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• Jaccard Similarity Coefficient aka the Intersection Over Union

statistic yielded a 96.5516% accuracy rate.

• Using Categorical Cross Entropy, the values for training and

validation demonstrates consistent rates for both loss and accuracy.

• Final output showcases small amounts of error in segmentation as

there is small evidence of mislabeling primarily in regards to the

Germanium (Ge) subgroup.

• CNNs working in combination with other algorithms show promise

towards segmentation of images with little training data available.

• To promote training efficiency, therein lies the possibility of

generating artificial data as an addition to the support set provided

using data augmentation techniques.

• The use of transfer learning and implementing a pre-trained model

such as ResNet or VGG19 for the purpose of training existing

networks with minimal data.

• Implementation of Generative Adversarial Network (GAN) which is

an unsupervised neural network in machine learning where two

separate networks compete for higher levels of accuracy in prediction

processes of image classification and segmentation.

• Identifying potential relationships between chip size and

known features could lead to development of cleaning algorithms

with increased accuracy.

In collaboration with Pacific Northwest National Laboratory,

Embry-Riddle students are working on material classification

of microstructural features obtained from scanning

transmission electron microscopy (STEM) is attempted using

various machine learning algorithms. STEM produces a

micrograph of the material, which is fed through a

segmentation and classification paradigm to identify the

microstructures present. The initial research by the PNNL uses

a few-shot method which allows the model to be operated

using limited data. Using data from a sample micrograph, a

new neural network is implemented with the objective of aptly

segmenting the micrograph and obtaining classifications for

the microstructures. This model investigates the use of existing

image segmentation techniques, particularly region-based

techniques. This approach is deemed appropriate since it is

expected that the microstructures are grouped together by

type. The success of this approach can provide a rapid and

reconfigurable tool for identifying these microstructures.

Material science is the study of how materials behave under

various stresses and strains, as well as how the microstructures

of these materials can affect their properties at the microscopic

scale. It is essential to analyze changes to material properties

at the atomic scale using the method of STEM to produce

micrographs. From these micrographs, there are distinct

variations of the pixels that represent a certain material from

which needs to be identified and grouped for further

classification. The goal of this project is to collaborate and

design mathematical algorithms through deep learning to

analyze the material subgroups from image classification.

Specifically for this investigation, deep neural networks are

trained to assign image data to different categories or classes

as part of the task for material labeling and semantic

segmentation.

Semantic segmentation of the STEM micrograph is performed using a custom-built U-Net: a

convolution neural network that consists of a contraction path and an expansion path.

The network model consists of 5 convolution layers in the contraction path and 4 convolutional

layers in the expansion layers. Additionally, there exists 4 skip layers that allow for a future layer

to have information from a preceding layer. This reduces the error induced by information

abstraction. A final convolution layer is applied with a 1x1 kernel size and n filters, where n is

the number of classes. In this final layer, a softmax activation function is used such that each

material is classified as a unique class.

The input image is a grayscale micrograph, which is processed through

the deep learning model. Training at only 100 epochs and using a

Categorical Cross Entropy loss function, the designed U-Net model is

able to classify the materials as shown below.

Figure 1: Sample STEM Micrograph of material 

containing STO, GE, and PT/C

Figure 2: Proposed custom U-Net Architecture Figure 6: Results of Semantic Segmentation using U-Net model

A separate methodology involving the creation of custom alternating Convolutional

Neural Networks (CNNs) and grid cleaning algorithms is currently in development.

Training data consists exclusively of five labeled subsections, or "chips", from each of

the three classes intended for segmentation.

Figure 3: Transformed and normalized training data

The first CNN consists of two alternating layers of convolutional and max pooling

layers, followed by three linear layers. The resulting model is applied individually to

each non-training chip from the image, with one of three classes being assigned. The

resulting image is tuned to segment one of the classes, stitched together, and

then "cleaned" via cellular automaton algorithm biased towards extinction of small

groupings of free-floating data.. This process is intended to be carried out a second time

to segment the remaining two classes.

Figure 4: Pre-optimized (left) and Post-optimized (right) CNN output.

The secondary method in development results in the segmentation shown

in Figure 6. This method has a high success rate segmenting one of the

classes using a single iteration of a CNN and grid cleaning algorithm.

Figure 7: Post-1st Iteration Cleaning Algorithm (left) and Truth Data (Right)

A further iteration of a modified CNN and cleaning algorithm

is intended to further segment the Germanium classified

region (blue) in the left half of Figure 6 with the Strontium

Titanium Oxide (green) region seen represented in the right

half of Figure 6, which is the known truthful data.

Figure 5. Initial Strategy & Process—The figure above displays the approach of automating the time consuming process by

using Voronoi diagrams for feature segmentations and Zero-Shot Learning to cluster/classify features together to reduce the

time needed for hand labeling of features on STEM micrographs

With the help of machine learning such as N-shot learning and Transferred Learning, it

may provide new methods of automatically segmenting and analyzing pixels to

determine what materials exist within a sample. Creating this new algorithm will help

analyze, segment and cluster STEM micrographs’ pixels at a more efficient rate. We

want to combine Voronoi Diagrams, Zero-Shot Learning (ZSL) with Transferred

learning to allow the model to optimize performance time as it continues to cluster and

classify for every unique STEM micrograph.

Figure 8. Zero-Shot Learning & Transferred Learning — The algorithm starts with the STEM

micrograph, then overlays a Voronoi Diagram to begin segmenting similar features together. After

the image is segmented, the query set is pipelined into the ZSL model and previous classifications

using Transferred Learning will also the ZSL to determine the what materials the segmented

image is comprised of.
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