

SDTrimSP Simulations of Solar Wind Sputtering on Mercury: A Sensitivity Study to Establish a Best-Practice G. O. Bacon^{*}, L. S. Morrissey, M. J. Schible, O. J. Tucker, R. M. Killen, P. Szabo, D. W. Savin *GdoBacon@gmail.com

Background: Solar Wind on the Surface of Mercury

- Sun emits stream of charged particles
- Solar wind (SW) comprised of ~95% H+
- SW sputtering is a potentially important source of Mercury's exosphere
- Most common models use binary collision approximation (SDTrimSP)
- SDTrimSP has many user-specific inputs that are not consistent across previous SW studies^{1,2,3}
- Reliable sputtering methods are needed for accurate models for Mercury's surface

Methodology:

Purpose: We have conducted a detailed sensitivity study into SDTrimSP parameters to produce a best-practice for simulating SW impacts onto Mercury's surface.

- Within SDTrimSP we will focus on several important user-specified parameters:
 - Oxygen surface binding energy
 - ISBV (method of dealing with compound SBE)
 - Static vs. Dynamic Simulations
 - 1 keV/amu protons vs. capturing impact energy distribution
 - 90-degree (normal) impacts vs. cosine angular distribution of impacts
- Simulated H+ impacts onto anorthite
- Focused on constraining oxygen SBE due to high overall abundance
- Quantify the effect of each parameter on overall yield, elemental yield, and surface composition

Results

L.

Elemental Yield (10-3 atoms/ion) (ISBV = 1)							
	Static Oxygen SBE						
Anorthite Comp.	1	2.6	6.5	8.3			
AI	1.2	1.3	1.2	1.2			
Ca	3.3	3.3	3.1	3.2			
Si	1.6	1.5	1.6	1.5			
0	52.0	17.1	5.0	3.7			
Overall	58.1	23.2	10.9	9.6			
O vield proportion	89.6%	73.9%	46.0%	38.5%			

AND A REAL PROPERTY AND A

- Previous studies recommend O SBE between 1-6.5 eV based on experimental fits to other silicates
- Overall and O yields strongly dependent on SBE
- Properly constraining SBE key to realistic results

Results: Results: 2. Quantifying Anorthite SBE via Molecular Dynamics (MD) 4. Effect of SBE on Surface Composition 1.00 SBE typically derived from fitting SDTrimSP yield to experiment 0.90 **sition** • MD simulations used to find SBE of O from anorthite surface **ê** 0.70 **O** 0.60 Iterative approach with a reactive potential used to find minimum **ප** 0.50 0.40 energy needed to remove a surface O atom **0** 0.20 • O SBE of 8.3 eV from anorthite – higher than fit for wollastonite (6.5eV)² Pel • MD quantified value significantly higher than SDTrimSP recommended value $(1 \text{ eV})^1$ 1.00E+00 \bigcirc \bigcirc 9.00E-01 8.00E-01 **8** 7.00E-01 **0** 6.00E-01 **9** 5.00E-01 **4**.00E-01 **2** 3.00E-01 2.00E-01 ₄ **Ğ** 1.00E-01 Anorthite 0.00E+00 0.00 surface composition and SBE Fixed **Results: 3. Mineral Specific O Surface Binding Energies-Dynamic** parameters

Elemental Yield (10-3 atoms/ion) (ISBV = 1)							
	Dynamic						
	Oxygen SBE						
Anorthite Comp.	1	2.6	6.5	8.3			
AI	2.0	1.6	1.2	1.1			
Са	4.8	3.9	2.9	2.8			
Si	3.1	2.6	1.8	1.7			
0	17.1	11.8	5.1	3.9			
Overall	26.9	19.8	10.9	9.5			
O yield proportion	63.5%	59.6%	46.5%	41.1%			

- Dynamic simulations allow composition to change with fluence
- Previous results suggest static vs dynamic not important²
- At low O SBE large difference between static and dynamic results
- For dynamic simulations, all element yields depend on O SBE

- composition
- simulations
- - O SBE of 8.3eV
 - ISBV 1
 - Dynamic simulations

Dynan	nic Anorthit 1 keV, SBE 1	e Simulation: , ISBV 1		
				— Al — Ca — Si — O
0.00	100.00 Flue	150.00 nce	200.00	250.00
Dyn	amic Anorth 1 keV, SBE	nite Simulatio 8.3, ISBV 1	on:	
Dyn	amic Anorth 1 keV, SBE	nite Simulatio 8.3, ISBV 1	on:	——0
Dyn	amic Anorth 1 keV, SBE	nite Simulatio 8.3, ISBV 1	on:	—— O —— Al
Dyn	amic Anorth 1 keV, SBE	nite Simulatio 8.3, ISBV 1	n:	——————————————————————————————————————
Dyn	amic Anorth 1 keV, SBE	nite Simulatio 8.3, ISBV 1	on:	——O ——Al ——Si ——Ca

Dynamic simulation results visualize the direct correlation between

At low SBE there are large surface composition changes with fluence

• At higher SBEs limited change in percent surface composition

SBE parameter did not influence damage production

Conclusions and Best Practice Recommendations:

SDTrimSP simulations of SW sputtering are highly dependent on input

• Important to consider the overall yield, elemental yield, and surface

• We demonstrate the large importance of SBE and static vs. dynamic

• We have used MD to quantify the O SBE from anorthite – mineral specific • Based on these findings we recommend the following:

• Future work will consider other parameters, the formation of damage