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ABSTRACT 

This work demonstrates the efficacy of direct adaptive augmentation on a robotic flexible 

system as an analogue of a large flexible aerospace structure such as a launch vehicle or 

aircraft.  To that end, a robot was constructed as a control system testbed.  This robot, 

named “Penny,” contains the command and data acquisition capabilities necessary to 

influence and record system state data, including the flex states of its flexible structures.  

This robot was tested in two configurations, one with a vertically cantilevered flexible 

beam, and one with a flexible inverted pendulum (a flexible cart-pole system). 

The physical system was then characterized so that linear analysis and control design 

could be performed.  These characterizations resulted in linear and nonlinear models 

developed for each testing configuration.  The linear models were used to design linear 

controllers to regulate the nominal plant’s dynamical states.  These controllers were then 

augmented with direct adaptive output regulation and disturbance accommodation.  To 

accomplish this, sensor blending was used to shape the output such that the nonminimum 

phase open loop plant appears to be minimum phase to the controller. 

It was subsequently shown that augmenting linear controllers with direct adaptive 

output regulation and disturbance accommodation was effective in enhancing system 

performance and mitigating oscillation in the flexible structures through the system’s 

own actuation effort. 
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1. Introduction 

 
Aerospace structures such as aircraft wings and fuselage components, space launch 

vehicles, and space station photovoltaic array trussing, tend to be flexible since mass is 

minimized to optimize flight system performance.  But flexible aerospace structures are 

also susceptible to oscillation dynamics in the presence of disturbances.  These 

disturbances may be the result of the system’s internal dynamics through the excitation of 

oscillatory modes (flexible modes) by the system’s own actuators.  They may also be the 

result of external forces such as aerodynamic loading, solar radiation impingement, 

astronaut movement, and a host of other momentum-transferring processes. 

 

 
Figure 1.1  The International Space Station is a collection of flexible structures such as 
trussing, modules, and solar arrays (NASA Image and Video Library, 2011). 
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1.1 Motivation 

Oscillatory behavior in a flexible aerospace system is usually deleterious.  At low 

amplitude, oscillation may simply result in poor system performance, e.g., vibrating a 

system which relies on high precision pointing such as deep space imaging or long-range 

point-to-point communication.  At high amplitude, a host of critical problems may arise 

such as reduced flight system stability margins or even structural failure resulting in total 

system loss (NESC, 2016).  Adequate system performance may rely, therefore, on 

mitigating the system’s oscillatory response to excitation.  This is typically accomplished 

by implementing one or more mitigation techniques, all with their own benefits, 

drawbacks, and relative applicability based on system requirements.  Common mitigation 

techniques in the aerospace industry include: 

1. Aerospace structures may be designed such that their natural frequencies (e.g., 

Figure 1.2) reside far from known excitation frequencies. 

2. Vibration attenuation elements may be built into the system to remove energy 

from excited flexible modes, much like an automobile’s shock absorbers 

removing energy from the suspension system’s spring-mass oscillator system. 

3. Filters may be applied to state measurements based on known resonant 

frequencies to prevent oscillatory signals from feeding back into the control 

system. 

4. Filters may be applied to the actuation signal to ensure that flex modes are not 

excited by the actuators themselves. 

5. State oscillation may be measured (or estimated) and subsequently cancelled by 

actuation effort. 
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Figure 1.2  Ares I Modal Displacements (Jang, et al., August 2011). 

 
Even with advances in non-linear control theory in recent decades, aerospace control 

system architectures remain primarily based on linear control theory.  Some reasons for 

this continued prevalence are their ease of implementation, intuitive behavior, and strong 

theoretical underpinnings which result in objective performance metrics (e.g., Figure 1.3) 

such as gain and phase margins (Orr & VanZwieten, 2012).   

 

 
Figure 1.3  Bode Plot example identifying showing gain and phase margins. 



4 
 

Another reason linear controllers, such as Proportional-Integral-Derivative (PID), 

remain the gold standard is that, often, years or decades of development have gone into 

existing control system development, which has resulted in satisfactory performance.  In 

these cases, there is often considerable institutional knowledge and intuition supporting 

their design and implementation, and an understandable reluctance to stray from tried-

and-true methods. 

Linear controllers do have weaknesses, especially when applied to flexible aerospace 

structures which are intrinsically nonlinear dynamical systems.  There are many 

approaches to linear analysis, based on a real nonlinear flexible system.  The most 

common approach to modeling elasticity, which offers many analytical conveniences 

(Greensite, 1967) is the superposition of elastic modes with the nonlinear rigid body 

dynamics (Orr J. , 2011).  To be subsequently modeled as a linear time-invariant (LTI) 

system for controller design and application still requires the linearization of dynamical 

processes around points of operation (Ogata, 2002).  Therefore, the ability of linear 

analysis and control methods to produce accurate performance metrics and achieve 

satisfactory state regulation depends on how accurately the linearized system model 

represents the real nonlinear system in the vicinity of each linearization point (Tobbe, 

Matras, & Wilson, 2009). 

To retain the original linear controller yet improve control system performance in the 

presence of disturbances and unmodeled dynamics, the approach taken here is to augment 

the existing control system architecture in such a way as to retain linear controller 

performance near equilibrium, yet nonlinearly increase actuation effort as state 

divergence increases.  This study investigates the application of direct adaptive control 



5 
 

for this purpose and does so by implementation on a robotic inverted pendulum cart-pole 

system. 

1.2 Introduction to Inverted Pendulum Systems 

Inverted pendula are unstable mechanical systems which have been utilized for the 

study of control system implementation since the 1950s (Åström & Furuta, 2000).  They 

have also been used to model flight control of space launch vehicles in the initial and 

latter stages of flight, when aerodynamic forces are too small for aerodynamic stability 

(Lundberg & Barton, 2010). 

 

 
Figure 1.4  Similarity between pole-cart and launch vehicle (Pei & Rothhaar, 2018). 

Many control architectures have been applied to the inverted pendulum problem 

throughout the years with examples far too numerous to exhaustively cover here.  

However, some notable examples organized by control system architecture are: model 

predictive-based (Magni, Scattolini, & Åström, 2002; Magni & Scattolini, 2004), H-

infinity-based (Katayama, Yubai, & Hirai, 2009; Rigatos, Siano, Abbaszadeh, Ademi, & 
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Melkikh, 2017), neural network-based (Anderson, 1989), fuzzy logic-based (Wang, 

Tanaka, & Griffin, 1996), sliding mode-based (Park & Chwa, 2009), time optimal (Y. Xu 

& Furuta, 2001; Holzhüter, 2004), feed forward-based Mazenc & Praly, 2000; Mazenc & 

Bowong, 2003), energy-based (Åström & Furuta, 2000; Siuka & Schoberl, 2009), and 

adaptive-based (Åström & Wittenmark, 1995; Pei & Rothhaar, 2018), where a rigid 

inverted pendulum under LQR control is adaptively augmented for improved stability 

and reference signal tracking.  For a more comprehensive treatment of inverted pendulum 

applications for control system research, the author commends to the interested reader’s 

attention (Lundberg & Barton, 2010; Boubaker & Iriarte, 2017). 

 

 
Figure 1.5  Examples of (a) rigid (b) flexible inverted pendula with lateral cart actuation. 

 

Flexible structures have recently gained considerable attention owing to their high 

strength to weight ratios, especially in the aerospace and micromechanical systems’ 

industries (Rahman & Isa, 2010).  Rigid and flexible structures not only exhibit different 

dynamics, but they require different state descriptions and means of measurement.  In the 
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case of rigid structures, the state variables are often readily obtained using rotary 

encoders, potentiometers, etc.  However, for the flexible structures, the state variables 

also include elastic deformations and their velocities (Yoshikawa, Ohta, & Kanaoka, 

2001), which are certainly more challenging to measure and model.  This issue will come 

up later as flexible structures are modeled, and their states estimated and regulated. 

To implement the theoretical work described herein, a wheeled mobile robot 

(“Penny”) is developed to accommodate control system testing with flexible structures 

including a fixed vertically cantilevered beam and a swiveling inverted pendulum.  

Sufficient instrumentation is included to obtain the requisite state information.  

MATLAB-based Simscape models are developed in addition to conventional ODE-based 

math models with state-space/transfer function representations.  These models are 

essential for system analysis and controller/estimator design and testing before 

implementation on Penny. 

1.3 Direct Adaptive Control and Augmentation for Disturbances 

Interest in controlling unmodeled plant dynamics began in earnest in the 1950’s as the 

USAF began testing high-performance aircraft.  The dynamics of these vehicles changed 

so dramatically throughout their flight envelopes that active automated stabilization by 

the adaptation of flight controller gains was the subject of intense study at the time 

(Ioannou & Sun, 1996).   

Model reference adaptive control (RMAC) was first proposed in (Whitaker, 1959; 

Osborn, Whitaker, & Kezer, 1961), yet lacked rigorous nonlinear stability analysis since 

(Lyapunov, 1892) was largely unknown in the West at the time.  The ensuing three 

decades saw many seminal advancements in MRAC theory by such luminaries as 
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Monopoli, Narendra, Landau, Annaswami, Goodwin, Åström, Ioannou, Ortega, Sobel, 

Balas, Barkana, and many others, which included the formalization of stability criteria, 

largely based on the theories of Lyapunov. 

At its essence, the goal of the MRAC approach seeks to make an ill-behaved 

dynamical system (the “plant”), in this case modeled as the linear time-invariant system 

 ൜
 𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵𝑢
𝑦 ൌ 𝐶𝑥  (1.1) 

act like a well-behaved reference model: 

 ൜
 𝑥௠ሶ ൌ 𝐴௠𝑥௠ ൅ 𝐵௠𝑢௠

 𝑦௠ ൌ 𝐶௠𝑥௠;   𝑥௠ሺ0ሻ ൌ 𝑥଴
 (1.2) 

If the original plant parameters are known, the gains that comprise the control signal 𝑢ሺ𝑡ሻ 

can be designed to force the plant state vector 𝑥ሺ𝑡ሻ to track 𝑥௠ሺ𝑡ሻ and consequently the 

plant output vector 𝑦ሺ𝑡ሻ tracks the reference model output vector 𝑦௠ሺ𝑡ሻ.  In the case 

when some plant parameters are unknown (which is nearly always the case for real 

systems), a tracking error state is defined as the difference between the plant and model 

outputs 

 𝑒௬ሺ𝑡ሻ ≡ 𝑦௣ሺ𝑡ሻ െ 𝑦௠ሺ𝑡ሻ (1.3) 

The idea is that there is an adaptive gain for the 𝑖th parameter defined as 

 𝑔ሶ௫௜ሺ𝑡ሻ ≡ 𝜎௜𝑒௬ሺ𝑡ሻ𝑥௠௜ሺ𝑡ሻ (1.4) 

where the parameter 𝜎௜ drives the tracking error to zero and the adaptive gain then 

remains constant.  The control law now takes the general form  

 
ቐ
𝑢ሺ𝑡ሻ ൌ෍𝑔௫௜ሺ𝑡ሻ𝑥௠௜ሺ𝑡ሻ ൌ 𝐺௫ሺ𝑡ሻ𝑥௠ሺ𝑡ሻ,

𝐺ሶ ൌ 𝜎௜𝑒௬ሺ𝑡ሻ𝑥௠௜ሺ𝑡ሻ
 (1.5) 
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Rigorous proofs determined that such a control architecture drives both tracking error and 

state error to zero.  However, the stability of the adaptive control could only be proven if 

the initial LTI plant’s transfer function was Strictly Positive Real (SPR).   

The idea of positive realness or “passivity” was first introduced in (Popov V. M., 

1962) for dynamical systems and in (Kalman, 1964) for system optimality.  Given the 

square LTI system (𝐴,𝐵,𝐶), its transfer function 𝑇ሺ𝑠ሻ ൌ 𝐶ሺ𝑠𝐼 െ 𝐴ሻିଵ𝐵 is called strictly 

positive real if there exists two positive definite symmetric matrices, P and Q, such that 

the following are satisfied: 

 ൜𝑃𝐴 ൅ 𝐴்𝑃 ൌ െ𝑄
𝑃𝐵 ൌ 𝐶்

 (1.6) 

It was soon shown that (1.6) implies that the system is minimum phase, meaning all roots 

of the transfer function numerator reside to the left of the 𝑗𝜔-axis, and that the system’s 

high-frequency gain, 𝐶𝐵, is symmetric positive definite (Ioannou & Tao, 1987).   

The relatively restrictive SPR condition was subsequently loosened in (Barkana & 

Kaufman, 1985), which defined Almost Strictly Positive Real (ASPR) systems as those 

for whom there exist a constant output feedback gain, 𝐺̅௘ such that the closed-loop system 

in (1.7) is SPR: 

 𝐴௖ ൌ 𝐴 െ 𝐵𝐺̅௘𝐶 (1.7) 

Therefore, although the original system is not SPR, if there exists two positive definite 

symmetric matrices, P and Q such that the following are satisfied: 

 
൜𝑃ሺ𝐴 െ 𝐵𝐺̅௘𝐶ሻ ൅ ሺ𝐴 െ 𝐵𝐺̅௘𝐶ሻ்𝑃 ൌ െ𝑄

𝑃𝐵 ൌ 𝐶்
 (1.8) 

then the system is said to be ASPR and the system is stabilizable in feedback via the 

positive definite gain 𝐺̅௘ (Fradkov, 1976).  Indeed, it was Fradkov who first published the 
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use of output feedback in the MRAC control law, later giving rise to the “Direct-MRAC” 

or DMRAC moniker. 

A particular deficiency of MRAC up to this point was the fact that the reference 

model needed to be of the order of the plant.  In 1978, the Command Generator Tracker 

(CGT), was formulated to address this issue.  The CGT model does not reproduce the 

plant, only its desired input-output behavior with sufficient detail to generate the desired 

trajectory (Broussard & Berry, 1978). 

Researchers soon began expanding DMRAC theory to accommodate large, flexible 

structural systems (Kaufman, Balas, Bar-Kana, & Rao, 1981) and (Barkana, Kaufman, & 

Balas, 1983), leading to its theoretical extension to infinite-dimensional systems (Wen & 

Balas, 1989), including discrete-time formulations (Balas M. , 1995). 

Advances were also being made in the area of disturbance mitigation.  Model tracking 

and disturbance rejection were incorporated into a unified architecture under the Internal 

Model Principle (Francis & Wonhan, 1975), where a differential equation describing the 

disturbance was included.  At the same time, C.D. Johnson developed a method of 

disturbance accommodation, also using an ODE description of the disturbance, in terms 

of full-state feedback and estimation where the stability analysis is a consequence of the 

separation principle (Johnson, 1976).  Accommodation of persistent disturbances was 

extended to adaptive control techniques in (Balas, Erwin, & Fuentes, 2000), and to robust 

DMRAC (Fuentes & Balas, 2002).  Disturbance accommodation would also be addressed 

for infinite-dimensional (distributed) systems in (Balas & Frost, 2016).  Recent advances 

have been made in adaptive augmentation for stabilization of infinite-dimensional 
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systems under linear fixed-gain control (Balas & Frost, 2018), which was also extended 

to nonminimum phase distributed systems (Balas & Frost, 2019). 
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2. Control and Augmentation 

Here we introduce the vast topic of direct adaptive control.  We will then narrow our 

focus to those elements of direct adaptive control most applicable to the stabilization of 

flexible aerospace structures.  Finally, we will lay the groundwork for how these 

architectures might be applied to real physical systems already under linear control, such 

as a launch vehicle or, in our case, the Inverted Pendulum Robot – Penny.  

2.1.  Full State Feedback and Separation Principle Control 

Where linear control is implemented and when it is reasonable to assume all 

dynamical states are available to the controller, full state feedback may be employed 

through direct measurement, or some states may be provided by an observer.  If all states 

are known and available at any time, given the linear plant model 

 ൜
 𝑥ሶ ൌ 𝐴𝑥 ൅ 𝐵𝑢
𝑦 ൌ 𝐶𝑥 ൅ 𝐷𝑢 , (2.1) 

if ሺ𝐴,𝐵ሻ𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒 then ∃ 𝐺 ∋ 𝑢 ൌ 𝐺𝑥 results in ሺ𝐴 ൅ 𝐵𝐺ሻ with arbitrary poles, 

allowing the control designer to place the system’s closed loop poles wherever desired 

(Kimura, 1975). 

When all states ሺ𝑥ሻ are not known, a state estimator may be designed and 

implemented along with the controller 𝐺.  The state estimator is designed such that: 

 
൜ 𝑥ො
ሶ ൌ 𝐴𝑥ො ൅ 𝐵𝑢 ൅ 𝐾ሺ𝑦 െ 𝑦ොሻ
𝑦ො ൌ 𝐶𝑥ො ൅ 𝐷𝑢

, (2.2) 

with the goal of driving the error state to zero: 

𝑒 ≡ ሺ𝑥ො െ 𝑥ሻ
  ௧→∞  
ሱ⎯⎯ሮ 0 (2.3) 

The systems error dynamics are now written as: 

 𝑒ሶ ൌ ሺ𝐴 െ 𝐾𝐶ሻ𝑒, (2.4) 
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where the eigenvalues of ሺ𝐴 െ 𝐾𝐶ሻ must have negative real parts to guarantee 

convergence of the state estimator.  If ሺ𝐴,𝐶ሻ𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 then ∃ 𝐾 ∋  ሺ𝐴 െ 𝐾𝐶ሻ has 

arbitrary poles, allowing the designer to place the system’s closed loop observer poles 

wherever desired (Kimura, 1975).  These two theorems are combined in the separation 

principle with feedback control law 𝑢 ൌ 𝐺𝑥ො operating on the plant modeled by (2.1) with 

state estimates from (2.2).  This combination of systems allows arbitrary 

controller/observer pole placement ⇔  ሺ𝐴,𝐵ሻ controllable and ሺ𝐴,𝐶ሻ observable. 

2.2.  Direct Model-Referencing Adaptive Control 

This section presents the framework for the control approach under study, Direct 

Model-Reference Adaptive Control, with further applications for disturbance mitigation.  

The foundational approach presented here will be later tailored for various applications in 

simulation and on the robot.  The following derivations can be found in various forms in 

the literature, e.g., (NESC, 2016) and (Frost, Balas, & Wright, 2009) 

Consider the linear, time-invariant, finite-dimensional system: 

 
ቊ

 𝑥௣ሶ ൌ 𝐴𝑥௣ ൅ 𝐵𝑢௣ ൅ 𝛤𝑢஽
𝑦௣ ൌ 𝐶𝑥௣;   𝑥௣ሺ0ሻ ൌ 𝑥଴

 (2.5) 

where the plant state, 𝑥௣ሺ𝑡ሻ, is an 𝑁-dimensional vector with 𝑀-dimensional control 

input vector, 𝑢௣ሺ𝑡ሻ, and M-dimensional sensor output vector, 𝑦௣ሺ𝑡ሻ; therefore, the plant 

is 𝑠𝑞𝑢𝑎𝑟𝑒.  The disturbance input vector, 𝑢஽ሺ𝑡ሻ, is MD-dimensional and is modeled by 

Disturbance Generator: 

 ൜ 
𝑢஽ ൌ 𝛩𝑧஽

𝑧ሶ஽ ൌ 𝐹𝑧஽;   𝑧஽ሺ0ሻ ൌ 𝑧଴
 (2.6) 
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where the disturbance state, 𝑧஽ሺ𝑡ሻ, is ND-dimensional.  Such descriptions of persistent 

disturbances were first used in (Johnson, 1976) to describe signals of known form but 

unknown amplitude. 

Equation (2.6) can be rewritten in the following equivalent form: 

 ൜
𝑢஽ ൌ 𝛩𝑧஽
𝑧஽ ൌ 𝐿𝜑஽

 (2.7) 

where 𝜑஽ is a vector composed of the known basis functions which make up the 

disturbance, and L is a matrix of dimension 𝑁஽xdim(𝜑஽).  Therefore, all elements of 𝑢஽ 

exist in the disturbance space 𝑠𝑝𝑎𝑛ሼ𝜑ଵ,𝜑ଶ, … ,𝜑௡஽ሽ and 𝜑஽ ≡ ሾ𝜑ଵ,𝜑ଶ, … ,𝜑௡஽ሿ்.  The 

direct adaptive controller is designed to mitigate disturbances of this form.  For example, 

Equation (2.8) describes a sinusoidal disturbance of known frequency, 𝜔஽, but unknown 

amplitude and phase. 

 
൝
𝛩 ൌ ሾ1    0ሿ

𝐹 ൌ ൤
0 1

െ𝜔஽
ଶ 0൨

 
(2.8) 

Of course, if the plant and disturbance generator parameter matrices are known, a 

Separation Principle-based estimator/controller can be developed to manage plant states 

and suppress persistent disturbances via feedback.  In this formulation it is not assumed 

that the plant and disturbance generator parameter matrices are known.  It is, however, 

assumed that the disturbance basis vector 𝜑஽ is known, which is reasonable for our 

purposes, since the frequency of Penny’s oscillatory modes are readily obtained through 

direct measurement and analysis (reference Section 5.1). 

The control objective will now be to cause the system output, 𝑦ሺ𝑡ሻ, to asymptotically 

track the output of a known reference model: 
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 ൜
 𝑥௠ሶ ൌ 𝐴௠𝑥௠ ൅ 𝐵௠𝑢௠

 𝑦௠ ൌ 𝐶௠𝑥௠;   𝑥௠ሺ0ሻ ൌ 𝑥଴
 (2.9) 

where the reference model state, 𝑥௠ሺ𝑡ሻ, is an 𝑁௠-dimensional vector.  The reference 

model output, 𝑦௠ሺ𝑡ሻ, has the same dimension as the plant output, 𝑦ሺ𝑡ሻ.  Actuation of the 

reference model is accomplished by 𝑢௠ሺ𝑡ሻ , which is generated by 

 𝑢ሶ௠ ൌ 𝐹௠𝑢௠;  𝑢௠ሺ0ሻ ൌ 𝑢଴
௠ (2.10) 

The reference model parameters ሺ𝐴௠,𝐵௠,𝐶௠,𝐹௠ሻ are assumed known. 

Using the process described in (Wen & Balas, 1989), “Ideal Trajectories” are defined 

for the plant given by (2.9) as linear combinations of the reference model states, the 

control inputs, and the disturbance inputs: 

 
൜ 
𝑥∗ ൌ 𝑆ଵଵ

∗ 𝑥௠ ൅ 𝑆ଵଶ
∗ 𝑢௠ ൅ 𝑆ଵଷ

∗ 𝑧஽
𝑢∗ ൌ 𝑆ଶଵ

∗ 𝑥௠ ൅ 𝑆ଶଶ
∗ 𝑢௠ ൅ 𝑆ଶଷ

∗ 𝑧஽
 (2.11) 

where the Ideal Trajectory 𝑥∗ሺ𝑡ሻ is produced by the Ideal Control 𝑢∗ሺ𝑡ሻ from: 

 ൜
 𝑥ሶ∗ ൌ 𝐴𝑥∗ ൅ 𝐵𝑢∗ ൅ 𝛤𝑢஽ ;  𝑥∗ሺ0ሻ ൌ 𝑥଴
 𝑦∗ ൌ 𝐶𝑥∗ ൌ 𝑦௠

 (2.12) 

Such ideal trajectories, if they exist, will be linear combinations of the reference 

model state and input, as shown in Equation (2.11), and will produce exact output 

tracking in a disturbance-free plant (2.12). 

Model Matching Conditions are obtained by substituting (2.11) into (2.12) using (2.9) 

and (2.10): 

 𝐴𝑆ଵଵ
∗ ൅ 𝐵𝑆ଶଵ

∗ ൌ 𝑆ଵଵ
∗ 𝐴௠ 

𝐴𝑆ଵଶ
∗ ൅ 𝐵𝑆ଶଶ

∗ ൌ 𝑆ଵଶ
∗ 𝐹௠ ൅ 𝑆ଵଵ

∗  

𝐴𝑆ଵଷ
∗ ൅ 𝐵𝑆ଶଷ

∗ ൅ 𝛤𝛩 ൌ 𝑆ଵଷ
∗  

𝐶𝑆ଵଵ
∗ ൌ 𝐶௠ 

 

 

(2.13) 
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𝐶𝑆ଵଶ
∗ ൌ 0 

𝐶𝑆ଵଷ
∗ ൌ 0 

These are necessary and sufficient conditions for the existence of ideal trajectories in the 

form of Equation (2.11).  Solutions to these matching conditions must exist for later 

analysis, but explicit solutions are not required for the adaptive controller design (Balas 

M. , 1995). 

Theorem 1:  If CB is nonsingular, there exist unique solutions to the Linear Matching 

Conditions (2.13) when no eigenvalues of 𝐴௠,𝐹௠, or 𝐹 are transmission zeroes of 𝐴.  See 

Section Error! Reference source not found. for proof (Frost, Balas, & Wright, 2009). 

To achieve the desired control objective, i.e., for the plant to asymptotically track the 

output of the reference model, the output error vector is defined as 

 𝑒௬ ≡ 𝑦௣ െ 𝑦௠, (2.14) 

with the control goal: 𝑒௬ ௧→∞
ሱ⎯ሮ 0.  Therefore, state tracking errors are defined as follows:  

 𝑒∗ ≡ 𝑥 െ 𝑥∗ (2.15) 

Equations (2.12) and (2.15) are now used to develop the output error as: 

 𝑒௬ ≡ 𝑦 െ 𝑦௠ ൌ 𝑦 െ 𝑦∗ ൌ 𝐶𝑥 െ 𝐶𝑥∗ ൌ 𝐶𝑒∗ (2.16) 

If we define 𝛥𝑢 ≡ 𝑢 െ 𝑢∗, from (2.5) and (2.12) we have: 

 𝑒ሶ∗ ൌ 𝐴𝑒∗ ൅ 𝐵𝛥𝑢 (2.17) 

A fixed gain controller defined as 

 𝑢௣ ൌ 𝑢∗ ൅ 𝐺௘∗𝑒௬ (2.18) 

can now be used in plant model (2.5) and combined with (2.12) and the output error from 

(2.16) to obtain the error dynamics tracking model: 
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 𝑒ሶ∗ ൌ ሺ𝐴 ൅ 𝐵𝐺௘∗𝐶ሻ𝑒∗ (2.19) 

The derivations above can be summarized as: 

Theorem 2:  If ሺ𝐴,𝐵,𝐶ሻ is output feedback stabilizable with a gain 𝐺௘∗, (the 

eigenvalues of 𝐴஼ ≡ 𝐴 ൅ 𝐵𝐺௘∗𝐶 are all to the left of the 𝑗𝜔-axis), then the fixed gain 

controller in (2.18) will produce local output tracking, i.e., lim
t

ey  0  (NESC, 2016). 

Note that output feedback stabilization can be accomplished when M + P + ND > N 

and ሺ𝐴,𝐵,𝐶ሻ is controllable and observable (Kimura, 1975).  This does not require 

detailed knowledge of the parameter matrices, suggesting that an adaptive control 

architecture might be possible. 

The control objective for the system of the plant (2.5) and disturbance generator (2.7) 

will be accomplished by an adaptive control law of the form: 

 𝑢௣ ൌ 𝐺௠𝑥௠ ൅ 𝐺௨𝑢௠ ൅ 𝐺௘𝑒௬ ൅ 𝐺஽𝜑஽ (2.20) 

where 𝐺௠,𝐺௨,𝐺௘ and 𝐺஽ are gain matrices of compatible dimension.  We make 

asymptotic output tracking possible by developing the gain adaptation laws by 

substituting 𝑧஽ in the form given in (2.7) into (2.11) and using the result in (2.18): 

 

൞

   𝛥𝐺௨ ≡ 𝐺௨ െ 𝑆ଶଶ
∗

   𝛥𝐺௠ ≡ 𝐺௠ െ 𝑆ଶଵ
∗

  𝛥𝐺௘ ≡ 𝐺௘ െ 𝐺௘∗

     𝛥𝐺஽  ≡ 𝐺஽ െ 𝑆ଶଷ
∗ 𝐿

 (2.21) 

Ideal Trajectories from (2.11), Ideal Control from (2.12), and the adaptive control 

law from (2.20), now allow us to define: 

 𝛥𝑢 ൌ 𝑢 െ 𝑢∗ 

ൌ 𝛥𝐺௨𝑢௠ ൅ 𝛥𝐺௠𝑥௠ ൅ ሺ𝐺௘∗ ൅ 𝛥𝐺௘ሻ𝑒௬ ൅ 𝛥𝐺஽𝜑஽ 
(2.22) 

We now expand (2.17) given (2.16) and (2.22), resulting in: 



18 
 

 𝑒ሶ∗ ൌ 𝐴𝑒∗ ൅ 𝐵𝛥𝑢 

ൌ ሺ𝐴 ൅ 𝐵𝐺௘∗𝐶ሻ𝑒∗ ൅ 𝐵ሾ𝛥𝐺௨ 𝛥𝐺௠ 𝛥𝐺௘ 𝛥𝐺஽ሿ𝜂 

ൌ 𝐴஼𝑒∗ ൅ 𝐵𝛥𝐺𝜂 

(2.23) 

where 𝜂 ≡ ሾ𝑢௠்   𝑥௠்   𝑒௬்  𝜑஽
்ሿ.  We now combine (2.16) and (2.23) and obtain the Tracking 

Error: 

 
൜
𝑒ሶ∗ ൌ 𝐴஼𝑒∗ ൅ 𝐵𝛥𝐺𝜂
𝑒௬ ൌ 𝐶𝑒∗

 (2.24) 

We now specify the Adaptive Gain Laws: 

 𝐺ሶ ൌ െ𝑒௬𝜂்𝜎 (2.25) 

where 𝜎 is the gain weighting matrix which is diagonal, positive definite (i.e.,𝜎 ≡

𝑑𝑖𝑎𝑔ሾ𝜎௨,𝜎௠,𝜎௘ ,𝜎஽ሿ ൐ 0) used to tune the adaptation rate.  This results in the following: 

 

⎩
⎪
⎨

⎪
⎧  𝐺ሶ௨ ൌ െ𝑒௬𝑢௠் 𝜎௨

 𝐺ሶ௠ ൌ െ𝑒௬𝑥௠் 𝜎௠
𝐺ሶ௘ ൌ െ𝑒௬𝑒௬்𝜎௘

 𝐺ሶ஽ ൌ െ𝑒௬𝜑஽
்𝜎஽

 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

2.3.  Closed-loop Stability Analysis 

The closed-loop adaptive system is now of the form  

 

ቐ

𝑒ሶ∗ ൌ 𝐴௖𝑒∗ ൅ 𝐵𝛥𝐺𝜂
𝑒௬ ൌ 𝐶𝑒∗

𝛥𝐺ሶ ൌ 𝐺ሶ ൌ െ𝑒௬𝜂்𝜎
 (2.30) 

Because 𝛥𝐺 ≡ 𝐺 െ 𝐺∗ we are able to obtain (2.30) from (2.25) where 𝐺∗ ≡

ሾ𝑆ଶଶ
∗  𝑆ଶଵ

∗  𝐺௘∗ 𝑆ଶଷ
∗ ሿ.  The stability of (2.30), which is a nonlinear system, can be analyzed 

using Lyapunov Theory (Vidyasagar, 1993).  In doing so, we first form the positive 

definite functions: 
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൞
𝑉ଵሺ𝑒ሻ ≡

1
2
𝑒∗்𝑃𝑒∗

𝑉ଶሺ𝛥𝐺ሻ ≡
1
2
𝑡𝑟ሺ𝛥𝐺𝜎ିଵ𝛥𝐺்ሻ

 (2.31) 

where P > 0 is the solution of the following Kalman-Yacubovic Conditions:  

 ൜𝐴௖
்𝑃 ൅ 𝑃𝐴௖ ൑ െ𝜀𝐼; 𝜀 ൐ 0

𝑃𝐵 ൌ 𝐶்
 (2.32) 

From (Balas & Fuentes, 2004) we know existence of a symmetric positive definite 

solution of the Kalman-Yacubovic Conditions is known to be equivalent to the following: 

 𝑇௖ሺ𝑠ሻ ≡ 𝐶ሺ𝑠𝐼 െ 𝐴௖ሻ𝐵  strictly positive real (SPR) (2.33) 

This means that, for some 𝜀 ൐ 0, 

 𝑅𝑒 𝑇஼ ሺെ𝜎 ൅ 𝑗𝜔ሻ ൒ 0 | ∀ 𝑅𝑒ሺ𝜔ሻ (2.34) 

This equivalence is proven in Appendix B of (Vidyasagar, 1993).  Computing the 

derivatives 𝑉ሶ௜ along the trajectories of (2.31) using (2.32), we have 

 ൝ 𝑉
ሶ ଵ ൌ െ

1
2
𝑒∗்𝑄𝑒∗ ൅ 𝑒∗்𝑃𝐵𝛥𝐺𝜂 ൅ 𝑒∗்𝑃𝛥𝑔 ൌ െ

1
2
𝑒∗்𝑄𝑒∗ ൅ 𝑒௬்𝑣 ൅ 𝑒∗்𝑃𝛥𝑔

𝑣 ≡ 𝛥𝐺𝜂
 (2.35) 

and 

 𝑉ሶଶ ൌ 𝑡𝑟ሺ𝛥𝐺ሶ𝜎ିଵ𝛥𝐺்ሻ ൌ 𝑡𝑟ሺെ𝑒௬𝜂்𝜎ሻሺ𝜎ିଵ𝛥𝐺்ሻ 

ൌ െ𝑡𝑟ሺ𝑒௬𝑣்ሻ ൌ െ𝑡𝑟ሺ𝑒௬்𝑣ሻ ൌ െ𝑒௬்𝑣 
(2.36) 

We can now form  

 
𝑉 ≡ 𝑉ଵ ൅ 𝑉ଶ ⇒ 𝑉ሶ ൌ െ

1
2
𝑒∗்𝑄𝑒∗ (2.37) 

with 𝑉ሶ ൑ 0.  Therefore, stability of the zero equilibrium points of (2.31) are guaranteed 

and all trajectories of (2.32) remain bounded.  This result, in turn, guarantees that all 

trajectories ሺ𝑒∗,𝛥𝐺ሻ are bounded.  However, to prove convergence, i.e., that 𝑒∗ ௧→ஶ 
ሱ⎯⎯ሮ0 
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(and hence 𝑒௬ ≡ 𝑦 െ 𝑦௠ ൌ 𝐶𝑒∗ ௧→∞ሱ⎯ሮ 0), we apply Barbalat’s Lemma as described in 

Error! Reference source not found. (NESC, 2016). 

This stability analysis proves asymptotic tracking occurs with bounded adaptive 

gains.  It does not prove convergence of 𝛥𝐺 (𝛥𝐺
௧→∞
ሱ⎯ሮ0ሻ, although 𝛥𝐺 convergence is not 

required for the adaptive controller to achieve its goals. 

2.4.  Augmented Direct Adaptive Regulation and Disturbance Mitigation 

Recall from Section 2.2 the feedback control law 

 𝑢௣ ൌ 𝐺௠𝑥௠ ൅ 𝐺௨𝑢௠ ൅ 𝐺௘𝑒௬ ൅ 𝐺஽𝜑஽  

where the adaptive gain matrices 𝐺௠,𝐺௨,𝐺௘ ,𝑎𝑛𝑑 𝐺஽ are updated as follows: 

 

⎩
⎪
⎨

⎪
⎧   𝐺ሶ௨ ൌ െ𝑒௬𝑢௠் 𝜎௨

   𝐺ሶ௠ ൌ െ𝑒௬𝑥௠் 𝜎௠
𝐺ሶ௘ ൌ െ𝑒௬𝑒௬்𝜎௘

  𝐺ሶ஽ ൌ െ𝑒௬𝜑஽
்𝜎஽

 

 

Reference model terms are typically included in the control law to improve tracking 

performance (NESC, 2016).  For application on Penny, the adaptive controller is meant to 

regulate excursions away from the operating region where the fixed gain controllers are 

designed.  If it is assumed that 𝑦௠ሺ𝑡ሻ ൌ 0, the stability analysis above still holds, and the 

derived adaptive control law becomes (2.38), whose closed-loop system diagram is 

shown in Figure 2.1. 

 𝑢௔ ൌ 𝐺௘𝑒௬ ൅ 𝐺஽𝜑஽ 

ቊ
𝐺ሶ௘ ൌ െ𝑒௬𝑒௬்𝜎௘

 𝐺ሶ஽ ൌ െ𝑒௬𝜑஽
்𝜎஽

 
(2.38) 
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Figure 2.1  Direct adaptive state regulation and disturbance accommodation. 

 

In (Balas & Frost, 2019) it was proven that any nonminimum phase LTI system 

controlled by a linear fixed-gain controller with stable actuator dynamics can be 

stabilized through the direct adaptive augmentation, shown in Figure 2.2.   

 

 

Figure 2.2  Direct adaptive state regulation and disturbance accommodation. 

 
2.5.  Sensor Blending 

From Section 2.2 we know to that, guarantee asymptotic state convergence with 

bounded adaptive gains, the LTI system must be minimum phase (stable transmission 
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zeros) and have a positive real high frequency gain (𝐶𝐵 ൐ 0).  But Section 2.2 does not 

provide guidance on how to approach the adaptive augmentation of linear time-invariant 

systems that do not meet the ASPR criterion.  Indeed, transmission zeros are invariant 

under coordinate transformations and linear feedback, so these approaches cannot be used 

to modify any unstable transmission zeros in an open-loop linear plant.   

Here we use the output shaping algorithm presented in (Hartman, 2011), which 

allows us to arbitrarily place plant zeros using a linear combination of state outputs. 

 

1. Nominal system is expressed in control canonical form, with Controllability 

matrix H and transformations: 

a. 𝐴௖௖ ൌ 𝑇ିଵ𝐴̅𝑇 

b. 𝐵௖௖ ൌ 𝑇ିଵ𝐵ത  

c. 𝐶௖௖ ൌ 𝐶𝑇 

d. 𝑇 ൌ 𝐻 𝐻ିଵ 

2. Determine desired numerator polynomial that meets ASPR requirements. 

3. Define 𝐶ሚ௖௖ ൌ ሾ𝑐଴  𝑐ଵ  𝑐ଶ … 𝑐௡ିଵሿ, which are the coefficients of the desired 

numerator polynomial. 

4. Transform 𝐶ሚ௖௖ into standard form:  𝐶௖௖ ൌ 𝐶ሚ௖௖𝑇ିଵ, where 𝐶ሚ is the blended output. 

 

This algorithm results in an output matrix that is a linear commination of the system 

state, as well as a new high-frequency gain 𝐶ሚ𝐵ത ൌ 1.  See Section 0 for Matlab Script. 
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3. Testbed Hardware 

From the beginning of this research, high importance was placed on implementing the 

theoretical control concepts discussed herein on real hardware.  Motivations which 

impacted hardware design were the desire to utilize parts on-hand to control costs, and 

that the system should be portable for ease of transport, setup, and demonstration.  These 

early decisions doubtless led to the protracted development of the Inverted Pendulum 

Robot (“Penny”), since much effort was made to compensate for, and ultimately replace, 

sub-standard hardware. 

The following sections detail the robotic testbed system, Penny, as it exists today.  

However, the development of Penny was an iterative process executed over several years 

as hardware testing and control software implementation campaigns identified 

deficiencies.  Additional functionality was also added to Penny over time to increase 

capability and usability, and the rationale for these upgrades will be discussed in the 

following sections.  

3.1 Cart System 

Penny is a cart-pole system with maximum cart dimensions shown in Figure 3.1.  

Significant components are further identified in Figure 3.2 and Figure 3.3. 

 

 
Figure 3.1  Penny cart CAD model: isometric view and maximum outer dimensions. 
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Figure 3.2  Upper Penny CAD model view with significant components identified. 

 

 
Figure 3.3  Lower Penny CAD model view with significant components identified. 
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The chassis of the cart system is comprised of aluminum extrusions, plates, and 

brackets manufactured by Pitsco™.  These components were chosen for their availability 

and ease of assembly, since these parts come pre-drilled with standard mounting hole 

patterns.  Four Actobotics 12V gear motors serve to actuate the cart, and rotary encoders 

built into the front two gear motors provide the wheel angular position measurements 

used to compute cart position (𝑥) and velocity (𝑥ሶ ).   

Motor power is metered by two electronic speed controllers (ESC) with ESC1 

powering the left side motors and ESC2 powering the right, giving Penny skid steering 

capability, although this was not used in this work.  Power is fed to the ESCs via a 12V 

regulator.  This was done when it was determined that one source of undesirable drive 

train dynamics stems from the variability in battery output voltage.  A 4-cell lithium 

polymer (LiPo) battery provides electrical power to the 12V regulator.  This battery fully 

charges to 16.8V and is nearly fully depleted around 13V, so the 12V regulator provides 

the ESCs with a steady 12V throughout the batteries’ operational range.  Early operations 

mandated the user check battery voltage often to protect the battery from discharging past 

recovery (by a “smart” charger) and to know when to remove it for recharging.  This 

operational inefficiency was initially mitigated using a battery cell monitor and later 

improved through the addition of a total Voltage/Current monitor. 

 
Table 3.1  Drive Train Hardware 

Item Description 
Front Gear Motors Actobotics 638326, 12V, 165 RPM, NE12 mag. encoders 
Rear Gear Motors RobotZone 638278, 12V, 165 RPM 
Speed Controllers VexPro Victor SP 
Wheels Traxxas 3674, Nylon, 2.2 inch 
Tires Pro-Line Striker II 
 



26 
 

3.2 Pendulum System 

Figure 3.4 shows the hardware associated with utilizing the inverted pendulum 

system.  The clamping structure on the left secures a long flat metal plate which 

represents one of the flexible structures available for analysis on Penny.  This long metal 

plate (shown in Figure 3.5) is technically not a pendulum, as it does not have a single axis 

of rotation, yet it is briefly discussed here for convenience.  Unlike a true inverted 

pendulum, this vertically cantilevered plate always has a base angle of zero.  However, its 

tip angle, indicative of its flexed state, is measured. 

On the right side of Figure 3.4 sits the swiveling pendulum system.  The holder 

secures a rod of half-inch square cross section and is attached to the mounting structure 

via a steel axle and roller bearings, ensuring a low friction single-degree-of-rotation.  

Affixed to the axle is a rotary encoder which provides the pendulum’s base angle 

measurement.   

As various control laws were being implemented and tested on Penny, it soon became 

clear that a repeatable means to reset the pendulum to vertical would be beneficial.  A set 

of servo-actuated cams was implemented to accomplish this task.  These cams position 

the holder to a predetermined vertical position and rapidly rotate away, releasing the 

pendulum when the controller starts running. 

It was also determined that the incremental encoder would always introduce some 

zero-angle error upon reset, since the reset cams would never perfectly zero the 

pendulum.  The control system would then be commanded to balance the system at an 

angle that was not quite zero, and the cart would slowly accelerate in the direction of this 

error as the controller tried to hold a non-zero angle.  To combat this issue, an IMU was 
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added to the pendulum base to provide absolute positioning with respect to the gravity 

vector. 

 

 
Figure 3.4  Penny pendulum system hardware on Cart. 

 
3.3 Configurations 

Figure 3.5 shows Penny’s two principal configurations utilized under this work.  The 

first configuration vertically cantilevers a flat aluminum plate.  A gyroscope is mounted 

at the plate tip to report the angular rate of change (flex rate).  The second configuration 

mounts a long square aluminum rod in Penny’s swiveling pendulum holder.  This rod is 

quite flexible and can also utilize a gyroscope at its tip for flex state information if 

desired.   
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Figure 3.5  Penny in (a) CFS and (b) FIP configurations 

 
A brace can also be added to this flexible pendulum to work with the system’s rigid 

body dynamics (although a small change in pendulum mass occurs as well).  This brace is 

a thin aluminum L-beam extrusion that runs the exposed length of the pendulum, affixed 

at intervals with small patches of 3M™ Dual Lock™. 

From this point forward, these configurations are abbreviated CFS and FIP, for 

Cantilevered Flexible Structure, and Flexible Inverted Pendulum, respectively.  
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3.4 Electrical Systems 

The balance of Penny is comprised of electrical systems which store and distribute 

power, provide the user command and control capabilities, measure system states, and 

manage internal and external communications. 

3.4.1. Electrical Power Storage and Distribution 

Electrical power is provided by a Lithium polymer (LiPo) battery.  Any LiPo battery 

with 4-6 cells (14.8V to 22.2V nominal) that fits under the chassis can be used to power 

Penny, the lower bound set by the need to regulate down to the 12V motor voltage and 

the upper bound set by the maximum input voltage of the electronics regulator. 

Battery power is first fed to the 5V electronics regulator which reduces battery 

voltage down to power the reset servos and the microcontrollers, which in turn power the 

robot’s wired instrumentation (see Figure 3.6).   

Battery power is then fed to the power switch which, when closed, sends power to the 

drive train’s 12V regulator.  The 12V regulator powers the two motor controllers, whose 

outputs are sent to the 12V power bus and distributed to the motors, one motor controller 

powering the two motors on each side of the robot. 

 

 
Figure 3.6  Penny Cart power distribution diagram. 
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Table 3.2  Power Storage and Distribution Main Components 

Item Description 
Battery ThunderPower G8 series 3850 mAh LiPo 
5V Regulator Castle Creations 10A BEC 
12V Regulator Castle Creations 20A BEC PRO 

 

3.4.2. Command and Control 

Command and control (C&C) functionality are provided by Microcontroller 1, an 

Arduino Mega Rev3.  This board powers the three rotary encoders, receives their 

measurements, and communicates with the Xbee wireless module.  It also builds the 

PWM signals that are sent to the ESCs, although under this work, the same signal is sent 

to both ESCs as the robot is intended to always drive straight when it serves as Beam or 

Pendulum actuation. 

Microcontroller 1 also provides the main programming and telemetry output interface 

for the robot via its USB 2.0 port.  This is where a laptop running Matlab/Simulink is 

connected.  Simulink deploys a server program to Microcontroller 1 which executes 

Simulink programs on the Arduino, and which communicates telemetry back to Simulink 

for near real-time display and recording. 

3.4.3. Instrumentation 

As mentioned previously, Cart horizontal position (𝑥) and horizontal translation rate 

(𝑥ሶ ) are obtained by measuring the rotation of the front wheels.  This is performed by 

magnetic rotary encoders mated to the front drive motors’ rotor shaft and measured by 

Microcontroller 1.  Penny’s instrumentation power and data distribution systems are 

shown schematically in Figure 3.7 for the Cart and lower Pendulum, and in Figure 3.9 for 

the upper Pendulum. 
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Figure 3.7  Cart instrumentation schematic. 

 
The inverted pendulum base angle (𝜃௕) and base angular rate (𝜃௕ሶ ) are obtained using 

two instruments, a high-fidelity optical rotary encoder measuring angle relative to the 

starting angle, and an inertial measurement unit (IMU) measuring angle relative to the 

local gravity vector.   

 

 
Figure 3.8  Tip instrumentation mounted on FIP and CFS (inset) configurations.  
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To extract explicit flex state information, an IMU was mounted to the top of the 

flexible structures in CFS and FIP configurations (reference Table 3.3 and Figure 3.8).  

As it was desirable not to route wires to this instrument and impact system dynamics, a 

wireless telemetry system was also implemented (reference Figure 3.8 and Figure 3.9). 

 
Table 3.3  Instrumentation Components 
Item Description 
Microcontroller 1,2 Arduino with ATmega 2650, 16 MHz microprocessor 
Wheel Encoders NE12 encoders, 2442.96 counts per wheel revolution 
Pendulum Encoder US Digital EM2 optical encoder, 0.036 degree resolution 
Base IMU MicroStrain® 3DM-6X3-25 AHRS 
Radios, Cart and Tip XB24-AWI-001 revE, 2.4 GHz, SparkFun Xbee Explorer 
Tip Gyroscope MPU 6050 MEMS IMU on GY-521 breakout board 
Tip Microcontroller Pro Micro with ATmega32U4, 16 MHz 

 

 
Figure 3.9  Tip instrumentation wiring schematic. 
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4. Testbed Software 

 
The following section highlights the various software programs developed under this 

work, both internal to the robot and external from the Simulink user interface.  Refer to 

Appendix 0 for more on the subject. 

4.1.  Software for Intra-robot Sensing and Communication 

For the tip sensor measurements (θ୲ or θሶ ୲, depending on IMU configuration), 

software was written in C using the Arduino Integrated Development Environment (IDE).  

This code reads MPU6050 gyroscope data for telemetering to Microcontroller 1 on the 

cart via a pair of Xbee radios (see Appendix 0 for code). 

The code to read the base IMU sensor measurement (θୠ) on the swiveling pendulum 

holder was also written in C using the Arduino IDE.  This code allows Microcontroller 2 

to read the 3DM-6X3-25 IMU data via a logic-level shifter (see Appendix 0 for code).  

This program also builds the 12-bit DIO signal that sends the θୠ measurement to 

Microcontroller 1 where it is subsequently made available to the Simulink user interface.   

4.2. Penny Programming and Data Acquisition  

Matlab’s Simulink application is the main programming and data acquisition interface 

to Penny.  In addition to Simulink’s core functionality, two additional support packages 

were installed and used in data acquisition: Simulink Support Package for Arduino 

Hardware, and the Rensselaer Arduino Support Package.  These support packages 

provide certain interface blocks allowing the hardware to be accessed through the 

Simulink UI.  A Simulink model could then be deployed to the Arduino and run stand-

alone while untethered from Simulink.  In this case, Simulink models were run on the 

hardware in External Mode.  This mode builds and deploys a server program to the target 
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Arduino, allowing near real-time communication between the Arduino and the Simulink 

UI.   

Figure 4.1 shows the top-level Simulink command and control interface model for 

Penny FIP (the CFS interface is simpler and nearly identical).  This model is launched 

from Matlab and all of the initialization parameters are written to the Matlab workspace 

by running a startup script.  This program can be used to run control laws, command 

actuators, and acquire, view, and record data from the Penny robot. 

 

 
Figure 4.1  Simulink command and control programming interface for Penny FIP. 

 
Unlike in simulation, no Penny plant model is required, as the Penny robot is the 

plant.  Inside the Penny Plant subsystem, shown in Figure 4.2, are subsystems to 

command the actuators and receive wheel encoder data (left block), convert wheel data 

into cart position (𝑥) and velocity (𝑥ሶ ) states (middle block), measure pendulum base 

angle (𝜃௕) and base angular rate (𝜃ሶ௕) states (upper right block), and measure pendulum 

tip angle (𝜃௧) and tip angular rate (𝜃ሶ௧) states. 
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Figure 4.2 – Inside the Penny Plant subsystem block. 

 
The upper left blocks highlighted in Figure 4.3 read the wheel encoders, providing 

raw measurements for cart position.  The blocks in the lower right of Figure 4.3 send the 

actuation commands to the motors’ electronic speed controllers.  The middle subsystem 

block takes the command input and structures it for use by the ESCs.  It also provides the 

user control over the deadband settings. 

 

 
Figure 4.3  Motor commanding and wheel encoder reading subsystem. 
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Figure 4.4  Acquisition of 𝑥 𝑎𝑛𝑑 𝑥ሶ  states. 

 
The subsystem in Figure 4.4 computes 𝑥 𝑎𝑛𝑑 𝑥ሶ .  During system parameter 

identification testing, cart velocity is computed by filtering the derivative of cart position.  

Later, a state estimator was implemented to perform this function. 

 

 
Figure 4.5  Acquisition of 𝜃௕ 𝑎𝑛𝑑 𝜃௕ሶ  states from tip IMU. 

 
The subsystem in Figure 4.5 computes pendulum base angle and angular rate 

(𝜃௕ 𝑎𝑛𝑑 𝜃ሶ௕) states.  During system parameter identification testing, 𝜃ሶ௕ is computed by 

filtering 
ௗఏ

ௗ௧
.  Later, a state estimator was implemented to perform this function. 



37 
 

 
Figure 4.6  Decoding of the tip angle IMU’s 12-bit signal. 

 
Figure 4.6 shows the blocks used to decode the tip angle IMU’s 12-bit signal.  This 

signal is built on Microcontroller 2, which reads the pendulum base IMU, and is decoded 

on Microcontroller 1. 

 

 
Figure 4.7  Command signal builder for pendulum reset servos. 

 
The blocks in Figure 4.7 build the signal for pendulum reset servos.  These servos 

clamp the inverted pendulum to vertical (or very nearly) on startup of Simulink code 

deployment to Microcontroller 1 and release the pendulum when the control software is 

enabled. 

 

 
Figure 4.8  Acquisition of 𝜃௧ 𝑎𝑛𝑑 𝜃௧ሶ  states. 
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Figure 4.8 shows the blocks that receive the tip gyro state data.  Unlike the base IMU, 

which has excellent pre-installed filtering, the tip IMU’s state data is always filtered in 

the Simulink control software. 

 

 
Figure 4.9 – State measuring and recording. 

 
The state measuring and recording block from Figure 4.1 is expanded and shown in 

Figure 4.9.  This block writes the state measurements to data files in the Matlab 

workspace and provides the scopes to visualize the data in near real-time.  
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5. Model Development 

Before developing and applying adaptive augmentation to Penny, simulation models 

were developed for rapid deployment and testing of controller designs.  These models 

needed to simulate Penny dynamics well enough such that controller performance in 

simulation would be reasonably representative of performance on the real hardware.   

Also, recall from Section 2 that the control system architectures being applied to 

Penny guarantee state convergence only when certain criteria are met.  The most 

fundamental of these criteria are that the system dynamics under analysis must be 

described as Linear Time-Invariant (LTI).  After building and rigorously testing Penny, 

the author can state with confidence that Penny’s dynamics are not linear.  That being 

said, neither are the dynamics of any launch vehicle we apply linear control theory to, or 

probably any real system for that matter.  The idea is that linear control theory holds if 

system dynamics can be reasonably modeled as linear around points of operation.  To 

that end, a concerted effort was made to develop linear models of the Penny 

configurations utilized in this work. 

However, if the linear models used for the Penny control system design are the same 

models the designed controllers run on, they will of course, function perfectly (and quite 

erroneously).  It would also be instructive to be able to follow the same model 

development process in simulation as with the real robot.  To that end, two model 

development campaigns were undertaken.  The first would develop linear models for 

control theory applications requiring LTI systems.  These would be generated using first 

principles, hardware parameters, and data collected from the operation of the systems 

with the idea that controllers developed using these LTI models would then be 
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implemented on hardware.  The second would develop high-fidelity non-linear models to 

realistically emulate Penny dynamics even when operating far from equilibrium.  These 

models would be used for rapid controller deployment and testing when testing on the 

robot was not feasible or practical.  Controllers developed and tuned on the high-fidelity 

non-linear models would then be deployed to hardware, thereby streamlining the 

development process. 

5.1. Oscillatory Dynamics Characterization 

To determine natural frequencies (𝜔௡) and damping ratios (𝜁) for the CFS and FIP 

configurations, the systems were excited, both by self-actuation and by the application of 

an external impulse, while angular state measurements were being recorded. 

 

 
Figure 5.1  Recorded CFS (left) and FIP (right) angle data. 

 

When freely oscillating, both systems are assumed to have principal vibration modes 

that behave as second-order harmonic oscillators of the Laplace domain form:  

 𝑠ଶ ൅ 2𝜁𝜔௡𝑠 ൅ 𝜔௡ଶ ൌ 0 (5.1) 

where 𝜔௡ is the system’s natural frequency and 𝜁 its damping ratio.  Natural frequency 

and damping ratio are now determined by deriving two equations from second order 
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modeling theory and two points from the flex angle data.  Given the time and amplitude 

data ሺ𝑡ଵ,𝐴ଵሻ and ሺ𝑡ଶ,𝐴ଶሻ, the time difference and relative decay over the interval are, 

 
ቐ
𝑑𝑡 ൌ  𝑡ଶ  െ 𝑡ଵ

𝑑𝑦 ൌ
𝐴ଶ 
𝐴ଵ

൏ 1
 

 

(5.2) 

An exponential envelope of the form 𝐴ሺ𝑡ሻ ൌ 𝐴଴𝑒ିఛ௧ with time constant 𝜏 ൌ 𝜔௡𝜁 is 

sought to fit the oscillatory response.  Since 

 
൜
𝐴ଵ ൌ 𝐴ሺ𝑡ଵሻ ൌ 𝐴଴𝑒ିఛ௧భ

𝐴ଶ ൌ 𝐴ሺ𝑡ଶሻ ൌ 𝐴଴𝑒ିఛ௧మ
 (5.3) 

then 

 𝐴ଶ
𝐴ଵ

ൌ 𝑑𝑦 ൌ 𝑒ିఛሺ௧మ ି ௧భሻ ൌ 𝑒ିఛሺௗ௧ሻ (5.4) 

Therefore, 

 
𝑙𝑛ሺ𝑑𝑦ሻ ൌ െ𝜏𝑑𝑡 → 𝜏 ൌ

െ𝑙𝑛ሺ𝑑𝑦ሻ
𝑑𝑡

 (5.5) 

The initial value 𝐴଴ is found by 

 𝐴଴ ൌ
஺భ

௘షഓ೟భ
ൌ ஺మ

௘షഓ೟మ
. (5.6) 

The frequency (𝑓ሻ in Hz of the relative decay is calculated from the number of cycles 

within the interval.  The damping frequency is then 𝜔ௗ ൌ 2𝜋𝑓. 

For a second-order system, the natural frequency is related to the damping frequency 

by 𝜔ௗ ൌ 𝜔௡ඥ1 െ 𝜁ଶ.  With known values 𝜏 and 𝜔ௗ, the damping ratio and natural 

frequency are calculated by (5.7) and (5.8): 

 
𝜁 ൌ

1

ට1 ൅ ቀ
𝜔ௗ
𝜏 ቁ

ଶ
 (5.7) 
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 𝜔௡ ൌ
𝜏
𝜁

 
(5.8) 

Table 5.1  Flexible structure oscillator parameters  
𝜔௡ (rad/s) 𝜁 

CFS 8.61 0.0040 

FIP 71.6 0.0033 

 

5.2. CFS Linear Model Development 

To produce linear system models of Penny dynamics in CFS configuration, data sets 

were recorded by applying command step inputs (𝑢) to the system and recording the 

relevant state data.  Figure 5.2 shows the Simulink model for CFS parameter 

identification. 

 

 
Figure 5.2  Simulink model for parameter ID data collection. 

 
Next, the MATLAB system identification toolbox was used to identify state space model 

coefficients.  These state space models were tested in Simulink by applying the same step 

inputs as used to produce the data.   
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Figure 5.3  Simulink model to create linearized state data from transfer functions. 

 
If the linearized state space models accurately reproduced state evolution near 

equilibrium as compared to the original non-linear data, the state space model would have 

been kept.  As it was, errors were deemed unacceptably large, so the MATLAB system 

identification toolbox was used again to generate independent transfer functions for each 

input-output relationship.  These transfer functions were then used to record linearized 

data given the same simulated step input (reference Figure 5.3) and the MATLAB system 

identification toolbox was again used to generate a state space model from the data.  

The process described above resulted in the following linear model for Penny CFS 

cart states, as well as the first mode of oscillation: 

𝐴 ൌ ൦ 

0 1 0 0
0 െ22.5 0 0
0 0 0 1
0 33.1 െ74.1 െ0.092

 ൪, 𝐵 ൌ ൦

0
0.2
0

െ0.34

൪, 

 

 

𝐶 ൌ ൦  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  ൪, 𝐷 ൌ ൦

0
0
0
0

൪, 

 

(5.9) 
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Figure 5.4 shows the output of the state space (linear) model and Penny CFS, given 

the same actuation command.  Note the reasonably close agreement between models and 

also the linear system’s unmodeled dynamics in the first second-or-so of the 𝜃 and 𝜃ሶ  

comparison plots.  These higher-order dynamics rapidly attenuate and are assumed 

negligible for the time being.  If it were determined that managing the system’s first 

oscillatory mode was insufficient, higher order dynamics would be added and managed in 

similar fashion to those presented here.  The otherwise close agreement between linear 

model and hardware suggests the linear model is a sufficiently good approximation of the 

physical system as to be useful henceforth for the application of linear systems analysis 

and control theory. 

 

 
Figure 5.4  CFS Linear Model vs. Hardware for same input. 

 
5.3. FIP Linear Model Development 

To model a flexible inverted pendulum as a system of linear ordinary differential 

equations, a second-order harmonic oscillator representing pendulum flex dynamics was 

superimposed upon a rigid body dynamics model.   
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5.3.1. FIP Rigid Body Dynamics Modeling 

The rigid body dynamics of the FIP system are given by the state space model from 

(5.16) where 𝑢௥ ൌ 𝐹𝑢 is the force applied to the cart and 𝑥௥ ൌ ሾ𝑥 𝑥ሶ 𝜃 𝜃ሶ ሿ் are the 

system states defined in Table 5.2. 

 𝑥௥ሶ ൌ 𝐴௥𝑥௥ ൅ 𝐵௥𝑢௥ (5.10) 

Table 5.2  Summary of State Variables 
State Variable Description Unit 

𝑥 Position of the cart 𝑚 
𝑥ሶ  Position rate of the cart 𝑚/𝑠 
𝜃 Angle of the pendulum 𝑟𝑎𝑑 
𝜃ሶ  Angle rate of the pendulum 𝑟𝑎𝑑/𝑠 

 

The matrices 𝐴𝑟 and 𝐵𝑟 from (Florian, 2005) are defined as: 

 

𝐴𝑟 ൌ

⎝

⎜⎜
⎛

0 1 0 0

0 െ𝑏ሺ𝐽൅𝑚𝑙2ሻ

𝐽ሺ𝑀൅𝑚ሻ൅ሺ𝑀𝑚𝑙2ሻ
െ𝑚2𝑙2𝑔 0

0 0 0 1
0 𝑏𝑚𝑙

𝐽ሺ𝑀൅𝑚ሻ൅ሺ𝑀𝑚𝑙2ሻ

𝑚𝑔𝑙ሺ𝑀൅𝑚ሻ

𝐽ሺ𝑀൅𝑚ሻ൅ሺ𝑀𝑚𝑙2ሻ
0⎠

⎟⎟
⎞

,  

𝐵𝑟 ൌ

⎝

⎜⎜
⎛

0
𝐽൅𝑚𝑙2

𝐽ሺ𝑀൅𝑚ሻ൅ሺ𝑀𝑚𝑙2ሻ

0
െ𝑚𝑙

𝐽ሺ𝑀൅𝑚ሻ൅ሺ𝑀𝑚𝑙2ሻ⎠

⎟⎟
⎞

, 

(5.11) 

where J ൌ ଵ

ଵଶ
𝑚ሺ2𝑙ሻଶ is the moment of inertia of the rod about its center of gravity.  The 

parameters specific to Penny FIP are summarized in Table 5.3.  The resulting FIP rigid 

body state space model is shown in (5.12). 
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Table 5.3  Rigid body parameters of Penny FIP 
Parameter Description Value Unit 

𝑀 Mass of the cart 5.35 𝑘𝑔 
𝑚 Mass of the rod 0.8066 𝑘𝑔 
𝑙 Length of rod from geometric center 0.917 𝑚 
𝑏 Coefficient of friction 48.2 𝑁 
𝑔 Gravitational acceleration 9.81 𝑚/𝑠ଶ 
𝐽 Moment of inertia 0.2444 𝑘𝑔 ൉ 𝑚ଶ 

 

𝐴௥ ൌ ൦ 

0 1 0 0
0 െ8.682 െ5.803 0
0 0 0 1
0 6.829 8.557 0

 ൪,  𝐵௥ ൌ ൦

0
0.1831

0
െ0.252

൪, 

 

 

𝐶௥ ൌ ൦  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  ൪, 𝐷௥ ൌ ൦

0
0
0
0

൪, 

(5.12) 

In the linearized cart-pole dynamics model above, recall that matrix 𝐵௥ operates on 

input 𝑢௥, which has units of force.  Penny FIP produces this force using gearmotor 

actuators, which need to be modeled as well. 

5.3.2. Actuator Dynamics Model 

The dynamics of a DC motor can be described by the state space model in (5.13) 

where 𝑢𝑎 ൌ 𝑉𝑖𝑛 is the input voltage and 𝑥𝑎 ൌ ሾ𝐼 𝜔ሿ𝑇 are the system states defined in 

Table 5.4. 

 𝑥𝑎ሶ ൌ 𝐴𝑎𝑥𝑎 ൅ 𝐵𝑎𝑢𝑎 (5.13) 

Table 5.4  Summary of Actuator State Variables 
State Variable Description Unit 

𝐼 Motor current 𝐴 
𝜔 Motor angular speed 𝑟𝑎𝑑𝑠 

 

The state space matrices 𝐴𝑎 and 𝐵𝑎 are defined as:  
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𝐴௔ ൌ ቎

ିோ೘
୐ౣ

ି௄೘
୐ౣ

௄೘
୎౛౧

ି௕ೝ
୎౛౧

቏,  𝐵𝑎 ൌ ቈ
1

Lm

  0 
቉, (5.14) 

with the parameters as shown in Table 5.5.  These parameters were determined by 

matching the model response to the experimental data given the same command input 

using Matlab’s parameter identification application.  These experimental data were 

recorded with Penny FIP operating on a flat surface with a motor step command of 20.  

No wheel slip was observed during the experiment or in the recorded data. 

Since all four motors are driven by the same command, and therefore rotate with the 

same (approximately) magnitude and direction, the actuator model considers the sum of 

all wheel torques.  

 
Table 5.5  Actuator Parameters 

Parameter Description Value Unit 
𝑅𝑚 Motor armature resistance 3.515e-05 Ω 
𝐾𝑚 Motor torque constant 0.01090 Nꞏm/A 
Lm Motor armature inductance 0.01758 H 
Jeq Total rotor moment of inertia 3.386e-07 kgꞏm2 

𝑏𝑟 Viscous friction coefficient  0.001398 Nꞏmꞏs/rad 
𝐾𝐺 Gearhead ratio 50.895 - 
𝑟 Wheel radius 0.043 m 

 

Given these parameters, the state space expression for the actuator dynamics is shown 

by (5.15).  Actuator functions mapping applied voltage to current draw and rotor angular 

velocity are provided in (5.16) and (5.17).  The actuator model’s transfer function poles 

are listed in (5.18), indicating stable actuator dynamics. 

 𝐴௔ ൌ ቂ െ0.002 െ0.62
3.2192𝑒4 െ4.128𝑒3

ቃ,  𝐵௔ ൌ ቂ56.88
0

ቃ, 

𝐶௔ ൌ ቂ  1 0
0 1

  ቃ, 𝐷௔ ൌ ቂ0
0
ቃ 

(5.15) 
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𝑇𝐹௏→ூ ൌ

56.88𝑠 ൅ 2.348𝑒5
𝑠ଶ ൅ 4128𝑠 ൅ 1.997𝑒4

 (5.16) 

 
𝑇𝐹௏→ఠ ൌ

1.8312𝑒5
𝑠ଶ ൅ 4128𝑠 ൅ 1.997𝑒4

 (5.17) 

 𝑃𝑜𝑙𝑒𝑠 ൌ ቂെ4.8427
െ4122.9

ቃ (5.18) 

The torque applied to the wheel and the wheel angular speed are related to the 

motor torque and speed by the gearbox ratio 𝐾𝐺.    

 𝜏𝑤 ൌ 𝐾𝐺𝜏 

𝜔𝑤 ൌ
𝜔
𝐾𝐺

 

(5.19) 

The motor angular speed 𝜔 is given by 𝜔 ൌ ଵ

௄೘
𝑉௜௡ െ

ோ೘
௄೘

మ τ.  Rearranging terms yields  

τ ൌ ௄೘
ோ೘
𝑉௜௡ െ

௄೘
మ

ோ೘
𝜔.  The torque applied to the wheel is also equal to 𝜏𝑤 ൌ 𝐹𝑤𝑟 where 𝑟 

is the wheel radius. Therefore, 

 𝐾𝐺𝜏 ൌ 𝐹𝑤r → 𝐹𝑤 ൌ 𝐾𝐺 ൬
𝐾𝑚
𝑟𝑅𝑚

𝑉𝑖𝑛 െ
𝐾𝑚

2

𝑟𝑅𝑚
𝜔൰ (5.20) 

The control input 𝑢𝑟 is now defined as 𝐹𝑤: 

 
𝑢𝑟 ൌ 𝐹𝑤 ൌ ቆ

𝐾𝑚𝐾𝐺
𝑟𝑅𝑚

ቇ𝑉𝑖𝑛 െ ൭
𝐾𝑚

2𝐾𝐺
𝑟𝑅𝑚

൱𝜔 (5.21) 

Setting 𝑝1 ൌ ቀ𝐾𝑚𝐾𝐺
𝑟𝑅𝑚

ቁ and 𝑝2 ൌ ൬𝐾𝑚
2𝐾𝐺

𝑟𝑅𝑚
൰ yields 𝑢𝑟 ൌ 𝑝1𝑉𝑖𝑛 െ 𝑝2𝜔.  Finally, commands and 

input voltage are related by 

 𝐺 ൌ ቄ
  0.1349𝜎,   𝜎 ൒ 0  

0.1431𝜎,   𝜎 ൏ 0  (5.22) 

where 𝜎 is bounded such that 𝜎 ∈ ሼെ79, 79ሽ due to hardware constraints. 
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5.3.3. Combined Rigid Body and Actuator Dynamics 

The relationship 𝑢𝑟 ൌ 𝑝1𝑉𝑖𝑛 െ 𝑝2𝜔 is now substituted into the rigid body model 

(5.10) as follows: 

 𝑥𝑟ሶ ൌ 𝐴𝑟𝑥𝑟 ൅ 𝐵𝑟ሺ𝑝1𝑉𝑖𝑛 െ 𝑝2𝜔ሻ 

𝑢 ≜ 𝑉௜௡ 
(5.23) 

with the control input 𝑢 ൌ 𝑉௜௡, the state space matrices of the combined system are 

rewritten in the form 𝑥𝑝ሶ ൌ 𝐴𝑝𝑥𝑝 ൅ 𝐵𝑝𝑢, where 𝑥𝑝 ൌ ሾ𝑥𝑟 𝑥𝑎ሿ𝑇.  The block diagram 

shown in Figure 5.5 illustrates the interaction between control input and plant dynamics, 

where operator 𝐺 maps the control signal to the actuator’s input voltage. 

 

 
Figure 5.5  Block diagram of interaction between actuator and plant dynamics. 

 

After many simulations and empirical recording runs, a scalar correction factor 

𝑘𝑐 ൌ 4.69𝑒4 was added to the modified 𝑢𝑟 input to numerically fit the state responses of 

the model to the experimental data.  This resulted in  

 𝑢𝑟 ൌ
1
𝑘𝑐
ሺ𝑝

1
𝑉𝑖𝑛 െ 𝑝2𝜔ሻ ൌ 7.8182𝑉𝑖𝑛  െ  0.0852𝜔, (5.24) 

yielding the combined system model: 

 

 

൤
𝑥𝑟ሶ
𝑥𝑎ሶ
൨

ถ
xpሶ

ൌ ൤
𝐴𝑟 𝐿

02𝑥4 𝐴𝑎
൨

ᇣᇧᇧᇤᇧᇧᇥ
𝐴𝑝

ቂ
𝑥𝑟
𝑥𝑎
ቃถ

𝑥𝑝

൅ ൤
𝐵𝑟′
𝐵𝑎

൨
ᇣᇤᇥ
𝐵𝑝

𝑉𝑖𝑛ด
𝑢

, where (5.25) 
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𝐿 ൌ

⎣
⎢
⎢
⎢
⎡
0 0
0 െ௣మ

௞೎
𝐵௥ሺ2,1ሻ

0 0
0 െ௣మ

௞೎
𝐵௥ሺ4,1ሻ⎦

⎥
⎥
⎥
⎤

, 𝐵௥ᇱ ൌ

⎣
⎢
⎢
⎢
⎡

0
௣భ
௞೎
𝐵௥ሺ2,1ሻ

0
௣భ
௞೎
𝐵௥ሺ4,1ሻ⎦

⎥
⎥
⎥
⎤

, 

 

(5.26) 

Actuator and plant dynamics are now described by a single state space model as 

shown schematically in Figure 5.6.   

 

 
Figure 5.6  FIP Actuator and Rigid Body combined dynamics 

 

Figure 5.7 and Figure 5.8 compare hardware and simulation states produced by 

sending each the same command signal, 𝑢 ൌ 20 and 𝑢 ൌ 10 respectively. 
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Figure 5.7  Linear Model vs. Hardware Data for Same Input Command, 𝑢 ൌ 20 

 

 
Figure 5.8  Linear Model vs. Hardware Data for Same Input Command, 𝑢 ൌ 10 
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5.3.4. FIP Flex Dynamics Modeling 

To incorporate FIP pendulum flexible dynamics with the rigid body dynamics 

previously modeled, two separate approaches were undertaken.  This is because the FIP 

configuration initially had no tip sensor (θሶ ୲), only knowledge of the base angle states via 

θୠ.  The approach taken in this case was to superimpose second-order oscillator 

dynamics, i.e., a mass-spring-damper system, onto the rigid body model developed 

previously, as suggested in (Orr J. , 2011).  When the tip sensor was added later, a new 

flex state was defined as the difference between base and tip angles (or angular rates, 

since the suppression of this state also guarantees angle agreement in a beam that has not 

been plastically deformed).   

For the first flex modeling case, a mass-spring-damper system with virtual mass mୱ, 

spring constant k, and damping constant c is modelled as acting at the center of the mass 

of the pendulum and stretching with respect to its own center of mass S, as shown in 

Figure 5.9. 

 
Figure 5.9  Schematic for flexible inverted pendulum model. 
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The differential equation of motion for a mass-spring-damper system is given by a 

second-order oscillatory model with the forcing function 𝑈௢௦௖: 

 
𝑞ሷ ൅ 2𝜁𝜔௡𝑞ሶ ൅ 𝜔௡ଶ𝑞 ൌ

𝑈௢௦௖
𝑚௦

,

𝑈௢௦௖ ൌ 𝐽𝜃ሷ
 (5.27) 

where 𝐽 is the moment of inertia of the pendulum and 𝑚௦ is the virtual mass of the mass-

spring-damper system. 

This results in a Laplace domain system: 

 
𝑠ଶ𝑄ሺ𝑠ሻ ൅ 2𝜁𝜔௡𝑠𝑄ሺ𝑠ሻ ൅ 𝜔௡ଶ𝑄ሺ𝑠ሻ ൌ ൬

𝐽
𝑚௦
൰ 𝑠ଶ𝛩ሺ𝑠ሻ (5.28) 

The transfer function 𝐺ሺ𝑠ሻ from angle 𝜃 to the deflection state 𝑞 is then given by: 

 
𝐺ሺ𝑠ሻ ൌ

𝑄ሺ𝑠ሻ
𝛩ሺ𝑠ሻ

ൌ
ሺ𝐽/𝑚௦ሻ𝑠ଶ

𝑠ଶ ൅ 2𝜁𝜔௡𝑠 ൅ 𝜔௡ଶ
 (5.29) 

where 𝜔௡ ൌ 71.6 𝑟𝑎𝑑/𝑠 and 𝜁 ൌ .00327 for the long aluminum inverted pendulum.  The 

interaction between the rigid and flexible models is now shown in Figure 5.10.  The rigid 

body angle 𝜃௥ is the output of the rigid body model and it acts as the forcing function for 

the flexible dynamics model producing the deflection state 𝑞.  These quantities are 

summed to produce an output angle that is a function of the states 𝜃௥ , 𝑞, 𝑞ሶ .  

 

 
Figure 5.10  Rigid body and flexible dynamics model  
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To obtain a combined model of the rigid body and flexible dynamics, the system 

shown in Figure 5.10 is implemented in Simulink as shown in Figure 5.11.  

 

 
Figure 5.11 – Simulink model for linearized system. 

 

The Matlab functions linmod or linearize are now employed on the Simulink model 

to generate the state space model representing the dynamics from the input 𝐹 to output 𝜃.  

The state vector for the described system is now 𝑥 ൌ ሾ𝑥 𝑥ሶ 𝜃 𝜃ሶ 𝑞 𝑞ሶ ሿ் and the 

control input is 𝑢 ൌ 𝐹, the force acting on the cart.  The state space representation 𝑥ሶ ൌ

𝐴௥௙𝑥 ൅ 𝐵௥௙𝑢, which combines the rigid body and flexible dynamics is now: 

 

 

𝐴௥௙ ൌ

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0
0 െ8.872 െ0.9775 0 0 0
0 0 0 1 0 0
0 6.986 8.078 0 0 0
0 0 0 0 0 1
0 0 1 0 െ5131 െ.4685⎦

⎥
⎥
⎥
⎥
⎤

, 𝐵𝑟𝑓 ൌ

⎣
⎢
⎢
⎢
⎢
⎡

0
0.1841

0
െ0.1449

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

 

𝐶௥௙ ൌ ሾ0 0 1.1 0 െ513.1 െ0.0469ሿ, 𝐷௥௙ ൌ ሾ0ሿ 

 

(5.30) 
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The first four eigenvalues of matrix 𝐴௥௙, summarized in (5.25), are associated with 

Penny FIP’s linearized rigid body dynamics.  The final two eigenvalues are associated 

with the system’s linearized flexible dynamics. 

 0 
െ8.9664 
2.7367 
െ2.6423 

െ0.2343 ൅ 71.6306𝑖 
  െ0.2343 െ 71.6306𝑖   

(5.31) 

This revised model summarized by (5.25) is now added to the actuator model 

described in Section 5.3.2 to complete the open-loop system of the Penny robot in FIP 

configuration, shown in the Simulink implementation in Figure 5.12.  

 𝑥ሶ ൌ 𝐴௥௙𝑥 ൅ 𝐵௥௙𝑢 
𝑦 ൌ 𝐶௥௙𝑥 ൅ 𝐷௥௙𝑢 (5.32) 

 
Figure 5.12  Model for combined system dynamics 

 

Figure 5.13 shows the base angle response to a disturbance.  At the time the FIP 

system was not being actively balanced under closed-loop control, so no vehicle state 

data were available for comparison.  The dynamics of the flex states (𝑞, 𝑞ሶ ) feeding back 

into the base angle state (𝜃௕) appeared reasonable as frequency was a close match to prior 

excitation data without control.  This model is now used for testing controllers in 

simulation before deployment to the Penny robot. 
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Figure 5.13  FIP combined linear model response to doublet disturbance. 

 

5.3.5. FIP Disturbance State Modeling 

Although essential for Penny CFS, a sensor reporting the state of FIP’s pendulum tip was 
also deemed useful for flex state estimation.  A 3D printed end cap was designed to 

accommodate the FIP inverted pendulum, and the hardware was transferred to this new 
part and secured to FIP. 

Figure 5.14 shows angle state measurements from two consecutive FIP “pluck” tests, 

where the inverted pendulum tip is held while the center is manually deflected.  Both tip 

and center are simultaneously released, causing the system to oscillate as it falls over. 

 

 
Figure 5.14  Penny FIP “pluck” test showing angular states for pendulum base and tip. 
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Here we note that, for a perfectly rigid inverted pendulum, the angles and angular 

rates between base and tip would agree.  In the case of a flexible inverted pendulum, any 

real disagreement between base and tip angular states is reasonably assumed due to 

pendulum flex.  This provides a powerful tool for flex disturbance mitigation, that is, 

unlike the superposition model developed in Section 5.3, the disparity between base and 

tip angular state data (5.33) provides a direct measurement of the systems flex state. 

 𝛿ఏሶ ൌ 𝜃ሶ௕௔௦௘ െ 𝜃ሶ௧௜௣ (5.33) 

Note that the angular rate disparity between base and tip is not solely due to the 

pendulum’s first flex mode, but a superposition of all flex modes.  Figure 5.15 presents 

the flex state for the pluck test shown previously.  The regular, periodic nature of the flex 

state during periods when it is freely oscillating (approx. 21.5 - 22.4 seconds, and 25.1 – 

26.0 seconds) provides a convincing argument for the majority of the flex energy residing 

in the first oscillatory mode. 

 

 
Figure 5.15  Penny FIP “pluck” test showing disturbance state. 
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The process described in Section 5.2 with parameter identification on measured data 

from tests with step inputs of amplitude 50 for 0.25 second resulted in a reasonable linear 

approximation of the system: 

 

𝐴 ൌ ൦ 

0 1 0 0
0 െ42.9 0 0
0 0 0 1
0 7021 െ5131 െ3.28

 ൪,  𝐵 ൌ ൦

0
0.4
0

െ71

൪, 

𝐶 ൌ ቂ 1  0  0  0 
 0  0  1  0 

ቃ,  𝐷 ൌ ቂ0
0
ቃ, 

 

(5.34) 

with state vector ሾ𝑥  𝑥ሶ   𝛿  𝛿ሶሿ்.  Figure 5.16 shows this model compared to a validation run 

using a doublet actuation command of amplitude 25 for 0.25 seconds and -25 for an 

additional 0.5 seconds. 

 

 
Figure 5.16  State-space model of FIP with disturbance state, compared to FIP. 

As we proceed with descriptions of FIP testing and controller validation, the reader 

will note many FIP tests begin with a “doublet” excitation, meaning a step input followed 

immediately by another step input of opposite sign amplitude.  The reason for this is that 

FIP is a very unstable dynamical system, and it is quite easy to drive the system past its 
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ability to recover.  The doublet first pushes the pendulum to one side, then back toward 

equilibrium.  In the open loop, this gives the system more time for measurements to be 

taken before toppling over.  In the closed loop, the doublet excites the pendulum into 

oscillation without driving it unrecoverably far from equilibrium. 

5.4. Nonlinear Model Development 

An initial first principles non-linear model was created in Simulink (see Figure 5.17) 

for a rigid inverted pendulum based on the equations described in Section 5.3.1 with the 

idea of expanding the model to include actuator and flexible pendulum dynamics.  This 

approach was soon discarded in favor of Simscape modeling described in detail in the 

following section. 

 

 
Figure 5.17  Nonlinear Simulink cart-pole model under linear control. 

 
5.4.1. Simscape model development 

To implement actuator and flexible structure dynamics, Simscape was used for its 

pre-canned non-linear DC motor and structural models.  Figure 5.18 shows the actuator 

dynamics model where the input voltage is applied to DC motor dynamics, producing 
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rotation of a friction parameterized tire.  The force generated from the tire interaction 

with the ground is the output and can be applied to the cart model.  DC gear motor and 

wheel parameters not available from the manufacturer were either empirically determined 

or determined such that simulated actuator behavior would match Penny operational data. 

 

 
Figure 5.18  Simscape actuator dynamics model 

 
With the input to the actuator modeled as voltage, functions were developed to reflect 

the nonlinearity of the hardware motor signal builder, allowing input command (cmdሻ 

signals in the same form as those that would be used on the real Penny system.  This 

motor signal builder takes input cmd signals and outputs control (ctrl) signals in the range 

ሾെ𝛾, 𝛾ሿ, where 𝛾 ൌ 75 is the value used to set hardware operational limits.  The ctrl 

signal is then converted to voltage using the empirically determined relationship from 

Penny hardware testing, 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ൌ 0.1431 ∗ 𝑐𝑡𝑟𝑙.  Modeling the motor signal builder in 

this way allows controllers developed in simulation to be easily transferrable to the 

hardware system. 

 

 
Figure 5.19  Simulink Motor Signal Builder mapping controller output to motor voltage. 
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Flexible structure models were implemented in Simscape using the built-in General 

Flexible Beam blocks.  This beam model is fixed in the CFS case and attached to a 

Revolute Joint in the FIP case.   

The additional dynamics imparted by the tip sensor hardware was also modeled, and 

the tip angle and angular rate states made available as outputs in the simulation using a 

Transform Sensor block.  Once these were implemented in Simscape, it proved simpler 

and cleaner to replace cart dynamics with a Simscape representation as well.  This 

resulted in the non-linear model for the CFS shown in Figure 5.20 and FIP in Figure 5.21. 

 

 
Figure 5.20 – Simscape nonlinear dynamics model of CFS 

 

 
Figure 5.21 – Simscape nonlinear dynamics model of FIP 

 
These models produced cart dynamics in close agreement with recorded Penny data.  

However, oscillatory dynamics were apparently different in both CFS and FIP cases as 

simulated frequencies were higher than observed on Penny and attenuation noticeably 



62 
 

slower.  It was believed that cumulative errors in published and measured parameters 

were the root cause. 

Since CFS and FIP oscillatory parameters were closely quantified (reference Section 

5.1), the simulation’s oscillatory dynamics were subsequently tuned such that the natural 

frequency and damping ratios of the flexible structures closely matched Penny by 

adjusting pendulum parameters within their General Flexible Beam blocks. 

Figure 5.22 compares the output of the CFS non-linear model to the output of the 

CFS linear model developed previously.  The close agreement between linear and non-

linear models is convincing (recall the close agreement between linear model and 

hardware shown previously). 

 

 
Figure 5.22  Resulting linear model vs. Simscape model for CFS. 

 
Figure 5.23 shows a comparison of angular rate data between Penny FIP’s pendulum 

pluck test data and its Simscape model after parameter tuning was complete.   
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Figure 5.23  Comparison of 𝜃ሶ௕ state, simulation vs. FIP. 

 
5.5. FIP Linear Model Development from Non-Linear Simulation 

A final linear model was developed based on the dynamics of the nonlinear Simscape 

simulations, which had been parameterized to closely match Penny FIP outputs, using the 

same process as with the hardware.  This model was produced because there are 

differences between hardware and the nonlinear simulations, so new linear models based 

solely on the linearized dynamics of the Simscape output were produced to be as 

representative as possible of the nonlinear models.  This new state space representation 

models only FIP’s rigid body dynamics for the purposes of linear analysis and linear 

controller design.  The rationale for this approach is that subsequent disturbance 

accommodation is performed by treating the system’s oscillatory dynamics as the 

system’s disturbance, subsequently accommodating it in feedback.  This is done by 

augmenting a system already under linear control whose linear controller was tuned for 

rigid body dynamics (not designed for flex disturbance accommodation). 

To produce this model, the same process was followed as in Section 5.2, where data 

sets were recorded by applying command step inputs (𝑢) to the nonlinear model this time 
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and recording the relevant state data.  The MATLAB system identification toolbox was 

again used to generate independent transfer functions for each input-output relationship: 

 𝑢 → 𝑥 
𝑢 → 𝑥ሶ  
𝑢 → 𝜃 
𝑢 → 𝜃ሶ  

(5.35) 

 
These transfer functions were then used to record linearized state data given the same 

simulated step input (reference Figure 5.3).  The MATLAB system identification toolbox 

was again used to generate a state space model from the linearized recorded data.  The 

process described above resulted in the following linear model for the Simscape FIP 

system: 

 

𝐴௥ ൌ ൦  

0 1 0 0
0 െ42 െ0.9 0.9
0 0 0 1
0 29.7 7 0

  ൪, 𝐵௥ ൌ ൦

0
0.4
0

െ0.28

൪, 

𝐶௥ ൌ ൦  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  ൪, 𝐷௥ ൌ ൦

0
0
0
0

൪ 

 

 

(5.36) 

Figure 5.24 shows the output of the Simscape and state space (linear) models given 

the same actuation command of 75 for 0.10 seconds.  This step actuation command and 

duration was shorter than for CFS because the pendulum angle in FIP configuration will 

rapidly diverge in the absence of stabilizing control.   
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Figure 5.24  Resulting Linear Rigid Body Model vs. Simscape Model for FIP 

 
Figure 5.25 and Figure 5.26 show the linear model versus the Penny FIP rigid body 

state responses for the same step input of 75 for 0.10 seconds.  Other than the hardware 

time delay, the close agreement between this new linear model and the Penny FIP rigid 

body responses provides a fair argument for using the linear model in (5.36) henceforth 

for the application of linear systems analysis and control theory.  

 

 
Figure 5.25  x-states comparison between Linear Rigid Body Model and Penny FIP. 
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Figure 5.26  Theta-states comparison between Linear Rigid Body Model and Penny FIP. 
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6. Controller Development and Application on Hardware 

CFS and FIP linear time-invariant models are now used to design linear controllers 

for state regulation and control of Penny’s rigid body states (the “nominal plant”).  These 

are the cart states (𝑥, 𝑥ሶ) for Penny CFS, and the rigid body states (𝑥  𝑥ሶ   𝜃  𝜃ሶ) for Penny 

FIP.  Controller designs were first tested on the high-fidelity nonlinear simulation before 

deployment to the actual hardware.  Each test is summarized here, although it was the 

result of many simulations and hardware testing cycles. 

6.1. CFS Rigid Body Control 

Recall from Section 5 that the Penny CFS system is described by (5.9) with full state 

knowledge.  For the real Penny CFS system, we only have measurements for cart position 

(𝑥) and beam tip angular velocity (𝜃ሶሻ.  The LTI state-space model for this system 

therefore becomes 

 

𝐴 ൌ ൦ 

0 1 0 0
0 െ22.5 0 0
0 0 0 1
0 33.1 െ74.1 െ0.092

 ൪,  𝐵 ൌ ൦

0
0.2
0

െ0.34

൪, 

𝐶 ൌ ቂ 1  0  0  0 
 0  0  0  1 

ቃ,  𝐷 ൌ ቂ0
0
ቃ, 

 

 

(6.1) 

with state vector ൣ𝑥  𝑥ሶ   𝜃  𝜃ሶ൧
்
 and Laplace-domain open-loop transfer functions: 

 
𝑇𝐹௨→௫ ൌ

0.2 𝑠ଶ ൅ 0.0184 𝑠 ൅ 14.82
𝑠ସ ൅ 22.59 𝑠ଷ ൅ 76.17 𝑠ଶ ൅ 1667 𝑠

 

 

(6.2) 

 
𝑇𝐹௨→ఏ ൌ

െ0.34 𝑠ଷ െ 1.03 𝑠ଶ

𝑠ସ ൅ 22.59 𝑠ଷ ൅ 76.17 𝑠ଶ ൅ 1667 𝑠
 (6.3) 

We first bring Penny’s cart under linear regulation using a Separation Principle 

controller/observer described in Section 2.1.  From the state evolution matrix in (6.1) we 
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note this linear model’s nominal plant states (𝑥, 𝑥ሶ) possess no 𝜃 terms, so we can write 

the cart system’s dynamics as: 

 𝐴 ൌ ቂ
 0         1 
0 െ22.5

ቃ,  𝐵 ൌ ቂ 0
0.20

 ቃ, 

𝐶 ൌ ሾ 1 0 ሿ,  𝐷 ൌ ሾ0ሿ, 

 

(6.4) 

with state vector ሾ𝑥  𝑥ሶ ሿ் and Laplace-domain open-loop transfer function: 

 
𝑇𝐹௨→௫ ൌ

0.2
𝑠ଶ ൅ 22.5 𝑠

 (6.5) 

The closed-loop poles are now arbitrarily placed.  After some brief trial and error, placing 

the cart’s poles at 𝑝 ൌ ሾെ4 ൅ 𝑖, െ4 െ 𝑖ሿ results in good system performance.  This was 

done using Matlab’s “place” function on ሺ𝐴,𝐵,𝑝ሻ, resulting in the controller gain matrix:  

𝐾 ൌ ሾ85 െ72.5ሿ. 

To obtain the cart velocity state, we could just differentiate and filter the position 

signal, which was often done when collecting cart state data for modeling purposes.  Here 

we use a full state observer to estimate any state not measured directly.  Since we need 

the observer’s estimates to converge much faster than the controller, we purposefully 

place observer poles far to the left of the 𝑗𝜔-axis.  After some trial and error, we find that 

good performance is elicited by placing the observer’s poles at 𝑙 ൌ

ሾെ200 ൅ 50𝑖 െ200 െ 50𝑖ሿ again using Matlab’s place function on matrices 

ሾ𝐴்,𝐶், 𝑝ሿ, resulting in the observer gain matrix: ሾ377 3.4𝑒4ሿ்.  The system design is 

shown in Figure 6.1. 
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Figure 6.1  Penny CFS linear control with separation principle observer-controller. 

 
Figure 6.2 shows the control and monitoring setup in Simulink, with observer 

expanded here for clarity.  Future figures will collapse complex systems into their own 

“subsystems” for space efficiency as was done for the plant model (upper left) and scopes 

(upper right).  The Plant model is the motor command and data acquisition setup 

described in Section 4.2, only without pendulum base angle measurements. 

Note the step function generator at the far left in Figure 6.2.  This is used to excite the 

system to test observer/controller performance.  Note also that its output is available to 

the observer.  This is the case for setup and tuning purposes, so the observer is not 

working with state responses that were not produced by the control signal it receives.  

This excitation block will later be moved downstream of the observer, so the observer has 

no knowledge of external excitations not created by the control law. 
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Figure 6.2  Simulink CFS model with separation principle observer-controller. 

 
Figure 6.3 shows the cart’s measured and estimated states in response to a step 

command of magnitude 25 for 0.5 seconds.  Observer states were initialized to ሾ0  0ሿ.  

When a state label includes the moniker “_hat,” it indicates the estimate of that state.  

Also, note the control law is operating on the estimated cart position 𝑥ො when it could be 

fed the direct measurement 𝑥.  It would be fed 𝑥 if state convergence was slow and 

tracking poor, but this is currently not the case. 

Although the observer is not currently estimating the beam’s angular states, the 

system’s 𝜃ሶ௧ measurement is still shown in Figure 6.4 for the reader’s information. 
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Figure 6.3  Controller/observer state responses to step input. 

 

 
Figure 6.4  Beam flex state responses to step input. 

 
Now that the cart’s observer/controller has been tuned, it is presented with a plant 

disturbance it does not “see” in the control signal (reference Figure 6.5).  The step 

disturbance is still of magnitude 25 for 0.5 seconds as before. 
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Figure 6.5  CFS control model with “unseen” disturbance. 

 

 
Figure 6.6  Cart state response to “unseen” disturbance. 
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6.2. Penny CFS Augmentation by Adaptive Regulation 

Now the system’s internal oscillatory dynamics are treated as the “plant disturbance” 

and several mitigation approaches are taken.  First, the system is augmented with 

adaptive output regulation of the form shown in Figure 6.7. 

 

 
Figure 6.7  Schematic of augmentation for adaptive regulation. 

 
The adaptive augmentation is now added to the Simulink control model to implement 

the adaptive control law as shown in Figure 6.8. 

 

 
Figure 6.8 – Simulink CFS control model augmented with adaptive regulation. 

 
Note that the numerator of the system’s transfer function 𝑢 → 𝜃 from (6.3) is not 

entirely stable, with zeros residing at ሾ0,   0, െ3.03ሿ, meaning the system does not meet 
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the ASPR requirement for direct adaptive augmentation.  To guarantee asymptotic state 

convergence, the zeros were placed through sensor blending (reference Section 2.5) such 

that the plant appears almost strictly positive real.  Many combinations of zeros and 

adaptive gains (𝜎௘) were implemented and a wide variety are effective in mitigating the 

beam oscillation.  Figure 6.9 shows the measured state responses for unaugmented (red) 

and augmented (blue) systems when the open loop transfer function zeros are placed at 

𝑍 ൌ ሾെ5,െ6,െ7ሿ with an adaptive gain 𝜎௘ ൌ 1.4, creating the sensor blending matrix 

𝐶௕௟௘௡ௗ௘ௗ ൌ ሾ14.17   4.22 െ 42.98  െ 0.462ሿ.  

 

 
Figure 6.9  Penny CFS under unaugmented (red) and augmented (blue) control. 

 
To gauge the relative “cost” to the system of this augmentation, the cumulative effort 

was computed for each test (see Figure 6.10), defined as the integral of the absolute value 

of the command signal.  Ideally, power consumption would be used as a quantitative 
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metric, but Penny does not currently have the sensors needed to record this data, only 

LED displays for real-time voltage and current draw. 

 

 
Figure 6.10  Cumulative effort, unaugmented and augmented control (equation inset). 

 
Note that no claims are being made as to the superiority of the adaptive augmentation 

approach over other methods.  Other controllers applied to the disturbance state would 

doubtless effectively manage system flex dynamics and control architecture comparisons 

are an area of future work.  This investigation seeks to validate the current approach on 

flexible structure hardware as one potential means of augmentative flex dynamics 

mitigation. 

6.3. Penny CFS Augmentation by Disturbance Accommodation 

The Penny CFS system, previously augmented with adaptive output regulation, is 

now given the additional disturbance accommodation augmentation shown in Figure 

6.11. 
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Figure 6.11  Augmentation for adaptive regulation and disturbance accommodation. 

 
The Simulink UI control model is again updated to implement the adaptive control 

law as shown in Figure 6.12.  Recall from (2.7) that the operator 𝜑஽ contains the basis 

functions of the disturbance of known form but unknown magnitude.  In the case of a 

sinusoidal disturbance of known frequency, 𝜔௡ of the beam in this case, 𝜑஽ ൌ

ሾsinሺ𝜔௡𝑡ሻ , cosሺ𝜔௡𝑡ሻሿ. 

 

 
Figure 6.12  Penny CFS with adaptive regulation and disturbance accommodation. 
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Tuning of the adaptive disturbance gain found that 𝜎஽ ൌ 0.22 resulted in good 

performance without introducing instability.  As the cantilevered structure’s first 

vibrational mode is mitigated, note the emergence of the second mode in the measured 

states from 0.5 – 1.5 seconds shown in Figure 6.13.  The controller effort comparison is 

again shown in Figure 6.14. 

 

 
Figure 6.13  Penny CFS measured states under unaugmented (red) and augmented (blue) 
adaptive regulation and sinusoidal disturbance accommodation. 

 

 
Figure 6.14  Cumulative effort, unaugmented and augmented control (equation inset). 
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6.4. FIP Rigid Body Control 

Recall from Section 5 that the Penny FIP system is described by (5.36) when full state 

knowledge is present.  For the real hardware system, we only have measurements for cart 

position (𝑥) and pendulum base angle position (𝜃).  The LTI state-space model for the 

physical system, with revised output matrix, is therefore 

 

𝐴 ൌ ൦ 

0 1 0 0
0 െ42 െ0.9 െ0.9
0 0 0 1
0 29.7 7 0

 ൪,  𝐵 ൌ ൦

0
0.4
0

െ0.28

൪, 

𝐶 ൌ ቂ 1  0  0  0 
 0  0  1  0 

ቃ,  𝐷 ൌ ቂ0
0
ቃ, 

 

 

(6.6) 

with state vector ൣ𝑥  𝑥ሶ   𝜃௕  𝜃௕ሶ ൧
்
 and Laplace-domain open-loop transfer functions: 

 
𝑇𝐹௨→௫ ൌ

0.4𝑠ଶ െ 0.25𝑠 െ 2.548
𝑠ସ ൅ 42𝑠ଷ െ 33.73𝑠ଶ െ 267.27𝑠

 (6.7) 

 
𝑇𝐹௨→ఏ ൌ

െ0.28𝑠 ൅ 0.12
𝑠ଷ ൅ 42𝑠ଶ െ 33.73𝑠 െ 267.27

 (6.8) 

 
We now design and implement a linear controller for Penny FIP’s rigid body 

dynamics, since the rigid brace described in Section 3 is used to eliminate slow 

(measurable) flex dynamics.  A Separation Principle Controller was first attempted, but 

no amount of tuning resulted in adequate stabilization.  Unmodeled dynamics are 

believed to be the cause.  Ultimately an integrator was added to help manage rigid body 

dynamics, resulting in satisfactory performance, i.e., balancing the rigid pendulum 

indefinitely.  As before, a linear controller is designed to manage the nominal plant, the 

rigid body system in this case, so the disturbance term is not addressed by linear control.   
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Figure 6.15  Diagram of Penny FIP system under linear control. 

 
The closed-loop poles were again placed using Matlab’s “place” function on ሺ𝐴,𝐵,𝑝ሻ 

throughout a long tuning campaign.  In combination with the integral control, good rigid 

body performance was achieved placing the closed-loop poles at 𝑝 ൌ

ሾെ1,െ1.1,െ55,െ9ሿ resulting in the controller gain matrix:  𝐾𝑐 ൌ ሾെ213.7 െ 638.5 െ

2531 െ 998.3ሿ.  Observer poles were placed at 𝑙 ൌ ሾെ115,െ121,െ6325,െ1035ሿ 

resulting in the following observer gains: 

 
𝐿𝑜 ൌ ቂ6144 436320 1331 375430

999.1 798440 1416 195830
ቃ
்
 (6.9) 

In Figure 6.16 the integrator is implemented using a PID control block.  Note that 

only the integrator parameter is being utilized in this block, with a gain 𝐾௜௡௧ ൌ െ2250. 

 

 
Figure 6.16  Penny FIP control model with linear controller and excitation. 
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The following figures highlight linear controller performance when a doublet of 

amplitude +/-10 is injected.  Again, this type of excitation is helpful for inverted pendula 

which cannot diverge too far from equilibrium before becoming unrecoverable.   

 

 

Figure 6.17  Penny FIP rigid body measured states under linear control (10 sec). 

 
The position state is slow to converge, but as its peak departure was less than two 

centimeters, the gains are left alone.  We now expand the first few seconds for clarity. 

 

 
Figure 6.18 – Penny FIP rigid body measured states under linear control (3 sec). 
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6.5. FIP Augmentation with Direct Adaptive Regulation 

From the previous test onward, the estimates of the measured states will no longer be 

used since Penny FIP’s instability and fast flex dynamics have proven more difficult to 

manage using state estimates when measurements are readily available for 𝑥 and 𝜃.  

Figure 6.19 presents this new architecture.  Again, future models will collapse the 

highlighted systems into subsystem blocks for space efficiency. 

 

 
Figure 6.19  Penny FIP linear control model with flex present. 

 
Before removing the pendulum’s braces and allowing the pendulum to flex, we first 

implement adaptive augmentation on the rigid body (reference Figure 6.20). 

 

 
Figure 6.20  Penny FIP with rigid plant augmented with adaptive regulation. 
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We see from (6.8) that the system’s open-loop transfer function is not ASPR since its 

zeros reside at ሾ0, 0.429ሿ,  nor is its high-frequency gain strictly positive real.  Sensor 

blending was again employed to make the open-loop plant appear ASPR to the adaptive 

regulator.  As before, many combinations of zeros and adaptive gains (𝜎௘) were 

implemented and a wide variety are effective in output regulation.  Figure 6.24 shows the 

measured state responses for a representative (see Results discussion) test of the 

unaugmented (red) and augmented (blue) systems when the open loop transfer function 

zeros are placed at 𝑍 ൌ ሾെ0.1,െ1,െ30ሿ, with and adaptive gain 𝜎௘ ൌ 2200, creating the 

sensor blending matrix 𝐶௕௟௘௡ௗ௘ௗ ൌ ሾെ1.2  െ 18.0 െ 109.1  െ 29.3ሿ.  The adaptive 

regulator used is structurally identical to the one shown in Figure 6.8. 

 

 
Figure 6.21  Penny FIP control model augmented with adaptive regulation. 

 

 
Figure 6.22  Penny FIP angular states for rigid plant augmented with adaptive regulation 
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The rigid braces are now removed from Penny FIP’s long Aluminum pendulum and 

the performance of the linear controller is demonstrated in the presence of flex dynamics.  

For this test, the adaptive regulator is disabled.  Figure 6.23 shows ten seconds of state 

response to the doublet excitation of amplitude +/-25. 

 

 
Figure 6.23  Penny FIP states under linear control with flex present. 

 
Given the excessive chatter exhibited in Figure 6.23, state oscillations are certainly 

feeding back into the controller.  It would seem sensible at this point to filter the signals 

of their high-frequency content before passing them to the controller or filtering the 

control signal before passing it to the plant.  This is not done here, however, as the intent 

is to excite the system to investigate adaptive augmentation architectures which mitigate 

this “disturbance.”  The adaptive augmentation for output regulation is now reenabled 

and the adaptive gain retuned (𝜎௘ ൌ 2200) with comparative results in Figure 6.24. 
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Figure 6.24  Penny FIP augmented with adaptive regulation. 

 
6.6. FIP Augmentation with Direct Adaptive Disturbance Accommodation 

The adaptive regulator clearly helps, but fast chatter persists and resists all attempts to 

mitigate through adaptive regulation.  We further augment the Penny FIP system with 

disturbance accommodation, specifically targeting its oscillatory dynamics. 

 

 
Figure 6.25  Penny FIP augmented with adaptive regulation. 

 
The Simulink UI control model is again updated to implement the adaptive control 

law, identical in form to Figure 6.12, as shown in Figure 6.26.  The operator 𝜑஽ is 

updated with the FIP pendulum basis functions. 



85 
 

 

 
Figure 6.26  Penny FIP with adaptive regulation and disturbance accommodation. 

 
Tuning of the adaptive disturbance gain found that 𝜎஽ ൌ 0.2 resulted in good 

performance without introducing instability.  Figure 6.27 compares angular states for the 

pendulum base with and without augmentation.  A full state comparison is presented in 

Figure 6.28. 

 

 
Figure 6.27  Penny FIP angular state comparison with and without augmentation. 
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Figure 6.28  Penny FIP with adaptive augmentation. 

 

6.7. FIP Augmentation with Disturbance State Adaptive Accommodation 

Next, we investigate mitigation of the disturbance state (𝛿ఏሶ ) described in Section 

5.3.5.  The state-space model from Equation (5.36) has the input 𝑢 to output 𝛿ఏሶ  transfer 

function: 

 
𝑇𝐹௨→ఋ ൌ

െ71𝑠 െ 237.5
𝑠ଷ ൅ 46.18𝑠ଶ ൅ 5272𝑠 ൅ 2.201𝑒5

 (6.10) 

with numerator roots ሾെ3.345  0ሿ (note the 𝑠 cancelation in the transfer function).  

Sensor blending is again employed to make the system appear ASPR to the adaptive 

controller, with desired zeros arbitrarily placed at ሾെ1  െ 2  െ 10ሿ.  This results in the 

blended output: 

 𝐶௕௟௘௡ௗ௘ௗ ൌ ሾ0.0097   െ 0.0001   െ 0.1359   െ 0.0141ሿ (6.11) 
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Therefore, the input to the control law shall be ሾ0.0097𝑥 ൅ 0.0001𝑥ሶ െ 0.1359𝛿 െ

0.0141𝛿ሶሿ where 𝛿ሶ is simply computed by differentiating and filtering 𝛿.  The same 

adaptive augmentation architecture is used from Section 6.5. 

 

 
Figure 6.29  Penny FIP augmented with adaptive regulation including disturbance state. 

 
The base state comparison where the adaptive gain 𝜎 ൌ 30 is shown in Figure 6.30. 

 

 
Figure 6.30  Penny FIP augmented vs. unaugmented states, 𝜎 ൌ 30. 
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Figure 6.31 shows the disturbance state comparison for the same test (𝜎 ൌ 30). 

 

 
Figure 6.31  Penny FIP augmented vs. unaugmented disturbance states, 𝜎 ൌ 30. 

 
6.8. FIP Augmentation with Step Disturbance 

The purpose of these tests was to investigate the efficacy of the adaptive 

augmentation in the presence of a step disturbance to determine if adaptive regulation 

and/or disturbance accommodation yielded benefits over the linear controller alone. 

The idea for this test was to apply a step disturbance of increasing amplitude to the 

unaugmented system until the pendulum angle was no longer recoverable.  Next, the 

same would be performed to the augmented system, as shown in Figure 6.20, and the 

results compared.  It was soon determined that the augmentation made no difference to 

this critical step amplitude, although it took many tests to learn this, as differing initial 

conditions make FIP testing exceedingly difficult.  The reason the augmentation was of 

no benefit was because the linear controller had evidently been tuned so aggressively that 

severe destabilizing events easily saturated the actuators.  Of course, when the adaptive 
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augmentation signal is added to a control signal that is already saturated, no additional 

actuation effort is produced. 

To perform the desired testing, there would need to be remaining control bandwidth 

for the adaptive augmentation to utilize.  To that end, a new experiment was devised.  

The linear controller’s desired poles and integral gain would be successively decremented 

in 10% increments until the system could not recover from a step amplitude of 50 for 0.5 

seconds.  Then the control gains would be left at the last recoverable increment and the 

system would be adaptively augmented as before.  Using this process, the last 

recoverable gains were  

 

 

൜
 𝐾௖ ൌ ሾെ5.47   െ 152.1   െ 421.0   െ 161.7ሿ

𝐾௜ ൌ 900  (6.12) 

Figure 6.32 shows cart and pendulum base angle states with these updated linear 

gains.  Note the units of pendulum base angle is now in degrees. 

 

 
Figure 6.32 – Penny FIP with step disturbance, unaugmented. 



90 
 

Next, the system is augmented with adaptive output regulation as shown in Figure 

6.20.  The adaptive gain was set at 𝜎 ൌ 5𝑒6 for good performance, resulting in the plot 

shown in Figure 6.33 for the same step input (amplitude of 50 for 0.5 seconds).  The step 

disturbance amplitude was increased in increments of approximately 5 until the system 

could no longer recover pendulum balance.  Step amplitudes of 75 were nearly always 

recoverable (based on initial conditions), and step amplitudes of 79 (the control input 

limit for Penny) were not recoverable. 

 

 
Figure 6.33  FIP with step disturbance augmented with adaptive state regulation. 
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7. Results and Future Work 

Under this work, a theoretical foundation for direct adaptive augmentation was 

presented, followed by a description of the testbed hardware.  The software developed to 

enable hardware functionality was also described, as well as the processes resulting in 

linear and nonlinear models of the hardware configurations tested herein, CFS and FIP.  

Finally, each configuration was tested using various control architectures with state 

responses included.  This work assumes a linear controller is managing the system’s rigid 

body states; the cart for CFS, and the cart and rigid pendulum system for FIP. 

7.1. Penny CFS Implementation 

The CFS cart system was first brought under position and velocity control using a 

separation principle-based controller/observer pair with state responses to a step input 

shown in Figure 6.3.  Since only the cart system is being controlled, the oscillatory 

dynamics of the beam unfold unabated by the control law (Figure 6.4). 

The system was then augmented for adaptive regulation.  Since the linear model of 

the disturbance states (𝜃,𝜃ሶ) is not ASPR, sensor blending was used to make the system 

appear ASPR to the adaptive controller.  Figure 6.9 shows the adaptive augmentation 

rapidly suppressing the flex state.   

Finally, CFS was adaptively augmented for disturbance accommodation, where the 

𝜑஽ term in the adaptive update contains the known basis functions of the disturbance.  

Sensor blending was again used to make the non-ASPR system appear ASPR, resulting in 

even more rapid suppression of the disturbance states as shown in Figure 6.13.   

Note that in all cases the linear controller is not operating on disturbance state 

information.  There is no doubt a linear controller could be added to manage disturbance 
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states, which is an area for future work.  The current study seeks only to effectively apply 

adaptive augmentation on hardware to validate the approach. 

7.2. Penny FIP Implementation 

The FIP rigid (braces on) cart-pole system was first brought under position (𝑥, 𝜃) and 

velocity (𝑥,ሶ 𝜃ሶ) control using a separation principle-based controller/observer pair.  

Unfortunately, no amount of controller tuning would balance the rigid inverted pendulum 

for any sustained period, necessitating the addition of integral control.  This resulted in a 

closed-loop stable system with the state responses to a doublet input shown in Figure 

6.18. 

The FIP rigid body system was then adaptively augmented with state regulation and 

tested with the same doublet input used in the previous test.  As with CFS, the rigid FIP 

transfer function from input to theta states is not ASPR, so sensor blending was again 

used to make the system appear ASPR to the adaptive controller.  Figure 6.22 shows 

substantial improvement in angle and angular rate convergence.  Note that the 

disturbance accommodating adaptive augmentation is not added to the rigid system since 

the pendulum flex is considered the disturbance state here, and with the braces on, no flex 

is measured.   

The pendulum braces were then removed, the adaptive regulator disabled, and the 

linear controller alone was allowed to balance the FIP system during and after a doublet 

excitation.  This it did, but not without a great deal of fast oscillation caused by the 

system’s flexible modes, seen in Figure 6.23. 

The adaptive regulator was reenabled and the doublet test was again performed with 

the augmentation acting on the previous blended state.  Figure 6.24 shows significant 
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state regulation improvement over linear control alone, although the fast oscillations 

remained. 

Next, the augmented FIP system was additionally augmented with disturbance 

accommodation of the form shown in Figure 6.25, where the 𝜑஽ term in the adaptive 

update contains the known basis functions of the disturbance.  As before, the system’s u-

to-theta transfer function is not ASPR, so sensor blending was again employed.  Figure 

6.27, which presents the angular state responses of this control architecture during and 

after a doublet excitation, show good suppression of the flex motion and full attenuation 

in approximately 5 seconds. 

The next test utilizes the augmented adaptive regulation architecture again, although 

this time using the 4-state system ሾ𝑥  𝑥ሶ   𝛿  𝛿ሶሿ் where 𝛿 is a disturbance state defined as 

𝛿 ൌ 𝜃ሶ௕௔௦௘ െ 𝜃ሶ௧௜௣.  Employing augmented adaptive state regulation on this system, again 

using sensor blending, resulted oscillation suppression in under 3 seconds when excited 

by the same doublet as the previous test (see Figure 6.31). 

Finally, the efficacy of adaptive augmentation was tested in the case of a step 

disturbance to see if the adaptive augmentation improved controller performance for 

dispersions far from equilibrium.  Here it was noted that the linear controller quickly 

saturated the actuators, leaving no actuation bandwidth for the adaptive controller to use.  

The linear controller gains were therefore reduced to the lowest settings that still 

balanced the pendulum when faced with an amplitude 50 disturbance for 0.5 seconds.  

The system was then augmented for adaptive regulation with tuned static gain, resulting 

in recovery from disturbances of step amplitude 75 for 0.5 seconds.  This test showed 

that, if control bandwidth remains, the system’s augmentation by an adaptive regulator of 
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the form shown in Figure 6.20 may help with system recovery when faced with 

disturbance causing large dispersions. 

It should be noted that, for all of the adaptive augmentations discussed in this section, 

a wide range of gains (𝜎ሻ resulted in satisfactory controller performance.  The figures 

presented in Section 6 represent settings which yielded the good performance over many 

test runs.  Also, when an adaptive augmentation was compared to a nonadaptive 

controller, an effort was made to compare plots with similar initial conditions, since these 

conditions had a major impact on controller performance in all cases. 

7.3. Future Work 

While applying direct adaptive control augmentation to hardware, several avenues of 

interesting research have surfaced.  A few remaining deficiencies with the testbed 

hardware (Penny) could also be addressed and are discussed below. 

7.3.1. Sensor Blending 

Adaptive augmentation has proven to be a powerful tool to aid a linear controller in 

managing unmodeled plant dynamics.  The ASPR equivalency is also a powerful result, 

but not a panacea.  One benefit of direct adaptive control approaches is that little plant 

knowledge is required.  However, in practice, when aa system is made ASPR through 

sensor blending, estimation of the unknown states was required, which required a plant 

model in the observer.  An interesting line of investigation would be a formal approach to 

minimal blending, perhaps alleviating the need for some state estimation. 

Along those same lines, throughout this research, the effect of zero-placement was 

never intuitive, resulting in much trial and error to implement on hardware.  The 

formulations outlined in Section 2.2 guarantee asymptotic state convergence with 
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bounded adaptive gains, but they do not speak directly to how transmission zeros should 

be optimally placed.   

7.3.2. Output Disturbance Accommodation 

In the early stages of the inverted pendulum robot’s development, it was noted that 

the pendulum system’s base angle rotary encoder was prone to injecting output 

disturbances (structured noise) into the system.  These output disturbances would be 

erroneously acted upon by the controller, ultimately destabilizing the system.  This issue 

was attacked on two fronts.  First, an IMU was added to the system to provide a base 

angle measurement.  This had the dual benefit of dealing with any angular offset in the 

system upon startup, since the IMU references the local gravity vector.  The second 

approach was to develop an adaptive augmentation strategy to mitigate output 

disturbances within the controller/estimator.  The addition of the base IMU fixed the 

output disturbance problem, so adaptive augmentation for output disturbance 

accommodation was never fully developed and implemented.  This is an interesting 

application of direct adaptive control theory that will be continued. 

7.3.3. Comparison with nonadaptive augmentation 

This study examined the efficacy of adaptive augmentation on systems already under 

linear control.  Performance gains were indeed evident throughout Section 6, when 

adaptive augmentation was employed.  However, this study has not examined whether 

expanding the linear controller to operate on the disturbance state would result in similar 

performance gains.  Investigation the efficacy of controller type for flex disturbance 

accommodation through augmentation would be an interesting and instructive future line 

of inquiry.   
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7.3.4. Penny Hardware/Software 

Developing comparative data sets was extremely difficult and time consuming.  Since 

there is currently only one robot, augmented versus unaugmented tests are run 

independently.  Also, each plot produced is unique, especially for Penny FIP, because the 

initial conditions the controller is presented with have a major impact on how states 

evolve.  The pendulum reset servos were one attempt to normalize test runs.  Before the 

servos, the user would need to balance the pendulum manually before the controller 

engaged.  The software compilation time can be a few minutes between runs, so this was 

an arduous task.  But even with the pendulum reset servos, small angular errors and small 

momentum transfers still vary between runs.  One approach might be to code a test 

orchestrator that looks for matching state conditions before enabling a test run.  Also, 

lining up data in time proved extremely arduous, even when managing the data files in 

Matlab.  Additional work is merited in the area of software automation. 

One of Penny’s previously mentioned limitations is the data acquisition system’s 

inability to record electrical energy usage data.  Sometimes the discriminator between 

control approaches is the effort expended by each, so that information would make Penny 

a better research tool. 

Along the lines of hardware upgrades, probably the most effective upgrade Penny 

could receive is a more capable central processor.  Computation and I/O bandwidth are 

very limited with the Arduino Mega, and as testing progresses and became more 

sophisticated on Penny, the controller clock cycle was periodically reduced to maintain 

clock rates, which began at 200 Hz but are now 84 Hz for FIP testing that included the tip 

sensor measurement. 
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Another useful upgrade would be the drive train actuators.  Having actuators with 

faster response times and less lash in the gear train would reduce some on the remaining 

system nonlinearities.  Actuators which produced more torque over a wider rpm range 

would also help them not to saturate so quickly.  Finally, the constant deadband and 

operational range adjustments between ESCs made testing more difficult than necessary.  

Higher fidelity ESCs with better limit fixing capability, along with the ability to tie all 

wheel rotations together (e.g., with timing belts) would go a long way toward alleviating 

these difficulties. 
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APPENDIX A:  SUPPORTING MATHEMATICS 

Proof of Theorem 1 

The following proof can be found in Appendix A, Addendum I of (NESC, 2016).  

The Linear Matching Conditions (2.13) can be rewritten: 

 

൜
𝐴𝑆ଵ ൅ 𝐵𝑆ଶ ൌ 𝑆ଵ𝐿௠ ൅ 𝐻ଵ
𝐶𝑆ଵ ൌ 𝐻ଶ

, where 

 

𝑆ଵ ≡ ሾ𝑆ଵଵ
∗ 𝑆ଵଶ

∗ 𝑆ଵଷ
∗ ሿ, 𝑆ଶ ≡ ሾ𝑆ଶଵ

∗ 𝑆ଶଶ
∗ 𝑆ଶଷ

∗ ሿ, 𝐿௠ ≡ ൥
𝐴௠ 𝐵௠ 0
0 𝐹௠ 0
0 0 𝐹

൩, and 

 

൜
𝐻ଵ ≡ ሾ0 0 െ𝛤𝜃ሿ
𝐻ଶ ≡ ሾ𝐶௠ 0 0ሿ  

 

Now let 𝐶𝐵 ൐ 0.  Use the coordinate transformation W from lemma 2 in (Balas & 

Fuentes, 2004) to put (A, B, C) into “normal form:” 

 

ቊ
𝑦ሶ ൌ 𝐴ሜଵଵ𝑦 ൅ 𝐴ሜଵଶ𝑧ଶ ൅ 𝐶𝐵𝑢
𝑧ሶଶ ൌ 𝐴ሜଶଵ𝑦 ൅ 𝐴ሜଶଶ𝑧ଶ

 

 

𝑖. 𝑒.∃nonsingular 𝑊 ≡ ൤
𝐶

𝑊ଶ
்𝑃ଶ

൨ ∍ 𝑊𝐴𝑊ିଵ ≡ 𝐴ሜ ൌ ൤
𝐴ሜଵଵ 𝐴ሜଵଶ
𝐴ሜଶଵ 𝐴ሜଶଶ

൨ ,𝑊𝐵

ൌ ቂ𝐶𝐵
0
ቃ ≡ 𝐵ሜ , and 𝐶𝑊ିଵ ൌ ሾ𝐼௠ 0ሿ ≡ 𝐶ሜ  
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⇒

⎩
⎪
⎨

⎪
⎧𝑆
ሜଵ𝐿௠ ൌ 𝑊𝑆ଵ𝐿௠ ൌ 𝑊𝐴𝑊ିଵ𝑊𝑆ଵ ൅𝑊𝐵𝑆ଶ െ𝑊𝐻ଵ ൌ 𝐴ሜ𝑆ሜଵ ൅ 𝐵ሜ 𝑆ଶ െ 𝐻ሜଵ

ൌ 𝐴ሜ𝑆ሜଵ ൅ ቂ𝐶𝐵
0
ቃ 𝑆ଶ െ 𝐻ሜଵ 

𝐻ଶ ൌ 𝐶𝑊ିଵ𝑊𝑆ଵ ൌ 𝐶ሜ𝑆ሜଵ ൌ ሾ𝐼 0ሿ𝑆ሜଵ ൌ 𝑆ሜ௔

    

where 𝑆ሜଵ ≡ 𝑊𝑆ଵ ൌ ቈ
𝑆ሜ௔
𝑆ሜ௕
቉. 

 

⇒ ൤
𝐻ଶ
𝑆ሜ௕
൨ 𝐿௠ ൌ 𝐴ሜ ൤

𝐻ଶ
𝑆ሜ௕
൨ ൅ ቂ𝐶𝐵

0
ቃ 𝑆ଶ െ ൤

𝐻ሜ௔
𝐻ሜ௕
൨    

 

⇒ ቊ
𝑆ଶ ൌ ሺ𝐶𝐵ሻିଵሾ𝐻ଶ𝐿௠ ൅ 𝐻ሜ௔ െ ሺ𝐴ሜଵଵ𝐻ଶ ൅ 𝐴ሜଵଶ𝑆ሜ௕ሻሿ
𝑆ሜ௕𝐿௠ ൌ 𝐴ሜଶଶ𝑆ሜ௕ ൅ ሺ𝐴ሜଶଵ𝐻ଶ െ 𝐻ሜ௕ሻ

 

 

Now, if ሺ𝐴ሜଶଶ, 𝐿௠ሻ share no eigenvalues, it is well known (Balas M. , 1995) that 

we can solve the above for a unique bS .  Then  

 

ቐ
𝑆ሜଵ ൌ ൤

𝐻ଶ
𝑆ሜ௕
൨  ,𝑆ଶ ൌ ሺ𝐶𝐵ሻିଵሾ𝐻ଶ𝐿௠ ൅ 𝐻ሜ௔ െ ሺ𝐴ሜଵଵ𝐻ଶ ൅ 𝐴ሜଵଶ𝑆ሜ௕ሻሿ, and 

𝐴ሜଶଶ𝑆ሜ௕ െ 𝑆ሜ௕𝐿௠ ൌ 𝐻ሜ௕ െ 𝐴ሜଶଵ𝐻ଶ

   

 

 

Since  ሺ𝐴ሜଶଶ, 𝐿௠ሻ sharing no eigenvalues is the same as 𝐴 sharing no transmission 

zeros with 𝐴௠,𝐹௠, or 𝐹. 

# 
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Proof of Convergence 

Theorem 3:  Suppose the following are true: 

(1) um(t) is bounded (i.e., all eigenvalues of Fm are in the closed left-half plane and 

any eigenvalues on the imaginary axis are simple) 

(2) The reference model (2.9) is stable (i.e., all eigenvalues of Am are in the open 

left-half plane) 

(3) 𝜑஽is bounded (i.e., all eigenvalues of F are in the closed left-half plane and any 

eigenvalues on the imaginary axis are simple) 

(4) (A, B, C) is ASPR, i.e., 𝑇ሺ𝑠ሻ ≡ 𝐶ሺ𝑠𝐼 െ 𝐴ሻିଵ𝐵 is minimum phase with 𝐶𝐵 ൐ 0 

Here we use the following version of Barbalat’s Lemma, see (Popov V. , 1973) pp. 

210-211: 

Lemma 2:  If f(t) is a real, differentiable function on (0,) with lim
t

f t  finite and df

dt
 

uniformly continuous, then lim
t

df

dt
 0 . 

We have already seen that 𝑉ሶ ൑ 0; therefore 𝑉ሺ𝑡ሻ െ 𝑉ሺ0ሻ ൌ ׬  𝑉ሶ ሺ𝜏ሻ𝑑𝜏 ൑ 0
௧
଴  or 0 ൑ 𝑉ሺ𝑡ሻ ൑

𝑉ሺ0ሻ where 𝑉ሺ0ሻ ൏ ∞.  Hence lim
௧→ஶ

𝑉ሺ𝑡ሻ is finite.  Also, 𝑉ሶ ሺ𝑡ሻ is bounded because 

 

𝑉ሷ ሺ𝑡ሻ ൌ െሺ𝑒∗்𝑄𝑒ሶ∗ሻ ൑ ‖𝑒∗‖‖𝑄‖‖𝑒ሶ∗‖ 

ൌ ‖𝑒∗‖‖𝑄‖‖𝐴௖𝑒∗ ൅ 𝐵∆𝐺𝜂‖ 

൑ ‖𝑒∗‖‖𝑄‖ሺ‖𝐴௖‖‖𝑒∗‖ ൅ ‖𝐵‖‖∆𝐺‖‖𝜂‖ሻ 
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and 𝑒∗ and 𝛥𝐺 are bounded by previous argument via Lyapunov theory.  Also 𝜂 is bounded 

since 𝑢௠ is bounded, 𝐴௠ is stable, 𝑒௬ ൌ 𝐶𝑒∗ is bounded, and 𝜑஽ is bounded.  Thus 𝑉ሶ ሺ𝑡ሻ ൌ

׬ 𝑉ሷ
௧

଴
ሺ𝜏ሻ𝑑𝜏 is uniformly continuous and Barbalat’s Lemma may be applied to yield: 

 

0 ൌ lim
௧→ஶ

𝑉ሶ ሺ𝑡ሻ ൌ െ lim
௧→ஶ

𝑒∗்𝑄𝑒∗ 

 

Since 𝑄 ൐ 0, we have 𝑒∗  ௧→∞ 
ሱ⎯⎯⎯⎯ሮ0 and 𝑒௬ ≡ 𝑦 െ 𝑦௠ ൌ 𝐶𝑒∗  ௧→∞ 

ሱ⎯⎯⎯⎯ሮ 0.   
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APPENDIX B:  SOFTWARE 

Pro Micro read MPU-6050 and write to Xbee 

#include "I2Cdev.h" 
 
#include "MPU6050_6Axis_MotionApps20.h" 
 
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 
#include "Wire.h" 
#endif 
 
MPU6050 mpu; 
//MPU6050 mpu(0x69); // <-- use for AD0 high 
 
#define INTERRUPT_PIN 5 
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 
6) 
bool blinkState = false; 
 
// MPU control/status vars 
bool dmpReady = false;  // set true if DMP init was successful 
uint8_t mpuIntStatus;   // holds actual interrupt status byte 
from MPU 
uint8_t devStatus;      // return status after each device 
operation (0 = success, !0 = error) 
uint16_t packetSize;    // expected DMP packet size (default is 
42 bytes) 
uint16_t fifoCount;     // count of all bytes currently in FIFO 
uint8_t fifoBuffer[64]; // FIFO storage buffer 
 
// orientation/motion vars 
VectorInt16 gy;         // [x, y, z]            gyro sensor 
measurements 
 
// scaling factor for gyro measurement 
float scalingFactor; 
 
// 
================================================================ 
// ===               INTERRUPT DETECTION ROUTINE                
=== 
// 
================================================================ 
 
volatile bool mpuInterrupt = false;     // indicates whether MPU 
interrupt pin has gone high 
void dmpDataReady() { 
    mpuInterrupt = true; 
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} 
 
// 
================================================================ 
// ===                      INITIAL SETUP                       
=== 
// 
================================================================ 
 
#include <SoftwareSerial.h> 
 
SoftwareSerial XBee(0, 1); // Arduino RX, TX (XBee Dout, Din) 
 
void setup() { 
    XBee.begin(38400); 
 
    // join I2C bus (I2Cdev library doesn't do this 
automatically) 
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE 
    Wire.begin(); 
    Wire.setClock(400000); // 400kHz I2C clock. Comment this line 
if having compilation difficulties 
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE 
    Fastwire::setup(400, true); 
#endif 
 
    // initialize serial communication 
        Serial.begin(9600); 
//    while (!Serial); // allow serial to open if we want to 
debug setup logic 
 
    // initialize device 
    Serial.println(F("Initializing I2C devices...")); 
    mpu.initialize(); 
    pinMode(INTERRUPT_PIN, INPUT); 
 
    // verify connection 
    Serial.println(F("Testing device connections...")); 
    Serial.println(mpu.testConnection() ? F("MPU6050 connection 
successful") : F("MPU6050 connection failed")); 
 
    // load and configure the DMP 
    Serial.println(F("Initializing DMP...")); 
    devStatus = mpu.dmpInitialize(); 
 
    // supply your own gyro offsets here, scaled for min 
sensitivity 
    mpu.setXGyroOffset(110); 
//    mpu.setYGyroOffset(76); 
//    mpu.setZGyroOffset(-85); 
//    mpu.setZAccelOffset(1788); // 1688 factory default 
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    // make sure it worked (returns 0 if so) 
    if (devStatus == 0) { 
        // Calibration Time: generate offsets and calibrate our 
MPU6050 
        mpu.CalibrateAccel(6); 
        mpu.CalibrateGyro(6); 
        mpu.PrintActiveOffsets(); 
        // turn on the DMP, now that it's ready 
        Serial.println(F("Enabling DMP..."));  
        mpu.setDMPEnabled(true); 
 
        // enable Arduino interrupt detection 
        Serial.print(F("Enabling interrupt detection (Arduino 
external interrupt ")); 
        Serial.print(digitalPinToInterrupt(INTERRUPT_PIN)); 
        Serial.println(F(")...")); 
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), 
dmpDataReady, RISING); 
        mpuIntStatus = mpu.getIntStatus(); 
 
        // set our DMP Ready flag so the main loop() function 
knows it's okay to use it 
        Serial.println(F("DMP ready! Waiting for first 
interrupt...")); 
        dmpReady = true; 
 
        // get expected DMP packet size for later comparison 
        packetSize = mpu.dmpGetFIFOPacketSize(); 
    } else { 
        // ERROR! 
        // 1 = initial memory load failed 
        // 2 = DMP configuration updates failed 
        // (if it's going to break, usually the code will be 1) 
        Serial.print(F("DMP Initialization failed (code ")); 
        Serial.print(devStatus); 
        Serial.println(F(")")); 
    } 
 
    // configure LED for output 
    pinMode(LED_PIN, OUTPUT); 
 
    // set gyro limits 
    mpu.setFullScaleGyroRange(MPU6050_GYRO_FS_250); 
    Serial.print("Actual MPU range: "); 
    Serial.println(mpu.getFullScaleGyroRange()); 
 
    // total range of values reported 
    int numBins = 2862; // empirically measured by looking at 
scope/monitor 
    // max dps precision plus minus 
    int dpsRange = 250 * (1 + mpu.getFullScaleGyroRange()); // 
250, 500, 1000, 2000 
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    // degree measurement = relativeMeasurement * scalingFactor 
    Serial.print("dps range: "); 
    Serial.println(dpsRange); 
    scalingFactor = (dpsRange * 2) * 1.0 / numBins; // make sure 
this is float 
    Serial.print("Scaling factor: "); 
    Serial.println(scalingFactor, 4); 
} 
 
// 
================================================================ 
// ===         SCALE GYRO TO BE WITHIN RANGE OF uint8_t         
=== 
// 
================================================================ 
 
void sendScaledGyro(float val) { 
    uint8_t scaledGyro; 
    float scaledGyro_f = scalingFactor * val; 
 
    if (scaledGyro_f > 127) { 
        scaledGyro = 255; 
    } else if (scaledGyro_f < -128) { 
        scaledGyro = 0; 
    } else { 
        scaledGyro = round(scaledGyro_f) + 128; 
    } 
     
    XBee.write(scaledGyro); 
//    Serial.print("Scaled Gyro X\t"); 
//    Serial.println(scaledGyro); // this is around axis of 
pendulum flex 
} 
 
// 
================================================================ 
// ===                    MAIN PROGRAM LOOP                     
=== 
// 
================================================================ 
 
void loop() { 
    // if programming failed, don't try to do anything 
    if (!dmpReady) 
        return; 
    // read a packet from FIFO 
    if (mpu.dmpGetCurrentFIFOPacket(fifoBuffer)) { // Get the 
Latest packet 
 
        // OUTPUT_READABLE_GYRO 
        mpu.dmpGetGyro(&gy, fifoBuffer); 
        Serial.print("Raw Gyro XYZ\t"); 
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        Serial.println(gy.x); // this is around axis of pendulum 
flex 
        sendScaledGyro(gy.x); 
         
        // blink LED to indicate activity 
        blinkState = !blinkState; 
        digitalWrite(LED_PIN, blinkState); 
    } 
} 
 

Microcontroller 2: Tip rate read/write 

#include <Wire.h> 
const byte numBytes = 15; 
byte receivedBytes[numBytes]; 
float rChunk = 0b0; 
float pChunk = 0b0; 
float yChunk = 0b0; 
byte checkSum1 = 0b0; 
byte checkSum2 = 0b0; 
byte numReceived = 0; 
float prevChunk = 0b0; 
boolean newData = false; 
 
void setup() { 
  Serial.begin(115200); 
  Serial1.begin(115200); 
 
  Serial.println("<Arduino is ready>"); 
 
  pinMode(22, OUTPUT); 
  pinMode(23, OUTPUT); 
  pinMode(24, OUTPUT); 
  pinMode(25, OUTPUT); 
  pinMode(26, OUTPUT); 
  pinMode(27, OUTPUT); 
  pinMode(28, OUTPUT); 
  pinMode(29, OUTPUT); 
  pinMode(30, OUTPUT); 
  pinMode(31, OUTPUT); 
  pinMode(32, OUTPUT); 
  pinMode(33, OUTPUT); 
  pinMode(34, INPUT); 
} 
 
void loop() { 
  recvBytesWithStartEndMarkers(); // Collect data from microstrain 



116 
 

  parseDataToChunks(); // Parse the data into each axis chunk and the two checksum 
values 

  formatData(); // Prepare and send the data over the 12-wire bundle 
  showNewData(); // Print data to connected serial port (optional) 
} 
 
void sendData(int num) { 
  String in = String(num, BIN); // Convert the data to a binary string 
    Serial.println(in); 
 
  String zero = "0"; 
  while (in.length() < 12) { // Make sure the data is 12 characters long by adding zeros 

to the front 
    in = zero + in; 
  } 
  //Serial.println(in); 
  digitalWrite(34, LOW); // Set the pin low so that simulink knows not to read 
 
  // These if statements adjust the pins of the 8-wire bundle to send the data to 

simulink 
  if (in.substring(0, 1).equals("1")) { 
    digitalWrite(22, HIGH); 
  } else { 
    digitalWrite(22, LOW); 
  } 
  if (in.substring(1, 2).equals("1")) { 
    digitalWrite(23, HIGH); 
  } else { 
    digitalWrite(23, LOW); 
  } 
  if (in.substring(2, 3).equals("1")) { 
    digitalWrite(24, HIGH); 
  } else { 
    digitalWrite(24, LOW); 
  } 
  if (in.substring(3, 4).equals("1")) { 
    digitalWrite(25, HIGH); 
  } else { 
    digitalWrite(25, LOW); 
  } 
  if (in.substring(4, 5).equals("1")) { 
    digitalWrite(26, HIGH); 
  } else { 
    digitalWrite(26, LOW); 
  } 
  if (in.substring(5, 6).equals("1")) { 
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    digitalWrite(27, HIGH); 
  } else { 
    digitalWrite(27, LOW); 
  } 
  if (in.substring(6, 7).equals("1")) { 
    digitalWrite(28, HIGH); 
  } else { 
    digitalWrite(28, LOW); 
  } 
  if (in.substring(7, 8).equals("1")) { 
    digitalWrite(29, HIGH); 
  } else { 
    digitalWrite(29, LOW); 
  } 
  if (in.substring(8, 9).equals("1")) { 
    digitalWrite(30, HIGH); 
  } else { 
    digitalWrite(30, LOW); 
  } 
  if (in.substring(9, 10).equals("1")) { 
    digitalWrite(31, HIGH); 
  } else { 
    digitalWrite(31, LOW); 
  } 
  if (in.substring(10, 11).equals("1")) { 
    digitalWrite(32, HIGH); 
  } else { 
    digitalWrite(32, LOW); 
  } 
  if (in.substring(11, 12).equals("1")) { 
    digitalWrite(33, HIGH); 
  } else { 
    digitalWrite(33, LOW); 
  } 
  digitalWrite(34, HIGH); // Set the pin high to let simulink know that it is ok to read 

the data 
} 
 
void formatData() { 
  if (abs(pChunk - prevChunk) < 1) { 
    //Serial.println(pChunk); 
 
    int temp = pChunk * 8900;  // We can only send 0-4096 so we multiply the raw 

float to set the final value within that range 
    if (temp >= 2048) { 
      temp = 2047; 
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    } else if (temp <= -2048) { 
      temp = -2047; 
    } 
    temp += 2048; 
    prevChunk = pChunk; 
    sendData(temp); 
    Serial.println(temp); 
 
  } else { 
    int temp = prevChunk * 8900; 
    if (temp >= 2048) { 
      temp = 2047; 
    } else if (temp <= -2048) { 
      temp = -2047; 
    } 
    temp += 2048; 
    sendData(temp); 
 
  } 
  delay(5); 
} 
void parseDataToChunks() { 
  // Roll Chunk 
  uint32_t temp = 0b0; 
  for (byte i = 0; i < 4; i++) {  //Takes each data value and builds the IEEE floating 

point number from the binary 
    temp = temp << 8; 
    temp |= receivedBytes[i] & 0xFF; 
  } 
  rChunk = *(float*)&temp; 
 
  // Pitch Chunk 
  temp = 0b0; 
  for ( byte i = 4; i < 8; i++) { 
    temp = temp << 8; 
    temp |= receivedBytes[i] & 0xFF; 
  } 
  pChunk = *(float*)&temp; 
 
  // Yaw Chunk 
  temp = 0b0; 
  for ( byte i = 8; i < 12; i++) { 
    temp = temp << 8; 
    temp |= receivedBytes[i] & 0xFF; 
  } 
  yChunk = *(float*)&temp; 
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  //Checksum, we know the final two bites are the checksum value, so we simply 

assign them 
  checkSum1 = receivedBytes[13]; 
  checkSum2 = receivedBytes[14]; 
} 
void recvBytesWithStartEndMarkers() { 
  static boolean recvInProgress = false; 
  static byte ndx = 0; 
  byte startMarker = 0x0C; // This is the end of the header 
  byte endMarker = 0x75; //This is the start of the header, this way the data we receive 

is only the data and checksum 
  byte rb; 
 
 
  while (Serial1.available() > 0 && newData == false) { 
    rb = Serial1.read(); 
 
    if (recvInProgress == true) { 
      if (rb != endMarker || ndx < 13) { // Read each byte and save to an array 
        receivedBytes[ndx] = rb; 
        ndx++; 
        if (ndx >= numBytes) { 
          ndx = numBytes - 1; 
        } 
      } 
      else { 
        receivedBytes[ndx] = '\0'; // terminate the string 
        recvInProgress = false; 
        numReceived = ndx;  // save the number for use when printing 
        ndx = 0; 
 
        newData = true; 
      } 
    } 
 
    else if (rb == startMarker) { 
      recvInProgress = true; 
    } 
  } 
} 
 
void showNewData() { 
  if (newData == true) { 
    //    Serial.print(yChunk, 6); 
    //    Serial.print("\t"); 
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    //    Serial.print(pChunk, 6); 
    //    Serial.print("\t"); 
    //    Serial.print(rChunk, 6); 
    //    Serial.println("\t"); 
    newData = false; 
  } 
} 
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Sensor Blending Matlab Script 

%% User Inputs 
%====================================================================== 
% Define system state-space matrices (D matrix will be zeros) 
% Example: 
A = [0 1 0;2 3 4;5 6 7]; 
B=[0;1;1]; 
C=[1 0 0]; 
  
% Define desired Numerator roots in Control Canonical Form (CCF) 
  
des_roots=[-2 -1]; % should be stable and of order n-1 for ASPR 
  
%====================================================================== 
  
%% Define an all-zero feedthrough matrix D of appropriate size 
sa=size(A); 
sa_rows=sa(1,1); 
sa_cols=sa(1,2); 
sb=size(B); 
sc=size(C); 
sc_rows=sc(1,1); 
dr=length(des_roots); 
  
D=zeros(sc(1,1),sb(1,2)); 
  
%% Define state space and transfer function models for user inspection 
sys1=ss(A,B,C,D); 
tf1 = tf(sys1); % shows num and den in s polynomial form 
[n1,d1]=ss2tf(A,B,C,D); % define n1,d1 as a vector of polynomial 
coefficients 
nroots=roots(n1); % determine tf1 numerator roots (if any) 
  
%% Test Controllability and Observability 
  
H=ctrb(A,B); 
Hrank=rank(H) % display rank of ctrb matrix 
  
O=obsv(A,C); 
Orank=rank(O) % display rank of obsv matrix 
 
  
%% Create numerator factors 
% This loop creates the factors of the numerator polynomial from  
% desired roots.  For example, assume desired roots are -1 and -2,  
% then r{1}=[1 -root1], r{2}=[1 -root2],  
% corresponding to the factors s+1 and s+2. 
r={dr}; % initialize the "r" array 
for k=1:1:dr 
    r{k}=[1 -des_roots(1,k)];  
end 
clear k 
  
%% Create the desired numerator polynomial 
Cc{1}=r{1}; 
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for j=2:1:dr 
    Cc{j}=conv(Cc{j-1},r{j}); 
end 
CCnum=Cc{dr}; % desired numerator polynomial for CCF 
clear j 
  
%% Define Acc (A matrix in control canonical form) 
Apoly=charpoly(A); % find characteristic polynomial of A 
a=zeros(1,length(Apoly)-1); % initialize an all-zero vector of poly 
coeff. 
% This loop defines the bottom row of the Acc matrix (A in CCF) 
for k=1:1:sa_rows 
       a(1,k)=-Apoly(1,length(Apoly)+1-k); 
end 
Aul=zeros(sa_rows-1,1); % Acc's left-most column above the bottom row 
Aur=eye(sa_rows-1); % Acc's remaining columns above the bottom row 
Acc=[Aul Aur;a]; % build Acc 
clear k 
  
%% Define Bcc (B matrix in control canonical form) 
Bcc=[zeros(sa(1,1)-1,1);1]; 
  
%% Defines Ccc (C matrix in control canonical form) 
% Reverses the order of the desired numerator polynomial 
% and defines it as Ccc 
Ccc=zeros(1,dr+1); % creates an all-zeros vector of the correct length 
v=length(CCnum); 
for k=1:1:v 
    Ccc(1,k) = CCnum(1,length(CCnum)+1-k); 
end 
clear k 
  
%% Computes the required blended output 
Hcc=ctrb(Acc,Bcc); % Define controlability matrix of canonical system 
T=Hcc*H^-1; % Finds T that maps CC form back to original model 
Ti=inv(T); % Defines T inverse 
AccTest=(Ti*Acc*T)-A; % Verify T maps Acc back to A (should be zero 
matrix) 
BccTest=(Ti*Bcc)-B; % Verify T maps Bcc back to B (should be zero 
vector) 
Cblend=Ccc*T % Compute and display blended output matrix  
% Cblend makes plant look ASPR to adaptive controller 
Dcc=D; 
  
%% Define state space and transfer function models using blended output 
sys2=ss(A,B,Cblend,D) 
tf2 = tf(sys2) % shows num and den in s polynomial form 
[n2,d2]=ss2tf(A,B,Cblend,zeros); % define n,d as as a vector of 
% polynomial coefficients 
 
% verify the roots of n2 match desired roots 
roots2 = roots(n2) 
des_roots' 
  
% Test for positive realness (S/B identically one) 
CblendB = Cblend*B 
save('sensor_blended_states_FIP.mat','Cblend'); 
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Motor Signal Builder Discussion 

Penny’s motors are controlled on the Simulink side by using the “Standard Servo 

Write” block.  According to the Arduino documentation, this block writes a voltage value 

to the continuous rotation servo, which in effect specifies a speed: zero being full-speed 

in one direction, 180 being full speed in the other, and a value near 90 being no 

movement.  However, deadband (a band of input values where the output is zero) exists 

in the range around 90 ([ൎ86-95]).  Also, beyond certain values on the lower and upper 

end of the commanded range, the signal drops out entirely.  For these reasons, in addition 

to the desire to use a command signal of the form 𝑐𝑚𝑑 ∈ ሾെγ, γሿ, a motor signal builder 

was created. 

Initial testing showed commands of 0 were yielding small rotation of the wheels.  It 

was determined the dead-band was offset from its true interval.  Experiments were run to 

determine what a correct command range should be, and the dead-band was determined 

to be 88-89.  The Arduino servo write input range is 0-180.  Therefore, inputs of 90 and 

higher correspond to controller commands 1+, yielding forward rotation. Inputs of 87 and 

lower correspond to commands -1 and lower, yielding reverse rotation.  For no rotation, 

89 corresponds to command 0. The commands, which are ultimately produced from the 

control law, are limited to ሾെ79, 79ሿ in Simulink. 
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Figure 7.1  Motor Signal Builder 

 
The motor signal builder reduces impact of deadband and nonlinearity in electronic 

speed controllers on left and right sides of robot. 

 

 
Figure 7.2  Piecewise function showing mapping 𝑓: 𝑐𝑚𝑑 → 𝑐𝑡𝑟𝑙 
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As shown by Figure 7.2, 

 

𝑓ሺ𝑐𝑚𝑑ሻ ൌ

⎩
⎪
⎨

⎪
⎧

𝑙𝑙𝑖𝑚; 𝑐𝑚𝑑 ൑ െ𝜎
𝑓ଵሺ𝑐𝑚𝑑ሻ; 𝑙𝑙𝑖𝑚 ൑ 𝑐𝑚𝑑 ൏ 𝑙𝑑𝑏

90; 𝑐𝑚𝑑 ൌ 0
𝑓ଶሺ𝑐𝑚𝑑ሻ;𝑢𝑑𝑏 ൏ 𝑐𝑚𝑑 ൑ 𝑢𝑙𝑖𝑚

𝑢𝑙𝑖𝑚; 𝑐𝑚𝑑 ൒ 𝜎

, 

the motor signal builder takes 𝑐𝑚𝑑 values in the range of ሾെ𝛾, 𝛾ሿ (for Penny, 𝛾 ൌ 79) 

and outputs a 𝑐𝑡𝑟𝑙 value in the range of ሾ𝑙𝑙𝑖𝑚,𝑢𝑙𝑖𝑚ሿ (for Penny, 𝑙𝑙𝑖𝑚 ൌ 6 and 𝑢𝑙𝑖𝑚 ൌ

179). If 𝑐𝑚𝑑 ൒ 𝛾, then 𝑐𝑡𝑟𝑙 ൌ 𝑢𝑙𝑖𝑚; if 𝑐𝑚𝑑 ൑ െ𝛾, then 𝑐𝑡𝑟𝑙 ൌ 𝑙𝑙𝑖𝑚. If 𝑐𝑚𝑑 ൌ 0, then 

𝑐𝑡𝑟𝑙 ൌ 90 (i.e. in the deadband which produces no movement). Otherwise, the 𝑐𝑡𝑟𝑙 signal 

is constructed using two piecewise functions, one for each side of the deadband. If െ𝛾 ൑

𝑐𝑚𝑑 ൏ 0, then 𝑐𝑡𝑟𝑙 ൌ 𝑓ଵሺ𝑐𝑚𝑑ሻ, else if  0 ൏ 𝑐𝑚𝑑 ൑ σ, then 𝑐𝑡𝑟𝑙 ൌ 𝑓ଶሺ𝑐𝑚𝑑ሻ. Two 

terms 𝑓𝑏𝑖𝑎𝑠 and 𝑏𝑏𝑖𝑎𝑠 are used to change the slope of the linear functions 𝑓ଵ and 𝑓ଶ that 

map 𝑐𝑚𝑑 → 𝑐𝑡𝑟𝑙 as shown below. 

𝑓ଵሺ𝑐𝑚𝑑ሻ ൌ ሺ𝑙𝑑𝑏 ൅ 𝑐𝑚𝑑ሻ ∗ ሺ1 െ 𝑏𝑏𝑖𝑎𝑠ሻ 

𝑓ଶሺ𝑐𝑚𝑑ሻ ൌ ሺ𝑢𝑑𝑏 ൅ 𝑐𝑚𝑑ሻ ∗ ሺ1 ൅ 𝑓𝑏𝑖𝑎𝑠ሻ 

After creating the 𝑐𝑡𝑟𝑙 signal from the input 𝑐𝑚𝑑, it was clear that there were still 

inconsistencies between the right and left sides of the robot (e.g., one side had a different 

deadband). Since the left and right sides of the robot are not mechanically linked, each 

might need slightly different parameters, and so two motor signal builder functions are 

used, one for each side of the robot. 

Given a command 𝑐𝑚𝑑 and 𝛾 ൌ 75, an output 𝑐𝑡𝑟𝑙 is computed according to the 

following pseudocode: 
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If 𝑐𝑚𝑑 ൒ 𝜎, then 𝑐𝑡𝑟𝑙 ൌ 𝑢𝑙𝑖𝑚 

If 𝑐𝑚𝑑 ൑ െ𝜎, then 𝑐𝑡𝑟𝑙 ൌ 𝑙𝑙𝑖𝑚 

If 𝑐𝑚𝑑 ൌ 0, then 𝑐𝑡𝑟𝑙 ൌ 90 (i.e. deadband) 

If 𝑙𝑙𝑖𝑚 ൑ 𝑐𝑚𝑑 ൏ 𝑙𝑑𝑏, then 𝑐𝑡𝑟𝑙 ൌ 𝑓ଵሺ𝑐𝑚𝑑ሻ 

If 𝑢𝑑𝑏 ൏ 𝑐𝑚𝑑 ൑ 𝑢𝑙𝑖𝑚, then 𝑐𝑡𝑟𝑙 ൌ 𝑓ଶሺ𝑐𝑚𝑑ሻ  

with 𝑓ଵ and 𝑓ଶ defined as follows: 

𝑓ଵሺ𝑐𝑚𝑑ሻ ൌ ሺ𝑙𝑑𝑏 ൅ 𝑐𝑚𝑑ሻ ∗ ሺ1 െ 𝑏𝑏𝑖𝑎𝑠ሻ 

𝑓ଶሺ𝑐𝑚𝑑ሻ ൌ ሺ𝑢𝑑𝑏 ൅ 𝑐𝑚𝑑ሻ ∗ ሺ1 ൅ 𝑓𝑏𝑖𝑎𝑠ሻ 

This output command is then sent to the motors. 

 

 
Figure 7.3  Tuned motor signal builder. Yellow: cmd, purple & green: ctrl, red & blue: 
motor encoder readings. 

 

Since the deadband on Penny will occasionally shift, it was desired to automate the 

process of identifying the deadband.  This was accomplished by creating a Simulink 

model that, given a known starting deadband value 𝑑𝑏 (such as 90), send a 𝑐𝑡𝑟𝑙 value of 
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𝑑𝑏 േ 1 (൅ if identifying upper deadband, െ if identifying lower deadband) and 

increment/decrement the value of 𝑑𝑏 until the motor encoders start reporting motion. The 

first value of 𝑑𝑏 to produce motion on each side of the robot is then reported to the user 

using a “Display” block.  One consideration made was that small differences in encoder 

values would falsely trigger the condition indicating that the deadband had been 

identified; a 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎 value was then created, and if 𝑎𝑏𝑠ሺ𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 െ

𝑝𝑟𝑒𝑣_𝑒𝑛𝑐𝑜𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒ሻ ൐ 𝑚𝑖𝑛_𝑑𝑒𝑙𝑡𝑎, then the simulation would report the identified 

deadband.  
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