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ABSTRACT

Outdoor air pollution is a complex system that is responsible for the deaths of millions of people annually, yet the in-
tegration of interdisciplinary data necessary to assess air quality's multiple metrics is still lacking. This case study inte-
grates atmospheric indicators (concentrations of criteria pollutants including particulate matter and gaseous
pollutants), traffic indicators (permanent traffic monitoring station data), and social indicators (community responses
in Twitter archives) representing the interplay of the three critical pillars of the United Nations' Triple Bottom Line:
environment, economy, and society. During the watershed moment of the COVID-19 pandemic lockdowns in Florida,
urban centers demonstrated the gaps and opportunities for understanding the relationships, through correlations
rather than causations, between urban air quality, traffic emissions, and public perceptions. The relationship between
the perception and the traffic variables were strongly correlated, however no correlation was observed between the
perception and actual air quality indicators, except for NO,. These observations might consequently infer that traffic
serves as people's proxy for air quality, regardless of actual air quality, suggesting that social media messaging around
asthma may be a way to monitor traffic patterns in areas where no infrastructure currently exists or is prohibited to
build. It also indicates that people are less likely to be reliable sensors to accurately measure air quality due to bias
in their observations of traffic volume and/or confirmation biases in broader social discourse. Results presented herein
are of significance in demonstrating the capacity for interdisciplinary studies to consider the predictive capacities of
social media and air pollution, its use as both lever and indicator of public support for air quality legislation and
clean-air transitions, and its ability to overcome limitations of surface monitoring stations.
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1. Introduction

Air pollution is a complex socio-environmental system with significant
economic implications, drawing all three dimensions of the United Nations
Sustainable Development Goals summarized in the triple bottom line.
Anthropogenic pollutant emissions from industry and transportation ad-
versely impact human health as well as climate change causing tremendous
economic challenges. The World Health Organization (WHO) estimates six
to seven million deaths annually due to exposure to outdoor air pollution
(WHO, 2014). Urban communities located near major roadways and indus-
trial centers consistently experience higher air pollutant concentrations
than their suburban counterparts (Filigrana et al., 2020). The residents of
these communities are also more likely to experience emphysema, chronic
obstructive pulmonary diseases (COPD), cancer, and cardiac disease (Lv
et al., 2020; Williams et al., 2009). In the US, these communities are
more likely to be significantly poorer and populated by racial minorities
(Miranda et al., 2011; Bell and Ebisu, 2012; Bravo et al., 2016; Reames
and Bravo, 2019). The United Nations Sustainable Development Goals, in-
cluding the Climate Action, set for 2030 rest on three pillars balancing
planet, prosperity, and people-incorporating the environmental, economic,
and social perspectives of sustainability, respectively. Understanding the re-
lationship between air pollutants, vehicle emissions, and how urban com-
munities perceive air quality is an important step toward understanding
this dynamic system.

Several studies have explored the link between air quality and traffic es-
pecially during the COVID-19 pandemic (e.g., Chen et al., 2021; Gualtieri
et al., 2020; Parker et al., 2020). Others have focused on associations be-
tween air quality and society (e.g., Pramanik et al., 2020; Zhai and
Cheng, 2020). However, to the best of our knowledge, no other study has
attempted to characterize the three indicators presented in this paper.
This paper analyzes traffic emissions, urban air quality, and public percep-
tion of respiratory quality measured in a natural empirical manner, in situ,
during the onset of the COVID-19 pandemic. In response, the WHO, U.S.
Center for Disease Control (CDC), and governing bodies issued directives
to eliminate non-essential travel. In the US, government restrictions and ac-
tions varied between states, however, most state and local governments
closed restaurants, schools, retail stores, and offices in an effort to promote
social distancing. The COVID-19 pandemic lockdowns had profound im-
pacts on travel patterns which were assumed to be reflected in urban air
quality and posited to be perceptible to urban populations. This paper
uses urban Florida as a case study to demonstrate the relationship between
three unique air pollutant indicators: ground atmospheric pollutant concen-
trations, roadway traffic counts, and the perception of air quality extracted
from Twitter comparing historical data with the months spanning the lock-
down (January-September) of 2020. Florida was chosen due to its popula-
tion and economic growth in comparison to other states in the US in
addition to its diversity in atmospheric pollutant sources and meteorologi-
cal patterns.

Vehicular emissions are linked to the subsequent elevated concentra-
tions of four pernicious atmospheric pollutants referred to by the US EPA
as criteria pollutants regulated through the National Ambient Air Quality
Standards (NAAQS). Particulate matter, CO, NO,, and ozone are among
these regulated pollutants. As such, these pollutants are closely monitored
in 4000 sites across the U.S. (EPA, 2022) under the umbrella of the U.S. En-
vironmental Agency (U.S. EPA), and in 41 sites across Florida (FLDEP,
2022) operated by the Florida Department of Environmental Protection
(FLDEP). The Air Quality Index (AQI) is a normalized metric calculated
based on ground level air pollutant concentration measurements (U.S.
EPA, 2018). Critically, a change in these pollutants was reported in cities
worldwide concurrently with the COVID-19 lockdowns. This included a
constant decrease in NO, concentrations in China, Italy, Germany, India,
and the U.S. (Xing et al., 2020; Collivignarelli et al., 2020; Selvam et al.,
2020; Zangari et al., 2020; Bauwens et al., 2020; Goldberg et al., 2020;
Naeger and Murphy, 2020; Tanzer-Gruener et al., 2020) and was attributed
to the reduction in traffic loads during the extended lockdown periods. Sur-
prisingly, this trend was not observed for ozone and PM, 5 levels. For
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instance, ozone concentrations increased in VOC-limited environments
(Xing et al., 2020; Salma et al., 2020), but decreased in NO,-limited envi-
ronments (El-Sayed et al., 2021). Erratically, PM, 5 levels increased in
some locations such as in north China (Xing et al., 2020), and decreased
in cities such as New York (Zangari et al., 2020) and Wuhan (Sulaymon
et al., 2021). By integrating evidence from traffic patterns, it provides
some of the answers to these conflicting reports.

The COVID-19 pandemic with its associated social distancing require-
ments and economic closures resulted in a nearly universal change in traffic
patterns (Benita, 2021). Sudden and drastic decreases in passenger vehicle
travel as well as a general shift away from share modes were documented
across the globe (Abdullah et al., 2021; Bartuska and Masek, 2021; Lee
et al., 2020; Konig and Drefler, 2021; Muley et al., 2021; Politis et al.,
2021; Simunek et al., 2021; Zhang et al., 2021). Most of the reviewed stud-
ies relied upon survey data or vehicle/passenger count information. In gen-
eral, the international literature suggests traffic decreases ranged from 33%
to over 50%, depending on the timing, location, and data collection
method. In the U.S., statewide analysis suggests that traffic decreases of
over 50% were common by the end of March and into April (Doucette,
2021; Liu and Stern, 2021; Parr et al., 2020). A nationwide survey in the
U.S. found that traffic decreased by 40% (Bradley et al., 2021), while an
analysis of continuous count station data from ten states across the U.S. re-
ported traffic decreases ranging from 55 to 69% in late March and early
April (Parr et al., 2021). These traffic data were only partially acknowl-
edged in changing social media discourse about the relationship between
air quality and traffic patterns, demonstrating the scope of human percep-
tion to accurately identify the changing environmental pollutant causes.

While popularizing the connection between reduced air pollution and
work from home has been an environmental goal since the 1970s (Van
Lier et al., 2012; Irwin, 2004; Ursery, 2003), the COVID-19 stay-at-home or-
ders presented a watershed moment for people to physically experience it
first-hand (Belzunegui-Eraso and Erro-Garcés, 2020) while synchronously
documenting and sharing their perceptions. Generally, those outside of
the social sciences studying air quality and COVID-19 view social media
as a tool for research dissemination or influencing safety precautions
(Barcelo, 2020; Chan et al., 2020; Agarwal et al., 2021). But worldwide
lockdowns gave the exceptional ability for the public to recognize im-
proved air quality using their own body as an instrument. Mainstream
media stories from around the locked-down world celebrated the “silver
lining” of a “healing” earth that was only in part corroborated by science
(Carrington, 2020; Biswas, 2020; Lal et al., 2020). Personal accounts on so-
cial media documented worldwide changes to embodied sensations of
changing air quality. These accounts were visceral, often relying on basic
senses like sight and smell, and captured the transfixed population's imagi-
nation with uncanny accounts of air improvement so realistic they felt like
an “enchantment” or “dreamlike” state (Kesting, 2021; Ramasamy et al.,
2020). The centrality of social media to affecting these environmental per-
ceptions was only enhanced as mobility and other in-person social outlets
were drastically reduced; personal posts remained a critical discourse me-
dium.

Fig. 1 provides a broad overview of this paper's findings. Comparing
similar weeks between 2020 and baseline conditions (i.e., 2019 data for
traffic and air quality tweets, and 2015-2019 averages for air quality),
the figure shows the percent change in AQI, passenger car vehicle counts
(Federal Highway Administration Vehicle Classification 2), and in the num-
ber of tweets referencing air quality. This paper investigates the relation-
ship between the traffic and air quality tweets to several other common
pollutants associated with air quality. The paper then postulates several
possible reasons for the disparity between the explanatory variables, before
concluding with a discussion of the broader impacts of this work. Through
the case study of urban areas of Florida as integrated system, we demon-
strate the methodological and analytical challenges of integrating data
across fields beyond issues of expanding the breadth and depth of existing
datasets. During the pandemic, while Loia and Adinolfi (2021) demonstrate
that people's sentiments linking telework and environmental awareness
were not significantly changed, our study demonstrates a more direct
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Fig. 1. A weekly percent change in 2020 from baseline levels among the constitution air quality indicators from 1st January-30th August.

relationship is evident when examining air quality discourse and traffic pat-
terns. Our study is one of growing interdisciplinary studies that are just be-
ginning to consider the predictive capacities of social media and air
pollution (Zhai and Cheng, 2020), its use as both lever and indicator of pub-
lic support for air quality legislation and clean-air transitions (Liang et al.,
2021), and its ability to overcome limitations of surface monitoring stations
(Shan et al., 2021).

2. Methodology
2.1. Ground based air quality measurements

Hourly pollutant data was collected in five urban cities in the state of
Florida namely Jacksonville, Tallahassee, Orlando, Tampa, and Miami.
The sites represent diverse locations in terms of their atmospheric sources
as well as their meteorological conditions. Hourly PM, s, carbon monoxide
(CO), ozone (03), and nitrogen dioxide (NO,) measurements from these
stations were acquired from the Florida Department of Environmental Pro-
tection (https://ags.epa.gov/api) starting from January 1st till the end of
August for six years (2015-2020). Precipitation data were acquired from
the Florida Automated weather network (FAWN) operated by University
of Florida, Institute of Food and Agricultural Sciences (https://fawn.ifas.
ufl.edu/). A linear mixed-effects (LME) model using MATLAB (MathWorks,
Inc., Natick, MA, Version R2018A) was used to test the statistical signifi-
cance of the changes in the daily average concentrations of atmospheric
pollutants in 2020 compared to their corresponding baseline averages
(2015-2019).

2.2. Traffic monitoring

The traffic monitoring sites report continuous hourly traffic counts
(FHWA, 2014). The FHWA identifies 13 vehicle classifications or “classes”.
This study investigates the following four most pervasive vehicle classes in
Florida (comprising over 95% of all observations):

« Class 2 - Passenger Cars

+ Class 5 - Two Axle, Six Tire, Single Unit
+ Class 8 - Three Axle, Single Unit

+ Class 9 - Five Axle Tractor Semitrailer

Traffic data is provided by the Florida Department of Transportation
(FDOT). The dataset includes hourly traffic counts, by vehicle classification
for the period of January 1st - August 31st for both 2019 and 2020. The

dataset consists of 54 continuous count stations located in the cities of
Gainesville, Jacksonville, Miami, Orlando, and Tampa. Vehicle classifica-
tion data was not available at any of the four continuous count stations lo-
cated within the urban region of Tallahassee during the period of 2/29/
2020 and July 30, 2020. Due to the lack of sufficient data, Tallahassee
was excluded from the traffic analysis.

2.3. Public perception

Social media discourse data was collected via Twitter's version 1.1
Tweet search Application Programming Interface (API). The API was que-
ried to collect Tweets containing the keywords, phrases, or hashtags
“asthma”, “air quality”, “air pollution”, and/or “clean air.” It was limited
to original Tweets in English that were sent between January 1st, 2015
and August 31st, 2020 and were geolocated in Florida. The geolocation
criteria included location information attached to an individual Tweet or
to the sending user's profile. A total of 5286 Tweets were collected based
on these criteria. A qualitative content analysis was conducted and used in-
ductive methods from grounded theory, phasing open coding, and axial
coding to gain a general sense of the most relevant themes and subject
terms in existing content patterns. The resulting codebook identified
Tweets with specific mention of key subject terms: traffic, gridlock, rush
hour, highway, freeway, road, street, car(s), truck(s), driver(s), delivery,
rideshare (including names of popular companies), gas(oline), or parking.
The Tweets identified by the codebook were randomized for date and all in-
formation beyond the Tweet was hidden for content analysis.

3. Results and discussion
3.1. Air pollutant indicator overview

To gain insight into the air quality during the lockdowns associated with
the COVID-19 pandemic, the average hourly concentrations of each pollut-
ant were calculated as the average value of all six cities under investigation.
Specific pollutants were selected among other criteria pollutants because of
their direct link to traffic (vehicular emissions such as NO, and CO), and to
human perception (visibility and respiratory impairments such as NO,,
PM, 5, and O3). Hourly pollutant concentrations from January 1st, 2020—
August 31st, 2020 were compared to their corresponding baseline defined
as the five-year (2015-2019) average observations during the same time
period. Concentrations of selected atmospheric pollutants in Florida are
shown in Fig. S1. All analyses conducted throughout this study are based
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on dry periods (corresponding to more than 90% of the hourly data) with
no rainfall to eliminate the impact of meteorological conditions on the re-
sults we report herein. We test the statistical significance of historical
changes in concentrations using an LME model and the results of this test
are shown in detail in Table S1.

Fig. 2 shows percent changes in monthly median concentrations of at-
mospheric pollutants in 2020 compared to their corresponding baseline av-
erages. It could be deduced from Fig. 2 that there has not been a statistically
significant change in median NO, concentrations in 2020 compared to the
median value for the previous five years before the start of the lockdown pe-
riod. However, a statistically significant decrease of 19.6% = 5.6% (*10)
was observed in the second half of March which lasted into April (17.4 +
5%) (Fig. S1a). After the lockdown period, lower decreases in NO, concen-
trations were observed from May till the end of August, yet these decreases
were still statistically significant according to the LME model. O3 concentra-
tions exhibited similar trends to those of NO,. Concentrations of O3 de-
creased in Florida in 2020 during the period of the lockdown compared
to baseline averages by about 13.3 + 2.7% across the state in the second
half of March and in April (Figs. 2 and 1b). Statistically significant reduc-
tions in O3 concentrations lasted after the lockdown period as shown in
Fig. 2. These similar behavior patterns of NO, and Os infer that ozone for-
mation in Florida is sensitive to NO, concentrations in accord to results re-
ported in El-Sayed et al. (2021). CO levels did not exhibit the same trends as
neither NO, nor O3 concentrations, except for a statistically significant de-
crease in the second half of March of approximately 14.2 *+ 6%, (Fig. 2 and
S1d), but this change did not continue beyond the month of March. The pat-
tern in CO concentrations after the end of the lockdown did not show any
consistent trend. This is possibly owing to sources other than vehicular
emissions contributing to CO emissions in Florida. El-Sayed et al. (2021) re-
ported increases in power generation during the lockdown which might ex-
plain the enhancement in CO levels in April. As for PM, 5 concentrations,
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these did not show any statistically significant change prior to mid-
March. Conversely, in the second half of March, a slight decrease in the me-
dian of PM, 5 levels of 6.0 = 4.5% was observed in Florida in 2020 com-
pared to baseline averages during the same period. On the other hand, a
pronounced increase of ~15 + 4.3% was observed in concentrations of
PMS, 5 in April. A statistically significant decrease of —6.0 + 7.9% was ob-
served in fine-particle concentrations until the end of July.

Improvements in air quality during the lockdowns were reported in sev-
eral cities around the globe primarily due to the reduction in traffic (Chen
et al., 2021; Jephcote et al., 2021; Chen et al., 2020). However, not all pol-
lutants demonstrated a consistent decreasing trend during the COVID-19
lockdown. While eductions in NO, (e.g., Karaer et al., 2020, El-Sayed
et al., 2021), CO (e.g., Chen et al., 2020), and PM, s concentrations
(e.g., Rodriguez-Urrego and Rodriguez-Urrego, 2020) were observed in
major cities around the globe, however, O3 concentrations did not manifest
a consistent trend due to its complex dependence on NO,-VOC chemistry
(e.g., Parker et al., 2020; Collivignarelli et al., 2020).

3.2. Traffic indicator overview

The percent change in traffic in 2020 compared to 2019 is presented in
Fig. 3 for the four vehicle classifications under investigation. In general,
the level and duration of decreases in traffic appear heavily dependent
upon vehicle class. Significant traffic decreases did not occur until after the
governor's emergency declaration on March 9, 2020 (Parr et al., 2020).
The month of March is, therefore, subdivided in the figure as Mar I (March
1st-March 15th) and Mar II (March 16th - March 31st). Fig. 3 shows that traf-
fic between January 2020 and the first half of March was nominally different
from traffic during the same period in 2019, regardless of vehicle class. De-
creases in traffic were emphasized for Class 2 vehicles, i.e., passenger cars.
For example, the second half of March 2020 experienced a nearly 43%
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Fig. 2. Monthly percent change in median pollutant concentrations from January 1st-August 30th. March is divided into Mar I and Mar II corresponding to 1st - 15th March,
and 16th-31st March, respectively. Gray shaded area represents the period of complete lockdown (15th March-30th April). NS refers to months where no statistical
significance was reported for the median concentrations of the pollutant against historic averages.
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decrease in Class 2 vehicles compared to 2019, whereas reductions were
12% and 6%, for Classes 5 and 8 vehicles, respectively. Furthermore, Class
9 vehicles nominally increased to 8% during this same period. The largest de-
crease of vehicles was observed in April, regardless of vehicle class. Class 2
vehicles were reduced by 54%, Classes 5 and 8 vehicles deacresed by approx-
imately 24%, and Class 9 vehicles decreased by more than 8%. In the begin-
ning of May 2020, traffic began to return to its normal conditions similar to
those conditions prior to the lockdown. While the number of Classes 2 and 5
vehicles were lower than their values in 2019 by 37 and 14%, respectively,
Classes 8 and 9 vehicles exhibited minor reductions of 7% and 5%, respec-
tively. By June, Class 2 vehicle traffic appeared to stabilize around a 20% re-
duction, while larger vehicle classes had nearly returned to pre-pandemic
levels. The months of July and August were a continuation of the trend
which began in June. The number of Class 2 vehicles decreased by approxi-
mately 20% in June whereas the larger classes were operating at or above
their 2019 benchmark.

To test for significance, traffic within each vehicle class was compared
using a paired, two-sided t-test. The analysis was carried out by investigat-
ing daily traffic totals for similar days between years. In total, 976 t-test
were conducted, one for each day between January 1st and August 31st,
for each of the four vehicle classes (244 x 4 = 976). Prior to conducting
the t-test, traffic was evaluated for normality using the Shapiro-Wilk test
(Table S2 and Fig. S3). The number of observations for each of these t-
tests varied daily based on the number of paired count station observations
available on any given day. The number of observations ranged from a min-
imum of 48 to a maximum of 54. The median number of observations was
52 stations, with a mean of 51.76 + 1.12 stations. Fig. S2 shows the paired,
two tailed t-test results for traffic between 2019 and 2020, classified by ve-
hicle class. The findings suggest that prior to mid-March of 2020, traffic was
only nominally different between years, with few instances of significant
difference. Since mid-March and corresponding to the Governor's emer-
gency declaration, differences in traffic began to emerge. In general, the im-
pact of the pandemic on traffic varied according to vehicle size. The
findings suggest the impact of the pandemic on traffic was less on larger ve-
hicles. Starting as early as March 12th, Class 2 vehicles were significantly
lower than prior year's levels. Differences in Class 2 vehicle traffic between
years persisted, with few exceptions, until the end of the analysis period on
August 31st, 2020. Class 5 vehicles deviated from prior year levels starting
from mid-March and continued until the end of May. The months of June
and July exhibited some instances where Class 5 vehicles returned to pre-
pandemic levels, while August showed minor differences between the years.
Significant changes in Class 8 vehicles were not as pronounced until the last
week of March and returned to normal conditions much earlier, beginning,
to varying degrees, in May and June. By July, Class 8 vehicles had approxi-
mately returned to 2019 levels, even exceeding them in some instances.
Class 9 vehicles do not appear to have been impacted by the pandemic until
April and were restored to pre-pandemic levels by May, with few exceptions.

Each vehicle class plays a unique role in Florida's economy and produces
its own signature of pollutant emissions. Class 2 vehicles, passenger vehicles
used predominantly by commuters and account for the majority of vehicles
on the roadway, decreased during most of the year. On the other hand,
heavy vehicles could result in more severe air pollution (Yang et al., 2021)
and these increased after May of 2020. With businesses closed and many
commuters working from home during the lockdown, many of these drivers
remained at home. Larger vehicles, by contrast, are commercially operated.
The need for commercial shipping likely increased as the pandemic persisted,
as people began to adapt to social distancing and business closures. This is ev-
ident in the fact that June, July, and August of 2020 exhibited increases in
the volume of Classes 8 and 9 vehicles above their 2019 levels. It is also im-
portant to note that while overall traffic significantly decreased during most
of the year in 2020, large vehicle classes did not follow this trend.

3.3. Social indicator overview

Fig. 4 illustrates a 7-day moving average number of original Tweets
containing the keywords, phrases, or hashtags “asthma”, “air quality”,
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“air pollution”, and/or “cleanair”. Fig. 4 shows that there is a marked differ-
ence between the largely uniform levels of 2019 (represented by the blue
line of 7-day moving average and the black line of best fit) and 2020. The
7-day moving average for 2020 departs significantly from the 2019 data
with two major departures demonstrating steep immediate increases and
slow returns, directly following (1) 3/15/2020 and (2) 6/19/2020 as
shown by the green dotted lines on Fig. 4. These two immediate increases
correspond to the beginning date of the lockdown in Florida and to Phase
2 of Florida's reopening plan which began on June 5, 2020, respectively.
It is to be noted that Florida's Phase 1 re-opening was initiated on May 4,
2020 and subsequently updated on May 15, 2020. This order allowed for
the reopening of nearly 80% of the state parks and permitted hospitals to
conduct elective surgeries. Retail establishments, bars, and restaurants
were also permitted to reopen at 25% capacity (Fla. Exec. Order, 2020a).
Phase 2 of Florida's reopening plan began on June 5, 2020 for most of the
state and allowed for 50% capacity at bars and restaurants as well as the re-
turn to full capacity at gyms, retail establishments and most other industries
(Fla. Exec. Order, 2020b). In addition to a purely quantitative rise in the
number of Tweets, the ways in which Tweets characterized air quality
showed a marked change using qualitative content analysis.

In 2019, the content of the Air Quality Tweets demonstrated some con-
cern over governmental regulation of vehicle emissions. Many of these
Tweets, especially political arguments, cited scientific research to justify
claims, though several more Tweets described personal somatic experi-
ences of rush hour gridlock as “deadly air pollution.” Politically, the Tweets
focused on national and international politics. Tweets explicitly categorized
air pollution as a “national security risk.” China and other locations were
cited as “culprits” for relaxed vehicle emissions that fail U.S. standards.
Solutions-oriented discourse discussed the merits of various incentive poli-
cies to move toward better single-user-vehicle standards. These Tweets ad-
vocated improving air quality through political stances explicitly tied to
socialist environmental justice by strengthening public transportation and
reducing pollution from economically advantaged single-user-vehicle
owners. Criticisms about air quality and rideshare programs were largely
limited to exposure to second-hand and third-hand cigarette smoke from
drivers. Multi-user rideshare programs were largely promoted as solutions
to traffic congestion and air pollution.

In the months of 2020 before the lockdown, the content of the Air
Quality Tweets was largely national and hyper-local in scale focusing on
cultural consumption standards and political responsibility. Earlier in the
year, local concerns were around urban air pollution during The Miami
Grand Prix, pointing the finger at personal vehicle extremes. As COVID-19
pandemic grew into a worldwide problem affecting local Florida communities
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there was a shift. One concern was the political failure to protect Americans,
specifically family members with higher risks (co-morbidities and/or exposure
as essential workers), through longer-term accountability for livable air qual-
ity and respiratory healthcare. During the lockdown, the content of the Air
Quality Tweets contained more references and science claims than those in
2019 and in 2020 before (and later after) the lockdown. Comparative urban
air quality analyses were circulated to publicize the lockdown's effect on im-
proved air quality and pollution dissipation. Tweets cited a sense of urban res-
idents' “disbelief” at the visible, auditory, and palpable conditions with fewer
air pollution sources. Some Tweets used these as “proof” that high volumes of
single-user-vehicles among growing urban populations are “destroying our
planet.” Environmental “healing,” with particular reference to fewer cars
and better air quality, was cited as a “pro” offsetting the myriad “cons” of
the lockdown. Some promoted out-of-the-box solutions for repurposing vehi-
cle lanes into two-way bike lanes in major cities to address COVID-19 risks
on public transit and air pollution. People reiterated that re-imagining urban
life and infrastructures was a “beneficial side to the virus,” some hoping that
the air quality improvements evident during the lockdown would lower per-
ceived dependency on gas cars.

In the months after the lockdown, the content of the Air Quality Tweets
was critical of governmental spending on personal vehicle infrastructural
improvements and reduplication. This demonstrates a continued valuation
for public transportation systems, despite the transportation and public
health challenges of the COVID-19 pandemic. Other Tweets focused on
adapting single-user-vehicles for a better air quality. There were some argu-
ments for electric personal vehicles that drew on people's visceral, embod-
ied experiences of seeing the sky more clearly, implying this was not a
hypothetical future, but an achievable reality after collectively witnessing
the palpable changes. Importantly, the health-based arguments to tradi-
tional vehicle air pollution were not linked to the COVID-19 pandemic,
rather to less politically charged health issues. Other suggested adaptations
included that rideshare companies should fund zero-emissions vehicle tech-
nologies for drivers, reminding people of their personal experience with
better air quality during quarantine. Some Tweets prescribed economic
and policy interventions. During Earth Day, the conversation was politi-
cized and used essentialist language at higher rates. In a list of the 6 ways
Mother Earth was “healing” during quarantine, traffic-related aspects
made up over half of the list (such as air pollution slowed, roads emptier,
emissions decreased, and city soundscapes changed).

As people shared their first-hand experiences with the COVID-19 stay-at-
home orders, Floridians in metropolitan areas demonstrated quantitative
changes in their Tweets about air quality and asthma. Each shift, both into
and out of the lockdown, was preceded by a spike in discourse not comparable
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with historic discourse records. But beyond simply quantitatively increasing
the number of mentions on social media, it is important to note that the qual-
itative record showed that people were talking about air quality, vehicles, and
traffic in different ways. Personal accounts sought to provide somatic evidence
(sensory data on smell, sight) to reflect the global mainstream media stories
about environmental “healing” as fewer cars were on the road. The broader
shifts in reduced personal vehicle traffic were described in Tweets as the rea-
sons for this, but none explicitly analyzed the changing patterns of large vehi-
cle mobility patterns.

3.4. Air quality indicators correlation analysis

In this section, we test the correlation between the three air quality in-
dicators, atmospheric pollutant concentrations, traffic count including ve-
hicle classifications, and air quality tweets to identify inter-relationships
between the indicators. The correlation was tested using Pearson's correla-
tion coefficient (r) between parameters during three distinct periods,
namely (1) Pre-lockdown: January 1st - March 14th, (2) Lockdown:
March 15th - April 30th, and (3) Post-lockdown: May 1st - August 30th.
Fig. 5 shows a detailed correlation matrix for these indicators during the
three periods. For comparison purposes, a weak correlation was defined
as this corresponding to an r of less than +0.3 and shown in Fig. 5 in
blue color. A moderate correlation was defined as £0.3 <r < * 0.6 and
shown in Fig. 5 in red color. As for a strong correlation, this was defined
as one with a value of r > + 0.6 and depicted in Fig. 5 in green color. Details
of monthly correlations for NO,, PM, 5, O3, and CO concentrations and
monthly vehicle count associated with each vehicle class are presented in
Tables S3 through S6, respectively. Correlations between monthly concen-
trations of atmospheric pollutants and air quality tweets are reported in
Table S7.

It could be deduced from Fig. 5a that before the lockdown, there was no
distinct correlation between air quality, traffic, and tweets except for mod-
erate to strong correlations between O3 and both traffic and tweets. How-
ever, this behavior has changed during the lockdown (Fig. 5b), where
moderate to strong correlations were manifested between all three indica-
tors. For example, Os - traffic correlations diminished during the lockdown
and instead NO;, - traffic correlations were emphasized. This is especially
true for correlations between NO, levels and heavy vehicles (Yang et al.,
2021). The positive correlations between NO,, and traffic is expected in
the U.S. because vehicles emit NO directly into the atmosphere which is ox-
idized in the atmosphere to form NO,. As for PM, 5 concentrations, these
exhibited moderate negative correlations with all vehicle classes (r > *
0.3). This might indicate that the primary particle pollution was related
to traffic from all classes, especially for Class 2 vehicles. It might also
infer that secondary processes were responsible for the formation of
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PM, 5 during this period. The same trend was observed for AQI and traffic
correlations in accord with previous observations (Chen et al., 2021). The
negative relationship between the general air quality indicator (i.e., AQI),
particle pollution (i.e., PM, 5 concentrations), and tweets might suggest
one of two hypotheses, either that people are no longer communicating
about air quality as it deteriorates or that people are not aware of the differ-
ence between a good versus a bad air quality day. However, more rigorous
sentiment analyses are needed to test these hypotheses. Collectively, the
positive correlations between traffic and tweets and the subsequent relation
between NO, and tweets might infer that people were relating the number
of vehicles to air quality during the lockdown. Although correlations
displayed a decrease after the lockdown, they were still stronger compared
to the period before the lockdown (Fig. 5c¢). Traffic was positively corre-
lated with CO rather than NO, and negatively correlated with Os in this pe-
riod. Tweets were positively correlated with both AQI and PM, s levels.
During the post-lockdown, the decreases in traffic-tweet correlations
might indicate that people no longer perceived air quality depending on
the number of vehicles on the road.

Overall, during and after the lockdown, as vehicle class use fluctuated,
so did atmospheric pollutants related to traffic, providing a range of pollut-
ant intensities and varieties detectable by sampling instruments. Although
the pollutant signatures of each vehicle class were detectable to air quality
sensors, they were not demonstrated as observable to people. Instead,
Tweets about air quality and asthma-which quantitatively were compara-
tively stable in 2019-did not spike as air quality monitors registered
major disruptions expected from vehicle emissions. Rather, Tweets spiked
as passenger vehicle traffic dropped. This demonstrates several critical
points. First, this shows that some pollutants are directly observable by peo-
ple (e.g., PM, 5) and some are not (e.g., NO,). Some pollutants are linked to
the number and type of vehicles on the roadway, which varies by time of
day, day of week, and season. On the other hand, other pollutants are not
associated with vehicular emissions but rather emitted from other sources.
It also indicates that Tweets about air quality and asthma symptoms may be
a reaction to the number of passenger cars observed on the road, and not a
reliable indicator about air quality as a somatic or embodied reaction to ex-
posure to pollutants. This is corroborated by integrating the qualitative con-
tent analysis of the Tweets from different emissions contexts, which shows
changing philosophies of air pollution causes and rationales for their miti-
gation.

4. Conclusions
Air quality is a complicated process that involves several pollutants,

complex chemistry, and meteorological influences which significantly af-
fects community health and living standards. This novel research brings
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together interdisciplinary air quality, traffic, and social media data during a
time of monumental change to measure the relationship between pollution
emissions, concentrations, and their impact on the perceived quality of the
air within Florida's cities. Not only do the results herein yield interesting
findings and useful implications to each specific indicator, but more inter-
estingly provide promising results in integrating these indicators as part
of a holistic system. These results do not prove any causal relationships,
though the strong correlations point to the promise of integrating indica-
tors. While people's perception might have been correlated with specific at-
mospheric pollutants, especially those from vehicular exhaust, people fail
to correlate with a more general indicator (i.e., AQI) and with many other
criteria pollutants due to the convoluted processes in the atmosphere. Our
results show that the correlation between traffic, pollutant concentration,
and air quality-related tweets became significantly stronger after the start
of the lockdown period and continued after the end of the lockdown in Flor-
ida. As traffic decreased during the lockdowns, improvements in specific
pollutants (i.e., NO, and CO) were observed as well as an uptick in tweets
related to air quality and breathing. This suggests a residual increase in pub-
lic awareness persisting beyond the initial onset of the pandemic and may
serve as a building block for engaging the public on matters related to air
quality and emission standards. In terms of public discourse, the strong cor-
relation between air quality tweets and reductions in traffic suggest
Floridians were likely associating lower traffic volumes with better air qual-
ity, regardless of actual pollutant concentrations. Overall, it could be de-
duced from this study that while social media discourse did not prove to
be a predictor of actual air quality, it did show promise as an indicator for
volume of personal vehicle traffic, particularly in areas without adequate
surface monitoring stations. Further, this work demonstrated an increase
in positive environmental sentiment during changes to stay-at-home or-
ders. While people's perceptions would likely improve with fewer vehicles,
it ought not be used as a reliable indicator for human health-related studies.
In conclusion, a significant find of this research is demonstrating the dispar-
ity between air quality metrics and discourse about human wellbeing and
the need for raising awareness to combat the detrimental impacts of atmo-
spheric pollution and climate change.
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