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Introduction 

 Pilots are familiar with the Wind Triangle Equation, which, for an aircraft 

flying straight and level, is the vector equation �⃗� = 𝐴 + �⃗⃗⃗⃗�, where �⃗�, 𝐴, and �⃗⃗⃗⃗� 

are vectors in ℝ2 that are defined as follows: 

• �⃗� is the ground vector of the aircraft, representing the motion of the aircraft 

with respect to the ground. Its magnitude is called the “ground speed” of the 

aircraft and denoted by GS, while its compass direction is called the “ground 

track” of the aircraft and denoted by 𝜃. 

• 𝐴 is the air vector of the aircraft, representing the motion of the aircraft with 

respect to its surrounding air mass. Its magnitude is called the “true air speed” 

of the aircraft and denoted by TAS, while its compass direction is called the 

“true heading” of the aircraft and denoted by 𝜓. 

• �⃗⃗⃗⃗� is the wind vector, representing the motion of the aircraft’s surrounding air 

mass with respect to the ground. Its magnitude is called the “wind speed” and 

denoted by WS, while the compass direction of its negative, −�⃗⃗⃗⃗�, is called the 

“wind direction” and denoted by 𝜑. 

As such, the Wind Triangle Equation can also be written as the vector equation 

GS ∙ (sin(𝜃) , cos(𝜃)) = TAS ∙ (sin(𝜓) , cos(𝜓)) −WS ∙ (sin(𝜑) , cos(𝜑)). 
 The most fundamental problem of aerial navigation is the Wind Triangle 

Problem (WTP), which assumes one of the following three forms: 

WTP1. Given 𝐴 and �⃗⃗⃗⃗�, find �⃗�. 

WTP2. Given �⃗� and 𝐴, find �⃗⃗⃗⃗�. 

WTP3. Given �⃗⃗⃗⃗�, TAS, and 𝜃, find GS and 𝜓. 

Pilots must be well versed in solving WTP3 because it is crucial to flight planning, 

fuel calculation, and time-of-flight estimation. In flight training, student pilots are 

taught how to use an E6B flight computer ⎯ an analog device having the form of 

a circular slide rule ⎯ to solve WTP3 (Air Training Command, 1973). 

 It is known that if the value of WS is too large, then WTP3 may not have a 

solution. Although there is an abundance of literature devoted to an investigation 

of WTP3, it appears that a mathematically rigorous analysis of the problem is not 

readily available. For instance, in (Daidzic, 2015, pp. 57-93), the author derives a 

formula for solving WTP3 but does not discuss when a solution exists. Similarly, 

both the US Navy’s Pilot Trainee Guide and the FAA Handbook’s section on the 

WTP explain the use of the E6B to solve WTP3 but do not address the problem of 

the existence of solutions (FAA, 2016; US Navy, 2017). Our paper investigated 

this shortcoming by completely solving the existence problem for WTP3 through 

carefully stated mathematical results. 

 In order that our paper does not turn out to be a rehash of well-established 

results, we shall derive entirely novel mathematical conditions, called “go/no-go 

conditions”, that determine when a solution of WTP3 exists. These conditions can 

1

Huang and Cummings: The Wind Triangle Problem and True Airspeed in Supersonic Flight

Published by Scholarly Commons, 2021



be easily tested by a pilot armed with nothing more than a pocket calculator, and 

we shall explain how these conditions can even be tested graphically. 

 The calculation of TAS is a vital aspect of evaluating aircraft performance 

and limitations, especially in high-speed flight. High-performance aircraft usually 

carry an air data computer (ADC) that calculates and displays TAS, Mach number 

(𝑀), and calibrated airspeed (CAS) from three critical inputs (which are measured 

by external sensors): impact air pressure (𝑄c), static air pressure (𝑄s), and total air 

temperature (𝑇t) (Wiolland, 2005, pp. 46-49). Therefore, mathematically speaking, 

TAS, 𝑀, and CAS are functions of 𝑄c, 𝑄s, and 𝑇t in high-speed flight. 

 However, not every aircraft used in civil aviation possesses an ADC, nor 

does it have the practical means of directly measuring quantities such as 𝑄c. The 

following question thus arises: How can a pilot calculate TAS using instrument 

readings from only a basic flight instrument panel, even at high speeds? 

 Much has been written about the following mathematical problems: 

• Calculating TAS from CAS and pressure altitude ℎ at low speeds (where air 

compressibility effects can be ignored). 

• Calculating TAS from 𝑄c, 𝑄s, and 𝑇t at high speeds (where air compressibility 

effects are important). 

However, everyday aerospace-engineering discourse seemingly lacks any mention 

of a function, valid in all flight regimes, that calculates TAS from CAS, ℎ, and 𝑇t. 

Brown (2012) delves deeply into the various relationships between these variables 

and subsequently gives a formula for TAS in supersonic flight, but it still relies on 

𝑄c and 𝑄s (pp. 30-37). 

 In the second part of our paper, we shall construct such a function with the 

goal of providing a method of calculating TAS without directly using 𝑄c and 𝑄s. 

Furthermore, we shall provide a rigorous mathematical proof, complete with error 

estimates, that this method can be combined with fixed-point iteration to compute 

TAS numerically. Such a rigorous approach seems to be absent from the literature, 

and our presentation of it is a valuable contribution to the field of aeronautics. 

Notation and Terminology 

 Throughout this paper, the following notation for intervals shall be used: 

• For 𝑎, 𝑏 ∈ ℝ, let [𝑎, 𝑏[ ∶= {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 < 𝑏}. 
• For 𝑎, 𝑏 ∈ ℝ, let ]𝑎, 𝑏[ ∶= {𝑥 ∈ ℝ|𝑎 < 𝑥 < 𝑏}. 
For all 𝑎, 𝑏 ∈ ℝ satisfying 𝑎 < 𝑏, if 𝐼 ∶= [𝑎, 𝑏[, then define Mod𝐼: ℝ → 𝐼 by 

Mod𝐼(𝑥) ∶= The unique 𝑦 ∈ 𝐼 such that 
𝑥 − 𝑦

𝑏 − 𝑎
∈ ℤ, 

which translates every real number 𝑥 to a real number 𝑦 in 𝐼, necessarily unique, 

by integer multiples of the length of 𝐼. 
The Mathematical Wind Triangle Problem 

 The following definition provides a mathematical formulation of the third 

form of the WTP (previously referred to as “WTP3”). 
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Definition 1. A mathematical WTP3 is defined as an element (TAS,WS, 𝜃, 𝜑) of 

the set 

ℝ>0 × ℝ≥0 × [0°, 360°[ × [0°, 360°[, 
in which case a solution of (TAS,WS, 𝜃, 𝜑) is defined as an element (GS, 𝜓) of 

ℝ>0 × [0°, 360°[ that satisfies the following vector equation: 

GS ∙ (sin(𝜃) , cos(𝜃)) = TAS ∙ (sin(𝜓) , cos(𝜓)) −WS ∙ (sin(𝜑) , cos(𝜑)). 
Remark: The reason for demanding that TAS be a positive real number is that an 

aircraft must be in motion with respect to its surrounding air mass for flight to be 

possible. Likewise, the reason for demanding that GS be a positive real number is 

that an aircraft must be able to travel to its planned destination. 

 Let us state two basic mathematical theorems that form the foundation of 

our derivation of the go/no-go conditions. 

Theorem 1. Let 𝑏, 𝑐 ∈ ℝ. Then the following three statements are true: 

1. There are at most two 𝑥 ∈ ℝ>0 such that 𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

2. There is at least one 𝑥 ∈ ℝ>0 such that 𝑥2 + 𝑏𝑥 + 𝑐 = 0 if and only if the 

inequalities 0 ≤ 𝑏2 − 4𝑐 and 𝑏 < √𝑏2 − 4𝑐 hold, in which case the largest 

such 𝑥 is equal to 
−𝑏+√𝑏2−4𝑐

2
. 

3. There are exactly two 𝑥 ∈ ℝ>0 such that 𝑥2 + 𝑏𝑥 + 𝑐 = 0 if and only if the 

inequalities 0 < 𝑏2 − 4𝑐 and 𝑏 < −√𝑏2 − 4𝑐 hold, in which case the smallest 

such 𝑥 is equal to 
−𝑏−√𝑏2−4𝑐

2
 and the largest such 𝑥 is equal to 

−𝑏+√𝑏2−4𝑐

2
. 

Proof. Theorem 1 is a straightforward consequence of the quadratic formula, so 

we shall omit a proof.  

Theorem 2. Let �⃗� ∈ ℝ2 and 𝑎 ∈ ℝ>0. Then there is an 𝛼 ∈ [0°, 360°[, which is 

necessarily unique, such that �⃗� = (𝑎 sin(𝛼) , 𝑎 cos(𝛼)) if and only if ‖�⃗�‖2 = 𝑎2. 

Proof. Theorem 2 is a straightforward consequence of the Pythagorean Identity, 

so we shall omit a proof as well.  

 In order to ensure a smooth transition from Theorems 1 and 2 to our main 

results, two preparatory lemmas are required. 

Lemma 1. Let (TAS,WS, 𝜃, 𝜑) be a mathematical WTP3. Then for every GS ∈
ℝ>0, the following two statements are equivalent: 

1. There is a 𝜓 ∈ [0°, 360°[ such that (GS, 𝜓) is a solution of (TAS,WS, 𝜃, 𝜑). 

2. GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS+ (WS

2 − TAS
2) = 0. 

Proof. Let GS ∈ ℝ>0. Then, by Definition 1, there is a 𝜓 ∈ [0°, 360°[ such that 
(GS, 𝜓) is a solution of (TAS,WS, 𝜃, 𝜑) if and only if 

TAS ∙ (sin(𝜓) , cos(𝜓)) = GS ∙ (sin(𝜃) , cos(𝜃)) +WS ∙ (sin(𝜑) , cos(𝜑)), 
which, by Theorem 2, is true if and only if 

TAS
2 = ‖GS ∙ (sin(𝜃) , cos(𝜃)) +WS ∙ (sin(𝜑) , cos(𝜑))‖2, 

which is equivalent to 

GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS + (WS

2 − TAS
2) = 0. 
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The proof of Lemma 1 is complete.  

Lemma 2. Let (TAS,WS, 𝜃, 𝜑) be a mathematical WTP3. Then the following 

three statements are true: 

1. (TAS,WS, 𝜃, 𝜑) has at most two solutions; if it has two solutions, then their 

first coordinates are distinct. 

2. (TAS,WS, 𝜃, 𝜑) has a solution if and only if the following conditions hold: 

(a) 0 ≤ TAS
2 −WS

2 sin2(𝜃 − 𝜑). 

(b) WS cos(𝜑 − 𝜃) < √TAS
2 −WS

2 sin2(𝜑 − 𝜃). 

3. (TAS,WS, 𝜃, 𝜑) has two solutions if and only if the following conditions hold: 

(a) 0 < TAS
2 −WS

2 sin2(𝜃 − 𝜑). 

(b) WS cos(𝜑 − 𝜃) < −√TAS
2 −WS

2 sin2(𝜑 − 𝜃). 

Proof. If (GS, 𝜓) is a solution of (TAS,WS, 𝜃, 𝜑), then, by Statement 1 of Lemma 

1 and Theorem 1, there are at most two possible values of GS. 

 In addition, if (GS, 𝜓) and (GS, 𝜓′) are solutions of (TAS,WS, 𝜃, 𝜑), then 

TAS ∙ (sin(𝜓) , cos(𝜓)) = GS ∙ (sin(𝜃) , cos(𝜃)) +WS ∙ (sin(𝜑) , cos(𝜑)), 
TAS ∙ (sin(𝜓′) , cos(𝜓′)) = GS ∙ (sin(𝜃) , cos(𝜃)) +WS ∙ (sin(𝜑) , cos(𝜑)), 

which, by the uniqueness clause of Theorem 2, means that 𝜓 = 𝜓′. Consequently, 
(TAS,WS, 𝜃, 𝜑) has at most two solutions, and if it has two solutions, then their 

first coordinates are distinct. Hence, Statement 1 is true. 

 Suppose that (TAS,WS, 𝜃, 𝜑) has a solution. By Lemma 1, there is a GS ∈
ℝ>0 such that 

GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS + (WS

2 − TAS
2) = 0. 

Statement 2 of Theorem 1 then implies Conditions 2(a) and 2(b). 

 Conversely, suppose that Conditions 2(a) and 2(b) hold. By Statement 2 of 

Theorem 1, there is a GS ∈ ℝ>0 such that 

GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS + (WS

2 − TAS
2) = 0. 

Lemma 1 then implies that (TAS,WS, 𝜃, 𝜑) has a solution. 

 Hence, Statement 2 is true. 

 Next, suppose that (TAS,WS, 𝜃, 𝜑) has two solutions. By Lemma 1 and 

Statement 1 of this lemma, there are two GS ∈ ℝ>0 such that 

GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS + (WS

2 − TAS
2) = 0. 

Statement 3 of Theorem 1 then implies Conditions 3(a) and 3(b). 

 Conversely, suppose that Conditions 3(a) and 3(b) hold. By Statement 3 of 

Theorem 1, there are two GS ∈ ℝ>0 such that 

GS
2 + 2WS cos(𝜑 − 𝜃) ∙ GS + (WS

2 − TAS
2) = 0. 

Lemma 1 then implies that (TAS,WS, 𝜃, 𝜑) has two solutions. 

 Hence, Statement 3 is true, which completes the proof of Lemma 2.  
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 The go/no-go conditions are basically a pair of geometrical conditions that 

are defined in terms of a certain subset of ℝ2, which we shall now specify. 

Definition 2. Define a subset 𝑆 of ℝ2 by 

(𝑥, 𝑦) ∈ 𝑆 ⟺

{
 

 
𝑥 = −1 and 0 ≤ 𝑦;  or

−1 < 𝑥 < 0 and 0 ≤ 𝑦 ≤
1

√1 − 𝑥2
; 

0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 < 1.

or 

This subset can be visualized in Figure 1. 

 

Figure 1 

A Graphical Representation of 𝑆 

 
Note. The region 𝑆 is represented by the green area. 

 

Proposition 1. Let (TAS,WS, 𝜃, 𝜑) be a mathematical WTP3. Then the following 

two statements are true: 

1. (TAS,WS, 𝜃, 𝜑) has a solution if and only if (cos(𝜑 − 𝜃) ,
WS

TAS
) ∈ 𝑆. 

The condition (cos(𝜑 − 𝜃) ,
WS

TAS
) ∈ 𝑆 is called the “go condition”. 

2. (TAS,WS, 𝜃, 𝜑) has no solution if and only if (cos(𝜑 − 𝜃) ,
WS

TAS
) ∉ 𝑆. 

The condition (cos(𝜑 − 𝜃) ,
WS

TAS
) ∉ 𝑆 is called the “no-go condition”. 

Proof. It suffices to prove Statement 1 as Statement 2 is logically equivalent to it. 

By Lemma 2, (TAS,WS, 𝜃, 𝜑) has a solution if and only if its Conditions 2(a) and 

2(b) hold, which are equivalent to the following two conditions, respectively: 

1’. (
WS

TAS
)
2

sin2(𝜑 − 𝜃) ≤ 1 or, equivalently, 
WS

TAS
√1 − cos2(𝜑 − 𝜃) ≤ 1. 

2’. 
WS

TAS
cos(𝜑 − 𝜃) < √1 − (

WS

TAS
)
2

sin2(𝜑 − 𝜃). 
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When 
WS

TAS
= 0, Conditions 1’ and 2’ automatically hold, so suppose henceforth 

that 0 <
WS

TAS
. Three cases are now to be considered: 

• cos(𝜑 − 𝜃) = −1, in which case Conditions 1’ and 2’ automatically hold. 

• −1 < cos(𝜑 − 𝜃) < 0, in which case Condition 2’ automatically holds and 

Condition 1’ holds if and only if 
WS

TAS
≤

1

√1−cos2(𝜑−𝜃)
. 

• 0 ≤ cos(𝜑 − 𝜃) ≤ 1, in which case Condition 2’ holds if and only if 
WS

TAS
< 1, 

which guarantees that Condition 1’ also holds. 

Therefore, (TAS,WS, 𝜃, 𝜑) has a solution if and only if (cos(𝜑 − 𝜃) ,
WS

TAS
) ∈ 𝑆.  

Remark: The cases cos(𝜑 − 𝜃) = −1, cos(𝜑 − 𝜃) = 0, and cos(𝜑 − 𝜃) = 1 

represent a pure tailwind, a pure crosswind, and a pure headwind, respectively. 

Proposition 2. Let (TAS,WS, 𝜃, 𝜑) be a solvable mathematical WTP3. Then the 

following statements are true: 

1. 0 ≤ TAS
2 −WS

2 sin2(𝜃 − 𝜑) or, equivalently, 
WS

TAS
sin(𝜑 − 𝜃) ∈ [−1,1]. 

2. If (TAS,WS, 𝜃, 𝜑) has two solutions and (GS, 𝜓) denotes the solution with the 

smallest first coordinate, then the following conditions hold: 

(a) GS = −WS cos(𝜑 − 𝜃) − √TAS
2 −WS

2 sin2(𝜑 − 𝜃). 

(b) ∆ ∶=Mod[−180°,180°[(𝜓 − 𝜃) ∈ [−180°, −90°[ ∪ ]90°, 180°[. 

3. In all cases, if (GS, 𝜓) denotes the solution of (TAS,WS, 𝜃, 𝜑) with the largest 

first coordinate, then the following conditions hold: 

(a) GS = −WS cos(𝜑 − 𝜃) + √TAS
2 −WS

2 sin2(𝜑 − 𝜃). 

(b) ∆ ∶=Mod[−180°,180°[(𝜓 − 𝜃) ∈ [−90°, 90°]. 

(c) 𝜓 = Mod[0°,360°[ (𝜃 + sin
−1 (

WS

TAS
sin(𝜑 − 𝜃))). 

Note: ∆ is often called the “wind-correction angle (WCA)”. 

Proof. Statement 1 is an immediate consequence of Condition 2(a) of Lemma 2. 

 Suppose that (TAS,WS, 𝜃, 𝜑) has two solutions and that (GS, 𝜓) denotes 

the solution with the smallest first coordinate. Then by Lemma 1, Statement 1 of 

Lemma 2, and Statement 3 of Theorem 1, 

GS= −WS cos(𝜑 − 𝜃) − √TAS
2 −WS

2 sin2(𝜑 − 𝜃), 

which proves Statement 2(a). To prove Statements 2(b), first use the identities 

TAS sin(𝜓) = GS sin(𝜃) +WS sin(𝜑) , 
TAS cos(𝜓) = GS cos(𝜃) +WS cos(𝜑), 

to obtain the following four identities: 

1. TAS sin(𝜓) sin(𝜃) = GS sin2(𝜃) +WS sin(𝜑) sin(𝜃). 
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2. TAS cos(𝜓) cos(𝜃) = GS cos2(𝜃) +WS cos(𝜑) cos(𝜃). 
3. TAS cos(𝜃) sin(𝜓) = GS cos(𝜃) sin(𝜃) +WS cos(𝜃) sin(𝜑). 
4. TAS cos(𝜓) sin(𝜃) = GS cos(𝜃) sin(𝜃) +WS cos(𝜑) sin(𝜃). 
Adding Identities 1 and 2, and applying Condition 3(a) of Lemma 2, we get 

TAS cos(𝜓 − 𝜃) = GS+WS cos(𝜑 − 𝜃) = −√TAS
2 −WS

2 sin2(𝜑 − 𝜃) < 0. 

Then as TAS is positive, Statement 2(b) is thus obtained. 

 Finally, suppose that (GS, 𝜓) denotes the solution of (TAS,WS, 𝜃, 𝜑) with 

the largest first coordinate, regardless of the number of solutions. Then by Lemma 

1 and Statement 2 of Theorem 1, 

GS= −WS cos(𝜑 − 𝜃) + √TAS
2 −WS

2 sin2(𝜑 − 𝜃), 

which proves Statement 3(a). Adding Identities 1 and 2, we get 

TAS cos(𝜓 − 𝜃) = GS+WS cos(𝜑 − 𝜃) = √TAS
2 −WS

2 sin2(𝜑 − 𝜃) ≥ 0. 

Then as TAS is positive, Statement 3(b) is obtained. Now, subtracting Identity 4 

from Identity 3 yields TAS sin(𝜓 − 𝜃) = WS sin(𝜑 − 𝜃), which, together with 

the 360°-periodicity of the sine function, implies that 

TAS sin (Mod[−180°,180°[(𝜓 − 𝜃)) = WS sin(𝜑 − 𝜃). 

As Mod[−180°,180°[(𝜓 − 𝜃) ∈ [−90°, 90°], it then follows that 

Mod[−180°,180°[(𝜓 − 𝜃) = sin
−1 (

WS

TAS
sin(𝜑 − 𝜃)). 

Therefore, 

𝜓 = Mod[0°,360°[(𝜓) 

= Mod[0°,360°[(𝜃 + (𝜓 − 𝜃)) 

= Mod[0°,360°[ (𝜃 +Mod[−180°,180°[(𝜓 − 𝜃)) 

= Mod[0°,360°[ (𝜃 + sin
−1 (

WS

TAS
sin(𝜑 − 𝜃))), 

which proves Statement 3(c).  

Remark: For a mathematical WTP3 (TAS,WS, 𝜃, 𝜑) with two solutions, the one 

with the largest first coordinate (representing the largest groundspeed) is the most 

desirable because an aircraft’s time of flight to its planned destination must be as 

short as possible. By Proposition 2, the solution (GS, 𝜓) of (TAS,WS, 𝜃, 𝜑) with 

the smallest first coordinate satisfies the WCA condition 

∆ ∈ [−180°, −90°[ ∪ ]90°, 180°[, 
which means that the aircraft is pointing away from its planned destination. This 

is clearly an inefficient — hence undesirable — solution. 
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Example 1. A pilot intends to fly a ground track of 70° at a true airspeed of 95 kt. 

At the desired operating altitude, the windspeed is 20 kt and the wind direction is 

340°. The mathematical WTP3 corresponding to this flight plan is 

(TAS,WS, 𝜃, 𝜑) = (95 kt, 20 kt, 70°, 340°). 

As cos(𝜑 − 𝜃) = 0 and 
WS

TAS
= 0.21…, this mathematical WTP3 satisfies the go 

condition, so it has a solution (see Figure 2). 

 

Figure 2 

The Go Condition Satisfied in Example 1 

 
Note. The go condition is represented by the green solid dot. 
 

 If we denote by (GS, 𝜓) the solution with the largest first coordinate, then 

we have, by Statement 3 of Proposition 2, 

GS = −WS cos(𝜑 − 𝜃) + √TAS
2 −WS

2 sin2(𝜑 − 𝜃) = 92.87… , 

𝜓 = Mod[0°,360°[ (𝜃 + sin
−1 (

WS

TAS
sin(𝜑 − 𝜃))) = 57.84… °, 

∆ = Mod[−180°,180°[(𝜓 − 𝜃) = −12.15… °. 

Example 2. A pilot intends to fly a ground track of 80° at a true airspeed of 80 kt. 

At the desired operating altitude, the windspeed is 120 kt and the wind direction 

is 120°. The mathematical WTP3 corresponding to this scenario is 
(TAS,WS, 𝜃, 𝜑) = (80 kt, 120 kt, 80°, 120°). 

As cos(𝜑 − 𝜃) = 0 . 76… and 
WS

TAS
= 1.5, this mathematical WTP3 satisfies the 

no-go condition, so it has no solution (see Figure 3). 
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Figure 3 

The No-Go Condition Satisfied in Example 2 

 
Note. The no-go condition is represented by the red solid dot. 

 

Computing True Airspeed from Basic Instrument Readings 

 In this section, we shall apply the fluid mechanics of compressible air to 

derive a function that calculates TAS from calibrated airspeed, pressure altitude, 

and total air temperature, in both subsonic and supersonic flight. 

 Firstly, let us specify the values of some fundamental physical constants: 

• The sea-level acceleration of gravity: 𝑔0 ∶= 9.80665 m s⁄ . 

• The adiabatic index of air: 𝛾 ∶=
7

5
. 

• The tropospheric temperature lapse rate: 𝐿0 ∶= 0.0065 K m⁄ . 

• The molar mass of air: 𝑀 ∶= 0.0289644 kg mol⁄ . 

• The standard sea-level atmospheric pressure: 𝑃0 ∶= 101325 N m2⁄ . 

• The gas constant: 𝑅∗ ∶= 8.31432 
N∙m

mol∙K
. 

• The standard sea-level temperature: 𝑇0 ∶= 288.15 K. 

• These definitions are obtained from the U.S. Standard Atmosphere 1976. 

 Next, let us also specify the values of some derived physical constants: 

• The standard sea-level speed of sound: 𝑎0 ∶= √
𝛾𝑅∗𝑇0

𝑀
. 

• The standard atmospheric pressure at 11000 m: 𝑃0 ∶= (1 +
𝐿0∙11000 m

𝑇0
)
−
𝑔0𝑀

𝑅∗𝐿0. 

• The standard temperature at 11000 m: 𝑇1 ∶= 𝑇0 − 𝐿0 ∙ 11000 m = 216.65 K. 

 In fluid mechanics, an important result of applying the Bernoulli Equation 

to compressible air is that subsonic Mach numbers 𝑀 (i.e., 𝑀 ∈ [0,1]) are in one-
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to-one correspondence with values of the ratio 
𝑄c

𝑃
 in the interval [0, (

6

5
)
7 2⁄

− 1] 

via the following equation (Porter & Hartman, 1979, pp. 83-88): 

𝑀 = √
2

𝛾 − 1
[(
𝑄c

𝑃
+ 1)

𝛾−1
𝛾
− 1] = √5 [(

𝑄c

𝑃
+ 1)

2
7
− 1]. 

The critical value of (
6

5
)
7 2⁄

− 1 for the ratio 
𝑄c

𝑃
 determines the boundary between 

subsonic and supersonic air flows. 

 According to the Rayleigh Supersonic Pitot Equation, supersonic Mach 

numbers 𝑀 (i.e., 𝑀 ∈ ℝ≥1) are in one-to-one correspondence with values of the 

ratio 
𝑄c

𝑃
 in the interval [(

6

5
)
7 2⁄

− 1,∞[ via the following equation (Miller & Veltin, 

2012, pp. 235-246): 

𝑄c

𝑃
+ 1 = (

𝛾 + 1

2
𝑀2)

𝛾
𝛾−1

(
𝛾 + 1

2𝛾𝑀2 − 𝛾 + 1
)

1
𝛾−1

=
65 2⁄ (

6
5
)
7 2⁄

𝑀7

(7𝑀2 − 1)5 2⁄
. 

 In order to combine these two equations relating 𝑀 to 
𝑄c

𝑃
 into a single one, 

let us introduce a useful mathematical function. 

Definition 3. Define the function 𝑓:ℝ≥0 → ℝ≥0 by 

𝑓(𝑥) ∶=

{
 
 

 
 
(1 +

𝑥2

5
)

7
2

− 1, if 0 ≤ 𝑥 ≤ 1;

65 2⁄ (
6
5
)
7 2⁄

𝑥7

(7𝑥2 − 1)5 2⁄
− 1, if 1 ≤ 𝑥.

 

 

 The function 𝑓 is twice continuously differentiable; in fact, 

𝑓′(𝑥) =

{
 
 

 
 7

5
𝑥 (1 +

𝑥2

5
)

5
2

, if 0 ≤ 𝑥 ≤ 1;

65 2⁄ (
6
5
)
7 2⁄

7𝑥6(2𝑥2 − 1)

(7𝑥2 − 1)7 2⁄
, if 1 ≤ 𝑥;
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𝑓′′(𝑥) =

{
 
 

 
 7

5
(1 +

6𝑥2

5
)(1 +

𝑥2

5
)

3
2

, if 0 ≤ 𝑥 ≤ 1;

65 2⁄ (
6
5
)
7 2⁄

7𝑥5(14𝑥4 − 9𝑥2 + 6)

(7𝑥2 − 1)9 2⁄
, if 1 ≤ 𝑥.

 

Hence, 𝑓 has an excellent degree of smoothness. Furthermore, as 𝑓(0) = 0 and 𝑓′ 
is positive on ℝ>0, we find that 𝑓 is increasing with range ℝ≥0. For a graph of 𝑓, 

see Figure 4. 

 

Figure 4 

A Graph of 𝑓 

 
 

 As promised, with the help of 𝑓, the two equations relating 𝑀 to 
𝑄c

𝑃
, for 

subsonic and supersonic air flows, can be nicely combined into a single equation: 

(∗)          
𝑄c

𝑃
= 𝑓(𝑀). 

Equation (*) is the key to the construction of a function that calculates TAS from 

only calibrated airspeed, pressure altitude, and total air temperature. 

Static Air Pressure as a Function of Pressure Altitude 

 Most flights take place at pressure altitudes ranging from 0 m to 20000 m, 

so we shall define static air pressure as a function of pressure altitude in the range 
[0 m, 20000 m[, in accordance with the U.S. Standard Atmosphere 1976. 

Definition 4. Static air pressure is the function 𝑃: [0 m, 20000 m[ → ]0, 𝑃0] 
defined by 
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𝑃(ℎ) ∶= { 𝑃0 (1 +
𝐿0ℎ

𝑇0
)
−
𝑔0𝑀
𝑅∗𝐿0

, if 0 m ≤ ℎ ≤ 11000 m;

𝑃1𝑒
−𝑔0𝑀(ℎ−11000 m) 𝑅

∗⁄ 𝑇1 , if 11000 m ≤ ℎ ≤ 20000 m.

 

Note that 𝑃 is strictly increasing and continuous. 

Impact Air Pressure as a Function of Calibrated Airspeed 

 An airspeed indicator on a high-performance aircraft establishes a one-to-

one correspondence between impact air pressures and calibrated airspeeds, under 

the assumption that the aircraft is flying at sea level (see Figure 5). 

 

Figure 5 

The Instrument Panel of the Rocket-Powered X-15 

 
Note. The airspeed indicator and Machmeter are located in the upper left corner of the panel. 
 

 It follows from Equation (*) that 𝑄c and CAS are related via the following 

equation: 
𝑄c

𝑃0
= 𝑓 (

CAS

𝑎0
). 
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This allows us to define impact air pressure as a function of calibrated airspeed. 

Definition 5. Impact air pressure is the function 𝑄c: ℝ≥0 → ℝ≥0 defined by 

𝑄c(CAS) ∶= 𝑃0𝑓 (
CAS

𝑎0
). 

Note that 𝑄c is strictly increasing, bijective, and twice continuously differentiable. 

Mach Number as a Function of Calibrated Airspeed and Pressure Altitude 

 Equation (*) and the two functions 𝑃 and 𝑄c now allow us to define Mach 

number as a function of calibrated airspeed and pressure altitude. 

Definition 6. Mach number is the function 𝑀:ℝ≥0 × [0 m, 20000 m[ → ℝ≥0 

defined by 

𝑀(CAS, ℎ) ∶= 𝑓−1 (
𝑄c(CAS)

𝑃(ℎ)
). 

Note that 𝑀 is continuous as 𝑓−1 is continuous. 

Inverting the Function 𝒇 

 It is clear from Definition 6 that knowing how to compute 𝑓−1 is crucial. 

An explicit formula for 𝑓−1 on the interval [0, (
6

5
)
7 2⁄

− 1] is as follows: 

𝑓−1(𝑦) = √5((𝑦 + 1)2 7⁄ − 1). 

However, an explicit formula for 𝑓−1 on the interval [(
6

5
)
7 2⁄

− 1,∞[ appears to 

be hard to find, so we must resort to numerical techniques. For convenience, we 

shall employ the technique of fixed-point iteration, and it is our current objective 

to prove the convergence of this technique and provide error estimates. 

 Letting 𝐽 ∶= [(
6

5
)
7 2⁄

− 1,∞[, we can define a 𝐽-indexed family (𝑔𝑟)𝑟∈𝐽 of 

functions from ℝ≥1 to ℝ≥0 by 

∀𝑟 ∈ 𝐽:     𝑔𝑟(𝑥) ∶= (
7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1 (1 −
1

7𝑥2
)

5
4
. 

 Let us now prove some results about these functions. The first one states 

that they all possess a unique fixed point. 

Lemma 3. Let 𝑟 ∈ 𝐽. Then there is a unique 𝑥 ∈ ℝ≥1 such that 𝑓(𝑥) = 𝑟 and 𝑥 is 

a fixed point of 𝑔𝑟, i.e., 𝑔𝑟(𝑥) = 𝑥. 

Proof. As the restriction of 𝑓 to ℝ≥1 is increasing (hence injective) with range 𝐽, 
there is a unique 𝑥 ∈ ℝ≥1 such that 𝑓(𝑥) = 𝑟, or, equivalently, 𝑔𝑟(𝑥) = 𝑥.  

 In light of Lemma 3, define a 𝐽-indexed family (𝛽𝑟)𝑟∈𝐽 of real numbers so 

that 𝛽𝑟 is the unique fixed point of 𝑔𝑟 for each 𝑟 ∈ 𝐽. 
Lemma 4. Let 𝑟 ∈ 𝐽. Then 𝑔𝑟 is twice differentiable, and for all 𝑥 ∈ ℝ≥1, 
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𝑔𝑟
′ (𝑥) =

5 (
7
6)

5 4⁄

(
5
6)

7 4⁄

√𝑟 + 1

14
∙
(1 −

1
7𝑥2

)
1 4⁄

𝑥3
, 

𝑔𝑟
′′(𝑥) =

5 (
7
6)

5 4⁄

(
5
6)

7 4⁄

√𝑟 + 1

28
∙

1 − 6𝑥2

𝑥6 (1 −
1
7𝑥2

)
3 4⁄
. 

Hence, 𝑔𝑟
′  is positive, so 𝑔𝑟 is increasing, and 𝑔𝑟

′′ is negative, so 𝑔𝑟
′  is decreasing. 

Proof. Lemma 4 is an easy exercise in calculus, so we shall omit a proof.  

Lemma 5. Let 𝑟 ∈ 𝐽. Then 𝑔𝑟
′ (𝛽𝑟) ≤

5

12
. 

Proof. Using Lemma 4, observe that 
𝑔𝑟
′ (𝛽𝑟)

𝛽𝑟
=
𝑔𝑟
′ (𝛽𝑟)

𝑔𝑟(𝛽𝑟)
=
5

14
∙

1

𝛽𝑟
3 (1 −

1
7𝛽𝑟2

)
, 

which yields 

𝑔𝑟
′ (𝛽𝑟) =

5

14
∙

𝛽𝑟

𝛽𝑟
3 (1 −

1
7𝛽𝑟2

)
=
5

14
∙

1

𝛽𝑟2 (1 −
1
7𝛽𝑟2

)
=
5

14
∙

1

𝛽𝑟2 −
1
7

≤
5

14
∙
7

6
=
5

12
, 

where we have used the fact that 𝛽𝑟 ≥ 1.  

Lemma 6. Let 𝑟 ∈ 𝐽. Then there is an 𝛼 ∈ [1, 𝛽𝑟] such that 

ℝ≥𝛼 = {𝑥 ∈ ℝ≥1|0 < 𝑔𝑟
′ (𝑥) ≤

1
2
}. 

Proof. Lemma 5 says that 𝑔𝑟
′ (𝛽𝑟) ≤

5

12
<

1

2
, so 

𝛽𝑟 ∈ {𝑥 ∈ ℝ≥1|𝑔𝑟
′ (𝑥) ≤

1
2
}. 

The continuity of 𝑔𝑟
′  implies that {𝑥 ∈ ℝ≥1|𝑔𝑟

′ (𝑥) ≤
1

2
} is the intersection of ℝ≥1 

with a closed subset of ℝ, so it is itself a non-empty closed subset of ℝ bounded 

below by 1 and therefore has a minimum 𝛼 ∈ [1, 𝛽𝑟]. Then as 𝑔𝑟
′  is positive and 

decreasing, we conclude that 

ℝ≥𝛼 = {𝑥 ∈ ℝ≥1|𝑔𝑟
′ (𝑥) ≤

1
2
} = {𝑥 ∈ ℝ≥1|0 < 𝑔𝑟

′ (𝑥) ≤
1
2
}. 

The proof of Lemma 6 is complete.  

 In light of Lemma 6, define a 𝐽-indexed family (𝛼𝑟)𝑟∈𝐽 of real numbers so 

that ℝ≥𝛼𝑟 = {𝑥 ∈ ℝ≥1|0 < 𝑔𝑟
′ (𝑥) ≤

1

2
} for each 𝑟 ∈ 𝐽. 

Lemma 7. Let 𝑟 ∈ 𝐽. Then 𝑔𝑟 maps ℝ≥𝛼𝑟 to itself. 

Proof. Observe that 𝑔𝑟(1) = (
5

6
)
7 4⁄

√𝑟 + 1 ≥ 1 and 

lim
𝑥→∞

𝑔𝑟(𝑥) = (
7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1. 
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Define a continuous function ℎ:ℝ≥1 → ℝ by ℎ(𝑥) ∶= 𝑔𝑟(𝑥) − 𝑥; as ℎ(1) ≥ 0 and 

𝛽𝑟 is the unique root of ℎ (as it is the unique fixed point of 𝑔𝑟), it follows from the 

inequality 1 ≤ 𝛼𝑟 ≤ 𝛽𝑟 and the Intermediate Value Theorem that ℎ(𝛼𝑟) ≥ 0, i.e., 

𝑔𝑟(𝛼𝑟) ≥ 𝛼𝑟. Then as 𝑔𝑟 is increasing, the image of ℝ≥𝛼𝑟  under 𝑔𝑟 is 

[𝑔𝑟(𝛼𝑟), (
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1[ ⊆ ℝ≥𝛼𝑟 . 

The proof of Lemma 7 is complete.  

 With Lemma 7, we can finally show that fixed-point iteration is a feasible 

technique of computing the fixed point of 𝑔𝑟 for each 𝑟 ∈ 𝐽. 

Proposition 3. Let 𝑟 ∈ 𝐽. Then √(
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1
3

∈ ℝ≥𝛼𝑟, which gives rise 

to a unique sequence (𝑦𝑛)𝑛∈ℕ in ℝ≥𝛼𝑟  with the following four properties: 

• 𝑦1 = √(
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1
3

. 

• For all 𝑛 ∈ ℕ, we have 𝑦𝑛+1 = 𝑔𝑟(𝑦𝑛). 
• lim

𝑛→∞
𝑦𝑛 = 𝛽𝑟. 

• For all 𝑛 ∈ ℕ, we have |𝑦𝑛+2 − 𝛽𝑟| < (
1

2
)
𝑛−1

(
5

6
)
7 4⁄

√𝑟 + 1 ((
7

6
)
5 4⁄

− 1). 

Proof. Observe that for all 𝑥 ∈ ℝ≥1, 

𝑔𝑟
′ (𝑥) =

5 (
7
6
)
5 4⁄

(
5
6
)
7 4⁄

√𝑟 + 1

14
∙
(1 −

1
7𝑥2

)
1 4⁄

𝑥3
≤
5(
7
6
)
5 4⁄

(
5
6
)
7 4⁄

√𝑟 + 1

14
∙
1

𝑥3
. 

Then as 

√(
7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1

3

≥ √(
7

6
)

5
4

3

> 1   and   𝑔𝑟
′ (√(

7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1

3

) ≤
5

14
<
1

2
, 

we find that √(
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1
3

∈ ℝ≥𝛼𝑟 , so by the Recursion Theorem, there 

is a unique sequence (𝑦𝑛)𝑛∈ℕ in ℝ≥𝛼𝑟  such that 𝑦1 = √(
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1
3

 and 

𝑦𝑛+1 = 𝑔𝑟(𝑦𝑛) for all 𝑛 ∈ ℕ. 

 By definition, 𝑔𝑟 is bounded in absolute value by 
1

2
 on ℝ≥𝛼𝑟, so the Mean-

Value Theorem implies that for all 𝑝, 𝑞 ∈ ℝ≥𝛼𝑟 , 

|𝑔𝑟(𝑝) − 𝑔𝑟(𝑞)| ≤
1

2
|𝑝 − 𝑞|. 

Hence, by the Banach Fixed-Point Theorem, the restriction of 𝑔𝑟 to ℝ≥𝛼𝑟 has a 

fixed point, which must be 𝛽𝑟; furthermore, lim
𝑛→∞

𝑦𝑛 = 𝛽𝑟. 
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 Finally, the Banach Fixed-Point Theorem comes equipped with a suite of 

inequalities for convergence rates, one of which implies that for all 𝑛 ∈ ℕ, 

|𝑦𝑛+2 − 𝛽𝑟| ≤
(
1
2)

𝑛

1 −
1
2

|𝑦2 − 𝑦3| = (
1

2
)
𝑛−1

|𝑦2 − 𝑦3|. 

As both 𝑦2 and 𝑦3 lie in the range of 𝑔𝑟, and as 𝑔𝑟 is increasing, it follows that 

𝑦2, 𝑦3 ∈ [𝑔𝑟(1), lim
𝑥→∞

𝑔𝑟(𝑥)[ = [(
5

6
)

7
4

√𝑟 + 1, (
7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1[. 

Therefore, 

|𝑦2 − 𝑦3| < (
7

6
)

5
4
(
5

6
)

7
4

√𝑟 + 1 − (
5

6
)

7
4

√𝑟 + 1 = (
5

6
)

7
4

√𝑟 + 1((
7

6
)

5
4
− 1), 

and we conclude that for all 𝑛 ∈ ℕ, 

|𝑦𝑛+2 − 𝛽𝑟| < (
1

2
)
𝑛−1

(
5

6
)

7
4

√𝑟 + 1((
7

6
)

5
4
− 1). 

The proof of Proposition 3 is complete.  

 In summary, Proposition 3 tells us how to compute 𝑓−1 on the interval 𝐽: 
Given 𝑟 ∈ 𝐽, we can recursively construct a convergent sequence (𝑦𝑛)𝑛∈ℕ in ℝ≥𝛼𝑟 

such that 𝑦1 = √(
7

6
)
5 4⁄

(
5

6
)
7 4⁄

√𝑟 + 1
3

 and 𝑦𝑛+1 = 𝑔𝑟(𝑦𝑛) for all 𝑛 ∈ ℕ. Then the 

limit of this sequence is 𝑓−1(𝑟), with the rate of convergence being at least linear, 

as guaranteed by the Banach Fixed-Point Theorem. 

Static Air Temperature and Total Air Temperature 

 The compressibility of air means that air brought to rest by an aircraft’s 

external temperature probe — relative to the aircraft itself — undergoes adiabatic 

heating. Hence, what the probe measures, called “total air temperature (𝑇t)”, is 

higher than static air temperature (𝑇s), which is required to calculate true airspeed. 

The difference between 𝑇s and 𝑇t can be rather significant at high airspeeds. 

 𝑇s depends on 𝑀 and 𝑇t via the following equation (Trenkle & Reinhardt, 

1973, pp. 31-44): 

𝑇s =
𝑇t

1 +
𝛾 − 1
2 𝑀2

=
𝑇t

1 +
𝑀2

5

. 

As Mach number depends on static air pressure and impact air pressure, we can 

define 𝑇s as a function of calibrated airspeed, pressure altitude, and 𝑇t. 

Definition 7. Static air temperature is the function 

𝑇s: ℝ≥0 × [0 m, 20000 m[ × ℝ≥0 → ℝ≥0 
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defined by 

𝑇s(CAS, ℎ, 𝑇t) ∶=
𝑇t

1 +
𝑀(CAS, ℎ)2

5

. 

Note that 𝑇s is continuous. 

Computing True Airspeed 

 True airspeed can be computed from Mach number once the local speed of 

sound 𝑎 is known. It is known that 𝑎 varies directly with the square root of 𝑇s, so 

TAS depends on 𝑀 and 𝑇s via the following equation (Herrington et al., 1966, pp. 

12-23): 

TAS = 𝑎𝑀 = 𝑎0𝑀√
𝑇s

𝑇0
. 

 Combining all the earlier results of this section, this equation allows us to 

define true airspeed as a function of calibrated airspeed, pressure altitude, and 𝑇t. 

Definition 8. True airspeed is the function 

TAS: ℝ≥0 × [0 m, 20000 m[ × ℝ≥0 → ℝ≥0 

defined by 

TAS(CAS, ℎ, 𝑇t) ∶= 𝑎0𝑀(CAS, ℎ)√
𝑇s(CAS, ℎ, 𝑇t)

𝑇0
. 

Note that TAS is continuous. 

Conclusion 

 Through various mathematical techniques, the question of the existence of 

solutions of a mathematical WTP3 (TAS,WS, 𝜃, 𝜑) can be reduced to a question 

about the ordered pair (cos(𝜑 − 𝜃) ,
WS

TAS
), which is whether it is an element of the 

set 𝑆 (the go condition) or not (the no-go condition). Examples 1 and 2 show how 

easy it is to test the go/no-go conditions graphically. Hopefully, our results offer 

pilots a practical method of evaluating the feasibility of their flight plan, based on 

wind conditions. 

 As the aviation industry readies itself for a wave of projects on supersonic 

passenger flight in the coming years (O’Hare, 2021), it is naturally expected that 

high-speed flight will no longer be strictly within the purview of military aviators. 

With the goal of equipping pilots from all backgrounds with practical knowledge 

about high-speed flight, we constructed a function that calculates true airspeed in 

terms of only calibrated airspeed, pressure altitude, and total air temperature. This 

function has great theoretical importance because it allows a pilot to calculate true 

airspeed using data available from only a standard instrument panel without direct 

knowledge of impact and static air pressures, even in supersonic flight. However, 

this function is not known to have a fully explicit description in terms of the usual 

arithmetic operations and elementary functions, so a numerical technique must be 

17

Huang and Cummings: The Wind Triangle Problem and True Airspeed in Supersonic Flight

Published by Scholarly Commons, 2021



applied to evaluate it for a certain set of inputs. Not only were we able to establish 

that fixed-point iteration works, but we were also able to offer error estimates. We 

believe that such a complete and rigorous analysis is the first of its kind. 

 The tools introduced in this paper will help pilots buttress their knowledge 

of aerial navigation, aircraft instrumentation, and aeronautics. 
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