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ABSTRACT

A pilot is a highly nonlinear and incredibly complex controller whose responses are dif-

ficult to predict. Many accidents have occurred from pilot error before or after failures

and almost always after entering areas of the flight envelope considered as Loss-of-Control

regimes. If a pilot’s inputs to the flight control system can be predicted, then the introduc-

tion of dangerous flight conditions can be readily avoided. Avoidance could take the form

of a warning indicator or augmentation of the pilot’s inputs. The primary difficulty lies in

how to actually predict how the pilot will perform in the future.

Methods to solve this problem are focused around the McRuer pilot model which simpli-

fies the pilot response to a four-parameter equation that has been the focus of most recent

solutions. Many recent attempts at solving this problem have found promising results in

Wavelets, Most Likelihood Estimation, Extended Kalman Filters, and Unscented Kalman

Filters. This thesis applies two new methods to the estimation problem and suggests a

modification to one.

The three methods investigated in this thesis are a modified form of the Unscented

Kalman Filter, Fourier Transform Regression with Time Domain derivatives, and Adaptive

Neural Networks. The Unscented Kalman Filter holds merit in many estimation problems

for its ability to handle model nonlinearities and noise in the systems and sensors. In this

respect, it held the best solution for this work given that it could correctly estimate the

parameters. However, the filter had to be finely tuned to reach a solution. The Fourier

Transform Regression method could only handle time-invariant pilot model parameters due

to its usage of batches of data. Once the parameters began varying with time, the solutions

began having singularities. The adaptive neural networks showed promise being that they

are stochastic estimators, but the solutions held within show they need more development

to become a viable solution to this problem. It is recommended that deep reinforcement

learning or combinations of these algorithms be applied to this estimation problem in the

future to determine a more robust solution that can estimate the pilot’s intent online.
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1 Introduction

One of the greatest causes of fatal aviation accidents remains the Loss-of-Control In-

Flight (LOC-I). Many of these incidents tend to have root causes in errors performed by the

pilot during the flight profile, though some can be a subsequent effect from other failures in

the aircraft. The unexpected surprises in flight could include bird strikes, control problems,

landing gear malfunctions, or engine failures. LOC-I is defined as an unintended departure

from aircraft controlled flight, typically due to entering areas of the flight regime outside

of the normal flight envelope [7]. This departure from safe flight can be readily seen in an

Altitude-Velocity flight envelope, as shown in Figure 1.1. In almost every case, LOC-I will

inevitably result in a stall or spin with an eventual loss of the aircraft. This will potentially

result in the loss of the passengers and crew on board as well.

Figure 1.1 Altitude-Velocity Flight Envelope Showing Loss-of-Control Boundaries [1].

LOC-I is prevalent in all forms of aviation. However, General Aviation (GA) is much

more accessible for the general public and therefore accounts for the higher portion of these

incidents. In statistics from the National Transportation Safety Board (NTSB): between

2008 and 2014, 47 percent of fatal fixed-wing GA accidents in the United States involved
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pilots losing control of their aircraft in flight, resulting in 1,210 fatalities [8]. While these

statistics have marginally improved in recent years, the more measures that can be taken to

reduce this footprint on fatal aviation accidents, the safer the skies will be for society as a

whole.

Recent studies have been performed which have classified regions of the flight envelope as

controllable or not controllable. Others have implemented methods to inform the pilots when

particular control actions will lead to a LOC-I regime. However, each of these solutions relies

on a reactive methodology whereas the aim of this research is being proactive in an attempt

to predict what the pilot will do based on their mental state and activity throughout the

flight. If the pilot’s intent can be correctly identified, then the formerly mentioned algorithms

can inform the pilot such that a LOC-I accident can be readily avoided.

The pilot’s mental state, behavior, experience, and exhaustion are all factors in deter-

mining how a pilot reacts to different scenarios. This adds an immense amount of complexity

in a simulation environment when attempting to capture these changes. This is amplified

by the lack of an exact mathematical model for a pilot under non-ideal conditions. This

could mean a pilot who is hyper, exhausted, inexperienced, or under some other inhibiting

condition could provide inputs to the flight control system that were unforeseen in the design

of the simulation.

If a model of the pilot can be accurately and precisely estimated online throughout the

flight profile, it is possible that the response of the pilot can be predicted for a few seconds

into the future. This could allow predictive warning algorithms to notify the pilot and avoid

potentially dangerous situations. This could effectively eliminate avoidable cases of LOC-I

that have remained prevalent throughout the aviation industry.

1.1 Thesis Objectives

In this phase of research, the primary goal is to estimate a mathematical model of a

human pilot providing elevator inputs to a pitch system. If a pilot’s model can be readily

identified, then future research can work towards predicting the intent the pilot may have
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for future control commands. This thesis will address four technical goals. The first of which

is the identification of a pilot model which effectively captures the complex response of a

human pilot. The second is the modification of that mathematical model to be amenable

to estimation techniques in time or frequency domain. The third is to identify and tailor

estimation methods around the parameters of the chosen pilot model. The last is to measure

the accuracy of the estimation methods through statistical and frequency response analyses.

Once all of these goals are achieved, the pilot’s intent for the Pilot-Vehicle System can be

used to determine future characteristics of the system.

This research aims to serve as a basis for future deep learning algorithms to better predict

the onset of LOC-I. It will also apply to later research of Pilot Induced Oscillations (PIOs)

and their prevention. Efforts will also be made to estimate mathematical models of pilots

under different mental conditions such that a database of such parameters can be made

available for the use of simulation technologies in the future.

1.2 Thesis Outline

This thesis first begins by introducing the background of each of the methods utilized

in Chapter 2. This includes Kalman filtering, frequency domain parameter identification,

and neural networks. Then, the McRuer pilot model is introduced along with the various

forms used between all of the estimation techniques in Chapter 3. Afterwards, each method

discussed prior is shown tailored to the estimation problem in Chapter 4. Lastly, the results

of the Unscented Kalman Filter, Fourier Transform Regression, and Neural Network methods

are shown in Chapter 5. Finally, conclusions about the data are drawn and recommendations

for future work are discussed in Chapter 6.
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2 Background

Online and offline estimation methods have been attempted in the past 10 years. Some

have been successful, but each has particular difficulties due to the many factors that need

to be taken into account. This Chapter will detail the the relevant tested methods and their

associated backgrounds, but the estimation algorithms used in this research are shown in

Section 4. Previous attempts to solve this problem will also be presented here to serve as a

comparison for the results in Section 5.

Four different methods have been applied to this estimation problem in the past; the

first of which was attempted in 2011 by Zaal and Sweet [2]. They referenced offline estima-

tion techniques and attempted online estimation using Wavelets and Maximum Likelihood

Estimation (MLE). The relevant results of their work are shown in Figure 2.1.

Figure 2.1 Results from Zaal and Sweet [2] showing Wavelets and Maximum Likelihood
Estimation Techniques for Pilot Model Parameter Estimation.
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Altogether, they found that wavelets were sensitive to measurement noise and could not

converge to a correct solution while there was any amount of pilot remnant. This meant

that the estimation could only work on a quasi-linear model without any remnant portion

that accounts for the nonlinearity of the pilot’s response. Wavelets are also computationally

expensive and difficult to use in a real-time setting. This impedance is amplified by the

fast-paced environment and possibility of quick maneuvers that aircraft tend to perform.

MLE was found to give accurate results with less sensitivity to measurement noise and pilot

remnant, but it could not detect rapid changes in the pilot’s control behavior [2].

More recently, Mandal and a research group at West Virginia University performed sim-

ilar testing using pilot data over the course of a few years between 2013 and 2016. Their

work centered around using an Extended Kalman Filter and an Unscented Kalman Filter

for the estimation. Due to the necessity of the Jacobian in an EKF, too many nonlinearities

were uncaptured and the estimation suffered as a result [9]. Consequentially, they developed

a UKF algorithm and showed that, under particular circumstances, the estimation tracks

the true parameters well. This was under the condition that the measurement and process

covariance matrices were finely tuned to the current problem. However, small changes in

the matrices would change the results drastically. In this way, the UKF acted similar to

the wavelets method in that there was high sensitivity to the noise in the system [10]. On

that note, Mandal’s effort inspired much of what is discussed in this thesis. The goal be-

came developing a method which could capture changes in the pilot’s mathematical model

parameters without the sensitivity seen by the other methods mentioned.

2.1 Kalman Filters

Kalman Filtering techniques have historically been used to estimate parameters which

cannot be measured otherwise. In aircraft systems, Kalman filters can be utilized for mea-

surement noise reduction from the multitude of onboard sensors such as flight data probes

and inertial measurement units. They can also be used for the estimation of Euler angles

from angular rates, Euler angles from GPS Position, or various other combinations of aircraft
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states. These characteristics and uses allow Kalman Filters to act as a versatile solution for

analytical problems in Pilot-Vehicle System (PVS) modeling.

Kalman filters rely on two primary steps in order to perform estimation. The first is a

dynamics propagation step which creates an a-priori prediction of the current state and the

second is a correction which adjusts the estimate according to the error in the measurement.

There are three primary forms of Kalman filters that are typically used throughout aircraft

control system design. The first and simplest is the Linear Kalman Filter (LKF), which relies

on the simplicity of linear dynamics and output equations in order to perform estimation

about an equilibrium point. The second and hybrid version is the Extended Kalman Filter

(EKF), which uses the nonlinear model, but must linearize it at each time step. The last

consists of Sigma-Point Kalman Filters (SPKF), which propagate a set of generated points

through the nonlinear system dynamics. Specifically for this study, the SPKF known as an

Unscented Kalman Filter (UKF) will be primarily used. UKF utilizes statistical guesses of

variations in the state estimates through an Unscented Transformation (UT) to create a set

of sigma points, each of which is propagated through the system dynamics and averaged

before being corrected. Each method is described in detail in the following sections.

It is important to note that LKF, or Linear Quadratic Estimation (LQE), is the only

method which finds an optimal solution. The EKF can potentially find an optimal solu-

tion, but that requires that the nonlinear system begins behaving mostly linearly. The UKF

instead utilizes the nonlinear equations directly and typically does not converge to an op-

timal solution. However, it does more accurately converge to the system’s true mean and

covariance.

To show the capability of Kalman Filters with noise reduction and estimation, the simple

mass-spring-damper problem with a noisy sensor can be considered. This system is shown

in Figure 2.2 with an onboard accelerometer providing the noisy measurement for the filter

(ẍ(t)). The noise shown has variance of 0.005m/s2 and zero mean. The mass spring damper

equation of motion and the respective state space are shown in Equations 2.1 and 2.2.
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Figure 2.2 Mass-Spring-Damper used in Kalman Filter Estimation Example [3].

mẍ+ cẋ+ kx = τ (2.1)

˙⃗x =

 0 1

− k
m

− c
m


x
ẋ

+

0
1

 τ (2.2)

The top graph in Figure 2.3 depicts the noise reduction capability of the LKF through the

application to the linear accelerometer sensor data. Through this, the ability of the Kalman

filter to correct data that has substantial noise can be seen. An extension of this is shown

in the bottom graph of Figure 2.3 as the estimation of the position and velocity states using

the sensor measurements. This depicts the capability of the filter to predict states that are

unknown to the PVS from related sensor measurements while also canceling out a substantial

amount of the noise. Altogether, the Kalman filters are an extremely useful tool that serve as

a basis for the work performed in this study. The solution could have been further tuned by

tweaking the Q-covariance matrix or better matching the R-covariance matrix to the sensor

noise. However, this exemplifies the point that these filters must be manually tuned until

they perform as intended. In some cases, the algorithm can be extremely sensitive to these

adjustments.
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Figure 2.3 Kalman Filter Estimation example of a mass-spring-damper second order
system. Results show noise reduction and estimation capabilities.
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2.1.1 Linear and Extended Kalman Filters

As stated before, the LKF relies on the existence of a linear model for the dynamical

system. The linear model is described by the dynamics matrix, A, and the measurement

equation, C, shown below as Jacobians of the nonlinear equations evaluated at the equilib-

rium point.

A =
∂f⃗

∂x⃗

∣∣∣∣∣
x⃗e

C =
∂h⃗

∂x⃗

∣∣∣∣∣
x⃗e

(2.3)

Noise assumptions are made which will serve as predictions and tuning parameters for

the performance of the filter. The Q-matrix specifies the process noise. This could include

vibration or wind, which could affect the states. The R-matrix signifies the measurement

noise. This typically consists of the covariances of the sensor measurements and is not

typically adjusted. Finally, the P0-matrix is an initial covariance assumption which signifies

the confidence in the initial condition of the filter. High covariance in the P matrix shows low

confidence in the estimator initial conditions. These assumptions are shown in the equations

below:

Qk = E[wkw
T
k ] Rk = E[vkv

T
k ] (2.4)

wk ∼ N(0, Qk) vk ∼ N(0, Rk) (2.5)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (2.6)

where w and v are the process and measurement noise, respectively. E represents the ex-

pected value and N(α,β) represents a normal distribution with mean α and covariance β.

Once all of these assumptions have been developed, the iterative portion of the algorithm

begins. The first steps involve the calculation of the a-priori estimate and covariance. This

is shown in Equations 2.7 and 2.8 as the prediction step.

ˆ⃗xk|k+1 = Aˆ⃗xk +Bu⃗k (2.7)
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Pk|k+1 = APkA
T +Qk (2.8)

Then, the Kalman gain, state estimation, and covariance matrix are all updated in the

correction step as shown in Equations 2.9 through 2.11.

Kk = Pk|k+1C
T
k (CkPk|k+1C

T
k +Rk)

−1 (2.9)

ˆ⃗xk = ˆ⃗xk|k+1 +Kk(y⃗k − ˆ⃗yk) (2.10)

Pk = [I −KkCk]Pk|k+1 (2.11)

These steps can then be iterated at each time step. Ideally, the covariance matrix P will

reach a steady state value and the estimated states should begin to match the true values

with little error and reduced noise. Should the solution not converge, then the equations

may be too highly nonlinear for a linearized form to estimate well. An EKF can solve some

of these problems.

The Extended Kalman Filter EKF has a similar form to the LKF, with a slight but

significant change. The Jacobian is evaluated at each time step instead of at an equilibrium

point. This causes Equation 2.4 to become 2.12.

Ak =
∂f⃗

∂x⃗

∣∣∣∣∣
x⃗k

Ck =
∂h⃗

∂x⃗

∣∣∣∣∣
x⃗k

(2.12)

The prediction and correction steps have the same form as the LKF model. However,

this Jacobian being calculated at each time step can vastly increase the computational power

needed and can slow down the estimation technique considerably. This problem is only am-

plified when one considers the usage of EKF on higher order systems which could have

an even greater number of states and an exponentially growing number of partial deriva-

tives which need to be calculated. The EKF can handle small nonlinearities, but it cannot

completely capture all nonlinear remnants.
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2.1.2 Unscented Kalman Filter

The Unscented Kalman Filter takes a different approach to the Kalman estimation prob-

lem. The prediction step of a normal Kalman Filter is split into a state prediction step and

an observation step. In the prediction, the estimation relies on the introduction of a series of

sigma points which will each be propagated through the system dynamics and measurement

function equations. This is handled by the Unscented Transformation (UT). The UT has

three parameters which determine the selection of the sigma points for the statistically based

estimation. α and κ determine the spread of the sigma points (10−4 < α < 1, κ ≈ 1). Then,

β provides information about the statistical distribution (typically β=2 for Gaussian). These

feed into the sigma point creation and weighting equations shown below.

λ = α2(L+ κ)− L (2.13)

ηn0 =
λ

L+ λ
(2.14)

ηc0 =
λ

L+ λ
+ 1− α2 + β (2.15)

ηni = ηci =
1

2(L+ λ)
; i = 1, ..., 2L (2.16)

where L is the length of the state vector, η is a vector of weights, and λ is a scaling factor.

From these parameters and the covariance matrix, Px, the sigma points are generated using

Equation 2.17.

χk =

[
x̄k x̄k +

√
L+ λ

√
Pxk

x̄k −
√
L+ λ

√
Pxk

]
(2.17)

where
√
Px is the lower Cholesky decomposition of the covariance matrix such that Pxk

=√
Pxk

√
Pxk

T
. Each sigma point is then passed through the nonlinear system dynamics

equations, weighted, and then summed. To complete the state prediction step, the state

covariance matrix is then updated based on the new a-priori estimate.

χi
k|k+1 = f(χi

k, uk); i = 0, ..., 2L (2.18)
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x̂k|k+1 =
2L∑
i=0

ηni χ
i
k|k+1 (2.19)

Pxk|k+1
= Qk +

2L∑
i=0

ηci (χ
i
k|k+1 − x̂k|k+1)(χ

i
k|k+1 − x̂k|k+1)

T (2.20)

Once the estimate is updated, the sigma points must be propagated through the observa-

tion equations as well. Similar to the predictor equations, the output is calculated for each

point, weighted, and then compared against the weighted average to update the covariance

matrix. These steps are shown below.

Ψi
k|k+1 = h(χi

k|k+1, uk); i = 0, ...2L (2.21)

ŷk|k+1 =
2L∑
i=0

ηni Ψ
i
k|k+1 (2.22)

P yy
k = Rk +

2L∑
i=0

ηci (Ψ
i
k|k+1 − ŷk|k+1)(Ψ

i
k|k+1 − ŷk|k+1)

T (2.23)

To finalize the observation step, the cross-covariance is calculated as follows:

P xy
k =

2L∑
i=0

ηci (χ
i
k|k+1 − xi

k|k+1)(Ψ
i
k|k+1 − ŷk|k+1)

T (2.24)

Finally, the measurement correction can be applied using the Kalman gain similar to the

LKF and EKF methods.

Kk = P xy
k (P yy

k )−1 (2.25)

x̂k+1 = x̂k|k+1 +Kk(yk − ŷk|k+1) (2.26)

Pxk+1
= Pxk|k+1

−KkP
yy
k KT

k (2.27)

This equation is then used recursively throughout the data in order to estimate desired

parameters. The version of this algorithm applied to the pilot model parameter estimation

problem is presented in Section 5.
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2.2 Parameter Identification in Frequency Domain

Parameter Identification (PID) serves as a linear method for estimating full state spaces

(A, B, C, and D matrices) from the states and outputs of an unknown system. PID has

seen uses in fault-tolerant control systems [11] in order to detect when a failure has occurred

and to take proper action. Due to the linearization methods in Chapter 4, the method can

be adapted to this estimation problem under certain circumstances. PID is beneficial as it is

relatively simple to implement with no tuning parameters and noise is automatically filtered

out; however it is limited to being used on a linear system, which means that nonlinear

dynamics may not be fully captured.

The method of PID that this thesis focuses on is the Fourier Transform Regression with

derivative in Time Domain (FTR-TD). This takes the basic form of the regression problem

shown in Equation 2.28 at each sample batch of samples [12].

Eż(t) + Fz(t) = xT (t)Θ̂ (2.28)

Applying a discrete Fourier transform to Equation 2.28 gives Equation 2.29. Written out for

n number of points in a batch gives Equation 2.30. The solution to the regression equation

then becomes Equation 2.31.

jωEz̃(ω) + F z̃(ω) = x̃T (ω)Θ̂ (2.29)
jω1Ez̃(ω1) + F z̃(ω1)

...

jωnEz̃(ωn) + F z̃(ωn)

 =


x̃T (ω1)

...

x̃T (ωn)

 Θ̂ (2.30)

Θ̂ = [Re(X∗X)]−1Re(X∗Y ) (2.31)

X∗ is the complex conjugate transpose. If the derivative terms, Ez̃(ωn), and non-

derivative terms, F z̃(ωn), are provided appropriately, the entire state space can be estimated.

If F z̃(ωn) is provided as the outputs concatenated to a set of zeros for each state, the C and

D matrices can be estimated from this method as well.
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2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) serve as open methods of estimating unknown param-

eters from known data. There does not need to be a dynamic equation linking the inputs to

the outputs; rather the outputs’ correlation to the inputs is identified and captured through

the adjustment of weights between the hidden layer of the neural network and the input and

output layers. The basic structure is shown in Figure 2.4.

Figure 2.4 High-level Feedforward Neural Network architecture.

ANNs consist of three primary components: the input layer, output layer, and a variable

number of hidden layers. The example in Figure 2.4 shows 2 inputs, x1,2, 1 hidden layer, and

1 output, y. Typically, the neurons in the hidden layers contain activation functions such as

Sigmoidal or Rectified Linear Unit (ReLU). These functions are shown in Figure 2.5.

Figure 2.5 Graphical representation of typical activation functions used in hidden layer
neurons of artificial neural networks.
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As can be seen by Figure 2.5, the sigmoid function bounds the output between 0 and 1

no matter what range the input values have. This can be useful in probability or logistic

predictions. The ReLU function is unbounded in the positive x direction, but provides zero

for any negative input values. This could prove useful to effectively “turn off” certain neurons

when the inputs are not necessary for its use, but that may affect the ability of the model

to train properly. The rectification of negatives can be somewhat compensated for by using

a “Leaky” ReLU function which has a positive slope in the negative input region. Some

other options for the activation functions are hyperbolic tangent, lower-order polynomials,

linear functions, or step functions. Each of these are shown in Figure 2.6. In any case, the

activation function acts as a primary method of adjusting the performance of the NN to a

multitude of problems. The summarizing equation of a NN is shown in Equation 2.32.

y(t) = V T σ⃗(W T x⃗) (2.32)

Figure 2.6 Graphical representation of other more uncommon activation functions used in
hidden layer neurons of artificial neural networks.
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Where W is the weighting matrix between the inputs and the hidden layer while V is

the weighting matrix between the hidden layer and the outputs. Note that there could be

multiple layers of neurons, but this research focuses on the implementation of a single layer.

W and V are typically defined as shown in Equation 2.33 with m as the number of inputs,

n as the hidden layer neuron count, and p as the number of outputs.

W =



b1 . . . bn

w1,1 . . . w1,n

...
. . .

...

wm,1 . . . wm,n


ϵR(m+1)xn V =



d1 . . . dp

v1,1 . . . v1,p
...

. . .
...

vn,1 . . . vn,p


ϵR(n+1)xp (2.33)

The neurons and the output layer may have bias added in the form of bi and di, respec-

tively. These offsets can also be calculated and added into the matrix form of the neural

network equation. In conventional uses of neural networks, the ANN is trained through a set

of data with known output values. Training back-propagates changes to the weighting ma-

trices W and V until a solution is reached that minimizes the given loss function. Gradient

Descent (GD) is one of the most common training algorithms in feed-forward neural net-

works, but may require many iterations and will have slower convergence. Newton’s method

using the Hessian has also been utilized. A comparison of the convergence of the GD and

Newton methods can be seen in Figures 2.7 and 2.8. Once the system is trained, the designer

can test the outputs on a new known data set to gauge the performance of the ANN.

Figure 2.7 Gradient Descent Training
method [4].

Figure 2.8 Newton’s Hessian Training
method [4].
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3 Problem Formulation

This chapter details the format of the simulation problem along with detailed descriptions

of the pilot models used. The simulation environment is based in Matlab/Simulink 2021a

and utilizes a known pitch system with the McRuer pilot model acting as a controller. The

estimation problem is in parallel to this PVS. The algorithms presented in this paper aim to

estimate the parameters associated with this mathematical pilot model such that the intent

of the pilot can be readily predicted.

3.1 Pilot Model(s)

McRuer and Krendel’s paper provides the pilot model utilized in this study[13]. They

provide two primary mathematical models which can be used for different levels of fidelity

desired for the simulation environment. The first is the McRuer Precision Pilot Model which

takes into account the neuromuscular properties of a pilot. The second is a simplified version

which narrows the scope of the problem to four parameters. This study utilizes a simple

3rd-order pitch system to act as the plant while the pilot model acts as the controller. The

error provided to the model is the difference in the desired to the achieved pitch angle. The

pilot model is then attempting to minimize this error by providing an elevator deflection

to the pitch system. One important note is that the actuator dynamics are not simulated.

Therefore, the pilot model’s output would normally need to be translated to a true elevator

deflection [13]. The McRuer precision model is shown in Equation 3.1.

P (s) = Kpe
−τs

(
TLeads+ 1

TLags+ 1

)(
TKs+ 1

T ′
Ks+ 1

){
1

(TN1s+ 1)[( s
ωN

)2 + (2ζN
ωN

)s+ 1]

}
E(s) (3.1)

Where P is the pilot output, E is the error, Kp is the gain, τ is the time delay, TLead and

TLag are the mid-frequency phase lead and lag constants, TK and T ′
K are the low-frequency

lead and lag constants, TN1 is the neuromuscular system lag constant, ζN is the neuromuscular

system damping, and ωN is the neuromuscular system natural frequency. Commonly used

simplifications of the precision model involve disregard for very-high and very-low frequency
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capturing terms and reduction to four core terms: Kp, TLead, TLag, and τ . These four terms

can effectively capture all of the major mid-frequency action elements [13]. This simplified

model, which is of core use to this study, is shown in frequency domain as Equation 3.2 and

in time domain as Equations 3.3 and 3.4.

P (s) = Kp
TLeads+ 1

TLags+ 1
e−τs (3.2)

ẋ(t) = − 1

TLag

x(t) + e(t− τ) (3.3)

p(t) = − Kp

T 2
Lag

(TLag − TLead)x(t)−
KpTLead

TLag

e(t− τ) (3.4)

Each model can be used for the pilot model parameter estimation problem, but the

simplified model serves the purposes of this study well. A linearized form of this, which

is compatible with some of the estimation techniques presented, is shown in Chapter 4.

This model may not be able to perfectly match the output of a human pilot. For instance,

while a mathematical model may see an error of 0.01 degrees in pitch angle, a pilot will

almost never be able to see that level of detail. Also, since it is a quasi-linear system with

a nonlinear remnant, some non-linearity or higher order behavior will be lost. However,

this mathematical model is still capable of giving basic information about the behavioral

properties of the human controller through the four parameters.

3.2 Pilot/Vehicle System

The pilot serves as the controller which attempts to reduce the error between the desired

and the achieved pitch angle. Therefore, some assumptions must be made in order to prove

the effectiveness of the methods discussed. The first assumption is that the pitch system has

known dynamics. As a characteristic of the aircraft dynamics, it is a reasonable assumption

that the pitch system is known and that a model can be readily developed. The second is

that only certain measurable parameters should be available for the estimation techniques.

This adds to the applicability to a real-world environment. A simulation which utilizes every

variable that is available to it may work in testing, but cannot feasibly be implemented. The
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third is that the stability of the estimation methods is important for convergence but it does

not compromise or interfere with the stability of the core Pilot-Vehicle System. This allows

stability proofing to be unnecessary.

The PVS is shown in Figure 3.1. Note that the parameter estimation is in parallel as

mentioned before. The techniques compared within this study vary in the inputs they require.

The most ideal case would be to only utilize the p(t) and θ(t) since they are both measurable

or otherwise capable of being estimated. The pitch system shown is used in reference to the

work done by Mandal [10]. The pitch system is a simple third order dynamic model as shown

in Equations 3.5 and 3.6.


...
X θ

Ẍθ

Ẋθ

 =


−3.59 −22.50 0

1 0 0

0 1 0



Ẍθ

Ẋθ

Xθ

+


1

0

0

 p(t) (3.5)

θ(t) =

[
0 −15.44 −59.93

]
X⃗θ (3.6)

Figure 3.1 Simulation overview diagram. High level description of the major components of
the simulation.

19



The PVS and results in Figure 3.2 show pitch tracking when given a desired pitch angle

in radians. Note that the desired pitch angle was not scaled for a particular problem. The

desired values are for testing and example. The corresponding pilot output is given in

Figure 3.3. These examples show constant pilot model parameters; however, the simulation

was made to be compatible with time-varying ones as well. This could be used to reproduce

Pilot-Induced Oscillations or other non-optimal outputs from the pilot. An example is shown

in Figure 3.4 which shows a chirp-signal resulting in PIOs after some time.

Figure 3.2 Pilot Vehicle System - Pitch System tracking from simulation environment.
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Figure 3.3 Pilot Vehicle System - Pilot controller output attempting to minimize pitch
error in simulation environment.

Figure 3.4 Pilot Vehicle System - slow onset of Pilot Induced Oscillations using the
simulated pilot model.

Given that this mathematical model of the pilot can be tuned to match the pilot’s re-

sponse, the problem then becomes focused around estimating each of these parameters well

enough such that the pilot’s mental state and intent for future inputs can be predicted.
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4 Pilot Model Estimation Methods

This chapter details the methodology and mathematical algorithms for the methods

utilized in this research, all of which were identified as possible solutions for the parameter

estimation of the McRuer human pilot model. Included in this section are the adaptation

of Unscented Kalman Filters (UKF), frequency-domain Parameter Identification (PID), and

Neural Networks (NN).

4.1 Linearization of the Pilot Model

To make the pilot model compatible with some forms of estimation presented here, a

state space form was developed from a linearized version of the pilot model. One UKF

method (UKFx10) and PID both rely on this form while the neural networks and the other

UKF method (UKFx9) are able to attempt estimation of the parameters directly. The

time delay in the pilot model equation is replaced using a first-order Pade approximation in

order to facilitate reorganization into state space form. The Pade approximation and altered

frequency domain pilot model are shown in Equations 4.1 and 4.2., respectively.

e−τs =
2− τs

2 + τs
(4.1)

P (s) =
−τTLeadKpilots

2 + (2TLead − τ)Kpilots+ 2Kpilot

τTLags2 + (2TLag + τ)s+ 2
(4.2)

From this version, a controllable canonical form can be developed as shown in Equations

4.3 and 4.4. Note that the C matrix has values due to the altered pilot model in Equation

4.2 having an equal number of poles and zeros.Ẍp

Ẋp

 =

 0 1

−a2 −a1


Ẋp

Xp

+

0
1

 (4.3)

p(t) =

[
b2 − b0a2 b1 − b0a1

]Ẋp

Xp

+

[
b0

]
eθ (4.4)
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The variables a1−2 and b0−2 serve as placeholders and are defined in Equations 4.5 and

4.6,respectively. These five parameters will form the estimated states for the UKF and PID

methods discussed in the following sections.

a1 =
2TLag + τ

τTLag

a2 =
2

τTLag

(4.5)

b0 =
−TLeadKPilot

TLag

b1 =
(2TLead − τ)Kpilot

τTLag

b2 =
2Kpilot

τTLag

(4.6)

Note that estimating these a’s and b’s will require solving a system of equations for the

four model parameters which could add significant computation if performed at each time

step. To account for this, the equations can be analytically solved to give the solution

presented in Equations 4.7 and 4.8. These equations show that Kpilot can be solved first

followed by TLag, then τ , and finally TLead.

Kpilot =
b2
a2

TLag =
(a1 +

b1
Kpilot

)

a2(1− b0
Kpilot

)
(4.7)

τ =
2

a2TLag

TLead =
−2b0

a2τKpilot

(4.8)

4.2 Unscented Kalman Filter

The Unscented Kalman Filter presented in Section 2.1.2 can be adapted to fit the pilot

model estimation problem. The first portion of this work is replicated from Mandal’s disser-

tation [10]. To begin, the estimated variables are set up to include the 5 a’s and b’s found

through the linearization of the pilot model into state space form. This altered state vector

is shown in Equation 4.9.

ˆ⃗
X =

[
a1 a2 b0 b1 b2

ˆ⃗
Xpilot

ˆ⃗
Xpitch

]T
(4.9)

The state matrix includes the pilot and pitch system states which are dependent on the 5

estimated a’s and b’s as shown in Equations 4.3 and 4.4. Given that the state vector contains

a total of ten (L = 10) states, the parameters for the UKF can be set such that it uses a
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Gaussian distribution (β = 2) with a “normal” amount of spread in the sigma points (α = 1

and κ = 0). Recall the noise assumptions below in Equations 4.10 and 4.11.

Qk = E[wkw
T
k ] Rk = E[vkv

T
k ] (4.10)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (4.11)

The Q and R matrices are set in Equation 4.12. The R-covariance matrix is set up such

that the variance of the pilot output sensor and the pitch sensor are both equal. For both

of these outputs, it is important to note that the sensors are theoretical and the results

they provide may need to be estimated through other methods before being provided to the

algorithms used here. The Q-covariance matrix is tuned in each case in order to improve the

output results. This results in multiple solutions for Q to achieve acceptable results in the

pilot model parameters.

Q =


q21 . . . 0

...
. . .

...

0 . . . q2L

 R =

0.072 0

0 0.072

 (4.12)

Then, the initial estimated state can be set using Equation 4.13. The sigma points are

generated using Equation 2.17 and then propagated through the system dynamics using

Equation 4.14. The pitch system is considered known and remains as a linear dynamic

equation. The pilot model is also considered to take the state space form shown in Equations

4.3 and 4.4. The version shown here is in discrete form as is more intuitive to implement

in the Matlab Simulink environment. w⃗k represents the matrix which generates the sigma

points propagated through the prediction equation 4.14.

ˆ⃗
X0 =

[
â10 â20 b̂00 b̂10 b̂20

ˆ⃗
Xpilot0

ˆ⃗
Xpitch0

]T
(4.13)
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ˆ⃗
Xk+1 =



â1k+1

â2k+1

b̂0k+1

b̂1k+1

b̂2k+1

ˆ⃗
Xpilotk+1

ˆ⃗
Xpitchk+1



=



â1k

â2k

b̂0k

b̂1k

b̂2k
ˆ⃗
Xpilotk + (Âpilotk

ˆ⃗
Xpilotk +Bpiloteθk)dt

ˆ⃗
Xpitchk

+ (Apitch
ˆ⃗
Xpitchk

+Bpitchp̂k)dt



+ w⃗k (4.14)

Then, the measurement function can be set as Equation 4.15 assuming that the pilot

output, p(t), and pitch output, θ(t) are both being compared to the estimated measurements

from the UKF. Since the A, C, and D pilot matrices in Equations 4.14 and 4.15 depend

on the a and b parameters being estimated at each time step, they are shown as estimated

matrices as well.

ˆ⃗
Y =

p̂k+1

θ̂k+1

 =

Ĉpilotk+1

ˆ⃗
Xpilotk+1

+ D̂pilotk+1
eθk+1

Cpitch
ˆ⃗
Xpitchk+1

 (4.15)

The correction step of the algorithm is the same as described in Chapter 2. The UKF

algorithm will filter out noise in the output measurements, estimate all of the parameters

given in the state vector, and attempt to minimize the error between the estimated and true

output measurements. Should the noise assumptions in the Q-matrix be set too high, the

outputs may be matched so well that the noise is not filtered out. Should they be too low,

the solution may not converge at all. Due to this, the Q-matrix must be finely tuned to reach

an acceptable solution in a particular case. Figure 4.1 shows the overview of the inputs and

outputs of the UKF algorithm. The inputs are assumed to be known for the sake of the

solution.
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Figure 4.1 Unscented Kalman Filter diagram overview showing the inputs required and
outputs given. This solution is tailored for the pilot model estimation problem.

As mentioned previously, the algorithm just described was recreated from the work of

Mandal [10] and was found to have promising results even with the sensitivity of the process

noise covariance matrix, Q. In the results section, this will be referred to as the primary

UKF algorithm or UKFx10. In their work, the problem still persisted that the filter could

not robustly predict the parameters for other cases beyond one Q was initially tuned for.

The estimated states can alternatively be modified to avoid the step of solving a system

of equations by turning the state matrix defined in Equation 4.9 into Equation 4.16.

ˆ⃗
X =

[
K̂p T̂Lead T̂Lag τ̂

ˆ⃗
Xpilot

ˆ⃗
Xpitch

]T
(4.16)

This allows the nonlinear equations of the pilot model to be used directly and opens

up the possibility for the precision model to be used in the future. This alteration changes

Equations 4.14 and 4.15 into Equations 4.17 and 4.18. Performing direct estimation of the

pilot model parameters cuts out the intermediate step of the system of equations and allows

easier computation in flight control computers. This also eliminates the use of five equations

to solve for four parameters and consequentially having multiple solutions for every time

step. The new equations for the pilot states come from Equation 3.3 as well as the typical

expression for discrete time state propagation. The measurement equation is taken from

Equation 3.4.
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ˆ⃗
Xk+1 =



K̂pk+1

T̂Leadk+1

T̂Lagk+1

τ̂k+1

X̂pilotk+1

˙̂
Xpilotk+1

ˆ⃗
Xpitchk+1



=



K̂pk

T̂Leadk

T̂Lagk

τ̂k

X̂pilotk + (
˙̂
Xpilotk)dt

−X̂pilotk

TLagk

+ eθ(t− τk)

ˆ⃗
Xpitchk

+ (Apitch
ˆ⃗
Xpitchk

+Bpitchp̂k)dt



+ w⃗k (4.17)

ˆ⃗
Y =

p̂k+1

θ̂k+1

 =

− Kpk+1

T 2
Lagk+1

(TLagk+1
− TLeadk+1

)X̂pilotk+1
− Kpk+1

TLeadk+1

TLagk+1

eθ(t− τk+1)

Cpitch
ˆ⃗
Xpitchk+1

 (4.18)

One drawback is the lack of estimation capability for the pure time delay, τ . Since the

time delay is implicitly a part of the error input, the UKF does not converge to a solution

since the delay does not internally affect the pilot and pitch outputs. However, the other

three pilot model parameters can be readily estimated with similar limitations to the method

presented by Mandal. This method is referred to as UKFx9 within the results section due

to the nine estimated states.

4.3 Frequency Domain Parameter Identification

The parameter identification solution does not need to be modified as it is directly es-

timating the full state space model. The outputs take on a particular format given the

order and number of inputs given to the algorithm. The PID solution takes on the general

form given in Figure 4.2. This is the only method presented in this thesis which absolutely

requires the system to be in state space form. As such, the outputs are given in such a form

that each element can be related back to the a’s and b’s of the linearized pilot model in state

space form from Equations 4.3 and 4.4. These can then be solved in a system of equations

to give the four pilot model parameters like the primary UKF algorithm.
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Figure 4.2 Parameter Identification overview of system schematic. Diagram shows the
inputs and outputs required and the format of the output.

Yet again, as with the primary UKF algorithm, a1−2 and b0−2 can be solved for the pilot

model parameters and runs into the same problem where multiple solutions can exist.

4.4 Pre-Trained Neural Networks

Due to the highly nonlinear nature of a human pilot’s response, pre-trained stochastic

estimation such as in the typical form of a neural network is unlikely to produce viable robust

solutions. Preliminary results were obtained from a constant-weighting neural network to

determine its capability to estimate the parameters. Figure 4.3 depicts the neural network

results after being trained using a Levenberg-Marquardt technique with a Mean-Squared

Error (MSE) performance index. Figure 4.4 depicts the same neural network run on a new

data set with nonlinear pilot model parameter variation.

If the inverse case is considered where the neural network is trained on the more highly

nonlinear pilot model parameters, then Figures 4.5 and 4.6 result. As shown in these four

figures alone, the capability of the pre-trained neural networks in this estimation problem is

limited. It does not matter whether the NN is trained on highly varying data which covers

a range of possible inputs nor does it matter if the NN is trained on near constant data so

it has better chance of convergence. The pilot as a controller is too complex of a system for

static stochastic estimation. Therefore, adaptive solutions must be considered and become

the focus of future interest for this research.
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Figure 4.3 Neural Network Preliminary Results depicting the deployed neural network run
on the near constant parameters it was trained on.

Figure 4.4 Neural Network Preliminary Results depicting the deployed neural network run
over a more highly varying pilot model.
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Figure 4.5 Neural Network Preliminary Results depicting the deployed neural network run
on the highly varying parameters it was trained on.

Figure 4.6 Neural Network Preliminary Results depicting the deployed neural network run
over a linearly varying pilot model.
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4.5 Adaptive Neural Networks

Given the limitations presented by the pre-trained neural networks, the next logical step

would be to take advantage of their stochastic nature. By utilizing the training methods

continuously throughout simulation, the weights can be persistently changed to accommo-

date new inputs or new pilot model parameter variations. For this reason, Adaptive Neural

Networks (ANNs) have proven to be a useful resource for this estimation problem since they

can stochastically predict seemingly unrelated parameters from known values. The primarily

considered version, as is readily used in a number of different estimation problems is a Mul-

tilayer Perceptron ANN. The structure of the core neural network used in this application

is given in Figure 4.7.

Figure 4.7 Neural Network format overview showing the inputs and output formats and
general structure. This system has twelve neurons in a single hidden layer between two

inputs and four outputs.

A neural network typically utilizes a set of training data to converge to input and output

weights,W and V , which minimize a given loss function. The neural network is then deployed

with these weights to determine the viability and robustness of its solution to a broad range

of input data. The training methods used in this study are the same ones used in Giampiero

Campa’s Generalized Multilayer Perceptron (GMLP) ANN [14].
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The Multilayer Perceptron (MLP) ANN utilizes back propagation for weight update laws.

W and V are both dependent on one other such that each update as a system of linear first

order ordinary differential equations as shown in equations 4.19 and 4.20.

˙̂
W = −Γ1[ˆ⃗xe⃗

T V̂ T σ̂′ + λ1||e⃗||Ŵ ] (4.19)

˙̂
V = −Γ2[(σ̂ − σ̂′Ŵ T ˆ⃗x)e⃗T + λ2||e⃗||V̂ ] (4.20)

Where Ŵ and V̂ are the input and output weighting matrices concatenated with the

corresponding layer’s biases, Γ1,2 are the adaptive gains, e⃗ is the error in the NN outputs,

and λ1,2 are forgetting factors which counteract the uncontrolled parameter growth commonly

found in adaptive control theory. Solving Equations 4.19 and 4.20 continuously, the input

and output weighting matrices can be adaptively updated throughout the flight profile similar

to the online form of the UKF presented before.

The neuron activation functions present within the GMLP network are Sigmoidal, though

this could be modified for ReLU or hyperbolic tangent functions as mentioned in Chapter 2.

This Sigmoidal activation function is especially useful as the pilot model parameters should

only be positive values.

One primary setback of the provided tool is the restriction of having the same number

of error inputs as there are outputs. The adaptive portion of the algorithm uses the errors

of the parameters to update the weights, so the error in the pilot model parameters is not

available. In this case, the system is set up as if it were a secondary or parallel dynamical

system to the core PVS. This means that the output pilot model parameters are applied to a

separate pilot model such that the pitch error taken from the PVS can be plugged in to get

a resulting p(t) output. The system is set up as shown in Figure 4.8. The error between the

true pilot output and the neural network estimated pilot output is used as the loss function

for updating all four output parameters. This is a major hindrance to the capability of the

ANN as the resulting error trend is shown propagating in all four outputs and the parameters

cannot update independently.

32



Figure 4.8 Adaptive Neural Network architecture with weights updated by the error in the
pilot output. The estimated pilot model parameters are passed into a tertiary pilot model.
The neural network attempts to minimize the error in the pilot output by adjusting the

estimated pilot model parameters.

An adaptive neural network allows the possibility of the constantly changing dynamics of

a highly nonlinear pilot to be estimated. A fixed neural network in this case has difficulty as

there is not always a simple mathematical link between the parameters and the output that

the model gives. This discontinuity is only amplified by the nature of a human pilot acting

as the controller being estimated. Adaptive neural networks allow broader implementations

such that a single network may be able to estimate a pilot’s behavior throughout the flight

profile.
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5 Numerical Simulations

This section details the results of the algorithms shown in the previous chapters. The Un-

scented Kalman Filter, Parameter Identification, and Neural Networks were all implemented

and the results are shown. The four input cases used to collect these results are presented

first. The input variations consist of two different pitch commands and either time variant

or time-invariant pilot model parameters. The results are organized such that each method

is presented individually and a summary of the data is presented in the final section which

compares the individual algorithm performances. The assumptions and tuning parameters

modified for each case are also presented.

5.1 Input Cases

There are four input cases used in this study. They consist of combinations of two pitch

command cases and two variations of pilot model parameters. The first pitch command is a

high-frequency and high-amplitude sum of sines signal which aimed to meet the Persistence

of Excitation requirement for the estimation to converge to the true values. The second pitch

command is a pitch doublet which is much more normal for a pilot to perform within typical

flight operation. The two pilot model cases are time-invariant and time-varying parameters.

Figure 5.1 The format and description of the results cases. Both high frequency and
doublet desired pitch signals are used to show the viability for convergence for the

time-invariant and time-variant pilot model parameters
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The four cases are chosen such that the robustness of each estimation technique can be

displayed. Each demonstrates the potential extendability of their respective algorithms or

lack thereof. The structure of the cases used for the results is shown in Figure 5.1. The results

are presented in the results section under the labels for each case. The specific description

of each variant of the parameters is described in Section 5.1.2 while the description of the

desired pitch angles requested of the pilot model is shown in Section 5.1.1.

5.1.1 Pitch Commands

The first case utilizes a sum of sines input for the desired pitch angle and constant pilot

model parameters. The desired pitch signal is shown in Figure 5.2. The signal is comprised

of 3 sine wave signals with different frequencies and amplitudes. The information to rebuild

the sine wave is shown in Table 5.1.

Table 5.1 Sine waves used in the creation of the high frequency pitch command for cases 1
and 2. The aim is high frequency and high amplitude to properly excite the system.

Equation A [rad] ω [rad/s]
θdes,1 = 10 π

180
sin(0.25t) 0.1745 0.25

θdes,2 = 5 π
180

sin(1t) 0.0.0873 1.00
θdes,3 = 1 π

180
sin(0.125t) 0.0.0175 0.125

Figure 5.2 Depicts the high frequency pitch commanded in the Pilot Vehicle system. This
case was used for proving the convergence of the algorithms presented and was primarily

focused around achieving the Persistence of Excitation requirement for convergence.
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The second pitch command is more reasonable for a pilot to perform in a typical flight

profile. While it may not properly excite the system, the goal is to see how or if the estimation

techniques converge to any solution or stray from their initial conditions given less extreme

inputs. This second signal is a simple repeated doublet and is shown in Figure 5.3.

Figure 5.3 Lower frequency doublet commanded of the pilot model to simulate more
realistic pilot commands that may not meet excitation requirements for convergence of the

parameters. This input is used for cases 3 and 4.

5.1.2 Pilot Model Parameters

The two cases considered for the pilot model parameters are time-varying and time-

invariant. Batch methods tend to have a more difficult time converging to a solution in

time-varying cases as opposed to iterative methods. Therefore, the inclusion of both displays

the strengths and weaknesses of all methods presented along with the two pitch input cases

from Section 5.1.1. First, the time-invariant parameters are shown in Table 5.2. The pure

time delay is the only dimensionalized value.

In the time-variant data, note that the parameters only change linearly whereas a true

pilot would more likely have a much more gradual change in the values. As part of a typical

Lead-Lag compensator, the Lag constant is kept higher than the Lead constant throughout

the entire period of time for the sake of the input model. Figure 5.4 shows the time-varying

pilot model parameters used for cases 2 and 4.

36



Table 5.2 Time-invariant pilot model parameters used to produce the results shown in
cases 1 and 3. These values were derived from Monte Carlo simulations and retrieved from

similar studies of the McRuer model [5] [6].

Parameter Value
Kp 0.54
TLead 0.32
TLag 0.4
τ 0.25s

Figure 5.4 Time-Varying model parameters used in cases 2 and 4 of the results. The lead
constant is always less than the lag constant as is typical of a lead-lag compensator. The
results are linear but would more accurately depict a pilot if they changed more gradually.

5.2 Unscented Kalman Filter Results

Two Unscented Kalman Filter algorithms were used in this study. One UKF estimated

the state space through a linearized form of the pilot model (UKFx10), while the other

estimated the four pilot model parameters directly (UKFx9). Only the UKFx9 results are

shown since UKFx10 can be found in Mandal’s research[9][15][10] and because the method

can result in singularities in some of the parameters. Refer to Section 4.2 for the details of

the differences between these two methods.
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5.2.1 Nine-State Unscented Kalman Filter

CASE 1: Case 1 uses a high frequency input signal with time-invariant pilot model

parameters. The initial conditions and noise assumptions are shown in Equations 5.1-5.4.

It is reasonable to assume that the pitch and pilot model states are zero initially as there

is no desired pitch commanded before t=0. It would add fidelity to include aircraft trim

conditions as the initial pitch angle. Note that, since the assumption is made that the initial

conditions are not equal to the time invariant parameters, the P-covariance matrix is set as

nonzero diagonal. This equates to relative confidence that the initial conditions are close to

the true values but not exact.

X0 =

[
0.06︸︷︷︸
Kp

0.08︸︷︷︸
TLead

0.20︸︷︷︸
TLag

0.35︸︷︷︸
τ

0 0 0 0 0

]
(5.1)

Q =



3x10−7 0 0 0 0 0 0 0 0

0 1x10−8 0 0 0 0 0 0 0

0 0 2x10−5 0 0 0 0 0 0

0 0 0 1x10−6 0 0 0 0 0

0 0 0 0 1x10−8 0 0 0 0

0 0 0 0 0 1x10−8 0 0 0

0 0 0 0 0 0 1x10−10 0 0

0 0 0 0 0 0 0 1x10−10 0

0 0 0 0 0 0 0 0 1x10−10



(5.2)

R =

0.0001 0

0 0.01

 (5.3)

P0 = 0.05I9x9 (5.4)

As can be seen by Equation 5.2, the Q-matrix has incredibly small covariances which

are sensitive to small alterations. The resulting pilot model parameter tracking is shown in

Figure 5.5.
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Figure 5.5 UKFx9 Case 1 Results - Pilot model parameter convergence.
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An important note is that the time delay does not update and may be a shortcoming

of this method. Since the delay is implicit in the input error signal, the UKF has difficulty

updating it in this format. Due to the similarity in the pilot model parameters, it is safe

to assume that the pilot output and, subsequently, the achieved pitch angle would match as

well. These results are shown in Figures 5.6 and 5.7. The figures are zoomed in such that

the estimation can be more easily seen.

Figure 5.6 UKFx9 Case 1 Results - Pilot model output convergence.

Figure 5.7 UKFx9 Case 1 Results - Pitch model output convergence.
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The UKF also converged to the system covariance in the form of the P-matrix. The

graph of these parameters is shown in Figure 5.8.

Figure 5.8 UKFx9 Case 1 Results - System covariance matrix convergence.

The resulting estimated pilot model’s bode plots can be compared to see how well the

frequency response matches the original system. In Figure 5.9, the magnitude and phase

diagrams of the original system and the estimated system are compared.

Figure 5.9 UKFx9 Case 1 Results - Bode plot comparison between real and estimated
systems.
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CASE 2: Case 2 uses a high frequency input signal with time-varying pilot model

parameters. The ICs are shown in Equations 5.5-5.8. Using the ICs from case 1 resulted

in a solutions which converged to other off-nominal values. Given those results, the system

needed to be re-tuned for each input case.

X0 =

[
0.06︸︷︷︸
Kp

0.08︸︷︷︸
TLead

0.20︸︷︷︸
TLag

0.35︸︷︷︸
τ

0 0 0 0 0

]
(5.5)

Q =



1x10−5 0 0 0 0 0 0 0 0

0 1x10−5 0 0 0 0 0 0 0

0 0 1x10−5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1x10−8 0 0 0 0

0 0 0 0 0 1x10−8 0 0 0

0 0 0 0 0 0 1x10−9 0 0

0 0 0 0 0 0 0 1x10−9 0

0 0 0 0 0 0 0 0 1x10−9



(5.6)

R =

0.0001 0

0 0.01

 (5.7)

P0 = 0.05I9x9 (5.8)

The resulting pilot model parameter tracking is shown in Figure 5.10. The output results

are shown in Figures 5.11 and 5.12. The system covariance matrix (P-matrix) convergence

is shown in Figure 5.13. Since this is a time-varying case for the pilot model parameters,

a mean cannot be taken of the whole dataset. Instead, three bode plots are presented in

Figures 5.14 through 5.16 which show the progress of convergence to the true pilot model’s

frequency response characteristics. They are labeled as “Beginning”, “Middle”, and “End”

to depict a sample in the first 50 points, in the middle of the set, and in the last 50 points.
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Figure 5.10 UKFx9 Case 2 Results - Pilot model parameter convergence.
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Figure 5.11 UKFx9 Case 2 Results - Pilot model output convergence.

Figure 5.12 UKFx9 Case 2 Results - Pitch model output convergence.
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Figure 5.13 UKFx9 Case 2 Results - System covariance matrix convergence.

Figure 5.14 UKFx9 Case 2 Results - Beginning Bode plot comparison between real and
estimated systems.

Figure 5.15 UKFx9 Case 2 Results - Middle Bode plot comparison between real and
estimated systems.
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Figure 5.16 UKFx9 Case 2 Results - Ending Bode plot comparison between real and
estimated systems.

CASE 3: Case 3 uses a repeated doublet input signal with time-invariant pilot model

parameters. The only initial condition that is different than case 1 is the tuned Q-covariance

matrix, which is shown in Equation 5.9.

Q =



2x10−5 0 0 0 0 0 0 0 0

0 1x10−5 0 0 0 0 0 0 0

0 0 1x10−5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2x10−6 0 0 0 0

0 0 0 0 0 2x10−6 0 0 0

0 0 0 0 0 0 1x10−9 0 0

0 0 0 0 0 0 0 1x10−9 0

0 0 0 0 0 0 0 0 1x10−9



(5.9)

The resulting pilot model parameter tracking is shown in Figure 5.17. The output results

are shown in Figures 5.18 and 5.19. The system covariance matrix (P-matrix) convergence

is shown in Figure 5.20. A bode plot showing the frequency response of the estimated vs the

true system is shown in Figure 5.21.
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Figure 5.17 UKFx9 Case 3 Results - Pilot model parameter convergence. The pilot is
acting as a proportional controller in this case.
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Figure 5.18 UKFx9 Case 3 Results - Pilot model output convergence.

Figure 5.19 UKFx9 Case 3 Results - Pitch model output convergence.
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Figure 5.20 UKFx9 Case 3 Results - System covariance matrix convergence.

Figure 5.21 UKFx9 Case 3 Results - Bode plot comparison between real and estimated
systems.
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CASE 4: Case 4 consists of the repeated doublet input with time-varying parameters.

This is a considerably more difficult case for which to achieve convergence. The only IC that

was changed is the Q matrix, and it is shown in Equation 5.10.

Q =



1x10−6 0 0 0 0 0 0 0 0

0 1x10−6 0 0 0 0 0 0 0

0 0 1x10−6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1x10−8 0 0 0 0

0 0 0 0 0 1x10−9 0 0 0

0 0 0 0 0 0 1x10−9 0 0

0 0 0 0 0 0 0 1x10−9 0

0 0 0 0 0 0 0 0 1x10−9



(5.10)

The resulting pilot model parameter tracking is shown in Figure 5.23. The output results

are shown in Figures 5.22 and 5.24. The system covariance matrix (P-matrix) convergence

is shown in Figure 5.25. Three bode plots are presented in Figures 5.26 through 5.28 which

show the progress of convergence to the true pilot model’s frequency response characteristics.

Figure 5.22 UKFx9 Case 4 Results - Pilot model output convergence.
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Figure 5.23 UKFx9 Case 4 Results - Pilot model parameter convergence.
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Figure 5.24 UKFx9 Case 4 Results - Pitch model output convergence.

Figure 5.25 UKFx9 Case 4 Results - System covariance matrix convergence.

Figure 5.26 UKFx9 Case 4 Results - Beginning Bode plot comparison between real and
estimated systems.
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Figure 5.27 UKFx9 Case 4 Results - Middle Bode plot comparison between real and
estimated systems.

Figure 5.28 UKFx9 Case 4 Results - Ending Bode plot comparison between real and
estimated systems.

5.2.2 UKFx9 Results Discussion

Between the four cases presented for the UKFx9 algorithm, it can readily be seen that

the Q-matrix is only slightly tweaked on the order of magnitude of 10−6. Among the pilot

model parameter plots, it can be seen that the solutions converge to values which may or

may not be the true solution. Even with this, the UKF algorithm is able to converge to an

estimated model which nearly matches the pilot and pitch outputs.

Given that the desired pitch angle requested of the pilot properly excites the system

for the algorithm to converge, the solution eventually reaches estimated values for the pilot
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model parameters which closely matches the plant’s outputs and frequency domain response.

One interesting set of plots are Figures 5.5 and 5.11 where the convergence of the parameters

TLead and TLag seems to depend on the pilot model closely tracking the desired pitch angle.

The solution does not seem to converge to the true values unless the pitch error is minimized

by the pilot acting as a controller. In cases 3 and 4, due to the simplicity of the desired

pitch angle (doublet), the pilot model converged to a simple proportional controller which

only needed to control the response with Kp and did not need the Lead-Lag Compensator.

Yet again, this shows that there are multiple mathematical models which could achieve the

response. A summary of the mean squared error for all cases is shown in Table 5.3.

Table 5.3 UKFx9 Case Results: Table Summary of Mean Squared Errors

Mean-Squared Error
Parameter Case 1 Case 2 Case 3 Case 4
Kp 0.016 0.0004 0.2160 0.0014
TLead 0.0226 0.0041 0.5173 0.0263
TLag 0.0081 0.0074 0.0530 0.0462
τ 0.0100 0.0029 0.0100 0.0029
p(t) 2.01x10−6 1.70x10−6 4.95x10−6 5.46x10−6

θ(t) 2.93x10−5 8.56x10−5 4.65x10−5 3.95x10−5

5.3 PID - Fourier Transform Regression

The goal of PID in this solution is to converge to the state space form given by the lin-

earization of the pilot model. However, this system cannot be tuned other than changing the

cutoff frequency, ω, sample time, dt, and number of points per batch, n. The cutoff frequency

is applied through a simple first order transfer function which approximates Equation 5.11.

The initial conditions are set according to Equation 5.12.

Y (s) =
a

s+ a
(5.11)

ω = 1Hz dt = 0.05s n = 128 (5.12)
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The desired values are arranged in the form depicted by 4.2 to get Θ̂,. In this case, the

PID solution requires that the entire state space is estimated directly as shown in Section

5.1.2. Equations 4.5 and 4.6 must then be used to solve for the pilot model parameters.

CASE 1: High frequency desired pitch input with time-invariant parameters. Figure

5.29 shows the capability of FTR-TD to arrive at a solution.

Figure 5.29 FTR-TD Case 1 Results - Pilot model parameter convergence.

55



The parameters may not converge to the correct values. It was already learned from the

UKF results that the found solution may not always be the true solution even though it still

tracks the pilot model outputs. This is shown in Figure 5.30 where p(t) can be visualized.

The frequency response shown in Figure 5.31 reinforces this point as well. Note that this is

a model which uses the states from the PVS since FTR-TD does not estimate states.

Figure 5.30 FTR-TD Case 1 Results - Pilot model output.

Figure 5.31 FTR-TD Case 1 Results - Frequency response bode plot.
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CASE 2: One of the major downfalls of FTR-TD is in its usage of batch data. This is

shown more effectively using the time-variant pilot model parameters in case 2. The pilot

model parameters have much difficulty converging as can be seen in Figure 5.32. Zooming

in to neglect the singularity, Figure 5.33 shows how the parameters converge up until the

pilot model parameters begin varying with time.

Figure 5.32 FTR-TD Case 2 Results - Pilot model parameter convergence.
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Figure 5.33 FTR-TD Case 2 Results - Pilot model parameter convergence (Zoomed in).

Given enough time once the parameters have become constant again, the solution should

converge once more, but the pilot model parameters could change throughout the inputs

given by the pilot Therefore this solution cannot be used in general implementation. The

singularities depicted in the previous figures result in large deviation from the original system

as shown in Figure 5.34.
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Figure 5.34 FTR-TD Case 2 Results - Pilot model output.

Figure 5.35 depicts the bode diagram from the system convergence before the pilot model

variation began. The bode diagrams from after the variation are not shown as they simply

show that the predicted model has high deviation from the true values.

Figure 5.35 FTR-TD Case 2 Results - Frequency response bode plot.
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CASE 3: Returning to the time-invariant pilot model case with a lower frequency input,

the results of case 3 are shown in Figures 5.36-5.37. To begin, Figure 5.36 shows the pilot

model parameter estimation.

Figure 5.36 FTR-TD Case 3 Results - Pilot model parameter convergence.
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Figures 5.37 and 5.38 depict the resulting pilot model output given the estimated param-

eters and the frequency response of the system.

Figure 5.37 FTR-TD Case 3 Results - Pilot model output.

Figure 5.38 FTR-TD Case 3 Results - Frequency response bode plot.
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CASE 4: Lastly, the time-variant parameters with a low-frequency doublet has pilot

model parameter estimation as shown in Figure 5.39.

Figure 5.39 FTR-TD Case 4 Results - Pilot model parameter convergence.
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The singularities depicted in the previous figures results in large deviation from the

original system as shown in Figure 5.40.

Figure 5.40 FTR-TD Case 4 Results - Pilot model output.

Figure 5.41 depicts the bode diagram from the system convergence before the pilot model

variation began. The bode diagrams from after the variation are not shown as they simply

show that the predicted model has high deviation from the true values.

Figure 5.41 FTR-TD Case 4 Results - Frequency response bode plot.
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5.3.1 FTR-TD Results Discussion

The pilot model parameter variation creates difficulty for the FTR-TD method to con-

verge to the true values. In fact, it causes significant singularities such that the only way

a valid solution can be developed is if the parameters are kept constant for an extended

period of time. On the other hand, FTR-TD was capable of converging to the same constant

solution every time regardless of how excited the input data was. This can be readily seen

in the four bode plots where the solution found is relatively close in frequency response to

the true model. Table 5.4 shows a summary of the mean squared error for each of the pilot

model parameters and the pilot model outputs.

Table 5.4 FTR-TD Case Results: Table Summary of Mean Squared Errors

Mean-Squared Error
Parameter Case 1 Case 2 Case 3 Case 4
Kp 0.0011 6.1x102 0.011 42.87
TLead 0.0205 1.2x105 0.0204 16.54
TLag 0.0274 1.20x105 0.0272 10.49
τ 0.0939 10.0 0.0941 3.50
p(t) 6.95x10−4 0.025 6.91x10−4 7.1x10−3

5.4 Adaptive Neural Networks

In this section, the results of the adaptive neural networks are shown along with the

respective conditions and parameters to achieve them. Note that that GMLP was used as

the adaptive network in all of these cases. There are two methods of tuning used in this

study. The first is a gain multiplier for the error seen by the neural network which is adjusted

similarly to the learning rate of the ANN. The second is changing the initial conditions of the

initial input/output weighting matrices. The latter helps improve the initial conditions to a

more reasonable starting point while the former changes how quickly the system learns since

the magnitude of the error seen by the loss function is increased. If the initial conditions are

off, then the algorithm will take considerably longer to learn the true values. The adaptive

NN feedback applies the same pilot output error to all four parameters.
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CASE 1: For the high frequency and high amplitude case with time invariant param-

eters, the initial condition for the error gain, Ke, is 1.25. The ηV , ηW , and ηP values are

learning rates and each is set to 0.45. Both work to improve the system’s responsiveness.

The magnitude of the initial randomized weighting matrix was set to 0.05. Figure 5.42 de-

picts the estimation of the pilot model parameters. Note that all four parameters have the

same trend since the same error is used to update each.

Figure 5.42 Neural Networks Case 1 Results - Pilot model parameter convergence.
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Figures 5.43 and 5.44 show the resulting pilot and pitch outputs, respectively. Note that

the pitch system’s error is not an input to the neural network. The ANN in this case is not

attempting to minimize error in the pitch system. The assumption is that if the pilot model

matches, the pitch system will as well.

Figure 5.43 Neural Networks Case 1 Results - Pilot model output convergence.

Figure 5.44 Neural Networks Case 1 Results - Pitch model output convergence.
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CASE 2: Adding pilot model variation with time to case 1, the initial condition for the

error gain, Ke, is 7.0. The ηV , ηW , and ηP values are learning rates and each is set to 0.30.

The parameters estimated as shown in Figure 5.45.

Figure 5.45 Neural Networks Case 2 Results - Pilot model parameter convergence.
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Figures 5.43 and 5.44 show the resulting pilot and pitch outputs, respectively. While the

pilot model parameters are not well tracked, the trend is seemingly followed and the pilot

output is tracking fairly well. The bode plots offer no form of comparison due to the high

magnitude of difference between the true parameters and the estimated ones.

Figure 5.46 Neural Networks Case 2 Results - Pilot model output convergence.

Figure 5.47 Neural Networks Case 2 Results - Pitch model output convergence.
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CASE 3: Turning to a more realistic input for the pitch system, the initial condition

for the error gain, Ke, is 1.00. The ηV , ηW , and ηP values are learning rates and each is set

to 0.36. The parameters estimated as shown in Figure 5.48.

Figure 5.48 Neural Networks Case 3 Results - Pilot model parameter convergence.
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Figures 5.49 and 5.50 show the resulting pilot and pitch outputs, respectively. The

resulting pilot model output slowly converges to the true solution and the pitch system

depicts that the trend of the pitch output is being matched, but the correct magnitude has

not been achieved.

Figure 5.49 Neural Networks Case 3 Results - Pilot model output convergence.

Figure 5.50 Neural Networks Case 3 Results - Pitch model output convergence.
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CASE 4: Finally, applying variation in time to the pilot model parameters, the initial

condition for the error gain, Ke, is 7.0. The ηV , ηW , and ηP values are learning rates and

each is set to 0.3. The estimated parameters are shown in Figure 5.51.

Figure 5.51 Neural Networks Case 4 Results - Pilot model parameter convergence.
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Figures 5.52 and 5.53 show the resulting pilot and pitch outputs, respectively. The neural

network performs more poorly with lower frequency inputs.

Figure 5.52 Neural Networks Case 4 Results - Pilot model output convergence.

Figure 5.53 Neural Networks Case 4 Results - Pitch model output convergence.

72



5.4.1 Neural Networks Results Discussion

Being a stochastic estimation method, the neural network used in this problem has diffi-

culty with the highly variable system dynamics presented. Much of what could be adjusted

focused around the error of the secondary system which meant that the same error was

used to update all four parameters. There was no direct method to tell the network how

adjusting individual parameters could affect the results. Therefore many of the trends seen

in one parameter are also seen in all others.

As stated before, the pitch output drifts away from the true values considerably through-

out the estimation. This is partially due to the exclusion of the error in the pitch angle in

updating the weights of the network. However, it was found that including that error had a

greater potential for singularities in the estimation solution. To summarize the results from

all of the cases, Table 5.5 details the mean-squared error for all cases and all parameters.

Table 5.5 Neural Networks Case Results: Table Summary of Mean Squared Errors

Mean-Squared Error
Parameter Case 1 Case 2 Case 3 Case 4
Kp 0.0581 0.0021 0.1214 0.0052
TLead 0.0021 0.0184 0.0045 0.0169
TLag 0.0885 0.0236 0.0920 0.0211
τ 0.1940 0.0675 0.1680 0.0641
p(t) 2.42x10−4 3.63x10−5 0.0015 9.63x10−5

θ(t) 0.0051 0.0016 0.0085 0.0030

73



6 Conclusions and Future Work

Altogether, the methods presented are capable of estimating a mathematical model of

the pilot when tailored to particular cases, but they cannot be applicable for robust imple-

mentation. The pilot model parameter variation problem holds many difficulties. The high

nonlinearity and unpredictability of the pilot model means that an estimator which is not

robust in simulation will not be able to perform well in a real world environment. Each of

the methods discussed have strengths and weaknesses which help or hurt their viability in

aircraft systems.

The Unscented Kalman Filter adaptation handles noise well assuming that the assump-

tions are correct, but the process noise covariance has to be continuously updated for each

individual problem in order to converge to a true solution. The extensions of UKF are lim-

ited when one considers the fineness of the tuning required in the Q-covariance matrix in

order to ensure convergence. While the UKF results turned out to be the best overall with

the lowest mean squared error between all four cases discussed, the tuning required to reach

that magnitude of error was extensive.

The Fourier Transform Regression with Time Domain Derivatives (FTR-TD) only works

consistently when the parameters are constant. Given that this is a batch method, it is

expected that the system is unable to discern a feasible model when the parameters it

is estimating are changing with time. It is theorized that, with pilot-in-the-loop (PIL)

simulation, the parameters could vary greatly with time. This leaves batch methods and

frequency domain methods such as this one with great difficulty and inability to perform

well. The tendency for singularities from the added equation solving step also reduces the

algorithm’s applicability to this problem.

Lastly, the Adaptive Neural Networks have potential but inability to perform well in their

current state. Since they are an open stochastic estimation of the parameters, there are many

adjustments that can be made to reach a viable solution. In all cases shown, even when the

pilot model parameters had significant error, the pilot output still reasonably tracked the
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trend of the true values. This means that prediction of the pilot’s future actions may be

achieved using this algorithm without needing convergence of the parameters themselves.

The parameters could instead reach a non-optimal solution while matching the pilot output.

6.1 Future Work

The application of these methods individually shows the start of promising solutions. In

particular, between the UKF and NNs, the strengths of one algorithm are the weaknesses

of the other. Neural networks are effective at tracking the trend of the pilot model output

while the Unscented Kalman Filters are able to better filter out the noise and track the

magnitude. In the future, it would be prudent to combine these algorithms and either use

neural networks to update the Q-matrix, update the weighting of the neural network with

a UKF, or augment the solution of the UKF with a neural network. Any of these options

could present promising alternatives to using each of the algorithms individually.

On the other hand, one viable option to reach a more expandable solution to this problem

is the application of deep machine learning or reinforcement learning. A deep learning

algorithm could learn how a pilot’s parameters affect their performance and learn to model

and predict the actions of the pilot in real time.

Another future benefit will be the estimation of a bank of pilot profile data. Pilot model

parameters which classify an attentive, alert pilot can be documented while also considering

how the parameters are affected for a tired or distracted pilot. Given that these parameters

can be reliably estimated in the future, the database this can produce could help simulation

technologies produce more reliable Pilot-in-the-Loop flight environments without needing to

extend a significant amount of expense to pilot testing in a simulator.

This also leads into the idea of predicting the onset of Pilot Induced Oscillations (PIOs).

Once these methods or some altered form have matured and the pilot’s actions can be readily

predicted, the onset of dangerous flight scenarios or Loss-of-Control in-flight (LOC-I) can

be detected and displayed as a warning to the pilot. Prevention of these scenarios will help

mitigate many fatal aviation accidents for years to come.
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