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In response to the 2021 AIAA Undergraduate Team Aircraft Design Competition request 

for proposals, Team Angry Geese of the University of Alabama in Huntsville has developed a 

conceptual design, the “Golden Egg”, an affordable light attack aircraft that can operate from 

short, austere fields and replace current helicopters in performing close air support missions. 

The aircraft must carry a crew of two, an integrated gun for ground targets, and at least 3000 

pounds of armament. The aircraft must accomplish an attack mission with a full weapons load 

and a long-range ferry mission with a 60% weapons load. Additional design goals include 

enhanced survivability, the capability to deploy a variety of missiles, rockets, and bombs, and 

producing a “best-value” design that considers acquisition and operational costs. The baseline 

concept was developed after reviewing the design and performance of similar attack aircraft 

and helicopters. The current design has a streamlined body with an aspect ratio 6 tapered 

wing, a H-tail, and tricycle landing gear. An integrated F-404 turbofan engine allows the 

aircraft to meet flight requirements especially with its intake uniquely placed on top of the 

fuselage to mitigate potential debris hazards. The armament includes an integrated 20 mm 

gun and a combination of missiles and guided bombs. This initial design is estimated to weigh 

just under 24,407 lbf. Strategic material selection is currently being performed to reduce 

weight with structural strength, cost, and survivability in mind. 

 
I.  Nomenclature 

 
AR  = Aspect Ratio 

𝐶𝑑,𝑖  = Induced Drag Coefficient 

𝐶𝐿 = Lift Coefficient 

TOW  = Take Off Weight 

𝑒0 = Oswald Efficiency Factor 

𝛬𝐿𝐸 = Leading Edge Sweep Angle 

𝜔  = Aerodynamic Cleanliness  

TSFC  = Thrust Specific Fuel Consumption 

 

II.  Executive Summary 
 

 Team Angry Geese is a Senior Design team of aerospace and mechanical engineering students at the University 

of Alabama in Huntsville. The team is participating in the 2021 AIAA Undergraduate Team Design Competition. The 

team designed the “Golden Egg”, an affordable light attack aircraft that can operate from short, austere fields and 

replace current helicopters in performing close air support missions. The aircraft must carry a crew of two, an 

integrated gun for ground targets, and at least 3000 pounds of armament. The design process began by understanding 

the Request for Proposal (RFP) presented by AIAA containing an in-depth breakdown of the requirements, objectives 

and goals for a design mission and a ferry mission. A House of Quality was derived from the RFP including additional 

requirements that the team deemed necessary. A Concept of Operations (ConOps) was developed for each mission. 

The project has been broken down to different aspects and features such as the weapons system, propulsion system, 
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and landing gear with research focused on finding these systems that best meet the requirements and the missions. 

The team extensively researched aircraft built for similar CAS missions. The weight, wingspan, aspect ratio, payload 

capacity and other selected characteristics were compiled. Design features such as tail configuration, fuselage style, 

and wing shape were also considered. After extensive research and team discussion, an initial design and CAD model 

were created including estimates of the gross weight, thrust, and aerodynamic shape. Power required and power 

available curves for the current concept were also generated and compared to required mission performance. Trade 

studies are ongoing to refine the design. Results of these analyses will be continually evaluated to make sure the design 

satisfy the IAA requirements. This paper presents our how the Angry Geese team developed the initial concept for the 

Golden Egg and the current configuration features and performance. Additional work to mature the design will also 

be discussed. 

 
III.  RFP Analysis 

 

A. Requirement and Objectives 

The AIAA RFP specifies six mandatory requirements for the aircraft. The first is short austere field performance. 

This includes taking off and landing over a 50 ft obstacle in less than 4,000 ft and operating from austere fields at a 

density altitude of up to 6,000 ft with semi-prepared runways and a California Bearing Ratio of 5. The second 

requirement is a payload of at least 3,000 lbs of armament. The third is an integrated gun for ground targets. The 

fourth requirement is a service life of 15,000 hours over 25 years. The fifth requirement is a service ceiling of greater 

than 30,000 ft. The last requirement is a crew size of 2 with zero-zero ejection seats. The RFP specifies two design 

goals or desired objectives. The first goal is enhanced survivability, including armor for the cockpit and engine, 

reduced infrared and visual signatures, and countermeasures. Another goal is the ability to carry and deploy a variety 

of weapons such as rail-launched missiles, rockets, and 500 lb bombs.  Other constraints are for all components to 

have Technology Readiness Level 8 or above and meet military airworthy standard MIL-STD-516C. 
 

B. Design Mission 

Figure 1 illustrates the various Design Mission Phases. The fully loaded aircraft must carry the two crew members 

and at least 3,000 lbf of armaments. The aircraft needs to warm up and taxi in five minutes, be able to take off within 

4000 ft from an austere field and clear a 50 ft obstacle. The aircraft must then climb to a cruise altitude of at least 

10,000 ft and cruise for 100 nm. The next stage is for the aircraft to descend to 3000 ft within 20 minutes of its initial 

climb and loiter on station for four hours with no stores dropped. Once the attack mission is finished (whether stores 

are deployed or not), the aircraft must climb back to its cruising altitude and cruise 100 nm. It then must descend and 

land in less than 4000 ft at an austere field, clearing a 50 ft obstacle. Following landing, taxi and shutdown must be 

done in five minutes. There needs to be enough fuel reserves to climb 3000 ft and loiter for 45 minutes in case landing 

is aborted. 

 

 
Fig. 1 Design Mission ConOps (full weapons load) 

 

C. Ferry Mission  

 Figure 2 illustrates the various phases of the Ferry Mission. For this mission, the aircraft must carry the two crew 

members and 60% of its maximum armament load. The aircraft must warm up and taxi within 5 minutes, be able to 
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take off within 4000 ft from an austere field, and clear a 50 ft obstacle.  The aircraft must then climb to a cruise altitude 

of at least 18,000ft and cruise at least 900 nmi. It then must descend and land in less than 4000 ft at an austere field, 

clearing a 50 ft obstacle. Following landing, taxi and shutdown must be done in five minutes. There needs to be enough 

fuel reserves to climb 3000 ft and loiter for 45 minutes in case landing is aborted. 

 

 
Fig. 2 Ferry Mission ConOps (60% weapons load) 

 
D.  House of Quality 

Figure 3 shows the House of Quality. The majority of the customer needs were drawn directly from the RFP. 

Range of greater than or equal to 1,000 nmi and endurance of greater than or equal to 6 hrs were specified to satisfy 

both the design and ferry missions. Low altitude maneuverability was added because the aircraft is filling the role of 

attack helicopters. These customer needs were ranked and weighted based on importance to the missions. They were 

also correlated with the design features, represented by the symbols in the correlation key. The design feature priorities 

were calculated by multiplying the weight in the row by the value of the symbol shown in the correlation key and 

adding them for that column.  

 
 

Fig. 3 House of Quality 
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IV.  CAS Database 

 

Table 1 summarizes a review of previous military aircraft used to create an initial design. The first major decision 

was choice of propulsion system. Factors for selecting a turbofan over a turboprop or turboshaft is the aircraft’s ability 

to meet the 20 min flight time to the loiter destination for the design mission. A minimum speed of 675 ft/s is needed 

to fly the 100 nmi and descend to 3k ft within 20 minutes of initial climb. The A-29 Super Tucano flies at a maximum 

of 540 ft/s [REF]. A turboprop introduces “left turning tendencies” [REF] One of the fastest helicopters, the Sikorsky 

X-2, has a top speed of approximately 405 ft/s [REF]. Although a turboprop aircraft will perform better closer to the 

ground, a turbofan will get the aircraft to its destination faster. The team recognizes that the turbofan may cost more 

to operate and be more complex to maintain in the field. The speed advantage was considered the most important 

factor in choosing the turbofan.  

 The more traditional fighter jets shown in Table 1 are also being used in some CAS roles. These high-speed designs 

typically have low aspect rations, such as the F-16 with an aspect ratio of about 3.09 [REF]. When reviewing the 

different mission requirements, it seemed logical to incorporate a high aspect ratio wing into the design to promote 

lift and endurance of the aircraft. This conclusion was made from examining aircraft such as the Cessna A-37 

Dragonfly [REF] and the A-10 [REF], both of which have relatively straight wings with a high aspect ratio of  6.2 and 

6.54, respectively.  

 

Table 1. Engine Number Comparison of Different CAS Aircraft 

ACFT # Eng Thrust [lbf] 

Max TOW 

[lbf] T/W Range [nm] 

Armament 

[lbm] 

Armament / 

Max TOW 

A-37 [REF] 2 4,800 11,700 0.410 270 3,000 0.256 

AV-8B [REF] 1 23,800 31,000 0.768 90 9,000 0.290 

A-29 [REF] 1 4,046 11,900 0.34 450 3,400 0.286 

A-10 [REF] 2 18,130 51,000 0.355 695 16,000 0.314 

F-18 [REF] 2 44,000 66,000 0.667 1,275 17,750 0.269 

F-15 [REF] 2 50,000 68,000 0.735 3,000 3,310 0.049 

AH-64 [REF] 2 1,800 [SHP] 15,075 - 216 4,000 0.265 

 

 
V.  Baseline Configuration 

 

Figure 4 shows the conceptual design for the Golden Egg light attack aircraft that will be analyzed further in this 

report. The overall length, from tip to nozzle end, is 46 ft. The wingspan is 44 ft. The 6.17 ft tip chord and the 9.17 ft 

root chord provides a taper ratio of 0.673 and an aspect ratio of 6. The overall height of the aircraft will be 12 ft with 

the landing gear extended and 8 ft retracted. This aircraft will feature a tandem cockpit for a dual crew, top mounted 

air-intake for the single turbofan engine, and dual rudder to provide redundancy in the event of possible damage. The 

high aspect ratio wing will supply sufficient lift to meet the required payload capacity and mission performance. The 

aircraft shown has an example 3000 lb weapons setup with two air to ground missiles, two 250 lb bombs, one 500 lb 

bomb, and one 20 mm gun with associated ammo. The missiles and bombs hang under the wings while the gun and 

its ammo are contained within the fuselage, with the barrel of the gun protruding from underneath the wing at the 

connection point to the fuselage on the right side of the plane. The materials used in The Golden Egg have been chosen 

to reflect high performance while maintaining a reasonable budget, using high grade metals in the fuselage and 

airframe and composites in the wing and tail. 
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                      a.)  Side View                                                          b.) Top View 

 
c.) Front View 

 

Fig. 4 Initial concept – The Golden Egg - Layout 

 
VI.  Weight and Structures 

Table 2 provides a weight summary for the current concept aircraft. Structural weights were estimated from the 

component surface areas, thickness and material densities. The fuselage and vertical tails were just assumed to be 

skins of aluminum to represent an aluminum structure with a composite skin. Armor weight was obtained from adding 

additional thickness to applicable surface areas including about 30% of the fuselage and 50% of the wings and tail 

then applying a density. Additionally, estimated maximum fuel requirements, weapon requirements, general systems 

and crew contributed the additional weight components shown in Table 2. 

Aluminum will compose most of the fuselage structure other than the skin and armor.  Wing skin and inner 

stringers should be composed of a carbon/epoxy composite, while the wing spar(s) will be aluminum or titanium to 

accommodate the wing loading. The leading edges will employ aluminum or titanium for impact and erosion 

resistance. The horizontal tail will have a similar material composition to the wing. The vertical tail encounters 

additional loads and stresses unlike the horizontal tail and wings so most of it will be composed of aluminum or 

titanium other than the skin.  Layers of Kevlar bonded boron carbide serve as the general armor located primarily on 

the underside of the wing, underside of tail and crucial areas of the fuselage.  The canopy will be vacuum formed 

acrylic in line with other military aircraft. Composites may carry higher costs and maintenance than aluminum or 

titanium, but allow for lower takeoff weights and are reasonably repaired with a multi-tile panel design  

The definition of an inner structure will include the addition of full-cantilever wing spars, wing stringers, fuselage 

longerons, fuselage frames, a fuselage keel and leading-edge skins.  Armor thickness and location may change 

depending on weight and durability requirements.  Blast shields may be incorporated within the internal structure to 
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protect the engine and crew compartments. A V-n diagram will also be developed to describe the aircraft’s flight and 

maneuvering envelope based on maximum structural loading. 

 
Table 2. Weight Summary 

Component Weight (lbs) Component Weight (lbs) Component Weight (lbs) 

Fuselage* 1632 Fuel 11000 Weapons 3000 

Canopy 173 Fuselage Armor 437 General Systems 260 

Wings* 617 wing armor 1028 Crew 500 

Tail, Horizontal* 58 tail armor 97   

Tail, Vertical* 136 Engine 2365 Total Weight 21302 

*Weight of the outer surface with a thickness of 0.1181 inches (3 millimeters) for composite structures and 0.25 

inches for aluminum structures.  Currently does not include inner structures. 

 

VII.  Propulsion and Power 
 

A preliminary study was performed for each phase of the mission using a constraint master equation [11], seen 

as Eq. 1 below, to estimate what the thrust to weight ratio and wing loading needs to be as shown in Fig. 5. Takeoff 

and landing constraint curves are not shown because the limits were negligible. Based historical research of thrust to 

weight and wing loading for CAS aircraft and the curves of Fig. 5, the initial selection of engine to be used is a General 

Electric F404-IN20 Low Bypass Turbofan. The F404 has a baseline thrust of 16,000 lbf and a 1.85 lbm/lbf-h TSFC 

[11]. The F404 turbofan has increased reliability, improved fuel consumption, and updated computer from its earlier 

models.  
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Fig. 5 Thrust to Weight Ratio vs. Wing Loading 

 
Figure 5 illustrates the limits for this mission. Each phase of the mission was analyzed using a master constraint 

equation [11] to estimate what the thrust to weight ratio and wing loading need to be. Constants in the master 
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constraint equation were selected from current attack aircraft. Takeoff and landing constraint curves are not shown 

because the limits were negligible. Based on historical research of thrust to weight and wing loading for CAS 

aircraft and preliminary study performed to create Fig. 5, the initial selection of engine to be used is a General 

Electric F404-IN20 Low Bypass Turbofan. The F404 has a baseline thrust of 16,000 lbf and a 1.85 lbm/lmf-h TSFC. 

The F404 turbofan has increased reliability, improved fuel consumption, and updated computer from its earlier 

models. 

 

VIII.  Aerodynamics   
 

The data presented in Fig. 6 compares the performance of four candidate airfoils: the NACA 0008, NACA 22112, 

NACA 2418, and NACA 6716 airfoils. The 0008, 2418, and 6716 airfoils were selected as candidate airfoils because 

they have been used on retired or existing attack aircraft in the United States’ arsenal - the A-4 Skyhawk, A-37 

Dragonfly, and A-10 Thunderbolt II, respectively. The NACA 22112 was selected as a representative airfoil of the 

NACA five-digit family of airfoils. As shown in Fig. 6, the NACA 6716 offers lift coefficients substantially higher 

than the competing airfoils and exhibits relatively high lift to drag ratios at low angles of attack. However, the NACA 

6716 has a much higher moment coefficient suggesting that this airfoil would require a large empennage, possibly 

offsetting the performance advantages. As a result, the NACA 6716 was not selected. The remaining airfoils generally 

offered similar performance regarding lift coefficient and lift to drag ratio with certain important exceptions. First, the 

NACA 0008 appears to offer the worst performance of the remaining airfoils (lower Cl / Cd and relatively poor stall 

performance) and was not selected for this reason. The NACA 22112 and 2418 airfoils offer very similar performance. 

However, the NACA 2418 airfoil also has a substantially higher moment coefficient. Despite this, the NACA 2418 

airfoil was selected over the 22112 due to its superior stall performance. Specifically, at angles of attack exceeding 

twenty degrees, the loss of lift experienced by the NACA 22112 is precipitous when compared to the gradual loss of 

lift demonstrated by the NACA 2418. However, airfoil choice will be reconsidered further to ensure that the best 

possible airfoil for the aircraft’s missions is selected. Aerodynamic analysis of possible combinations of high-lift 

devices will be completed soon, followed by an analysis of a complete wing design and drag build-up estimates. 

  

Fig. 6 Airfoil Performance Comparison 

 

IX.  Performance 

 
Take off distance, ceiling, rate of climb, endurance, range, and maneuverability are all very important for the CAS 

aircraft support role. At this stage of design, meeting the take-off distance, endurance and range requirements are the 

most critical. Preliminary calculations for endurance and range are conducted using the current design’s lift and drag 

coefficients and specific thrust of the GE F404-IN20 engine. The craft is modeled to have a constant pessimistic TOW 

of 24,000 lbs neglecting reduced mass from fuel burn. In combination with modeling climbs with a standard maximum 

climb rate at the density altitude endpoint and the rest of the mission requirements a specific fuel consumption of 0.79 
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lbf/lbm/hr [4] was used in estimating the ferry and strike missions fuel requirements as shown in Table 3. Minimizing 

the takeoff distance can be achieved through the use of high lift devices, high thrust to weight ratios, and low wing 

loadings. Inspiration was drawn from the A-10 warthog since it has the most similar CAS role. The A-10 uses two 

segment fowler flaps and small inboard leading-edge slats to increase lift at takeoff in addition to turbojet propulsion 

which produce more thrust at higher altitudes than turboprop or conventional piston propellor engines. Our aircraft is 

designed to have similar high lift devices to the warthog which should greatly reduce the takeoff distance at the 

required density altitude. 

 

Table 3. Fuel Weight Needed for each Mission Stage 

 Design Mission Ferry Mission 

Phase: Task: 

Fuel 

Requirements 

[lbf] Task: 

Fuel 

Requirements 

[lbf] 

1 Warm Up/Takeoff 5 minutes - Warm Up/Takeoff 5 minutes - 

2 Takeoff at ≤ 4,000 ft  70 Takeoff  ≤ 4,000 ft  70 

3 

Climb to  ≥ 10,000 ft; with 

range credit 120 

Climb to cruise altitude ≥ 18,000 ft 

 (20,000 ft); with range credit  270 

4 Cruise 100 nm 870 Cruise 900 nm 7,100 

5 

Descend to 3,000 ft no range 

credit - 

Landing at austere field ≤ 4,000 ft, 

clear 50 ft obstacles - 

6 Loiter 4 hrs max 7,600 Taxi / Shutdown 5 minutes - 

7 

Climb to cruise altitude ≥ 

10,000 ft; with range credit 100 

Reserves Sufficient for climb to 

3,000 ft and 45 minute loiter 1,420 

8 Cruise 100 nm 870   

9 

Landing at austere field ≤ 4000 

ft -   

10 Taxi / Shutdown 5 minutes -   

11 

Reserves Sufficient for climb to 

3000 ft and 45 minute loiter 1,420   

 Total 11,000 Total 8,900 

 
X.  Stability and Control 

 

 Because the aircraft needs to perform close air support to ground forces, it needs to balance stability with 

maneuverability. The A-10 represents this balance, so our stability and control criteria were closely drawn from it. In 

order to ensure the aircraft has positive longitudinal static stability, the center of gravity will be located in front of the 

neutral point (i.e. closer to the nose). The A-10’s static margin of 0.13 was chosen for our initial design. The engine 

will be placed behind the wings which causes a nose up moment about the aircraft. With consideration of fuselage 

volume, the fuel and/or payload will be placed in front of the wings to place the center of gravity where we need it to 

be  Because this aircraft will remain subsonic throughout its mission, the wing will be placed so that its c/4 is near the 

center of gravity. A mid-wing configuration will be used to sustain neutral lateral stability without dihedral.  

 Aircraft control will be provided by two ailerons, two elevators, and two rudders. These control surfaces were 

chosen to complement the horizontal and vertical tails and the wing, and they will provide the aircraft with the 

capability to effectively pitch, roll, and yaw. The two-rudder design comes with the added benefit of redundancy in 

case one rudder is damaged in combat. 

 Additional calculations will be performed as the center of gravity, aerodynamic center of the wing and horizontal 

tail, and overall basic initial dimensions of the aircraft are defined. For each step, the aircraft will be proved either 

statically stable or unstable in pitch. Changes will be proposed to produce static stability. After the aircraft is 

determined to be statically stable in pitch, it can then be assessed for lateral-directional stability.  
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XI.  Mechanical Systems 
A. Armaments  

The three major components of the weapons systems are the gun, missiles, and bombs. Guns used on several past 

CAS aircraft were found to commonly range between 20 mm and 30 mm. The F-16 carries a 20 mm gun, the AV-8B 

Harrier II carries a 25 mm gun, and the Su-25 Frogfoot carries a 30 mm gun [5,6,7]. A 20 mm gun seemed the most 

reasonable from this data as it provided us with a large enough projectile and minimal weight. A smaller gun also 

allows for a larger amount of ammunition to be carried on missions. The M61 Vulcan 20mm cannon was chosen. 

Example equations for performance relate calculations can be found below in Eq’s 2-3, regarding thrust required and 

total mass of fuel for the flight of one leg traveling 100,000 feet at 320 ft/s, where the aircraft CD is used to find: 

                                    (2) 

 

                                      (3) 

 

When determining the best missile for the aircraft, it was assumed that the aircraft would be used in situations 

where air supremacy had been achieved. This assumption led to the choice of air-to-ground missiles instead of air-to-

air. Research showed that a commonly used missile on similar CAS aircraft was the AGM-114 Hellfire. The Hellfire 

is a 100-class missile weighing between 98 lbs and 107 lbs [8]. Previous aircraft with the Hellfire include the AH-64 

Apache, MQ-1 Predator, and the MQ-9 Reaper [8]. Research indicated the most common type of bomb used for similar 

aircraft was the MK-80 series. The requirements for our aircraft limited bomb size to a maximum of 500 lb. This 

allows for the use of the MK-81, a 250 lb bomb, and the MK-82, a 500 lb bomb. Both of these bombs are unguided 

bombs; however, the MK-82 can be fitted with joint direct attack munition (JDAM) guidance systems to improve 

accuracy. The JDAM addition for the MK-82 adds approximately 58 lbs, bringing the total bomb weight to 558 lbs. 

 

B. Landing Gear and Ejection Seat 

Based on the fact that the aircraft is made to be taking off and landing on semi-prepared runways, a tricycle 

landing gear with two wheels in the back and one in the front was chosen for the aircraft. This landing gear design 

was chosen over a tail dragger design in order to keep the plane as far off the ground as possible. This helps to prevent 

damage from loose debris from the rough conditions of the runway. Another added benefit to the tricycle design was 

increased pilot visibility during takeoff due to the front and rear of the plane being level. Having the plane level and 

further off the ground also simplifies rearmament. 

An ejection seat was chosen based on what was used in similar aircraft. It was found that the ACES II ejection 

seat was used in the A-10, F-15, F-16, and F-22 [9]. This ejection seat has been proven effective and reliable so it was 

chosen as the best fit for our aircraft. More information needs to be gathered for other mechanical systems needed for 

the aircraft. 

 

XII.Cost Analysis 
 

The cost analysis of the aircraft has been broken down into non-recurring, acquisition, and operating cost. Non-

recurring costs would include the developmental research, military airworthiness certifications, production tooling, 

facilities, and labor cost. This would be an estimate based on the same type of cost on current aircraft with similar 

features. Acquisition cost would include as detailed as possible a list of what materials, parts, and mechanical systems 

on the aircraft assuming the procurement of 50 aircraft.  Things like carbon epoxy cost per square inch being $0.32 

(in 2021) or the AGM-114 Hellfire costing $70,000 per unit (in 2021) will be needed to get a better idea of the 

acquisition cost. Operating cost much like the non-recurring cost will be based on aircraft with similar mechanical and 

propulsions systems on board to get a detailed idea of maintenance, fuel, or parts that might need replacing after a 

certain number of flight hours. This operating cost should provide what 15,000 hours over 25 years will look like cost 
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wise and a maintenance cost per flight estimate. While providing a cost-effective aircraft is imperative, shortcuts that 

prevent the best performance and execution of the design and ferry mission will not be made. 

 
XIII.Conclusion 

 
Team Angry Geese’s development and analysis of the Golden Egg aircraft will be refined in the coming months. 

Our current estimates indicate the initial conceptual design has the capability of meeting many of the design 

requirements, objectives, and goals. The analysis of the aircraft’s performance will be further completed as details of 

the aerodynamics, propulsion system, and internal structure are confirmed. Completion of the stability and control 

section will be dependent on the final center of gravity and aerodynamic center calculated. Cost analysis will only 

become more detailed as further research is made. Team Angry Geese will continue to improve its design and identify 

potential design risks through the duration of this project.  
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XV. Appendix 

 

 

 
Figure 7: Master Constraint 

 

 


