristic heating frequency is larger in KH associated wave intervals than

in non-KH associated wave intervals. This indicates the KH associated waves

are able to more efficiently heat plasma than the waves which develop when the

KHI is not active.

• The change in energy across wave intervals is larger for KH associated wave

intervals than for non-KH intervals. Additionally, the increased change in en-

ergy is well correlated with increased Poynting flux in the magnetosphere and

magnetosheath, consistent with results from Moore et al. [2017].

• Electron beta is decreased in the magnetosheath when KH waves are present.

The observed decreases in electron beta can help explain the increased observa-

tion of parallel and quasi-parallel propagating waves within the sheath during

the KHI, as low beta plasma is able to support kinetic Alfvén waves which

propagate quasi-parallel to the background field.

• Temperature anisotropy is increased in the magnetosheath when KH waves

are present. Larger anisotropies can help explain the increased observation of

parallel and quasi-parallel propagating waves within the sheath during the KHI,

as they are capable of driving quasi-parallel propagating EMIC waves.

• The change in parallel velocity between MMS spacecraft pairs is consistently
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larger during observations of the KHI. This increased shear in all regions may

help drive ion scale wave activity and heating.

5.2 Discussion

The MMS observations of the KHI reported in this dissertation are consistent with

those made using THEMIS, Cluster, and Geotail data [Kavosi and Reader , 2015;

Moore et al., 2017; Hasegawa et al., 2006]. The identification of KHI within MMS

data is a vital first step in the process of determining the KHI’s contribution to heating

and plasma transport across scale sizes. The identification of the KHI at high southern

magnetic latitudes is a new finding as previous in-situ magnetospheric investigations

were limited to more equatorial orbits when observing the magnetopause flanks where

the KHI is likely to develop. The high latitude cases offer an excellent opportunity

to study the ways in which the KHI may effect the dynamics of the magnetospheric

cusps [Nykyri et al., 2019, 2021b].

The fluid scale properties of the KHI presented in Chapter 3 are consistent with

previous works and our theoretical understanding of the KHI. The KHI observations

are well distributed along the magnetopause. Though more events are observed on the

dusk flank than the dawn flank, this is likely a product of the MMS orbit, and does not

immediately contradict the expectations set by Henry et al. [2017]. KHI growth rates

and unstable solid angles increase with distance downtail, which is consistent with

magnetosheath plasma accelerating along the flanks to re-acheive solar wind speed

after the bow shock [Dimmock and Nykyri , 2013; Dimmock et al., 2015]. The KHI

growth rates and unstable solid angles are uncorrelated with solar wind conditions,
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which is not surprising as the KHI is often observed downstream of its source region.

The automated region sorting method developed in Chapter 2 is perhaps the most

significant contribution of this dissertation. The new method reliably selects the pure

magnetosheath and magnetospheric regions, even for highly mixed boundary crossings

which were not well sorted using previous methods [Moore et al., 2017]. The new

method preforms well for both real satellite data and simulations. The new method

may be applied to all types of boundary crossings, not just those when the KHI is

active, to isolate regions of pure magnetosheath and magnetospheric plasma.

The ion scale wave analysis of KHI events in the MMS data is in agreement with

previous studies of Cluster observations. We were able to identify a likely kinetic

magnetosonic wave within the KH vortex observed on 26 September 2017, similar

to the kinetic magnetosonic wave packet described by Moore et al. [2016]. The sta-

tistical study of MMS KHI observations showed increased perpendicular (parallel)

wave activity in the magnetosphere (magnetosheath) at times when the KHI is ac-

tive, consistent with the results of Moore et al. [2017]. Poynting flux is larger in KHI

associated wave intervals in all regions, suggesting more energy is available to drive

ion scale heating when the KHI is active. We also see greater changes in average en-

ergy across the wave intervals associated with the KHI, which is well correlated with

the increased Poynting flux. Characteristic heating frequency also increases when

the KHI is active, suggesting the KH driven ion scale waves are able to energize the

plasma more efficiently than similar waves developing when the KHI is not active.

We believe increased temperature anisotropies and decreased electron beta in the

sheath during observations of the KHI may be a driving mechanism for the observed

mostly parallel and quasi-parallel wave activity in the sheath, as both electromagnetic
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ion cyclotron and kinetic Alfvén waves can propagate at small angles with respect to

the background field. Additionally, increased parallel velocity shears associated with

the KHI can drive ion scale waves in all regions, though it is unclear if such shears

are a result of the KHI or a precursor to its development.

Having found the results of the new MMS dataset consistent with the literature,

it is now reasonable and necessary to extend the search for KHI associated small

scale waves below the ion scale. Additional work may also strengthen the results and

conclusions presented here, as described in the next section.

5.3 Ongoing and Future Work

Though we are generally satisfied with the performance of the automated region

sorting method developed in Chapter 2, it is worthwhile to compare it to data from

the wave analysis instruments aboard MMS (SCM and EDP). Studies at Jupiter’s

magnetopause have shown clear signatures in the high frequency field data which can

be used to distinguish magnetosheath and magnetospheric plasmas. Similar work

may be possible at Earth’s magnetopause and could be used to supplement the region

sorting method presented in Chapter 2.

We note the results of the ion scale wave study presented in Chapter 4 are pre-

liminary pending a detailed analysis of the Doppler shift effects on the frequency

and ellipticity of the observed wave intervals. There is a possibility that Doppler

shifts are large enough to changed the observed left- or right-handed nature of the

wave field. This analysis should be particularly illuminating for the set of right-

handed quasi-parallel wave intervals in the magnetosheath during KHI observations,
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the magnetosphere during non-KH observaitons, and the mixed regions during both

KHI and non-KH observations. These waves are not obviously consistent with any

of the ion cyclotron, kinetic Alfvén, or kinetic magnetosonic wave modes, though

theoretical work suggests the kinetic Alfvén wave may become right-handed for large

plasma beta [Krauss-Varban et al., 1994]. If the Doppler shift is sufficient to change

the sign of the ellipticity, however, they would be consistent with the EMIC or KA

wave modes. If the ellipticity remains positive after Doppler shifts are applied, then

these intervals may instead contain low frequency Whistler waves. In either case, the

determination of Doppler shift effects will provide greater insight to the array of ion

scale wave modes present in the KHI.

Additionally, the analysis of energy changes within well polarized wave intervals

does not currently account for the typical energies in their region of observation. We

expect some energy change across ion scale intervals, even if they do not contain well

polarized waves. Work to determine what the typical energy change across intervals

which do not contain waves is ongoing. Results presented in Section 4.4.6 may then

be normalized to better understand the effects of the ion scale waves independently

of background trends.

The effect of reconnection on ion scale wave modes within the KHI remains a

compelling open question. Future work may use the Walén relation to identify well

polarized wave intervals associated with reconnection. Reconnection is a known driver

of ion scale waves, like the ion cyclotron and kinetic magnetosonic waves considered

here. A comparison of wave activity associated with reconnection in the KHI with

waves generated independently of reconnection could provide new insight to the KHI’s

ability to drive heating into the magnetosphere. Though a few case studies have
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identified specific sub-ion wave modes related to reconnection in the KHI [Wilder

et al., 2016; Stawarz et al., 2016], the overall influence of reconnection on sub-ion

scale waves associated with the KHI remains an open question.

The techniques developed and applied in this dissertation can be applied to wave

intervals at smaller scales. MMS burst mode data is capable of resolving electron

scale waves and processes. Burst mode data is available for portions of all the KHI

events presented in this dissertation, totaling over 29 hours of burst data across all 45

events. This burst data is necessary for the extension of the present work to sub-ion

scale wave modes. Preliminary results at hybrid scales are already promising. Using

the techniques described here, a wave interval consistent with the lower hybrid drift

instability was found in the example KHI event on 26 September 2017. Figure 5.1

shows burst mode electric and magnetic field data between 17:54 and 17:55 UT with

a clear wave packet in the field filtered around the lower hybrid frequency.

While the search for sub-ion scale wave modes within the KHI should be straight

forward, the comparison of those wave modes with non-KH observations may prove

challenging. Burst mode data, which is necessary to resolve sub-ion scale processes, is

less commonly available in the quiet crossing observations: just under 9 hours of burst

data are available from all quiet crossings used in this study. Quiet magnetopause

crossings do not usually trigger the typical thresholds for burst mode data collection.

Even when burst mode data is collected around a quiet crossing, it is not often

prioritized by the SITL for download from the satellite. A secondary search for quiet

crossings will be necessary to build a non-KH burst mode database closer to parity

with the KHI observations.
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Figure 5.1: The total magnetic and electric fields, the lower hybrid frequency and
band pass filter cutoff frequencies, and the filtered magnetic and electric fields show
a clear wave packet around the lower hybrid frequency between 17:54 and 17:55 UT
on 26 September 2017.
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Appendix A

Solar Wind Conditions

Solar wind data is retrieved from the OMNIWeb database, maintained by NASA

Goddard’s Space Physics Data Facility. Data reported in the following tables is con-

vected to the bow shock nose. An estimate of convection time to the KHI observation

location was made using the local magnetosheath speed as observed by MMS. Delay

times from the bow shock nose to the KHI location are small, typically between 2 and

10 minutes. Even in cases with the most extreme delays from the bow shock nose

to the observation point, there is no significant difference in the average solar wind

conditions or IMF orientation. For that reason, the bow shock nose shifted values

available directly from OMNI are used in this dissertation and presented here. Table

A.1 details the onset and average IMF orientations and magnitudes for the KHI events

listed in Chapter 2. Table A.2 lists the average solar wind density, temperature, flow

speed, and Alfvén mach number during the KHI observations.
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Table A.1: The onset IMF orientation and magnitude and average IMF orientation
and magnitude of the 45 KHI events observed by MMS from September 2015 to March
2020. OMNI data is not available for the event on 03 June 2019 (event no. 37).

Event Onset IMF [nT] Average IMF [nT]

No. GSM X GSM Y GSM Z Mag. GSM X GSM Y GSM Z Mag.

01 13.42 3.75 15.79 21.06 12.59 6.15 15.42 20.84

02 -1.13 5.49 0.18 5.61 -1.31 3.13 2.19 4.04

03 -2.45 3.35 -1.14 4.30 -1.45 2.53 -2.10 3.59

04 -2.18 4.87 1.68 5.59 -0.45 5.26 -1.95 5.62

05 -3.40 4.65 1.30 5.91 -3.22 4.57 0.25 5.60

06 -3.29 0.76 -4.79 5.86 -2.98 1.31 -1.65 3.65

07 -1.97 -4.10 -5.35 7.02 2.62 -2.94 -0.74 4.01

08 0.06 -9.46 -3.30 10.02 0.42 -9.09 -4.05 9.96

09 9.21 4.64 4.17 11.12 6.98 5.57 6.24 10.89

10 -2.62 2.41 -3.41 4.93 -2.37 2.86 -2.56 4.51

11 -0.61 3.65 2.66 4.56 1.03 2.66 3.64 4.62

12 3.27 -2.25 -1.11 4.12 2.88 -2.74 0.32 3.99

13 -8.32 -4.13 2.69 9.67 -8.07 -3.81 3.26 9.50

14 -6.37 5.65 -2.36 8.84 -2.87 6.81 -4.79 8.80

15 -4.44 5.12 8.42 10.81 -5.76 1.06 8.82 10.59

16 -4.21 3.80 -2.99 6.41 -4.45 2.56 -0.23 5.13

17 -0.69 5.28 -2.65 5.95 -1.91 5.44 -2.46 6.27

18 -6.14 1.42 0.32 6.31 -5.89 1.86 -1.44 6.35

Continued on next page
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Table A.1: Continued from previous page

Event Onset IMF [nT] Average IMF [nT]

No. GSM X GSM Y GSM Z Mag. GSM X GSM Y GSM Z Mag.

19 -2.55 3.96 1.56 4.96 -2.60 3.42 2.34 4.89

20 -1.89 1.58 1.04 2.67 -2.05 1.35 1.15 2.71

21 0.28 3.35 2.85 4.41 1.80 1.76 3.35 4.19

22 -1.70 8.11 1.61 8.44 0.83 6.51 4.02 7.69

23 6.67 1.51 5.72 8.92 6.71 0.91 5.70 8.85

24 4.20 -5.12 1.15 6.72 4.42 -4.55 -2.25 6.73

25 6.51 -1.66 -2.10 7.04 6.40 -4.58 -1.79 8.07

26 -3.47 0.60 2.61 4.38 -3.48 0.31 2.10 4.08

27 0.33 -2.65 1.07 2.88 1.02 -1.73 1.56 2.54

28 -1.05 2.71 -0.29 2.92 -0.90 1.91 -0.50 2.17

29 -1.39 0.96 -0.10 1.69 -1.34 0.96 -0.09 1.65

30 0.47 -9.99 3.88 10.73 2.41 -7.16 5.59 9.40

31 -0.72 3.29 3.87 5.13 0.63 0.56 3.55 3.65

32 1.53 1.34 3.32 3.89 -0.19 -1.91 2.38 3.06

33 -3.60 0.86 2.24 14.33 -0.92 -1.88 1.24 2.43

34 -2.57 2.06 -0.22 3.30 -1.85 2.52 0.30 3.14

35 2.76 -1.31 1.00 3.21 2.08 -0.95 0.00 2.29

36 0.28 -1.23 -0.72 1.45 -1.50 -2.00 -0.31 2.52

37 NaN NaN NaN NaN NaN NaN NaN NaN

38 2.26 -3.84 1.74 4.78 0.48 -3.45 0.25 3.50

Continued on next page
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Table A.1: Continued from previous page

Event Onset IMF [nT] Average IMF [nT]

No. GSM X GSM Y GSM Z Mag. GSM X GSM Y GSM Z Mag.

39 -4.57 2.38 -0.70 5.36 -4.27 1.82 -0.63 4.68

40 -3.98 0.21 1.57 4.28 -3.59 -0.61 2.12 4.22

41 -2.88 3.67 -0.62 4.71 -3.16 3.74 0.21 4.90

42 -1.76 1.18 -1.32 2.50 -1.26 1.80 -0.76 2.32

43 -0.91 -5.81 2.98 6.59 -1.22 -5.05 4.91 7.14

44 0.65 -2.82 0.59 2.95 0.55 -2.75 0.47 2.84

45 0.22 -4.55 5.82 7.39 0.21 -4.39 5.72 7.21

Table A.2: The average solar wind density, temperature, flow speed and Alfvén mach
number during 45 KHI events observed by MMS from September 2015 to March 2020.
OMNI data is not available for the event on 03 June 2019 (event no. 37).

Event Density Temperature Flow Speed Alfvén

No. [/cc] [eV] [km/s] Mach No.

01 9.91 2.20 509.90 3.80

02 4.67 13.83 520.75 9.96

03 3.15 5.10 475.53 10.92

04 -3.46 6.47 483.63 7.42

05 14.48 3.73 346.20 11.32

06 5.03 11.81 451.94 10.27

07 5.42 7.12 426.18 7.37

08 2.59 61.49 583.90 4.67

Continued on next page
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Table A.2: Continued from previous page

Event Density Temperature Flow Speed Alfvén

No. [/cc] [eV] [km/s] Mach No.

09 17.69 2.25 349.38 6.32

10 3.92 5.76 469.50 9.35

11 7.81 3.47 406.22 11.58

12 2.91 14.18 593.17 10.22

13 16.81 4.22 300.93 6.39

14 8.76 5.91 429.57 6.88

15 8.63 16.87 599.39 8.01

16 5.62 14.92 532.97 9.60

17 11.91 3.34 354.66 9.15

18 10.87 4.97 366.43 9.34

19 5.74 4.44 370.79 8.33

20 4.84 5.40 415.65 16.33

21 9.77 2.72 381.81 14.00

22 9.96 0.74 361.43 6.77

23 5.35 1.25 376.45 4.92

24 4.33 26.67 607.60 7.73

25 5.54 31.25 610.03 8.26

26 6.47 9.66 435.11 12.48

27 10.46 1.52 315.23 16.04

28 2.81 9.69 538.75 20.45

Continued on next page
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Table A.2: Continued from previous page

Event Density Temperature Flow Speed Alfvén

No. [/cc] [eV] [km/s] Mach No.

29 9.41 1.32 298.20 26.19

30 12.05 10.70 383.10 6.22

31 6.76 3.53 372.11 11.19

32 3.12 6.33 488.72 9.74

33 13.73 3.97 436.06 26.32

34 3.26 4.20 430.89 12.05

35 8.21 4.31 395.93 17.27

36 2.86 7.90 430.74 13.28

37 NaN NaN NaN NaN

38 4.79 3.56 390.84 10.26

39 2.91 7.18 464.83 7.90

40 2.99 10.07 471.40 9.63

41 3.19 8.95 470.39 8.47

42 2.64 2.91 381.95 13.16

43 8.37 2.20 354.53 7.04

44 5.71 3.32 349.64 13.87

45 3.23 4.82 312.64 3.88

132



Appendix B

Non-KH Observation Details

The KHI observations in this dissertation are compared with magnetopause boundary

crossings in which MMS does not observe any of the signatures of the KHI. The

date, onset time, duration, and average location of these “quiet” crossings are listed

in Table B.1. As discussed in Chapter 4 the total observation time of KHI and

non-KH crossings is similar. The dawn and dusk distribution of the KHI and non-

KH observations is also very similar. There is a significant discrepancy, however,

in the distribution non-KH observations on either side of the day-night terminator.

Of the 66 hrs 53 mins of KH observation, 44 hours and 3 minutes occur along the

tail magnetospause. Only 45 minutes of the 66 hours and 20 minutes of non-KH

observations take place in the tail. The tail magnetopause is not as stable as the

dayside magnetopause, and many transient process and surface mode waves are often

active along the tail. Thus, finding crossings which exhibit none of the signatures of

the KHI is incredibly difficult.
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Table B.1: The date, onset time, duration, and GSM location of 33 quiet magne-
topause crossings observed by MMS from September 2015 to March 2020.

Event Onset Time Duration GSM

No. Date UT [min] Location [RE]

01 18 Sep 15 07:00 180 [6.3, 6.0, -3.5]

02 21 Sep 15 10:00 90 [6.4, 7.5, -5.0]

03 21 Sep 15 12:00 60 [6.0, 8.4, -5.6]

04 24 Oct 15 04:10 120 [9.4, 2.7, -1.4]

05 29 Oct 15 04:00 120 [9.8, 2.3, -1.3]

06 02 Nov 15 03:10 120 [9.7, 1.5, -0.9]

07 30 Nov 15 23:55 125 [9.4, -2.9, -0.6]

08 30 Oct 16 13:00 180 [6.9, 8.7, -3.8]

09 02 Nov 16 14:00 120 [7.1, 8.9, -3.4]

10 03 Nov 16 14:00 120 [7.2, 8.9, -3.3]

11 08 Nov 16 08:30 150 [8.4, 5.1, -3.1]

12 16 Nov 16 15:00 75 [8.2, 8.3, -1.8]

13 28 Nov 16 17:30 30 [7.4, 7.4, 0.4]

14 04 Feb 17 22:30 50 [6.4, -6.9, -3.3]

15 09 Feb 17 08:45 120 [9.2, -4.2, 1.6]

16 14 Nov 17 14:00 120 [10.1, 5.9, -0.4]

17 25 Nov 17 20:00 210 [11.2, 4.1, 1.7]

18 28 Nov 17 14:30 210 [10.3, 2.8, 0.9]

19 23 Dec 17 12:00 180 [7.5, 9.0, 2.7]

Continued on next page
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Table B.1: Continued from previous page

Event Onset Time Duration GSM

No. Date UT [min] Location [RE]

20 07 Jan 18 01:10 170 [9.3, -4.5, 0.7]

21 20 Jan 18 18:00 120 [9.0, 3.1, 4.3]

22 18 Mar 18 02:20 60 [9.1, -5.8, 0.3]

23 15 May 18 22:00 45 [-2.7, -17.4, -2.0]

24 01 Nov 18 16:00 120 [6.0, 9.9, 1.3]

25 26 Nov 18 23:55 125 [9.1, 5.7, 4.0]

26 16 Dec 18 05:10 30 [4.7, 12.1, 1.2]

27 16 Feb 19 01:00 180 [9.0, -10.0, 1.1]

28 23 Feb 19 01:00 150 [7.2, -10.5, 0.3]

29 05 Apr 19 14:00 120 [9.5, -5.9, -1.8]

30 16 Apr 19 02:30 120 [8.0, -6.5, -3.1]

31 03 Dec 19 18:00 120 [8.6, 5.6, 5.6]

32 31 Dec 19 07:00 120 [4.2, 9.5, -3.3]

33 21 Jan 20 08:00 120 [6.7, 7.3, -2.5]
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D. G. Sibeck (2012), The first in situ observation of kelvin-helmholtz waves at

high-latitude magnetopause during strongly dawnward interplanetary magnetic

field conditions, Journal of Geophysical Research: Space Physics, 117 (A8), doi:

10.1029/2011JA017256.

Johnson, J. R., and C. Cheng (2001), Stochastic ion heating at the magnetopause

due to kinetic alfvén waves, Geophysical research letters, 28 (23), 4421–4424.

Johnson, J. R., C. Z. Cheng, and P. Song (2001), Signatures of mode conversion and

kinetic Alfvén waves at the magnetopause, Geophysical Research Letters, 28.

Kavosi, S., and J. Reader (2015), Ubiquity of Kelvin-Helmholtz waves at the Earth’s

magnetopause, Nature Communications.

Kelvin, L., and W. Thomson (1871), Hydrokinetic solutions and observations, The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

42 (281), 362–377.

Kim, S.-H., E. Agrimson, M. J. Miller, N. DAngelo, R. L. Merlino, and G. I. Gan-

guli (2004), Amplification of electrostatic ion-cyclotron waves in a plasma with

magnetic-field-aligned ion flow shear and no electron current, Physics of plasmas,

11 (9), 4501–4505.

King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and compar-

isons of hourly wind and ACE plasma and magnetic field data, Journal of Geo-

physical Research, 110, doi:10.1029/2004JA010649.

140



Krauss-Varban, D., N. Omidi, and K. Quest (1994), Mode properties of low-frequency

waves: Kinetic theory versus hall-mhd, Journal of Geophysical Research: Space

Physics, 99 (A4), 5987–6009.

Le Contel, O., P. Leroy, A. Roux, C. Coillot, D. Alison, A. Bouabdellah, L. Mirioni,

L. Meslier, A. Galic, M. C. Vassal, R. B. Torbert, J. Needell, D. Rau, I. Dors,

R. E. Ergun, J. Westfall, D. Summers, J. Wallace, W. Magnes, A. Valavanoglou,

G. Olsson, M. Chutter, J. Macri, S. Myers, S. Turco, J. Nolin, D. Bodet, K. Rowe,

M. Tanguy, and B. de la Porte (2016), The search-coil magnetometer for mms,

Space Science Reviews, 199 (1), 257–282, doi:10.1007/s11214-014-0096-9.

Lembege, B., S. Ratliff, J. Dawson, and Y. Ohsawa (1983), Ion heating by strong

magnetosonic waves, Physical Review Letters, 51, 264.

Lin, D., C. Wang, W. Li, B. Tang, X. Guo, and Z. Peng (2014), Properties of Kelvin-

Helmholtz waves at the magnetopause under northward interplanetary magnetic

field: statistical study, Journal of Geophysical Research: Space Physics, 119, 7485–

7494, doi:10.1002/2014JA020379.

Lindqvist, P. A., G. Olsson, R. B. Torbert, B. King, M. Granoff, D. Rau, G. Needell,

S. Turco, I. Dors, P. Beckman, J. Macri, C. Frost, J. Salwen, A. Eriksson, L. Åhlén,
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