
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2022

DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING

SYSTEMS FOR UNDERGRADUATES SYSTEMS FOR UNDERGRADUATES

Chelsey Spitzner
Michigan Technological University, cbspitzn@mtu.edu

Copyright 2022 Chelsey Spitzner

Recommended Citation Recommended Citation
Spitzner, Chelsey, "DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING SYSTEMS FOR
UNDERGRADUATES", Open Access Master's Report, Michigan Technological University, 2022.
https://doi.org/10.37099/mtu.dc.etdr/1386

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Robotics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1386
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1386&utm_medium=PDF&utm_campaign=PDFCoverPages

DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING SYSTEMS

FOR UNDERGRADUATES

By

Chelsey B. Spitzner

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical and Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2022

© 2022 Chelsey B. Spitzner

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Electrical and Computer Engineering.

Department of Electrical and Computer Engineering

 Report Advisor: Dr. Christopher Middlebrook

 Committee Member: Dr. Glen E. Archer

 Committee Member: Dr. Shane Oberloier

 Committee Member: Dr. Michael C. Roggemann

 Department Chair: Dr. Glen E. Archer

iii

Table of Contents

List of Figures ..v

List of Tables .. vii

Abstract .. viii

1 Introduction and Motivation ...1

1.1 Laboratory Setup ..3

1.2 Pre-lab and Post-lab ..5

2 ROS Preliminaries ..6

2.1 Lab 1 ...6

2.2 Lab 2 ...8

3 Mobile Motion ..10

3.1 Lab 3 ...10

3.2 Lab 4 ...13

4 Fixed Motion ...19

4.1 Lab 5 ...19

4.2 Lab 6 ...24

5 Sensing ..26

5.1 Lab 7 ...26

6 Navigation ...28

6.1 Lab 8 ...28

6.2 Lab 9 ...31

7 Vision Systems..35

7.1 Lab 10 ...35

8 Future Work and Recommendations ..37

9 Reference List ...41

A Lab Manuals..43

A.1 Lab 1 ROS Fundamentals ...43

A.2 Lab 2 Topics Services and Actions ..49

A.3 Lab 3: Simulation ...58

A.4 Lab 4: Mobile Motion ..65

A.5 Lab 5: Fixed Motion ...76

A.6 Lab 6: Pose Estimation ...83

A.7 Lab 7: Sensing ..86

iv

A.8 Lab 8: Mapping ..94

A.9 Lab 9: SLAM ..99

A.10 Lab 10: Machine Vision ...104

A.11 MATLAB Introduction ..109

v

List of Figures

Figure 1.1 Dependency chart for the labs ..2

Figure 1.2: Turtlebot3 Burger [4]. ...4

Figure 1.3: Niryo Ned robotic arm [5]. ..5

Figure 2.1: Simulation for demonstrating coordinate transformations.7

Figure 2.2: ROS tf tree of simulation...8

Figure 2.3: ROS node graph for the action server and client...9

Figure 3.1: Turtlebot3 in Gazebo simulation. ..11

Figure 3.2: ROS RViz visualization of the Turtlebot3 and lidar sensor.12

Figure 3.3 ROS node graph for Turtlebot3 teleoperation. ...12

Figure 3.4: ROS graph of linear and angular velocity ...13

Figure 3.5: ROS node graph for automatic obstacle avoidance package.13

Figure 3.6: tf tree of Turtlebot3. ..15

Figure 3.7: RViz with Turtlebot3 and lidar scan data ..16

Figure 3.8: Automatic parking algorithm steps. ..17

Figure 3.9: Turtlebot position after running the automatic parking node.18

Figure 3.10: ROS node graph for the automatic parking. ..18

Figure 4.1: Niryo Ned arm in ROS RViz simulation...20

Figure 4.2: Application students use for mouse control of the Niryo Ned robot...............21

Figure 4.3: ROS node graph of the Niryo Ned robotic arm. ..22

Figure 4.4: ROS tf tree of the Niryo Ned robotic arm. ..23

Figure 4.5: Path Planning in RViz. ..24

Figure 4.6: Demonstration of Niryo Ned robot planning a motion.25

Figure 5.1: Diagram of IR sensor setup to detect negative obstacles.27

Figure 6.1: Turtlebot3 Gazebo simulation of a house for mapping.29

Figure 6.2: Map created after parameter optimization in the Gazebo simulation.30

Figure 6.3 ROS node graph for Turtlebot3 mapping using rosbag to playback the data. .31

Figure 6.4 Map creating using Gmapping SLAM. ..32

Figure 6.5 Map creating using Hector SLAM. ..33

Figure 6.6 Map created using Karto SLAM. ...33

Figure 6.7: ROS node graph for Turtlebot3 running hector SLAM node.34

Figure 7.1 Checkerboard for intrinsic camera calibration. ..36

vi

Figure 8.1 ROS node graph for MATLAB to ROS connection for Turtlebot337

Figure 8.2: Laser scan data plotted using MATLAB using data from the Turtlebot3.38

Figure 8.3 Turtlebot3 trajectory with no controller ...39

Figure 8.4 Turtlebot3 trajectory with Lyapunov controller ...39

vii

List of Tables

Table 1.1 Overview of the labs and their titles ..1

Table 1.2 Lab groups. ..3

Table 1.3 Materials needed for Laboratory ..4

Table 2.1 Packages used in Lab 1 ..6

Table 2.2 Packages used in Lab 2 ..9

Table 3.1 Packages used in Lab 3 ..10

Table 3.2 Packages used in Lab 4 ..14

Table 4.1 Packages used in Lab 5 ..19

Table 4.2 Packages used in Lab 6 ..25

Table 5.1 Packages used in Lab 7 ..26

Table 6.1 Packages used in Lab 8 ..28

Table 6.2 Packages used in Lab 9 ..31

Table 6.3: SLAM methods and associated algorithms for lab 9.32

Table 7.1 Packages used in Lab 10 ..35

viii

Abstract

The purpose of this project was to create an undergraduate junior lab to teach students

about Robotic Operating System (ROS). The labs were designed to highlight the

usefulness of ROS and the process used. Designing algorithms, how to send/receive

messages, and the hierarchy of how nodes work with each other are emphasized. Taking

packages that are open-source then modifying them is also emphasized. This is done so

that students can transfer their knowledge from this course to other robot operating

systems.

1

1 Introduction and Motivation

There were ten labs created for the laboratory course listed in Table 1.1. The topics were

chosen for the labs to be intertwined with the course instruction. This allows students to

first learn about the material in a classroom setting and then apply their knowledge in a

laboratory setting.

Table 1.1 Overview of the labs and their titles

Lab Number Lab Title

Lab 1 ROS Fundamentals

Lab 2 Topics, Services, and Actions

Lab 3 Simulation

Lab 4 Mobile Motion

Lab 5 Fixed Motion

Lab 6 Pose Estimation

Lab 7 Sensing

Lab 8 Mapping

Lab 9 SLAM

Lab 10 Machine Vision

The course associated with these laboratories is new to Michigan Technological

University and could be subject to change in the future. This change is likely to come in

the form of rearranging the course material to follow a different order of learning the

material. If this were to happen, the labs would need to be rearranged as well to follow

the course. Figure 1.1 shows a dependency chart for the labs. This will allow the

instructor of the course to easily change lab order to match the course.

2

Figure 1.1 Dependency chart for the labs. It shows which labs are a perquisite for other

labs.

The labs are grouped into subject matter for the purpose of discussion in the following

chapters. These groups are shown in Table 1.2. Each Group is a chapter with a discussion

of the labs following this introduction.

3

Table 1.2 Lab groups.

1.1 Laboratory Setup

The laboratory is going to be run with students in groups of two. This is done for a few

reasons. First, it fits the space constraints of the lab. Most of the labs require physical

robots moving around through mazes, maps, etc. If each student were to use their own

robot, there may not be enough space in the laboratory as well as time. Since the labs are

going to be two-hour labs, if there is a line waiting to use a maze or other physical setup,

it could be limiting the students in what they can achieve in the two hours. The

educational aspect of running laboratories in groups of two was also considered.

Conducting laboratories with students in groups improves students’ performances not

only in the lab, but also in the overall course [1 − 3].

The laboratory space will be setup with desks along the walls of the lab. Each group of

students will have their own desk with a PC and robots at each desk. Having PCs in the

lab instead of students using their own laptops will minimize the time debugging ROS

software which will allow students to complete the lab in a two-hour time frame. The

robots that the students will be using are the Turtlebot3 Burger Figure 1.2 and the Niryo

Ned Figure 1.3 robots. Both robots are built for educational purposes and interface well

with ROS. Table 1.3 gives a list of the minimum number of materials needed for the

laboratory.

Lab Group Lab Number Robot

ROS Preliminaries
Lab 1 Turtlebot3

Lab 2 Turtlebot3

Mobile Motion
Lab 3 Turtlebot3

Lab 4 Turtlebot3

Fixed Motion
Lab 5 Niryo

Lab 6 Niryo

Sensing Lab 7 Turtlebot3

Navigation
Lab 8 Turtlebot3

Lab 9 Turtlebot3

Vision Systems Lab 10 Turtlebot3

4

Table 1.3 Materials needed for Laboratory

Material Quantity

Desks 8

PC 8

Turtlebot3 Burger 8

Niryo Ned 4

Maze walls and connectors 1

Figure 1.2: Turtlebot3 Burger [4].

5

Figure 1.3: Niryo Ned robotic arm [5].

1.2 Pre-lab and Post-lab

Pre-labs are designed to be assigned with this laboratory. This ensures that students come

to the laboratory prepared for the assignments. Most pre-labs are done on students’

personal computers using a virtual machine running Linux.

Post-labs vary in format depending on the lab. The format for most of them is either

submitting python code or submitting an image with comments. The images the students

submit are either node/coordinate transformation graphs from ROS, or plots of the

velocity or position of the robots. Post-labs ensure that the student spends time

considering what they did in the lab and looking at the overall connections between ROS

and the robot.

6

2 ROS Preliminaries

ROS preliminaries lab group consists of the first two labs. They are a prerequisite to the

rest of the labs as shown in Figure 1.1. They are designed to introduce the student to ROS

assuming no prior experience with the software. As these are the first labs, it is mostly

step-by-step instruction that the students must follow. There are a few instances where

the students must change some code which is done to force the student to look at the

code. This is done so that the student doesn’t copy and paste code without understanding

what it does. In each lab, students are required to view either the node graph or the

coordinate transform graph for the ROS nodes they are running. This ensures that

students are reminded of the overall scheme of ROS without getting to enveloped in the

details.

2.1 Lab 1 (A.1)

Lab 1 is titled ROS Fundamentals. It introduces main concepts that are fundamental to

both ROS and robotics. This lab is mostly step-by-step instruction through the lab manual

due to it being the first lab. It starts with the student setting up a workspace and creating a

ROS package. This is a fundamental skill that students will use in each lab. Table 2.1

shows which packages will be used for Lab 1.

Table 2.1 Packages used in Lab 1

Packages Used

tf2

RViz

tf_tree

rospy

The students create a package with two nodes. Each node is a python script which will

create a simulation with two objects where one object follows the other (Figure 2.1). This

allows the laboratory to teach the concept of coordinate transformations. It also teaches

students how to create packages and launch them.

7

Figure 2.1: Simulation for demonstrating coordinate transformations.

Once students create this simulation, they learn how to add a static coordinate transform

to one of the objects. This system can be visualized using ROS’s tf tree Figure 2.2. The

rest of the lab is experimenting and visualizing the coordinate transformations of the

system using RViz as well as using rostopic tools to view the topics being published.

8

Figure 2.2: ROS tf tree of simulation. It shows how the coordinate transforms of the

objects present in the ROS simulation.

2.2 Lab 2 (A.2)

Lab 2 is similar to Lab 1 because it is mostly step-by-step instruction with a few instances

where the student will need to change some of the python code. It is split into three

subjects: Topics, Services, and Actions. These three subjects are fundamental to how

ROS operates. Although they are ROS specific, the overall concept of these subjects is

present in most robot operating systems [6]. Table 2.2 shows which packages will be

used for Lab 1.

9

Table 2.2 Packages used in Lab 2

Packages Used

Publishers

Subscribers

Services

Actions

rqt_graph

Topics consist of publishers and subscribers. This is a fundamental concept to ROS but is

present in most other robotic operating systems. It allows information to be published and

for nodes to subscribe to the information that it needs to operate. The students learn how

to create python scripts to publish some information and then create another script to take

that information and add something to it.

Services can take information and perform an operation to them. This is useful for unit

conversion or math operations. The students create a service to take two user-input

integers and output them to the command terminal. Topics and services are relatively

straightforward and do not take much time to create.

Actions are more ROS-specific but are useful for many different applications. They are

also more complicated and take most of the lab to create. In this lab, the student creates a

“fake” sensor which feeds data to the action client. The action server takes the mean and

standard deviation of the sensor data. This is done to show the student how actions can be

used to perform some analysis on sensors. This data can then be used in an algorithm to

perform a specific task.

Throughout these three tasks, students are asked to view the ROS node graph shown in

Figure 2.3. This ensures that the students understand the overall connections for each

subject. Rostopic echo command from ROS also allows students to see the output from

the published topics on their command terminal.

Figure 2.3: ROS node graph for the action server and client

10

3 Mobile Motion

This group of Labs 3 and 4 introduces mobile motion. This is done through the

Turtlebot3 Burger platform. Turtlebot3 is produced by Robotis and is highly regarded as

one of the leading platforms for learning robotics and for testing algorithms. It is

designed to interface with ROS which allows students to focus on the process and the

development of algorithms without getting caught up in the technical details. Since

students are now expected to know how to use some ROS fundamentals from the

previous labs, this group of labs focuses on students developing algorithms and creating

their own code.

3.1 Lab 3 (A.3)

Lab 3 is a simulation lab and uses the packages in Table 3.1.

Table 3.1 Packages used in Lab 3

Packages Used

Teleoperation

Keystroke to Velocity

Command

Gazebo

rqt_plot, rqt_graph

RViz

Obstacle Avoidance

(created by students)

The laboratory starts with simulating the Turtlebot in Gazebo as shown in Figure 3.1.

Gazebo is used to simulate the robot in accurate real-life scenarios. It does this by

employing physics engines that implement the non-linearities that are present in the

system as well as adding noise to sensor data. This allows students to first test their

algorithms in simulation before implementing them on a physical Turtlebot. ROBOTIS

offers a set of environments available to use in Gazebo. The environment showed in

Figure 3.1 shows the Turtlebot3 World offered by ROBOTIS.

11

Figure 3.1: Turtlebot3 in Gazebo simulation.

Another tool the students use throughout the laboratory is RViz. RViz is a visualization

tool from ROS that can show the robot model and sensor data among other things. The

students use RViz in lab 3 to visualize the sensor data from the lidar sensor on the

Turtlebot3 Figure 3.2: ROS RViz visualization of the Turtlebot3 and

12

Figure 3.2: ROS RViz visualization of the Turtlebot3 and lidar sensor.

Students are tasked to create a teleoperation node for the Turtlebot. They create a script to

map certain keys to velocity commands. Then they need to create a script to transform the

velocity commands to more realistic commands. This involves ramping the velocity

instead of making the velocity instantaneously jump. Once they execute this, they test it

in the Gazebo simulation and view the ROS node graph for their package Figure 3.3.

Figure 3.3 ROS node graph for Turtlebot3 teleoperation.

For the last task, they must create a simple obstacle avoidance algorithm. This requires

the students to work again with creating a new package and subscribing to the Turtlebot

lidar sensor data. Once they subscribe to the data, they need to write a simple algorithm

to publish velocity commands if the Turtlebot is within a certain distance to an object.

13

Once the students are done developing their algorithm, they test it using the Gazebo

simulation. While the obstacle avoidance node is running, the students plot the velocity

commands that their node is sending the Turtlebot Figure 3.4.

Figure 3.4: ROS graph of linear and angular velocity. These are the command velocities

sent to the Turtlebot3 during the automatic obstacle avoidance algorithm.

The students also show the ROS node graph in Figure 3.5. This encourages them to see

how using the obstacle avoidance algorithm creates a closed loop system with no input

needed from the user as compared to Figure 3.3.

Figure 3.5: ROS node graph for automatic obstacle avoidance package.

3.2 Lab 4 (A.4)

Lab 4 is the first lab where the students are using ROS on a physical robot. This is done

by using a remote PC to connect over a network to the Raspberry Pi on the Turtlebot3

Burger. The packages used in this lab are shown in Table 3.2.

14

Table 3.2 Packages used in Lab 4

Packages Used

Teleoperation

Gazebo

tf_tree

rqt_plot, rqt_graph

RViz

Automatic Parking (created

by students)

The initial parts of this lab utilize the same teleoperation packages the students used in

Lab 3. This is done to show students how the same packages in ROS can be used in both

simulation and on the physical robot. The students view the tf tree of the Turtlebot 3

Figure 3.6.

1
5

Figure 3.6: tf tree of Turtlebot3.

16

The final part of the lab is having the students create an automatic parking script. The

automatic parking is done using the laser-distance scanner on the Turtlebot3. Reflective

tape is then put on one of the walls in the laboratory. Then, the laser-distance scanner can

detect the reflective tape and the students can design an algorithm to have the robot move

and stop by the tape. The setup for this will be four walls to create a square/rectangle to

place the Turtlebot3 into. Then, the reflective tape will be placed by the students in a

random location on one of the walls. This ensures that the tape is in a different location

for each student. Since lidar sensors are affected by the reflectivity of the materials

around it, the reflective tape has greater intensity than anything else around the Turtlebot

as shown in Figure 3.7

Figure 3.7: RViz with Turtlebot3 and lidar scan data. The red arrow is added to

emphasize where the reflective tape is placed.

The automatic parking algorithm is split into four steps. Students are given Figure 3.8 in

the laboratory manual to visualize the steps in the algorithm. An incomplete python script

is given to them with four sections they need to complete with the four steps.

Reflective Tape

17

Figure 3.8: Automatic parking algorithm steps.

Once students complete the python script, they create the necessary launch files to

complete the automatic parking algorithm node. They can then test their algorithm in the

lab where an empty square will be setup with a strip of reflective tape. Figure 3.9 shows

the RViz image of where the Turtlebot ends after the automatic parking node is run.

18

Figure 3.9: Turtlebot position after running the automatic parking node.

The node graph of the Turtlebot3 running with the automatic parking algorithm is shown

in Figure 3.10.

Figure 3.10: ROS node graph for the automatic parking.

19

4 Fixed Motion

This group of labs uses the Niryo Ned robotic arm. It is a 6-axis robot designed to be

used in education and research. Niryo Ned interfaces well with ROS and offers many

options to customize the robot and its applications.

4.1 Lab 5 (A.5)

Lab 5 introduces the student to the Niryo Ned robotic arm. The software packages used in

this lab are shown in Table 4.1.

Table 4.1 Software packages used in Lab 5

Packages Used

RViz Simulation

Python3

MoveIt

RViz for Motion Planning

There is a graphical user interface (GUI) offered by Niryo that allows students to change

the angles of each of the joints Figure 4.1. Students can observe how the joint angles

move the robot in the simulation.

20

Figure 4.1: Niryo Ned arm in ROS RViz simulation.

Using this simulation, the students become familiar with where each joint is and how

moving each joint angle affects the pose of the robot. Once the student is familiar with

the robot and how it moves, an application is used so that students can control the

simulated robot with a computer mouse Figure 4.2. This application shows the envelope

for the robot in white, the current end-effector position in blue, and the desired end-

effector position in green. The desired end-effector position is set by the PC mouse and is

under the blue dot in Figure 4.2. The application also displays the joint angles and pose of

the end-effector.

21

Figure 4.2: Application students use for mouse control of the Niryo Ned robot

Once the students have completed the application, they are instructed to view the node

graph and the tf tree of the system. The node graph in Figure 4.3 is much larger than the

Turtlebots node graph in Figure 3.5. This allows students to observe why more path

planning packages are used with the Niryo Ned for most movement.

2
2

Figure 4.3: ROS node graph of the Niryo Ned robotic arm.

23

The tf tree of the robotic arm is also viewed by the students Figure 4.4.

Figure 4.4: ROS tf tree of the Niryo Ned robotic arm.

24

For the last part of the lab, students use the path planning feature provided by RViz to

graphically plan a motion. In Figure 4.5, the desired pose is set by clicking and dragging

the blue/red arrows. The end desired pose is shown in orange and the current is shown in

the solid blue. The translucent Niryo arm is the visualization of the planned path from the

current to the end pose.

Figure 4.5: Path Planning in RViz.

4.2 Lab 6 (A.6)

Lab 6 is focused on controlling the pose of the robot arm. This is done using MoveIt [7].

MoveIt offers packages for forward/inverse kinematics, manipulation, and motion

planning. This allows students to implement pose estimation in the timeframe required

for the lab. First the students learn about the configuration needed to use MoveIt. It

requires a URDF file for the robot, joint names, and joint groups. The software packages

used in this lab are shown in Table 4.2.

25

Table 4.2 Software packages used in Lab 6

Packages Used

MoveIt

RViz

Path Planning

Once the MoveIt configuration files are done, the students then go through the process of

motion planning. An initial python script is given to them that plans a cartesian path to a

set pose of the end effector. They execute the file on the simulated Niryo arm and view

the result Figure 4.6.

Figure 4.6: Demonstration of Niryo Ned robot planning a motion.

After students execute the initial planned movement, they must modify the script. They

need to change it to have the end-effector of the robot draw a square by planning four

different poses and executing it using one python script.

26

5 Sensing

Working with sensors is a fundamental part of robotics. This group consists of only Lab 7

and it goes back to working with the Turtlebot3. Sensors offered by Robotis are easily

integrated with the Turtlebot3 and allow for students to learn how to create algorithms

using sensor data without having to setup sensor interfaces.

5.1 Lab 7 (A.7)

The packages used in this lab are shown in Table 5.1.

Table 5.1 Packages used in Lab 7

Packages Used

Publisher

Subscriber

Cliff Detection (students

create)

An IR sensor from Robotis is added by the students to the Turtleobt3. The sensor is going

to be used by the students to allow the Turtlebot3 to detect negative obstacles. The

students install the IR sensor at a 15° angle so that it can detect negative obstacles in front

of the robot Figure 5.1.

27

Figure 5.1: Diagram of IR sensor setup to detect negative obstacles.

At this point in the semester, more responsibility is assumed by the students to create the

python scripts. The students will have to setup most of the python script with

subscribers/publishers and calculating command velocities from the sensor data. Once

students finish the simple algorithm, they test it on the physical Turtlebot3 in the lab.

Once they show that their simple algorithm works, they will need to improve their

algorithm. This is done by accounting for angular velocity when approaching a cliff and

refining the algorithm to detect a slope as well as a cliff.

28

6 Navigation

Robot navigation allows robots to determine their position/orientation within an

environment. Labs 8 and 9 introduce the student to navigation based on the laser-distance

scanner on the Turtlebot3. They do not use vision systems for navigation due to Lab 10

being the introduction to vision systems. Lab 8 is focused on the mapping of

environments and how to tune the parameters in ROS to create a better map. There are

some simultaneous localization and mapping (SLAM) features used in this lab, however

a deep dive into the different algorithms and how SLAM works is done in lab 9.

6.1 Lab 8 (A.8)

Lab 8 introduces the students to mapping. The packages used in this lab are shown in

Table 6.1.

Table 6.1 Packages used in Lab 8

Packages Used

rosbag

Map server

Gmapping

The first part of Lab 8 is a simulation of the Turtlebot3 in a house Figure 6.1. The

students use this simulation to record the data using a feature from ROS called rosbag.

This exposes students to recording robot data and playing back that data to use later.

29

Figure 6.1: Turtlebot3 Gazebo simulation of a house for mapping.

The students record data using a teleoperation node to drive the Turtlebot around all

rooms of the simulated house. Once the recording is done, they playback that data to a

mapping node. Once the students have created a map, they need to tune some parameters

to create a better map Figure 6.2. The parameters are angular and linear update rate and

the x/y minimum and maximum values. These parameters are largely dependent on the

specifications of the laser-distance scanner: its refresh rate and minimum/maximum

distance.

30

Figure 6.2: Map created after parameter optimization in the Gazebo simulation.

Once students have optimized their parameters, they repeat the same procedure for

creating a map on the physical Turtlebot3. The laboratory will be setup with a maze

structure for the students to map. This is done to show that there may be discrepancies

between the Gazebo simulation and the physical results. These discrepancies arise out of

disturbances that are not accounted for in Gazebo simulation such as light reflecting off

of surfaces, sensor interference, or physical laser-distance scanner parameters being

different than the simulation. The parameters that were optimized for the simulation

might not be optimized for the physical mapping process. The ROS node graph for the

physical Turtlebot3 using rosbag data playing back to create a map is shown in Figure

6.3.

31

Figure 6.3 ROS node graph for Turtlebot3 mapping using rosbag to playback the data.

6.2 Lab 9 (A.9)

Lab 9 is focused on SLAM methods in ROS. The packages used in this lab are shown in

Table 6.2.

Table 6.2 Packages used in Lab 9

Packages Used

Map server

Gmapping

Hector

Karto

RViz Path Planning

The students start in a simulated house to create a map Figure 6.1. There are three SLAM

algorithms that the students explore in simulation. The SLAM methods and their

associated algorithms are summarized in Table 6.3.

32

Table 6.3: SLAM methods and associated algorithms for lab 9.

SLAM Method Algorithm

Gmapping (Figure 6.44) Rao-Blackwellized Particle Filter (PF)

with the use of odometry data, [8], [9].

Hector (Figure 6.55) PF without the use of odometry data [9].

Karto (Figure 6.66) Graph-based algorithm [9].

The students create a map of the same house in Gazebo simulation using all three

methods. They can then select what they observe to be the best method for the Turtlebot3

in the simulation.

Figure 6.4 Map creating using Gmapping SLAM.

33

Figure 6.5 Map creating using Hector SLAM.

Figure 6.6 Map created using Karto SLAM.

34

Once they select the best SLAM method, the students complete a simulated path planning

using the map they created.

After this is complete, the students use the SLAM method that they determined to be the

best on the physical Turtlebot3 to map a structure in the lab. Path planning is also done

on the physical robot in the map that they create. The ROS node graph for the physical

Turtlebot3 using hector SLAM method to create a map is shown in Figure 6.7.

Figure 6.7: ROS node graph for Turtlebot3 running hector SLAM node.

35

7 Vision Systems

Before this section, the labs do not implement a vision system. Detection and navigation

are achieved using a laser-distance scanner or an IR sensor. Vision systems allow

students to perform a lot of different applications that weren’t possible using only the

laser-distance scanner. It also exposes students to the difficulties of working with

cameras from distortion to calibration.

7.1 Lab 10 (A.10)

The raspberry pi camera does not work with the version of Ubuntu used for this lab. This

is because the Multi-Media Abstraction Layer (MMAL) of the camera does not work

with 64-bit systems. The first part of Lab 10 is calibrating the camera that is added to the

Turtlebot3 burger. The packages used in this lab are shown in Table 7.1.

Table 7.1 Packages used in Lab 10

Packages Used

Turtlebot3 Autorace [10]

Pi Camera

Rqt image view

Rqt reconfigure

Camera Calibration

The intrinsic calibration uses a checkerboard pattern Figure 7.1. Intrinsic calibration

accounts for parameters of the camera such as distortion, focal length, and skew. This is

done using an intrinsic camera calibration GUI provided by ROBOTIS.

36

Figure 7.1 Checkerboard for intrinsic camera calibration.

Extrinsic camera calibration determines the position and imaging plane of the camera.

This is done by placing the robot between two parallel lines then adjusting the max/min x

and y values for the imaging plane of the camera.

The last part of the calibration is calibrating the camera to detect lanes; one white and one

yellow similar to road lanes. This is done by changing the saturation, hue, and lightness

values for the camera. Once students are satisfied with their calibration, they can move on

to lane detection.

The students start with a lane detection package provided by Robotis that is used in their

Auto Race challenges [10]. The package includes a PD controller to provide robust lane

tracking. Once the students get the package working, they go to the source files of the

package and change the parameters of the PD controller and comment on the change in

performance.

37

8 Future Work and Recommendations

Ubuntu 18.04 was used to create the labs due to using [11] as a reference to learn ROS

initially. In the future, the labs should be converted either to use Ubuntu 20.04 or to use

ROS2. Switching to Ubuntu 20.04 will require much less work than switching to ROS2

and should be done if time is an issue. If a switch is made, all of the labs will need to be

tested using the new version to ensure that the packages used are supported.

It was discussed later in this project that MATLAB may be better suited to teach students

about the concepts intended for this laboratory. If it is decided that this is the direction the

laboratory is to be taken, Appendix A.11 was created as an initial lab. This creates

template and good starting point for the labs using MATLAB to connect to ROS. To get

an overview of the connections created from MATLAB to ROS, the node graph in Figure

8.1. This node graph is with ROS running a Gazebo simulation of a Turtlebot3 and

MATLAB sending command velocities to ROS.

Figure 8.1 ROS node graph for MATLAB to ROS connection for Turtlebot3

MATLAB is also useful for easily plotting data that is published using ROS. An example

of a plot of the laser scan data of the Turtlebot3 that is running from the node graph

above is shown in Figure 8.2.

38

Figure 8.2: Laser scan data plotted using MATLAB using data from the Turtlebot3.

Another feature of MATLAB that could be implemented in this laboratory would be to

implement controllers on the Turtlebot3 using Simulink. The results of using a trajectory

controller on the Turtlebot3 is shown in Figure 8.3 and Figure 8.4.

39

Figure 8.3 Turtlebot3 trajectory with no controller

Figure 8.4 Turtlebot3 trajectory with Lyapunov controller

Some student testing with the labs was done. The students were given the instructions to

complete the lab and simulations but they were not given a time-frame to complete the

lab in. Therefore, some testing will need to be done with students to ensure that all of the

labs are able to be completed in a two-hour time frame.

Initial feedback from students mainly involved specific commands or packages not being

installed in their instance of ROS. There were also a few students who mentioned the

40

code being included in the lab manuals confusing so a few formatting changes were made

to clearly distinguish the lines of code.

41

9 Reference List

[1] T. W. Huitt, A. Killins and W. S. Brooks, "Team-Based Learning in the Gross

Anatomy Laboratory Improves Academic Performance and Students’ Attitudes

Toward Teamwork.," Anatomical sciences education, vol. 8, no. 2, pp. 95-103,

2015.

[2] S. J and R. Jobanputra, "Facilitating Group Work: To Enhance Learning in

Laboratory Based Courses of Engineering Education in India," in Association for

Engineering Education - Engineering Library Division Papers, San Antonio, 2012.

[3] P. Weyrich et al., "Peer-Assisted Versus Faculty Staff-Led Skills Laboratory

Training: a Randomised Controlled Trial.," Medical education, vol. 43, no. 2, pp.

113-120, 2009.

[4] ROBOTIS, "TurtleBot 3 Burger [US]," ROBOTIS, [Online]. Available:

https://www.robotis.us/turtlebot-3-burger-us/. [Accessed April 2022].

[5] Niryo, "Ned Education Research Cobot," [Online]. Available:

https://niryo.com/product/ned-education-research-cobot/. [Accessed April 2022].

[6] G. Magyar, P. Sinčák and Z. Krizsán, "Comparison Study of Robotic Middleware

for Robotic Applications," in In: Sinčák, P., Hartono, P., Virčíková, M., Vaščák, J.,

Jakša, R. (eds) Emergent Trends in Robotics and Intelligent Systems. Advances in

Intelligent Systems and Computing, https://doi.org/10.1007/978-3-319-10783-

7_13, 2015.

[7] MoveIt , May 2020. [Online]. Available: https://moveit.ros.org/. [Accessed 4 April

2022].

[8] G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for Grid Mapping

with Rao-Blackwellized Particle Filters," IEEE transactions on robotics, vol. 23,

no. 1, pp. 34-46, 2007.

[9] J. M. Santos, D. Portugal and R. P. Rocha, "An evaluation of 2D SLAM techniques

available in Robot Operating System," in 2013 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR), 2013.

[10] Robotis, "TurtleBot3 AutoRace 2019," 2019. [Online]. Available:

https://emanual.robotis.com/docs/en/platform/turtlebot3/autonomous_driving_auto

race/. [Accessed April 2022].

42

[11] M. Quigley, B. Gerkey and W. D. Smart, Programming Robots with ROS, O'Reilly

Media Inc., 2015.

43

A Lab Manuals

A.1 Lab 1 ROS Fundamentals

1. Setup

Before any code can be written, a catkin workspace must be created for the code to live
in. Then, we can create packages and nodes within our workspace. To create a
workspace called lab01, run the following lines of code in a command terminal.

source /opt/ros/melodic/setup.bash
mkdir -p ~/lab01/src
cd ~/lab01
catkin_init_workspace src
catkin_make
source devel/setup.bash

To save you some work, use these lines to edit the bashrc file.

echo source ~/lab01/devel/setup.bash >> ~/.bashrc
source ~/.bashrc

A ROS package resides inside the src directory of the catkin workspace we created.
ROS packages contain nodes which will contain the python code. To create a package
called learning_tf2, execute the following lines of code in your open command terminal.

cd ~/lab01/src
catkin_create_pkg learning_tf2 tf2 tf2_ros rospy turtlesim
cd ~/lab01
catkin_make
source ./devel/setup.bash

Next, a node will need to be created in the new ROS package with these two lines of
code.

cd ~/lab01/src/learning_tf2/src
mkdir nodes

2. TF Listener and Talker Python Script

44

ROS uses a package called tf2 to implement coordinate transforms. The following two
python scripts create two “turtles”. One turtle is the “talker”, and the other is the
“listener”. Suppose that there is a coordinate that is the “world” coordinate at the point
(0,0,0) and the “talker” turtle is moving around in the world coordinate system. The ROS
tf2 package will perform coordinate transformation to tell the “listener” turtle where the
“talker” turtle is.

This is the “talker” turtle script which will become a script in our node. Save the file
turtle_tf2_broadcaster.py in the following location:
/home/username/lab01/src/learning_tf2/src/nodes

Save the file turtle_tf2_listener.py in the same nodes folder as the talker script

Now that the python scripts are in our node, we need to tell ROS that these scripts are
executable. To do this, return to your command terminal and execute these two lines.

chmod +x nodes/turtle_tf2_broadcaster.py
chmod +x nodes/turtle_tf2_listener.py

A launch file must be created for our package to be executed. The following command
will create a launch folder.

mkdir launch

Save the code start_demo.launch in the launch folder created above. The location
should be in /home/username/lab01/src/learning_tf2/src/launch

One last thing must be done before we execute our package. The following lines of code
will open a file called CMakeLists.txt

cd ~/lab01/src/learning_tf2
gedit CMakeLists.txt

Scroll down until you see the “Install”
Like this:

Under “Install”, copy and paste this code, then click save.
When you are done, don’t close the text editor as we will need to modify it later.

45

install(
 PROGRAMS
 nodes/turtle_tf2_broadcaster
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

install(
 PROGRAMS
 nodes/turtle_tf2_listener
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

3. Launch Package and View Simulation

These two lines of code will launch the package we created. After you execute these
commands in the terminal, a simulation window will appear.

cd ~/lab01
roslaunch learning_tf2 start_demo.launch

If this is the first time you are running a ROS simulation, it may take a minute or two to
appear. After it appears, if everything is working correctly, you should see two turtles.
Adjust your screen to view the command terminal and the simulation. To move the
“talker” turtle, use the arrow keys on your computer. Note: the command terminal must
be the active window to move the turtle. You should see the “listener” turtle follow the
“talker” turtle in the simulation. Don’t close your simulation and move onto the next step.

Since the tf command can be quite confusing, ROS offers several tools to visualize the
command. We will explore the tf tree and RViz. First, the tf tree. To view the current tf
tree of the package, first open a new command terminal tab and enter these two lines.

rosrun tf2_tools view_frames.py
evince frames.pdf

This should open a pdf file. Take a screenshot of the tf tree to show to your TA

TA Initials: _________________________ Date: ___________________________

Press ctrl+C in the current command window (the one with the tf tree) to close the pdf.
Run the following command to open RViz. Once RViz is open, you should see three
coordinate axes. One for the “world”, one for the “listener” turtle, and one for the “talker”

46

turtle. Try moving the turtles in the simulation, and watch the RViz coordinate axes move
in coordination.

rosrun rviz rviz -d `rospack find turtle_tf`/rviz/turtle_rviz.rviz

After viewing the RViz simulation, stop the simulations in both command terminal tabs by
typing ctrl+C into both terminals.

4. Add Static Coordinate Frame

The process before this added two dynamic coordinate frames (the turtles). Dynamic
meaning that the coordinate frames move with respect to the “world” frame. Another
useful skill in ROS is adding a static coordinate frame. This could be used to add the
position of a laser on a robot with respect to its center. In our case, we are going to add
a baby turtle on top of the “talker” turtle.

This process is very similar to adding the dynamic coordinate frames. Save the given file
fixed_tf2_broadcaster.py in the same nodes folder as before.

Tell ROS that the python file is executable with these commands.

cd ~/lab01/src/learning_tf2/src
chmod +x nodes/fixed_tf2_broadcaster.py

Next, we need to add this new program to the CMakeLists file..

cd ~/lab01/src/learning_tf2
gedit CMakeLists.txt

Add these lines of code below the ones you added earlier.

install(
 PROGRAMS
 nodes/fixed_tf2_broadcaster
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

Finally, the launch file must be changed.

cd ~/lab01/src/learning_tf2/src/launch
gedit start_demo.launch

Once the launch file is open, copy/paste this code into the file.

47

<node pkg="learning_tf2" type="turtle_tf2_listener.py" name="listener" />
 <node pkg="learning_tf2" type="fixed_tf2_broadcaster.py"
 name="broadcaster_fixed" output="screen"/>

As before, launch the package with this line in your terminal. Again, a simulation will pop
up. The simulation will appear the same as before with the two turtles. The difference
after adding the static coordinate frame will be seen in the tf tree and in RViz.

roslaunch learning_tf2 start_demo.launch

View tf tree and take a screenshot to show your TA. Don’t forget that these lines will
need to be run in the terminal window that isn’t running the package simulation.

rosrun tf view_frames
evince frames.pdf

Comment on the difference between this tf tree and the one made in part 3.

TA Initials: _________________________ Date: ___________________________

To view RViz, execute this code.

rosrun rviz rviz -d `rospack find turtle_tf`/rviz/turtle_rviz.rviz

To finish, another useful ROS tool is the tf_echo. This command will output the
transformation between any two coordinate frames in your command window.

rosrun tf tf_echo [reference_frame] [target_frame]

For example, you could view the coordinate transformation between the two turtles.

rosrun tf tf_echo turtle1 turtle2

Or you could view the coordinate transformation between the “talker” turtle and the baby
turtle.

rosrun tf tf_echo turtle1 baby_turtle

TA Initials: _________________________ Date: ___________________________

Items to submit:

48

Part 3: TF tree screenshot
Part 4: TF tree screenshot and comments

49

A.2 Lab 2 Topics Services and Actions

1. Topics: Publisher and Subscriber

Create a Catkin workspace called “lab02”.

source /opt/ros/melodic/setup.bash
mkdir -p ~/lab02/src
cd ~/lab02
catkin_init_workspace src
catkin_make
source devel/setup.bash

Next, create a package called “learning_sub” using the following command lines. This

package has dependencies on std_msgs and rospy.

cd ~/lab02/src
catkin_create_pkg learning_sub std_msgs rospy
cd ~/lab02
catkin_make
source ./devel/setup.bash

To save us some work, we are going to edit our bashrc file.

gedit ~/.bashrc

Add this line at the end then save and close.

source ~/lab02/devel/setup.bash

Now we need to create a folder in our package to hold the publisher and subscriber.

source ~/.bashrc
roscd learning_sub
mkdir scripts
cd scripts

The publisher (also called a “talker” in some cases) is defined as a Node in ROS. For this

lab, our publisher is going to print a message to the command terminal, to the Node’s log

file, and to rosout using a topic we are going to call “robotics”. Save the given file

talker.py into the folder /lab02/src/learning_sub/scripts.

Don’t forget to tell ROS that this file is executable by using the following line in the

command terminal:

chmod +x talker.py

50

Next, create the subscriber (or “listener”) Node. The subscriber subscribes to the

“robotics” topic that was defined in the publisher. It then adds a “I heard” in front of

whatever message it receives from the publisher.

Use the same method as the publisher to save the given file listener.py into the scripts

folder.

Don’t forget to tell ROS that this script is executable using the chmod +x command.

Next we need to modify our “CMakeLists.txt” file to add our two python scripts.

cd ~/lab02/src/learnin_sub
gedit CMakeLists.txt

Add the following lines of code to the file then save and close.

catkin_install_python(PROGRAMS scripts/talker.py scripts/listener.py
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

Now that we have the publisher and subscriber Nodes made, we need to use the

“catkin_make” command to build them.

cd ~/lab02
catkin_make
source ./devel/setup.bash

Before we run the publisher and subscriber, we need to start roscore. After you start

roscore, open a new terminal tab and run the publisher. Take note that you need to run

your source files for each new command terminal.

rosrun learning_sub talker.py

You should see the timestamp followed by “robotics is cool” scrolling on the terminal.

In a new command terminal, run the “listener” Node:

rosrun learning_sub listener.py

You should see the timestamp followed by “I heard robotics is cool” scrolling on the

terminal. Type ctrl+C into ONLY the terminals running the publisher and subscriber

nodes. Don’t ctrl+C roscore yet.

51

For the final part on subscribers and publishers, go into the talker.py script and change

the rate at which the messages are published to 1Hz. Run the two nodes again and ensure

that your changes are correct.

Show your TA the messages being produced on your terminals to get a signoff. Then

press ctrl+C in all command terminals.

TA Initials: _________________________ Date: ___________________________

2. Services

Before we can run our service and client we need to create a srv and msg. To make things

easier, we are going to copy the srv from the rospy_tutorials package using the roscp

command.

roscd learning_sub
mkdir srv
roscp rospy_tutorials AddTwoInts.srv srv/AddTwoInts.srv
mkdir msg
echo "int64 num" > msg/Num.msg

Next open up package.xml using the command:

gedit package.xml

Add the following two lines to the file to add message generation to our package. Don’t

forget to save and close the file when you are done.

 <build_depend>message_generation</build_depend>
 <exec_depend>message_runtime</exec_depend>

Now open the CMakeLists.txt file using the gedit command. Edit your file to add

“message_generation” to the find_package command as shown below.

roscd learning_sub
gedit CMakeLists.txt

52

find_package(catkin REQUIRED COMPONENTS
 rospy
 std_msgs
 message_generation
)

Then scroll down until you see ## Generate services in the ‘srv’ folder and add the

following code then save and close.

add_message_files(
 FILES
 Num.msg
)
generate_messages(
 DEPENDENCIES
 std_msgs
)
add_service_files(
 FILES
 AddTwoInts.srv
)
catkin_package(
 CATKIN_DEPENDS message_runtime
)

Now that we have defined our service and messages, we can add our service and client

nodes.

First, we are going to create a service that will add two integers that you give it. Save the

given code “add_two_ints_server.py” into the folder lab02/src/learning_sub/scripts

Make the node executable using the chmod command and then add the following code to

the CMakeLists.txt file.

roscd learning_sub
gedit CMakeLists.txt

catkin_install_python(PROGRAMS scripts/add_two_ints.py
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

Next the client node needs to be created called “add_two_ints_client.py”. Save the code

in the same scripts folder.

53

Next, as before, make the node executable using the chmod command and then edit your

CMakeLists.txt as shown below.

catkin_install_python(PROGRAMS scripts/add_two_ints_server.py
scripts/add_two_ints_client.py
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

Now we can run our service and client. First, we need to use the catkin_make command

in our workspace.

cd ~/lab02
catkin_make
source ./devel/setup.bash

In a new command terminal tab start roscore.

Run the server node using the rosrun command.

rosrun learning_sub add_two_ints_server.py

You should see the command terminal say “Ready to add two ints.”

Open a new terminal tab to run the client.

rosrun learning_sub add_two_ints_client.py 1 3

This command runs the client and tells it to add 1 and 3. You should see the sum of these

two integers output in the terminal. Try testing with other integers to ensure it is working.

After showing your TA, ctrl-C your active terminals.

TA Initials: _________________________ Date: ___________________________

3. Actions

We are going to create an action server that takes sensor data and computes the average

and standard deviation of a requested amount of samples. To do this, we need to create

another package called learning_action and a folder inside the package called action.

54

cd ~/lab02/src
catkin_create_pkg learning_action actionlib message_generation roscpp rospy
std_msgs actionlib_msgs
roscd learning_action
mkdir action
cd action

Create a file using the “gedit” command called “Averaging.action”. This file defines the

goal, result, and feedback of the action. Copy and paste the following code into the file

then save and close.

#goal definition
int32 samples

#result definition
float32 mean
float32 std_dev

#feedback
int32 sample
float32 data
float32 mean
float32 std_dev

Save and close the text file then use catkin_make on your workspace.

cd ~/lab02
catkin_make

Save the given code “averaging_server.cpp” into the folder

/lab02/src/learning_action/src.

Type the following command to open the CMakeLists file then copy and paste the

following code into the file.

roscd learning_action
gedit CMakeLists.txt

find_package(catkin REQUIRED COMPONENTS actionlib std_msgs
message_generation)
add_action_files(DIRECTORY action FILES Averaging.action)
generate_messages(DEPENDENCIES std_msgs actionlib_msgs)

add_executable(averaging_server src/averaging_server.cpp)
target_link_libraries(averaging_server ${catkin_LIBRARIES})

55

Now that the action server is made, we need to build our package. Note that it may take a

few minutes for the package to be built. That is ok.

cd ~/lab02
catkin_make

Open a new terminal and start roscore.

Next, use rosrun to run the action server.

rosrun learning_action averaging_server

Run rostopic and the rqt_graph to ensure that the action server is working.

rostopic list -v

rosrun rqt_graph rqt_graph &

Ctrl-C the action server then move on to create the action client.

Save the given code “averaging_client.cpp” into the folder /lab02/src/learning_action/src.

Open learning_action/CMakeLists.txt and add the following code.

roscd learning_action
gedit CMakeLists.txt

add_executable(averaging_client src/averaging_client.cpp)
target_link_libraries(averaging_client ${catkin_LIBRARIES})

Before we can run the action client, we need to build our package.

cd ~/lab02
catkin_make

As before, in a new terminal, start roscore and then run the action client.

rosrun learning_action averaging_client

Your terminal should output “Waiting for the action server to start”

View the rostopic list and the rqt graph to verify operation.

rostopic list -v

rosrun rqt_graph rqt_graph &

56

Ctrl-C the action client and then move on.

Now that the action server and client are created, we should test that it works with some

made-up sensor data. First we need to create a scripts folder for our sensor code to live in.

roscd learning_action
mkdir scripts
cd scripts
gedit best_sensor_ever.py

In the text editor, copy and paste the following code, then save and close.

#!/usr/bin/env python

import rospy
from std_msgs.msg import Float32
import random
def gen_number():
 pub = rospy.Publisher('random_number', Float32)
 rospy.init_node('random_number_generator', log_level=rospy.INFO)
 rospy.loginfo("Generating random numbers")

 while not rospy.is_shutdown():
 pub.publish(Float32(random.normalvariate(5, 1)))
 rospy.sleep(0.05)

if __name__ == '__main__':
 try:
 gen_number()
 except Exception, e:
 print "done"

Don’t forget to make the node executable using the chmod +x command.

As always, we need to use the catkin_make command to compile the python script. Then

we can run our sensor script using the rosrun command.

cd ~/lab02
catkin_make

rosrun learning_action best_sensor_ever.py

In a new terminal, run the action server.

rosrun learning_action averaging_server

Open a new terminal, and view the action feedback.

57

rostopic echo /averaging/feedback

In a new terminal, run the action client.

rosrun learning_action averaging_client

Open a new terminal, and view the action result.

rostopic echo /averaging/result

Run the action client several times and view how the action result changes.

In a new terminal, view the rqt graph and show your TA.

rosrun rqt_graph rqt_graph &

Note that the “&” at the end allows the rqt_graph to run asynchronously so that we can

type in commands in the terminal while leaving the graph open.

TA Initials: _________________________ Date: ___________________________

Items to submit:
Part 3: rqt_graph

58

A.3 Lab 3: Simulation

1. Gazebo Simulation Environment

Next we will create a workspace for all of our code to live in calle lab03. If you do not

remember how to create a workspace, go back to Lab01 or Lab02. Don’t forget to run

catkin_make and source your .bash file after you create the workspace.

To save us some work, we are going to edit our bashrc file.

gedit ~/.bashrc

Add these lines at the end then save and close.

source ~/lab03/devel/setup.bash
export TURTLEBOT3_MODEL=burger

Now you need to install the packages needed for turtlebot3.

sudo apt-get install ros-melodic-joy ros-melodic-teleop-twist-joy \
 ros-melodic-teleop-twist-keyboard ros-melodic-laser-proc \
 ros-melodic-rgbd-launch ros-melodic-depthimage-to-laserscan \
 ros-melodic-rosserial-arduino ros-melodic-rosserial-python \
 ros-melodic-rosserial-server ros-melodic-rosserial-client \
 ros-melodic-rosserial-msgs ros-melodic-amcl ros-melodic-map-server \
 ros-melodic-move-base ros-melodic-urdf ros-melodic-xacro \
 ros-melodic-compressed-image-transport ros-melodic-rqt* \
 ros-melodic-gmapping ros-melodic-navigation ros-melodic-interactive-
markers

sudo apt-get install ros-melodic-dynamixel-sdk

sudo apt-get install ros-melodic-turtlebot3-msgs

sudo apt-get install ros-melodic-turtlebot3-*

catkin_make

cd ~/lab03/src

59

git clone -b melodic-devel https://github.com/ROBOTIS-
GIT/turtlebot3_simulations.git
git clone https://github.com/turtlebot/turtlebot.git
cd ~/lab03
catkin_make

First we are going to launch a robot called a turtlebot into an empty Gazebo simulation.

You will be using a non-simulated turtlebot later in this lab so these simulations will get

you used to how the robot looks and operates. To launch the simulation, run these

commands.

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

It may take several minutes to launch the simulation if this is your first time doing

simulations with ROS. After the simulation launches, you should see a turtlebot in an

empty environment and you should not be able to move it. To move it, we need to use the

teleoperation node. Open a new terminal and execute the following command.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Move the turtlebot around in the empty world using the keys as shown in the command

terminal. The empty world is kind of boring, so ctrl-C on the terminal with the Gazebo

simulation then execute the following command.

roslaunch turtlebot3_gazebo turtlebot3_world.launch

You should see a new simulation start with objects that form a turtle with the turtlebot

inside. Move the turtlebot around to get used to the controls (you will need to relaunch

the teleoperation node).

View the linear and angular velocity in real-time with the rqt_plot command.

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

After you launch the rqt_plot, click back onto the terminal running the teleoperation node

and move the robot around a bit. If you go back to the rqt_plot tab, you will notice that it

is very hard to see much that is going on. There are some changes you can make so that

you can view the plots easier. First, in the upper right hand corner, uncheck autoscroll.

Then, right above the plot click on the arrow picture going up. Once you click on this,

change your x and y scales to view the plot. Change your title to be your name, and the

section you are on in the lab. Example: Chelsey Spitzner Lab 3 Part 1.

60

Save an image of your plot using the save button to show your TA and to submit later.

The turtlebot that we will use later in this lab has a LiDAR scanner on the top. We can

visualize what the simulated scanner sees using the RViz command. Open a new terminal

and run the command.

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

Move the turtlebot around and watch as the laser scan changes as it detects different

objects in its field of view.

View tf tree and take a screenshot to show your TA.

rosrun tf view_frames
evince frames.pdf

TA Initials: _________________________ Date: ___________________________

2. Teleop-Bot

Now we are going to create our own teleoperation node and compare it to the one you

just used.

To do this, we first need to create a node that will publish our keystrokes to be interpreted

into velocity commands. Save the given code “key_publisher.py” in /lab03. Don’t forget

to use the chmod +x command to make the code executable.

Save the given file “ramped_velocity.py” into the /lab03 folder.

The code below is mostly done, but you need to fill out the key_mapping. The characters

are already filled in, but you will need to map them to linear or angular velocities. The

mapping is as follows: ‘character’: [angular velocity, linear velocity]. Use only 0, 1, or

-1 to map the characters to a velocity.

When you have finished the code, save and close then use the chmod +x command to

make the code executable.

61

In a new terminal, start roscore. Then launch a turtlebot simulation.

roslaunch turtlebot3_gazebo turtlebot3_world.launch

Next we need to run our keyboard publisher and teleoperation program in new terminals.

./key_publisher.py

./ramped_velocity.py

Arrange your screens to be split so that you can see the Gazebo simulation and your

command terminal. With the command terminal that is running the key publisher, type in

some command (w,a,d,x) and watch the robot move. As you can see, the robot is moving

way too much for each command. To change this, open your velocity_ramped.py and

change the “g_vel_scales” and “g_vel_ramps” values.

g_vel_scales = [0.25, 0.25] # units meters per second
g_vel_ramps = [0.5, 0.5] # units: meters per second^2

After saving your script, ctrl-C the terminal running the velocity_ramped.py and rerun the

script. Try moving the robot around again and it should be much easier to control without

bumping into objects.

To get a feel for what all is running, run each of the following commands. Note you will

have to run them one at a time and ctrl-C after each one to run the next command.

rostopic list
rostopic echo cmd_vel
rqt_graph

If your rqt_graph will not run, type rqt in the terminal. Once the window pops up, go to

Plugins > Introspection > Node Graph

62

To make the node graph easier to read, under, Hide, select all as shown below

View the linear and angular velocity in real-time with the rqt_plot command.

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

After you launch the rqt_plot, click back onto the terminal running the key_publisher

node and move the robot around a bit. You may need to change your x and y scales again

to see the plot clearly. Change your title to be your name, and the section you are on in

the lab. Example: Chelsey Spitzner Lab 3 Part 2. After you get some good motion

showing on your plot, save an image using the save button. Show your TA your

rqt_plot and your Gazebo simulation.

TA Initials: _________________________ Date: ___________________________

3. Obstacle Avoidance Algorithm

For our final item in this lab, you are going to develop a simple obstacle avoidance

algorithm. First start off by creating a package in our workspace.

cd ~/lab03/src
catkin_create_pkg obstacle_avoidance rospy
cd ~/lab03
catkin_make
source ./devel/setup.bash

Now we need to create a launch file for our code to work.

roscd obstacle_avoidance
mkdir launch
roscd obstacle_avoidance/launch
gedit naive_obs_avoid.launch

Copy and paste the following code into the launch file then save and close.

<launch>
 <node name="obstacle_avoidance_node" pkg="obstacle_avoidance"

63

type="obs_avoid.py" />
</launch>

Now that our package is set up, we can go about creating our algorithm. First create the

file and then copy and paste the code into the text editor.

cd ~/lab03/src/obstacle_avoidance/src
gedit obs_avoid.py

Save the given code “obs_avoid.py” into the folder /lab03/src/obstacle_avoidance/src.

To help you out, we have given you the bulk of the code for this algorithm. Take your

time to understand what each part of the code is doing. The only thing you need to do is

figure out the move commands move.linear.x and move.linear.x for each case. Only use

the numbers 0.0 and 0.5 for these values. Think about what direction you want the

robot to go if there are no obstacles in front of it and what it should do if it does detect

obstacles in front or to the sides.

Once you have figured out the values, save and close the file and then set permissions

using the chmod +x command.

Now we can compile our workspace and run the package.

cd ~/lab03
catkin_make
source ./devel/setup.bash

Don’t forget to start a new terminal with roscore and then start a simulation in Gazebo.

roslaunch turtlebot3_gazebo turtlebot3_world.launch

Now we can launch our obstacle avoidance script.

roslaunch obstacle_avoidance naive_obs_avoid.launch

Once you launch the script, your turtlebot should start moving in the Gazebo simulation.

View the linear and angular velocity in real-time with the rqt_plot command.

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

You may need to change your x and y scales again to see the plot clearly. Change your

title to be your name, and the section you are on in the lab. Example: Chelsey Spitzner

Lab 3 Part 3. After you get some good motion showing on your plot, save an image

using the save button. Show your TA your rqt_plot and your Gazebo simulation.

64

TA Initials: _________________________ Date: ___________________________

Items to submit:
Part 1: rqt_plot image
Part 2: rqt_plot image
Part 3: rqt_plot image and obs_avoid.py script

65

A.4 Lab 4: Mobile Motion

1. Setup Connections

If you are using VMware to set up a virtual machine to run Ubuntu, you will need to

change your network connection. If you do not do this, you will be unable to connect to

the turtlebot. First, right click on the virtual machine name then go to settings.

Once you go to settings, navigate to the “Network Adapter” menu as shown below. Once

you are in this menu, change your network connection from “NAT” to “Bridged”.

66

Now that the network is configured correctly, set up a workspace called lab04 (go back to

lab01 or lab02 if you do not remember how).

Next, as usual, set your bashrc file to automatically source the .bash file on each new

terminal.

gedit ~/.bashrc

Add this line at the end

source ~/lab04/devel/setup.bash

Also make sure that the turtlebot3 model is set to burger not waffle then save and close

the file.

export TURTLEBOT3_MODEL=burger

Now we need to connect the PC you are using to the Raspberry Pi on the turtlebot. To

make sure you have some networking commands, first install net-tools.

67

sudo apt install net-tools

The hostname -I command will display the IP address of the computer you are using.

hostname -I

The IP address that this command displays will be used several times in the future, it

would be helpful to save it somewhere. Now that we know the address, we need to update

the ROS settings in the bashrc file.

nano ~/.bashrc

Now that the bashrc file is opened, you need to change the “ROS_MASTER_URI” and

“ROS_HOSTNAME” to the IP address that you found above. An example of this is

shown below. Note that your IP address will be different; do not copy this ip

address.

Your bashrc file may or may not have the following lines at the end. If they are there,

modify them to match the IP address you found above. If they are not there, add them as

shown below.

export ROS_MASTER_URI=http://YOUR.IP.ADDRESS:11311
export ROS_HOSTNAME=YOUR.IP.ADDRESS

68

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X.Then

source the bashrc file.

source ~/.bashrc

We now need to follow the same steps for the Raspberry Pi. Boot up the Raspberry Pi

then connect to a monitor. Next connect the Pi to power using USB. The Pi will prompt

you to login using a username and password. Use login ID ubuntu and Password

turtlebot. Once you have logged in to the Pi, some system information will display on

the terminal. One of the lines should be:

IP address for wlan0: 192.168.1.26

Note that your IP address will be different. Do not use this IP address.

If this line does not show upon start-up run the following command to find the IP

address.

hostname -I

Similar to the previous steps, we need to open the bashrc file and tell the Pi which

computer to connect to.

nano ~/.bashrc

Once you open the file, change the following items:

export ROS_MASTER_URI=http://{IP_ADDRESS_OF_REMOTE_PC}:11311
export ROS_HOSTNAME={IP_ADDRESS_OF_RASPBERRY_PI_3}

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X. Then

source the bashrc file and disconnect the pi from the monitor.

source ~/.bashrc

Now that your remote PC and Pi are set up, we can connect them. First start a new

terminal with roscore then execute this command. Make sure to replace the brackets with

the IP address of the Pi. Once you execute this command it may ask you if you are sure

you want to continue connecting. Type yes and then press enter. After that, you will be

prompted to enter a password. Enter turtlebot.

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

After you execute this command you will see that instead of your username in the

command terminal it is ubuntu@ubuntu. In this terminal, launch the bringup command for

Turtlebot3 applications.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

69

After you execute this, you should see lots of information displayed in the terminal. It is

showing you the parameters of the turtlebot as well as all of the processes it started to run

the turtlebot. Take a moment to look over the text to get familiar with the things that are

going on in the background.

Open a new terminal and launch a remote turtlebot3. You should notice that when you

open a new terminal tab, the username is back to your normal username. From now on,

you will need to keep track of if you are in the ssh terminal, or in your PC terminal by

checking the username.

roslaunch turtlebot3_bringup turtlebot3_remote.launch

In another terminal (NOT ssh terminal, a terminal with your normal username) launch

RViz. Once RViz is up and running, show your TA for a signoff.

rosrun rviz rviz -d `rospack find turtlebot3_description`/rviz/model.rviz

TA Initials: _________________________ Date: ___________________________

2. Teleoperation

Now that our robot is up and running it is time to start moving it around. First we will use

our keyboard to control the turtlebot. You may recognize this command from the

previous lab; that is why ros is so useful, the same nodes are used in simulation as the

physical robot.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Once you launch the node, you should be able to control the robot with the w, a, d, x

keys. Move your robot around carefully. Once you have moved your robot around a bit,

we are going to move the turtlebot around with a bluetooth remote.

Once you have moved around a bit, plot the linear and angular velocity using the rqt_plot

command.

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

A reminder from last week’s lab, you will need to change your x and y axis limits as well

as your title. An example title is: Chelsey Spitzner Lab 4 Part 2. Save your plot and show

your TA for a signoff. After you get a signoff, ctrl-C all active terminals.

TA Initials: _________________________ Date: ___________________________

70

3. Automatic Parking

This last section is going to take in data from the LiDAR scanner to create an automatic

parking node. The LiDAR sensor detects light intensity as well as distance data.

Therefore, if we place reflective tape somewhere, the turtlebot should be able to detect

where that tape is. We are going to use this fact to create a script where the LiDAR

scanner detects the tape, and then parks itself in front of the tape.

To do this, you first need to place the tape somewhere at the “eye-level” of the robot.

Next we need to make sure that you have everything you need for this package installed.

sudo apt-get install python-pip
sudo pip install -U numpy
sudo pip install --upgrade pip

Next we need to create a package for the automatic parking called “lidar_parking”

cd ~/lab04/src
catkin_create_pkg lidar_parking rospy std_msgs sensor_msgs geometry_msgs
nav_msgs
cd ~/lab04
catkin_make
source ./devel/setup.bash

Next we need to edit the CMakeLists.txt file.

roscd lidar_parking/src
gedit CMakeLists.txt

Scroll down until you see:

Then add the following code.

catkin_python_setup()

71

catkin_package(
 CATKIN_DEPENDS
 rospy
 std_msgs
 sensor_msgs
 geometry_msgs
 nav_msgs
)

Next, scroll down to the #INSTALL# section of the txt file then add the following:

catkin_install_python(PROGRAMS
 nodes/lidar_parking.py
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

install(DIRECTORY launch rviz
 DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
)

Save and close the text file. Next we need to create the python setup script that we

invoked in the CMakeLists.txt file.

roscd lidar_parking
gedit setup.py

Copy and paste the following code then save and close the file.

from distutils.core import setup
from catkin_pkg.python_setup import generate_distutils_setup

fetch values from package.xml
setup_args = generate_distutils_setup(
 packages=['lidar_parking'],
 package_dir={'': 'src'}
)

setup(**setup_args)

Now we need to create a launch file for our code to work.

mkdir launch
roscd lidar_parking/launch
gedit lidar_parking.launch

Copy and paste the following code into the launch file then save and close the file.

72

<launch>
 <node pkg="lidar_parking" type="lidar_parking.py" name="lidar_parking"
output="screen">
 </node>
</launch>

To make things easier and faster for you, we are going to create a setup folder for rviz

that contains a script to set up the software.

roscd lidar_parking
mkdir rviz

Save the code given to you called “lidar_parking.rviz” into the rviz folder you just

created.

With all of this done, we can finally get to making the automatic parking algorithm. First,

create a folder called “nodes” for the script to live in.

roscd lidar_parking
mkdir nodes

Save the code given to you called “lidar_parking.py” into the nodes folder you just

created.

To give you a head-start, most of the code is given to you. The only part that you have to

do is fill in the twist velocity commands near the end of this code. Scroll down until you

find the comment saying you need to put your code here. Under this comment are several

twist commands that are equal to #. Such as: twist.linear.x = # or twist.angular.z

= # . You will need to put decimals instead of “#” in the code.

To help you understand this part of the code, this picture should explain how the code is

interpreting the angles of the turtlebot and the position of the reflective tape.

73

Next you will see that the code is divided into four “steps”. There are four elif step ==

#: sections where the number is either 1, 2, 3, or 4. These steps are the simple algorithm

used for the automatic parking. Each of these steps are shown below. It is your job to

interpret these steps into twist commands and separate them into either linear x velocity

or angular z velocity commands. There are comments above each velocity pair that you

need to input that tell you what magnitude numbers to use.

74

After you complete the python script, save and close the file then set permissions using

the chmod +x command. Now we can compile our workspace and run the package.

cd ~/lab04
catkin_make
source ./devel/setup.bash

In a new terminal, run roscore.

Then you need to run this command on the turtlebot’s command terminal (the terminal

you ssh’d into).

roslaunch turtlebot3_bringup turtlebot3_robot.launch

Next the remote PC needs to launch the turtlebot packages.

roslaunch turtlebot3_bringup turtlebot3_remote.launch

75

In a new terminal, run rviz with the following command. Note that this command is

locating the rviz file that we created earlier and not just launching rviz.

rosrun rviz rviz -d `rospack find lidar_parking`/rviz/lidar_parking.rviz

After rviz is launched, we can launch the automatic parking script.

roslaunch lidar_parking lidar_parking.launch

If everything is working correctly, the turtlebot will detect where the reflective tape is,

and then it will move towards the tape and stop in front of it. Try putting the tape in

several places and test the limits of what the LiDAR sensor can detect. For one iteration

of parking, run rqt_plot for the linear and angular velocities/

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

Don’t forget to change your x and y limits as well as the title. An example title is:

Chelsey Spitzner Lab 4 Part 3. Save your plot and show your TA for a signoff. After you

get a signoff, ctrl-C all active terminals.

TA Initials: _________________________ Date: ___________________________

Items to submit:

Part 2: rqt_plot image

Part 3: rqt_plot image and automatic_parking.py script

76

A.5 Lab 5: Fixed Motion

1. Simulation

First, create a catkin workspace called lab05. If you do not remember how, go back to

lab01 or lab02. Then export the following line to the bashrc file.

echo "source ~/lab05/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Next we need to install some niryo packages. (not needed if using lab PCs)

git clone https://github.com/NiryoRobotics/ned_ros src

rosdep update

rosdep install --from-paths src --ignore-src --default-yes --rosdistro
melodic --skip-keys "python-rpi.gpio"

sudo apt-get install python-pip ros-melodic-robot-state-publisher ros-
melodic-moveit ros-melodic-rosbridge-suite ros-melodic-joy ros-melodic-ros-
control ros-melodic-ros-controllers ros-melodic-tf2-web-republisher

To finish the installation process, run catkin_make and source the bashrc file.

catkin_make
source ~/.bashrc

All of these installations will work to simulate the robot arm. However, some packages

beyond just simulation require a python library to work. These commands will install

some python3 libraries. (not needed if using lab PCs)

pip3 install numpy
pip3 install pyniryo
pip3 install pygame
pip3 install opencv-python

To simulate the robot, we are going to use Rviz. This command launches rviz and

trackbars for each of the 6 joints of the niryo arm. Move each of the joints to get a feel for

how the robot operates.

roslaunch niryo_robot_description display.launch

Now we need to launch something that will allow us to control the robot easily. Since we

installed the Ned repository, we will use their code instead of developing our own.

77

Ctrl+C the current Rviz terminal. Install the following repository and ubuntu packages.

(not needed if using lab PCs)

git clone https://github.com/NiryoRobotics/ned_applications.git

pip3 install -r src/requirements_ned2.txt

sudo apt install build-essential

sudo apt install sqlite3

sudo apt install ffmpeg

Then run catkin_make and source the .bashrc file.

rosdep install -y --from-paths . --ignore-src --rosdistro noetic
catkin_make
source ~/.bashrc

Now we can launch Rviz with the robot arm.

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

 In a new terminal, open the code “robot_ned.py”

gedit robot_ned.py

Once the file is open, you need to make sure the IP address is correct. Scroll down until

you see the line “robot_ip”. Make sure the IP is as shown below then save and close the

file.

robot_ip = "127.0.0.1"

Now that the IP address is correct, we can launch the python program.

cd ~/lab05/ned_applications/examples/Control_Ned_Mouse
python3 robot_ned.py

78

After you launch this, you should see a mouse control API pop up. It contains a white

area with a blue dot and a green dot. The white area is the envelope of the robot arm’s

end effector. The green dot is the mouse position and the blue dot is the end effector’s

position. The API also displays the pose of the robot along with all of the joint angles.

This will allow you to control the movement of the robot with your PC mouse. Move

your mouse around and watch the simulation in Rviz move as well. There are some other

controls you can use as well with this program:

• Use the scroll wheel to change the end effector’s height

• Use the right click to open/close the end effector

• X key to switch from rad to deg

Run the rqt_graph and show your TA.

rosrun rqt_graph rqt_graph

Finally, view the tf_tree and show your TA

rosrun tf view_frames
evince frames.pdf

TA Initials: _________________________ Date: ___________________________

79

Ctrl-C all active terminals.

2. Physical Movement

The physical arm you are using in the lab should tell you the IP address of the arm that

you need to be using. It should already be physically connected to your PC via an

ethernet cable. To start, we are going to run the same program we did before. Make sure

roscore is still running in a terminal. In a new terminal, open the code “robot_ned.py”

gedit robot_ned.py

Once the file is open, you need to make sure the IP address is correct. Scroll down until

you see the line “robot_ip”. Change the IP address to the address that is given on the

robot then save and close the file.

robot_ip = "IPADDRESS"

Now that the IP address is correct, we can connect to the physical robot. The IP address

of the robot should be written on the robot, use this in the command line below.

ssh niryo@<ned_static_ip_address>

Next (in the ssh terminal), launch the hardware stack.

roslaunch niryo_robot_hardware_interface
hardware_interface_standalone.launch

Launch the python program in a new terminal.

python3 robot_ned.py

Now you should be able to move the mouse of the PC around to control the arm. Be

careful not to move the mouse too fast to prevent damage to the robot.

Reminder:

• Use the scroll wheel to change the end effector’s height

• Use the right click to open/close the end effector

• X key to switch from rad to deg

Show your TA that your robot functions through the mouse movement.

TA Initials: _________________________ Date: ___________________________

Ctrl-C all terminals when you are done experimenting.

80

3. Using Moveit

The following command lines will install moveit on your PC. (not needed if using lab

PCs)

sudo apt install python3-wstool

cd ~/lab06/src
wstool init .
wstool merge -t . https://raw.githubusercontent.com/ros-
planning/moveit/master/moveit.rosinstall
wstool remove moveit_tutorials
wstool update -t .
git clone https://github.com/ros-planning/moveit_tutorials.git -b master
rosdep install -y --from-paths . --ignore-src --rosdistro noetic
catkin_make
source ~/.bashrc

Next we need to ssh into the robot again.

ssh niryo@<ned_static_ip_address>

Next (in the ssh terminal), launch the hardware stack.

roslaunch niryo_robot_hardware_interface
hardware_interface_standalone.launch

Now we can launch moveit for our robot control.

roslaunch niryo_robot_bringup moveit_multimachines.launch

In a new terminal, launch rviz so that we can utilize the moveit package.

rosrun rviz rviz

Once RViz is open, click on “MotionPlanning” to add it to our visualization. This should

add a bunch of arrows around the end-effector in the visualization. Left-click to rotate,

middle-click to move x/y, and right-click to zoom. Change the position of the robot using

these controls. The new position of the robot should be shown in orange. Once you have

decided upon a good pose for the robot, click “Plan & Execute”. The Moveit package

automatically calculates the path for the robot from its current position to the planned

pose.

81

4. Using Python to Move

Using RViz to plan a movement is nice, but it is very non-specific as it is visual instead

of inputting specific coordinates. Instead of RViz we can use a python script to tell the

robot where to go. This is going to be a rudimentary script as we are going to tell the

robot the angle of each joint. In the next lab, we will explore more elegant ways to do

this.

To start, let's create a python script called pick_and_place.py.

gedit pick_and_place.py

Once the file is open, copy and paste the code below into the text editor. In the third line,

you will need to change IPADDRESS to the address that is given on the robot then save and

close the file. Make sure to leave the quotes around the IP address. Examine this code to

get a feel for how it works. The robot.move_pose command tells the robot where to put

each joint (in radians). Once you are done, save and close the file.

from pyniryo import *

robot = NiryoRobot("IPADDRESS")

robot.calibrate_auto()
robot.update_tool()

robot.release_with_tool()
robot.move_pose(0.2, -0.1, 0.25, 0.0, 1.57, 0.0)
robot.grasp_with_tool()

robot.move_pose(0.2, 0.1, 0.25, 0.0, 1.57, 0.0)
robot.release_with_tool()

robot.close_connection()

Next we need to ssh into the robot again.

ssh niryo@<ned_static_ip_address>

In the ssh terminal, launch the hardware stack.

roslaunch niryo_robot_hardware_interface
hardware_interface_standalone.launch

Now we can launch our python script.

python3 pick_and_place.py

82

Once it is working, show your TA.

TA Initials: _________________________ Date: ___________________________

Ctrl-C all terminals when you are done experimenting.

83

A.6 Lab 6: Pose Estimation

1. Create Path Planning Package

First, create a catkin workspace called lab06. Then export the following line to the bashrc

file.

echo "source ~/lab06/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Create a package called path_planning.

cd ~/lab06/src
catkin_create_pkg path_planning rospy
cd ~/lab06
catkin_make
source ./devel/setup.bash

Modify the CMakeLists.txt file.

roscd path_planning
gedit CMakeLists.txt

Copy and paste the following into the CMakeLists.txt file then save and close.

install(PROGRAMS
 scripts/path_planning.py
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

install(DIRECTORY launch DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION})

Create a launch folder and add a launch file.

mkdir launch
roscd path_planning/launch
gedit path_planning.launch

Copy and paste the following into the CMakeLists.txt file then save and close.

<launch>

 <node name="path_planning_node" pkg="path_planning"
type="path_planning.py" respawn="false" output="screen">
 </node>

</launch>

Create a scripts folder for our python script to live in.

84

roscd path_planning
mkdir scripts
roscd path_planning/scripts

Download the file path_planning.py and save it in the scripts folder you just made.

Make the code executable using the chmod +x command then compile the workspace.

chmod +x path_planning.py
cd ~/lab06
catkin_make

Path_planning.py gives you the code to set the pose (x, y, z) position for the end-effector

of the robot. It plans a cartesian path, then executes it to move the robot to the goal pose.

2. Simulation

Now it is time to simulate our path_planning package. Start roscore then launch RViz for

the Niryo arm.

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

Next launch the python script you just created.

rosrun Niryo path_planning.py

Run the rqt_graph and show your TA.

rosrun rqt_graph rqt_graph

TA Initials: _________________________ Date: ___________________________

Ctrl-C all active terminals.

3. Plot a Square

Open the python script and take a good look to understand what it is doing.

roscd path_planning/scripts
gedit path_planning.py

Change the python code so that it plots a square. You already have the code setup to

move the end-effector to one position. Now, change it to go to four different locations to

form a square. This may require some trial and error. Test it out on the simulated Niryo

Ned arm using the steps in part 2. Once you get it working, get a TA signature.

TA Initials: _________________________ Date: ___________________________

85

4. Physical Robot

Make sure roscore is running. In a new terminal, ssh into Ned.The IP address of the robot

should be written on the robot, use this in the command line below.

ssh niryo@<ned_static_ip_address>

Next (in the ssh terminal), launch the hardware stack.

roslaunch niryo_robot_hardware_interface
hardware_interface_standalone.launch

Before we can move the robot, we need to calibrate it.

rosservice call /niryo_robot/joints_interface/calibrate_motors "value: 1"
rosservice call /niryo_robot/learning_mode/activate "value: false"

In a new terminal, launch rviz so that we can utilize the moveit package.

rosrun rviz rviz

Open a new terminal (NOT the ssh terminal), so that we can launch the moveit files for

Ned. Niryo Robotics (the company who created Ned) has already created the moveit

configuration for us. This saves us a lot of time as it can take a while to create a moveit

configuration for a robot.

roslaunch niryo_robot_bringup moveit_multimachines.launch

Finally, launch the path planning python code.

rosrun Niryo path_planning.py

If all went correctly, the robot arm end-effector should move in a square similar to your

simulation.

Run the rqt_graph and show your TA the robot moving in a square.

rosrun rqt_graph rqt_graph

TA Initials: _________________________ Date: ___________________________

Items to submit:
Part 3: Python code
Part 4: rqt_graph

86

A.7 Lab 7: Sensing

1. Setup IR Sensor

In lab 3 we created a simple obstacle avoidance algorithm for a simulated turtlebot. The

algorithm allowed the robot to autonomously navigate an unknown map and avoid

objects. However, what would happen if there was a set of stairs in the area? The LiDAR

scanner would not be able to detect this and the robot would fall. These types of obstacles

are called negative obstacles. Some other scenarios could be potholes, curbs, or other

sharp drop-offs. To detect negative obstacles we are going to use IR distance sensors.

This process is commonly called cliff detection. The cliff detection we are implementing

is relatively simple as it only uses one IR sensor. Cliff detection is commonly

implemented with four to six sensors

First we need to set up our IR sensor. Plug in the IR sensor to the openCR board in the

orientation shown below.

2. Cliff Detection Package

87

First, set up a workspace called lab07 (go back to lab01 or lab02 if you do not remember

how). Next, as usual, set your bashrc file to automatically source the .bash file on each

new terminal.

gedit ~/.bashrc

Add this line at the end

source ~/lab07/devel/setup.bash

Also make sure that the turtlebot3 model is set to waffle not burger then save and close

the file.

export TURTLEBOT3_MODEL=waffle_pi

Next we are going to create a package called cliff_detection.

cd ~/lab07/src
catkin_create_pkg cliff_detection rospy std_msgs sensor_msgs geometry_msgs
turtlebot3_msgs nav_msgs visualization_msgs message_generation
cd ~/lab07
catkin_make
source ~/.bashrc

Open the CMakeLists.txt file in the lab07 folder.

roscd cliff_detection
gedit CMakeLists.txt

Add this code to the file then save and close.

catkin_python_setup()

catkin_install_python(PROGRAMS
 nodes/turtlebot3_cliff
 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
)

install(DIRECTORY launch rviz
 DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
)

Create a python setup script.

gedit setup.py

Copy and paste the following code into the python script then save and close.

from distutils.core import setup
from catkin_pkg.python_setup import generate_distutils_setup

fetch values from package.xml

88

setup_args = generate_distutils_setup(
 packages=['turtlebot3_example'],
 package_dir={'': 'src'}
)

setup(**setup_args)

Now we need to create a launch file for our code to work.

mkdir launch
roscd cliff_detection/launch
gedit turtlebot3_cliff.launch

Copy and paste the following code into the launch file then save and close.

<launch>
 <node pkg="cliff_detection" type="turtlebot3_cliff"
name="turtlebot3_cliff" output="screen">
 </node>
</launch>

With all of the background work done, we can get to making the cliff detection node.

mkdir nodes

Download the file “turtlebot3_cliff” into the nodes folder you just created. Most of the

code is given to you but there are a few lines of code that you need to complete. The code

you need to complete is the publisher and subscriber. Publishing and subscribing is a

main part of ROS and it is important to know how it works.

Let's first work on creating the publisher. The publisher has the syntax of

rospy.Publisher(‘topic’, message type, queue size=#). The cliff detection algorithm

should stop when the sensor detects a cliff. Therefore, we need to publish the velocity

commands for the robot. The following list describes the topic and type of the velocity

commands.

• ‘topic’ = ’cmd_vel’

• Message type = Twist

• queue_size=1

Once you have set up the publisher, the subscriber needs to be set up. The publisher has

the syntax of rospy.Subscriber(‘topic’, message type, invoke function, queue size=#). We

need to subscribe to the data published by the IR sensor.

• ‘topic’ = ‘sensor_state’

• Message type = SensorState

• Function = self.get_cliff

• queue_size=1

89

Once you have the publisher and subscriber setup, save and close the file. Set permissions

for the file using the chmod +x command.

chmod +x turtlebot3_cliff

Compile the workspace using catkin_make then source the bashrc file.

cd ~/lab07
catkin_make
source ~/.bashrc

3. Bringup Turtlebot

The same process from lab04 will be followed to connect your computer to the turtlebot.

It has been a while since that lab, so we will walk you through it again.

The hostname -I command will display the IP address of the computer you are using.

hostname -I

The IP address that this command displays will be used several times in the future, it

would be helpful to save it somewhere. Now that we know the address, we need to update

the ROS settings in the bashrc file.

nano ~/.bashrc

Now that the bashrc file is opened, you need to change the “ROS_MASTER_URI” and

“ROS_HOSTNAME” to the IP address that you found above. An example of this is

shown below. Note that your IP address will be different; do not copy this ip

address.

Your bashrc file may or may not have the following lines at the end. If they are there,

modify them to match the IP address you found above. If they are not there, add them as

shown below.

export ROS_MASTER_URI=http://YOUR.IP.ADDRESS:11311
export ROS_HOSTNAME=YOUR.IP.ADDRESS

90

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X.Then

source the bashrc file.

source ~/.bashrc

We now need to follow the same steps for the Raspberry Pi. Boot up the Raspberry Pi

then connect to a monitor. Next connect the Pi to power using USB. The Pi will prompt

you to login using a username and password. Use login ID ubuntu and Password

turtlebot. Once you have logged in to the Pi, some system information will display on

the terminal. One of the lines should be:

IP address for wlan0: 192.168.1.26

Note that your IP address will be different. Do not use this IP address.

If this line does not show upon start-up run the following command to find the IP

address.

hostname -I

Similar to the previous steps, we need to open the bashrc file and tell the Pi which

computer to connect to.

nano ~/.bashrc

Once you open the file, change the following items:

91

export ROS_MASTER_URI=http://{IP_ADDRESS_OF_REMOTE_PC}:11311
export ROS_HOSTNAME={IP_ADDRESS_OF_RASPBERRY_PI_3}

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X. Then

source the bashrc file and disconnect the pi from the monitor.

source ~/.bashrc

Now that your remote PC and Pi are set up, we can connect them. First start roscore then

execute the ssh command in a new terminal. Make sure to replace the brackets with the

IP address of the Pi. Once you execute this command it may ask you if you are sure you

want to continue connecting. Type yes and then press enter. After that, you will be

prompted to enter a password. Enter turtlebot.

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

After you execute this command you will see that instead of your username in the

command terminal it is ubuntu@ubuntu. In this terminal, launch the bringup command for

Turtlebot3 applications.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

Open a new terminal and launch a remote turtlebot3. You should notice that when you

open a new terminal tab, the username is back to your normal username. From now on,

you will need to keep track of if you are in the ssh terminal, or in your PC terminal by

checking the username.

roslaunch turtlebot3_bringup turtlebot3_remote.launch

In a new PC terminal, launch the teleoperation node.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

In another PC terminal, launch the cliff detection node.

roslaunch cliff_detection turtlebot3_cliff.launch

In the lab, there should be an elevated platform for you to place the turtlebot on. Using

the teleoperation node, move the turtlebot around and test to see if it will stop itself when

attempting to go off the edge of the platform. Note that since we only have preliminary

cliff detection, it can only detect cliffs in front of the turtlebot and not to the sides or rear.

Be cautious to not drive the turtlebot off of the platform in these directions.

Test the cliff detection a couple times to see how it works. To help, view the linear and

angular velocity. Don’t forget to change the x/y scales as well as changing the plot title.

92

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

Show your TA the plot then ctrl+C on the terminals running the teleoperation and the

cliff detection node.

TA Initials: _________________________ Date: ___________________________

4. Cliff Detection Improvement

You may notice when you’re experimenting with the cliff detection that there are some

flaws with our algorithm. If there is some angular velocity when approaching the cliff,

the code does not account for this. It also changes the linear velocity to 0.05 if there is no

cliff detected instead of leaving the linear velocity to the previous value. It is your job to

correct these errors in the code. To give you a head start, the variable last_twist is defined

and can be used to get the last twist command that the robot received. Use these two

commands to open the cliff detection node.

roscd cliff_detection/nodes
gedit turtlebot3_cliff

As you go through the code, you should notice that the last_twist variable is not used yet.

The last_twist variable has two parts of data that we need; the linear velocity and the

angular velocity. To index the linear velocity: last_twist.linear.x

To index the angular velocity: last_twist.angular.z

Your goal is to change the code of the if/else statements so that if a cliff is detected, both

the linear and angular velocity are set to zero. But if there is no cliff detected. The linear

and angular velocity should stay the same.

When you are done with the code, save and close the file. Compile the workspace using

catkin_make then source the bashrc file.

cd ~/lab07
catkin_make
source ~/.bashrc

Your ssh and roscore terminals should still be running. Open a new terminal and re-run

the teleoperation node, then start another terminal and launch the improved cliff detection

node.

93

Test the cliff detection a couple times to see if the performance improves. View the linear

and angular velocity. Don’t forget to change the x/y scales as well as changing the plot

title.

rqt_plot cmd_vel/linear/x cmd_vel/angular/z

Show your TA the plot then ctrl+C on all terminals and turn off the turtlebot

TA Initials: _________________________ Date: ___________________________

Items to submit:

Part 3: rqt_plot image

Part 4: rqt_plot image and turtlebot3_cliff script

94

A.8 Lab 8: Mapping

1. Simulation

Mapping is an important part of mobile robots. ROS offers many tools and packages to

help with mapping. When testing things for the first time, it is often a good idea to run a

simulation first. As usual, set up a workspace called lab08 and edit the bashrc file.

echo source ~/lab08/devel/setup.bash >> ~/.bashrc
source ~/.bashrc

Launch roscore then open a new terminal to launch the simulation.

roslaunch turtlebot3_gazebo turtlebot3_house.launch

In a new terminal, launch the teleoperation node.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

ROS has a useful tool called rosbag that allows recording of data. We are going to use

this to record the lidar scanner data and the coordinate transform data. Open a new

terminal and launch rosbag.

rosbag record -O lab08_1.bag /scan /tf /odom

Drive the turtlebot around in the simulation while the data is recording. Make sure to go

into all of the rooms several times so that you end up with a good map of the house. Once

you are satisfied that you have covered enough ground, press ctrl-C in all terminals

except for roscore. To make sure that it recorded correctly, execute this line in the

terminal.

rosbag info lab08_1.bag

After you execute this command, you should see some information pop up about the file.

We can now build our map from the recorded data.

rosparam set use_sim_time true

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

After you run gmapping, it is going to wait for data to create the map. To give it the data

we recorded using rosbag, we will use rosbag play. This command replays the data that is

recorded.

rosbag play --clock lab08_1.bag

95

This will run for a minute as the map is built. When it finishes, we need to run a map

server to save the map. Make sure you leave the gmapping terminal running for this step.

This step may also take a few minutes to run.

rosrun map_server map_saver -f map1

Once this is done, ctrl-C all terminals except for roscore. Open the map image created by

the previous command and see how well the map was created. As you can see, the map is

not perfect. No mapping will be perfect, but we can tune some parameters to try and get a

more accurate map.

rosparam set /slam_gmapping/angularUpdate 0.1
rosparam set /slam_gmapping/linearUpdate 0.1
rosparam set /slam_gmapping/lskip 10
rosparam set /slam_gmapping/xmax 10
rosparam set /slam_gmapping/xmin -10
rosparam set /slam_gmapping/ymax 10
rosparam set /slam_gmapping/ymin -10

After these parameters are set, re-run through the process of running the simulation,

driving the turtlebot around, then creating the map server. Rename the bag file as

lab08_02 and change the map_saver name from map1 to map2 to keep track of your

map reruns. Once you do this, compare your new map with the previous one. See if it is

any better and if it isn’t try changing some other parameters and run through the mapping

process again.

As you can see, this process can be quite tedious and time consuming as the quality of the

map construction depends highly on the parameters and on how the turtlebot is moved

around in the environment.

To make life a little easier for you, we can use a package from ros called explore-lite.

Ctrl-C the teleoperation node, but leave the gazebo simulation and roscore running. Use

sudo apt-get to install the package.

sudo apt-get install ros-kinetic-explore-lite

Once the package is installed, we need to launch something called move_base. This

launch file is part of something called the navigation stack. The navigation stack

combines information from a robot’s sensors, position goal, and odometry then outputs

velocity commands. It is used in many different types of robots on ros and can take some

work to set up. Luckily the navigation stack is already made for the turtlebot and you

should already have it installed back from lab03.

roslaunch turtlebot3_navigation move_base.launch

In a new terminal, launch a turtlebot slam node. Next week’s lab will get into how SLAM

works in ros, but for now, we are just going to use it within the explore-lite package.

roslaunch turtlebot3_slam turtlebot3_slam.launch

96

Now, in a new terminal, we can launch the explore-lite package. This will autonomously

navigate the world the turtlebot is in and then it will create a map at the end. This takes a

lot of work off of your shoulders as you can launch the node and then let the package do

all of the work. However, there are some limitations; this package does not do well in

very small rooms.

roslaunch explore_lite explore.launch

While the explore node is running, launch the rqt_graph to see what nodes are running.

rqt_graph

Save a picture of the graph.

Once the explore-lite package has produced a map, save it and show your TA. Ctrl-C all

terminals besides roscore and close them.

TA Initials: _________________________ Date: ___________________________

2. Physical World

Now that you have simulated mapping in ros, we are going to follow the same procedure

with the real turtlebot in the lab. On the PC in the lab, it should give you the IP address of

the turtlebot you are using, use that to ssh into the turtlebot. If it prompts you for a

password, enter turtlebot.

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

In the same terminal that you ssh’d into the turtlebot, launch the turtlebot3.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

Now open a new terminal and remote launch the turtlebot3 from the PC.

roslaunch turtlebot3_bringup turtlebot3_remote.launch

From this point, the process is going to be very similar to the simulation, but with the

physical robot. In a new terminal, launch the teleoperation node.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Open a new terminal and launch rosbag.

rosbag record -O lab08_2_1.bag /scan /tf

97

Drive the turtlebot around while the data is recording. Once you are satisfied that you

have covered enough ground, press ctrl-C the teleoperation and rosbag terminals. To

make sure that it recorded correctly, execute this line in the terminal.

rosbag info lab08_2_1.bag

After you execute this command, you should see some information pop up about the file.

We can now build our map from the recorded data.

rosparam set use_sim_time true

rosrun gmapping slam_gmapping

After you run gmapping, it is going to wait for data to create the map. To give it the data

we recorded using rosbag, we will use rosbag play. This command replays the data that is

recorded.

rosbag play --clock lab08_2_1.bag

This will run for a minute as the map is built. When it finishes, we need to run a map

server to save the map. Make sure you leave the gmapping terminal running for this step.

rosrun map_server map_saver

Once this is done, ctrl-C the gmapping terminal and the rosbag play terminal. Open the

map image created by the previous command and see how well the map was created. As

with the simulated turtlebot, you may have to change some of the tuning parameters for

the mapping. Change some of these parameters to see how it affects the mapping.

rosparam set /slam_gmapping/angularUpdate 0.1
rosparam set /slam_gmapping/linearUpdate 0.1
rosparam set /slam_gmapping/lskip 10
rosparam set /slam_gmapping/xmax 10
rosparam set /slam_gmapping/xmin -10
rosparam set /slam_gmapping/ymax 10
rosparam set /slam_gmapping/ymin -10

Re-run through the process of running the simulation, driving the turtlebot around, then

creating the map server. Rename the bag file as lab08_2_2 to keep track of your map

reruns. Once you do this, compare your new map with the previous one. See if it is any

better and if it isn’t try changing some other parameters and run through the mapping

process again.

As before, we are going to run the explore-lite package to see how it compares to the

manual exploration of the environment. Ctrl-C the gmapping terminal and the rosbag

play terminal.

98

Next in a new terminal, launch the move_base file.

roslaunch turtlebot3_navigation move_base.launch

In a new terminal, launch a turtlebot slam node.

roslaunch turtlebot3_slam turtlebot3_slam.launch

Now, in a new terminal, we can launch the explore-lite package.

roslaunch explore_lite explore.launch

While the explore node is running, launch the rqt_graph to see what nodes are running.

rqt_graph

Save a picture of the graph.

Once the explore-lite package has produced a map, save it and show your TA. Ctrl-C all

terminals besides roscore and close them.

TA Initials: _________________________ Date: ___________________________

Items to submit:

Part 2: map image and rqt_graph image

Part 3: map image and rqt_graph image

99

A.9 Lab 9: SLAM

1. Simulation SLAM

As before, we are going to first simulate some SLAM methods in ROS before

implementing them on the turtlebot. There are many different methods available in ROS

that automatically implement SLAM algorithms depending on which package you

choose. Each algorithm has strengths and weaknesses depending on the environment and

the robot specifications. We are going to test a couple of these algorithms and decide

which is best for us to use.

First let's set up the workspace. Create a workspace called lab09 and then set up the

bashrc file.

echo source ~/lab09/devel/setup.bash >> ~/.bashrc
source ~/.bashrc

Then launch roscore and open a new terminal tab (Ctrl + Alt + T).

The algorithms we will be using are:

• Gmapping

• Hector

• Karto

Gmapping

Starting with gmapping, we first need to launch the simulation in gazebo.

roslaunch turtlebot3_gazebo turtlebot3_house.launch

Next launch the SLAM node.

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot

around until a map is created.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Drive around using the teleoperation node until the map in the SLAM RViz is sufficient.

Once the map is created, open a new terminal and run the following command to save the

map. Once the map is saved, open the map and leave it open.

rosrun map_server map_saver -f map1

Ctrl-C the SLAM node and the teleoperation node but leave gazebo running. Next, the

hector SLAM algorithm will be used.

100

Hector

First install the hector slam algorithm.

sudo apt-get install ros-melodic-hector-slam

Launch the SLAM node:

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=hector

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot

around until a map is created.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Once the map is created, open a new terminal and run the following command to save the

map. Once the map is saved, open the map and leave it open.

rosrun map_server map_saver -f map2

Ctrl-C the SLAM node and the teleoperation node but leave gazebo running. Next, the

Core SLAM algorithm will be used.

Karto

Install:

sudo apt-get install ros-melodic-slam-karto

Launch:

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=karto

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot

around until a map is created.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Once the map is created, open a new terminal and run the following command to save the

map. Once the map is saved, open the map and leave it open.

rosrun map_server map_saver -f map3

Now you should have three maps open. Compare them and determine which method

created the best map. Take note of which file it is (map1, map2, map3) as you will need

to use it for the next section. Show your TA your best map. Ctrl-C all active terminals

besides roscore.

101

TA Initials: _________________________ Date: ___________________________

2. Simulation Path Planning

One useful tool of creating maps is that the robot can move autonomously to a point with

a path that is efficient and avoids obstacles in the map. To do this we need to use the

navigation stack. You may remember that we used the move_base launch file in last

week's lab from the navigation stack. However, instead of just using the move_base file,

we need to launch the entire navigation stack and tell it what map to use. Make sure to

replace map# with the map that you determined to be the best in the previous section.

roslaunch turtlebot3_navigation turtlebot3_navigation.launch
map_file:=$HOME/map#.yaml

Once Rviz opens, click the 2D Pose Estimate button.

This will put a green arrow on the map with the turtlebot. Drag the arrow over to the

direction the robot is facing. Repeat the steps of clicking the 2D Pose Estimate then

dragging the arrow a few times.

Next we need to move the robot back and forth some to allow for a more precise initial

pose estimate. Launch the teleoperation node then move the turtlebot a small amount

back and forth.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Ctrl-C the teleoperation node when you are done. Now that the initial pose is set, we can

give the turtlebot a navigational end point. Click the 2D Nav Goal.

Now click on the map to tell the robot and end point. Once you click you will see a green

arrow pop up. Rotate the arrow to tell the turtlebot the desired rotational position. Once

you let go of the green arrow, the turtlebot should automatically move to the navigation

goal.

TA Initials: _________________________ Date: ___________________________

Ctrl-C all nodes besides roscore.

102

3. Physical Turtlebot SLAM

Now that you have simulated SLAM in ros, we are going to follow the same procedure

with the real turtlebot in the lab. On the PC in the lab, it should give you the IP address of

the turtlebot you are using, use that to ssh into the turtlebot. If it prompts you for a

password, enter turtlebot.

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

In the same terminal that you ssh’d into the turtlebot, launch the turtlebot3.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

Now open a new terminal and remote launch the SLAM node from the PC. Use the

method that you found to be most effective from part one: Gmapping, Hector, Karto, or

Frontier Exploration. Replace BEST_METHOD with that method.

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=BEST_METHOD

In the lab there is a maze setup. Choose a spot to start your turtlebot and place it in the

maze. On the PC, launch the teleoperation node.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Drive the turtlebot around in the maze. Avoid changing speed or turning too quickly and

make sure to get every part of the maze. After the map is complete, ctrl-C the

teleoperation node then save the map.

rosrun map_server map_saver -f ~/map5

Show your TA the map then Ctrl-C the
TA Initials: _________________________ Date: ___________________________

Ctrl-C the slam node.

4. Autonomous Movement Using SLAM

Similar to section 2, we are going to use the map we created to allow the turtlebot to

autonomously navigate through the maze.

roslaunch turtlebot3_navigation turtlebot3_navigation.launch
map_file:=$HOME/map5.yaml

103

Once Rviz opens, click the 2D Pose Estimate button.

This will put a green arrow on the map with the turtlebot. Drag the arrow over to the

direction the robot is facing. Repeat the steps of clicking the 2D Pose Estimate then

dragging the arrow a few times.

Next we need to move the robot back and forth some to allow for a more precise initial

pose estimate. Launch the teleoperation node then move the turtlebot a small amount

back and forth.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Ctrl-C the teleoperation node when you are done. Now that the initial pose is set, we can

give the turtlebot a navigational end point. Click the 2D Nav Goal.

Now click on the map to tell the robot and end point. Once you click you will see a green

arrow pop up. Rotate the arrow to tell the turtlebot the desired rotational position. Once

you let go of the green arrow, the turtlebot should automatically move to the navigation

goal.

TA Initials: _________________________ Date: ___________________________

Ctrl-C all nodes.

104

A.10 Lab 10: Machine Vision

1. Camera Setup

Before we can use the camera on the turtlebot, we will need to calibrate the camera. Start

by setting up a workspace called lab10 and then set up the bashrc file.

echo "source ~/lab10/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Next we need to install some packages.

cd ~/lab10/src/
git clone https://github.com/ROBOTIS-GIT/turtlebot3_autorace.git
cd ~/lab10

sudo apt-get install ros-melodic-image-transport ros-melodic-cv-bridge ros-
melodic-vision-opencv python-opencv libopencv-dev ros-melodic-image-proc

catkin_make

After your workspace compiles, launch roscore. In a new terminal, ssh into the robot. On

the PC in the lab, it should give you the IP address of the turtlebot you are using, use that

to ssh into the turtlebot. If it prompts you for a password, enter turtlebot.

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

In the terminal that you just ssh’d into, run the following command to trigger the camera

on the turtlebot.

roslaunch turtlebot3_autorace_camera turtlebot3_autorace_camera_pi.launch

In a new terminal (PC terminal, not the ssh terminal), execute the following command to

view the camera image.

rqt_image_view

Once the image appears, change the first drop-down menu to

/camera/image/compressed.

Leave the image open and execute this command in a new terminal.

rosrun rqt_reconfigure rqt_reconfigure

This will open a gui so that you can calibrate the camera to get a clear image. In the left

side of the gui, select camera. Change the sliders until you get a clear view from the

camera image.

105

Once this is done, you can close the gui, but leave the camera image open. Next we need

to change some values in the camera.yaml file.

cd ~/lab09/turtlebot3_autorace_camera/calibration/camera_calibration
gedit camera.yaml

Once it is open, change the file to the following values then save and close.:

camera:
 ISO: 889
 awb_mode: tungsten
 brightness: 59
 contrast: 50
 exposureCompensation: 0
 exposure_mode: auto
 hFlip: false
 saturation: 0
 sharpness: 0
 shutterSpeed: 25000
 vFlip: false
 videoStabilisation: false
 zoom: 1.0

Now we have calibrated the camera, we need to do something called intrinsic camera

calibration. This type of calibration estimates intrinsic parameters of the camera such as

distortion, focal length and skew so that the image that the robot perceives is more

accurate to “real-life”.

First we need to export some variables.

export AUTO_IN_CALIB=calibration
export GAZEBO_MODE=false

Next we can launch the intrinsic calibration gui.

roslaunch turtlebot3_autorace_camera
turtlebot3_autorace_intrinsic_camera_calibration.launch

In the lab, there should be papers with checkerboards on them. Position them in front of

the turtlebot camera so that it fills the frame of the camera (check the camera view on the

rqt_image_view terminal) but does not exclude any of the squares. Once you do this,

click calibrate on the calibration gui.

Once it finishes calibrating, click save. This will create a compressed file in a /tmp folder.

To extract it, run the following command.

cd ~/tmp
tar -xvf calibrationdata.tar.gz
gedit ost.yaml

106

This will open the ost.yaml file. Copy and paste the entire contents of this file. We need

to paste this data into another file called camerav2_320x240_30fps.yaml.

cd ~/turtleot3_autorace_camera/calibration/intrinsic_calibration
gedit camerav2_320x240_30fps.yaml

When the file opens, paste the data from ost.yaml into the file then save and close. Next

we need to perform extrinsic camera calibration. This will determine the position and

imaging plane of the turtlebot3 camera.

First export some variables.

export AUTO_IN_CALIB=action
export AUTO_EX_CALIB=calibration
roslaunch turtlebot3_autorace_${Autorace_Misson}_camera
turtlebot3_autorace_intrinsic_camera_calibration.launch

Next we can launch the extrinsic calibration file.

roslaunch turtlebot3_autorace_${Autorace_Misson}_camera
turtlebot3_autorace_extrinsic_camera_calibration.launch

In a new terminal, execute rqt.

rqt

Select plugins>visualization>Image view. There should be two windows that open. One

one window, select /camera/image_extrinsic_calib/compressed and in the other window

select /camera/image_projected_compensated

Keep these windows open and run the following command in a new terminal window.

rosrun rqt_reconfigure rqt_reconfigure

In the left menu, under Camera, select image_projection and

image_compensation_projection. Simultaneously view this window and the

/camera/image_extrinsic_calib/compressed from the rqt window. Place the robot in the

lanes that are setup in the lab. There should be one white and one yellow similar to an

actual road. Place the robot such that the yellow lane is on the left and the white lane is

on the right. Change the parameters in the reconfigure window until the red box on the

camera image matches up with the lanes.

Make sure that the image_compensation_projection parameter is equal to 1. Ctrl-C all

terminals besides roscore and the ssh terminal.

We are almost done with calibration, we just need to apply our changes to the camera. To

do this, execute the following lines in the command terminal

roslaunch turtlebot3_autorace_camera
turtlebot3_autorace_intrinsic_camera_calibration.launch

107

export AUTO_EX_CALIB=action

roslaunch turtlebot3_autorace_camera
turtlebot3_autorace_extrinsic_camera_calibration.launch

Once this is done, the camera is finally calibrated. As you can see, this process can be

lengthy and time consuming. However, as we will see in the next sections, having vision

systems allows robots to do things that laser scanners simply cannot achieve. Leave the

calibration launch terminals open and move onto the next section.

2. Lane Detection Calibration

The robot should be placed in the lanes setup in the lab. Make sure that the yellow lane is

on the left and the white lane is on the right. In a new terminal, launch the lane detecting

file.

export AUTO_DT_CALIB=calibration
roslaunch turtlebot3_autorace_detect turtlebot3_autorace_detect_lane.launch

In a new terminal, execute rqt.

rqt

Select plugins>visualization>Image view. There should be two windows that open. One

one window, select /camera/image_extrinsic_calib/compressed and in the other window

select /camera/image_projected_compensated. Create 3 windows and then select the

following in each respective window:
/detect/image_yellow_lane_marker/compressed
/detect/image_lane/compressed
/detect/image_white_lane_marker/compressed

Open a new terminal and execute:

rosrun rqt_reconfigure rqt_reconfigure

In the left menu, select detect_lane. The process of determining the parameters for lane

detection can be finicky and may take some time. To get started, open lane.yaml and

copy the values into the rqt_reconfigure gui.

cd turtlebot3_autorace_detect/param/lane
gedit lane.yaml

Once this is done here is a general outline for how to adjust the parameters further. Note

you should be adjusting the parameters and looking at each of the three image windows

that you have open to determine if your adjustments are correct.

1. Start with hue values first. These are listed in the configure gui as hue_white_l,

hue_yellow_l, etc.

108

2. Next do saturation values; make sure to do the saturation for both white and

yellow.

3. Now adjust the lightness values

1. You do not need to adjust the lightness_white_l or lightness_yellow_l

values. Just set the _h lightness values to 255 and leave the _l values

alone.

Once you are done calibrating, change the new parameters you have set in the lane.yaml

file. You should still have this file open, if you don’t, just look a couple lines up to get the

file open. Save and close the file then ctrl-C the rqt_rconfigure and the detect_lane.launch

terminals then execute the following commands.

export AUTO_DT_CALIB=action
roslaunch turtlebot3_autorace_detect turtlebot3_autorace_detect_lane.launch

3. Lane Detection Testing

Now that we have calibrated the camera, we can launch our lane detection node.

roslaunch turtlebot3_autorace_control
turtlebot3_autorace_control_lane.launch

Next we need to bringup the turtlebot3. Make sure you execute this command in the

ssh terminal.

roslaunch turtlebot3_bringup turtlebot3_robot.launch

After you launch this command, the turtlebot should start navigating through the lanes.

The lane detection from the auto race package we are using implements a PD controller.

This enables the turtlebot to navigate through the lanes very accurately, even with

disturbances. As the turtlebot is going through the lanes, try pushing it a little bit of

course (not completely out of the lanes though) to see if it will “course-correct”. Find the

source files for the turtlebot3_autorace_control_lane.launch file and change the

parameters for the PD controller. Comment on the performance of the controller and how

you changed it.

Run an rqt_graph to see what nodes are running and to see how they are connected to

each other.

TA Initials: _________________________ Date: ___________________________

Ctrl-C all nodes.

109

A.11 MATLAB Introduction

1. MATLAB Setup

Ensure that MATLAB is allowed through the firewall of the PC so that it can transmit

and receive messages to/from ROS. On Windows, this is done with the “Allow an app

through Windows Firewall” application.

Matlab needs to have python installed. The python version depends on the MATLAB

version. MATLAB 2020a uses Python 2.7.8

(https://www.python.org/downloads/release/python-278/). Once it is installed, execute

the following command in the MATLAB command window.

pyenv('Version','C:\Python27/python')

If it downloaded correctly, these commands should output “2.7” in the command terminal

of MATLAB.

pe = pyenv;
pe.Version

To connect MATLAB to ROS, you will need to know the IP of your PC and the IP of the

virtual machine running ROS (if using one). To start, run roscore on the command

terminal that is running ROS. From now on, this terminal will be referred to as the VM.

To start a ros connection from MATLAB, the rosinit command is used.

rosinit("http://IP_OF_VM:11311","NodeHost","IP_OF_PC");

To ensure that MATLAB is receiving information from ROS, run a rostopic list on

MATLAB.

rostopic list

https://www.python.org/downloads/release/python-278/

110

2. Control Turtlebot3 in Gazebo from MATLAB

On MATLAB, open a new script and add the following code but do not execute yet.

%SETUP PUBLISHER
velocity=-0.1;
robotCmd = rospublisher("/cmd_vel","geometry_msgs/Twist");
velMsg = rosmessage(robotCmd);

%SEND VELOCITY COMMAND
velMsg.Linear.X = velocity;
send(robotCmd,velMsg)
pause(4)
velMsg.Linear.X = 0;
send(robotCmd,velMsg)

%SETUP SUBSCRIBER FOR POSE
odomSub = rossubscriber("/odom","nav_msgs/Odometry");
odomMsg = receive(odomSub,3);
pose = odomMsg.Pose.Pose;
x = pose.Position.X;
y = pose.Position.Y;
z = pose.Position.Z;
[x y z]

On the VM, launch the Turtlebot3 in Gazebo.

roslaunch turtlebot3_gazebo turtlebot3_world.launch

Once Gazebo is launched, run the MATLAB script. Ensure that the Turtlebot3 moves

forward and then stops.

3. Plot Scan Data

Update the MATLAB script and add the following code to the end.

%SETUP SUBSCRIBER FOR LIDAR
laser= rossubscriber("/scan","sensor_msgs/LaserScan");
scanMsg = receive(laser);
figure
plot(scanMsg)

% SOME TEST CODE
velMsg.Angular.Z = velocity;
send(robotCmd,velMsg)
tic
while toc < 20
 scanMsg = receive(laser);
 plot(scanMsg)
end

111

velMsg.Angular.Z = 0;
send(robotCmd,velMsg)

Run the script. A plot of the data from the laser-distance scanner should show and be

updated for 20 seconds

4. Obstacle Avoidance Script

At the end of the current MATLAB script, add the following code which implements a

simple obstacle avoidance algorithm using lidar.

%TEST
distanceThreshold=0.1;
tic;
 while toc < 20
 % Collect information from laser scan
 scan = receive(laser);
 plot(scan);
 data = readCartesian(scan);
 x = data(:,1);
 y = data(:,2);
 % Compute distance of the closest obstacle
 dist = sqrt(x.^2 + y.^2);
 minDist = min(dist);
 % Command robot action
 if minDist < distanceThreshold
 % If close to obstacle, back up slightly and spin
 velmsg.Angular.Z = spinVelocity;
 velmsg.Linear.X = backwardVelocity;
 else
 % Continue on forward path
 velmsg.Linear.X = forwardVelocity;
 velmsg.Angular.Z = 0;
 end
 send(robotCmd,velmsg);
 end

	DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING SYSTEMS FOR UNDERGRADUATES
	Recommended Citation

	DEVELOPMENT AND IMPLEMENTATION OF ROBOT OPERATING SYSTEMS FOR UNDERGRADUATES
	List of Figures
	List of Tables
	Abstract
	1 Introduction and Motivation
	1.1 Laboratory Setup
	1.2 Pre-lab and Post-lab

	2 ROS Preliminaries
	2.1 Lab 1 (A.1)
	2.2 Lab 2 (A.2)

	3 Mobile Motion
	3.1 Lab 3 (A.3)
	3.2 Lab 4 (A.4)

	4 Fixed Motion
	4.1 Lab 5 (A.5)
	4.2 Lab 6 (A.6)

	5 Sensing
	5.1 Lab 7 (A.7)

	6 Navigation
	6.1 Lab 8 (A.8)
	6.2 Lab 9 (A.9)

	7 Vision Systems
	7.1 Lab 10 (A.10)

	8 Future Work and Recommendations
	9 Reference List
	A Lab Manuals
	A.1 Lab 1 ROS Fundamentals
	A.2 Lab 2 Topics Services and Actions
	A.3 Lab 3: Simulation
	A.4 Lab 4: Mobile Motion
	A.5 Lab 5: Fixed Motion
	A.6 Lab 6: Pose Estimation
	A.7 Lab 7: Sensing
	A.8 Lab 8: Mapping
	A.9 Lab 9: SLAM
	A.10 Lab 10: Machine Vision
	A.11 MATLAB Introduction

