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Abstract 

The purpose of this project was to create an undergraduate junior lab to teach students 

about Robotic Operating System (ROS). The labs were designed to highlight the 

usefulness of ROS and the process used. Designing algorithms, how to send/receive 

messages, and the hierarchy of how nodes work with each other are emphasized. Taking 

packages that are open-source then modifying them is also emphasized. This is done so 

that students can transfer their knowledge from this course to other robot operating 

systems. 
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1 Introduction and Motivation 

There were ten labs created for the laboratory course listed in Table 1.1. The topics were 

chosen for the labs to be intertwined with the course instruction. This allows students to 

first learn about the material in a classroom setting and then apply their knowledge in a 

laboratory setting.  

 

Table 1.1 Overview of the labs and their titles 

Lab Number Lab Title 

Lab 1 ROS Fundamentals 

Lab 2 Topics, Services, and Actions 

Lab 3 Simulation 

Lab 4 Mobile Motion 

Lab 5 Fixed Motion 

Lab 6 Pose Estimation 

Lab 7 Sensing 

Lab 8  Mapping 

Lab 9 SLAM 

Lab 10 Machine Vision 

 

The course associated with these laboratories is new to Michigan Technological 

University and could be subject to change in the future. This change is likely to come in 

the form of rearranging the course material to follow a different order of learning the 

material. If this were to happen, the labs would need to be rearranged as well to follow 

the course. Figure 1.1 shows a dependency chart for the labs. This will allow the 

instructor of the course to easily change lab order to match the course. 
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Figure 1.1 Dependency chart for the labs. It shows which labs are a perquisite for other 

labs. 

The labs are grouped into subject matter for the purpose of discussion in the following 

chapters. These groups are shown in Table 1.2. Each Group is a chapter with a discussion 

of the labs following this introduction. 

 

 

 



3 

Table 1.2 Lab groups. 

 

1.1 Laboratory Setup 

The laboratory is going to be run with students in groups of two. This is done for a few 

reasons. First, it fits the space constraints of the lab. Most of the labs require physical 

robots moving around through mazes, maps, etc. If each student were to use their own 

robot, there may not be enough space in the laboratory as well as time. Since the labs are 

going to be two-hour labs, if there is a line waiting to use a maze or other physical setup, 

it could be limiting the students in what they can achieve in the two hours. The 

educational aspect of running laboratories in groups of two was also considered. 

Conducting laboratories with students in groups improves students’ performances not 

only in the lab, but also in the overall course [1 − 3]. 

The laboratory space will be setup with desks along the walls of the lab. Each group of 

students will have their own desk with a PC and robots at each desk. Having PCs in the 

lab instead of students using their own laptops will minimize the time debugging ROS 

software which will allow students to complete the lab in a two-hour time frame. The 

robots that the students will be using are the Turtlebot3 Burger Figure 1.2 and the Niryo 

Ned Figure 1.3 robots. Both robots are built for educational purposes and interface well 

with ROS. Table 1.3 gives a list of the minimum number of materials needed for the 

laboratory.  

Lab Group Lab Number Robot 

ROS Preliminaries 
Lab 1 Turtlebot3 

Lab 2 Turtlebot3 

Mobile Motion 
Lab 3 Turtlebot3 

Lab 4 Turtlebot3 

Fixed Motion 
Lab 5 Niryo  

Lab 6 Niryo 

Sensing Lab 7 Turtlebot3 

Navigation 
Lab 8 Turtlebot3 

Lab 9 Turtlebot3 

Vision Systems Lab 10 Turtlebot3 
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Table 1.3 Materials needed for Laboratory 

Material Quantity 

Desks 8 

PC 8 

Turtlebot3 Burger 8 

Niryo Ned 4 

Maze walls and connectors 1 

 

 

Figure 1.2: Turtlebot3 Burger [4]. 
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Figure 1.3: Niryo Ned robotic arm [5]. 

1.2 Pre-lab and Post-lab 

Pre-labs are designed to be assigned with this laboratory. This ensures that students come 

to the laboratory prepared for the assignments. Most pre-labs are done on students’ 

personal computers using a virtual machine running Linux.  

Post-labs vary in format depending on the lab. The format for most of them is either 

submitting python code or submitting an image with comments. The images the students 

submit are either node/coordinate transformation graphs from ROS, or plots of the 

velocity or position of the robots. Post-labs ensure that the student spends time 

considering what they did in the lab and looking at the overall connections between ROS 

and the robot. 
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2 ROS Preliminaries 

ROS preliminaries lab group consists of the first two labs. They are a prerequisite to the 

rest of the labs as shown in Figure 1.1. They are designed to introduce the student to ROS 

assuming no prior experience with the software. As these are the first labs, it is mostly 

step-by-step instruction that the students must follow. There are a few instances where 

the students must change some code which is done to force the student to look at the 

code. This is done so that the student doesn’t copy and paste code without understanding 

what it does. In each lab, students are required to view either the node graph or the 

coordinate transform graph for the ROS nodes they are running. This ensures that 

students are reminded of the overall scheme of ROS without getting to enveloped in the 

details. 

 

2.1 Lab 1 (A.1) 

Lab 1 is titled ROS Fundamentals. It introduces main concepts that are fundamental to 

both ROS and robotics. This lab is mostly step-by-step instruction through the lab manual 

due to it being the first lab. It starts with the student setting up a workspace and creating a 

ROS package. This is a fundamental skill that students will use in each lab. Table 2.1 

shows which packages will be used for Lab 1. 

Table 2.1 Packages used in Lab 1 

Packages Used 

tf2 

RViz 

tf_tree 

rospy 

 

The students create a package with two nodes. Each node is a python script which will 

create a simulation with two objects where one object follows the other (Figure 2.1). This 

allows the laboratory to teach the concept of coordinate transformations. It also teaches 

students how to create packages and launch them. 
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Figure 2.1: Simulation for demonstrating coordinate transformations. 

Once students create this simulation, they learn how to add a static coordinate transform 

to one of the objects. This system can be visualized using ROS’s tf tree Figure 2.2. The 

rest of the lab is experimenting and visualizing the coordinate transformations of the 

system using RViz as well as using rostopic tools to view the topics being published. 
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Figure 2.2: ROS tf tree of simulation. It shows how the coordinate transforms of the 

objects present in the ROS simulation. 

 

2.2 Lab 2 (A.2) 

Lab 2 is similar to Lab 1 because it is mostly step-by-step instruction with a few instances 

where the student will need to change some of the python code. It is split into three 

subjects: Topics, Services, and Actions. These three subjects are fundamental to how 

ROS operates. Although they are ROS specific, the overall concept of these subjects is 

present in most robot operating systems [6]. Table 2.2 shows which packages will be 

used for Lab 1. 
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Table 2.2 Packages used in Lab 2 

Packages Used 

Publishers 

Subscribers 

Services 

Actions 

rqt_graph 

 

Topics consist of publishers and subscribers. This is a fundamental concept to ROS but is 

present in most other robotic operating systems. It allows information to be published and 

for nodes to subscribe to the information that it needs to operate. The students learn how 

to create python scripts to publish some information and then create another script to take 

that information and add something to it.  

Services can take information and perform an operation to them. This is useful for unit 

conversion or math operations. The students create a service to take two user-input 

integers and output them to the command terminal. Topics and services are relatively 

straightforward and do not take much time to create. 

Actions are more ROS-specific but are useful for many different applications. They are 

also more complicated and take most of the lab to create. In this lab, the student creates a 

“fake” sensor which feeds data to the action client. The action server takes the mean and 

standard deviation of the sensor data. This is done to show the student how actions can be 

used to perform some analysis on sensors. This data can then be used in an algorithm to 

perform a specific task. 

Throughout these three tasks, students are asked to view the ROS node graph shown in 

Figure 2.3. This ensures that the students understand the overall connections for each 

subject. Rostopic echo command from ROS also allows students to see the output from 

the published topics on their command terminal. 

 

 

Figure 2.3: ROS node graph for the action server and client 
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3 Mobile Motion 

This group of Labs 3 and 4 introduces mobile motion. This is done through the 

Turtlebot3 Burger platform. Turtlebot3 is produced by Robotis and is highly regarded as 

one of the leading platforms for learning robotics and for testing algorithms. It is 

designed to interface with ROS which allows students to focus on the process and the 

development of algorithms without getting caught up in the technical details. Since 

students are now expected to know how to use some ROS fundamentals from the 

previous labs, this group of labs focuses on students developing algorithms and creating 

their own code. 

 

3.1 Lab 3 (A.3) 

Lab 3 is a simulation lab and uses the packages in Table 3.1. 

Table 3.1 Packages used in Lab 3 

Packages Used 

Teleoperation 

Keystroke to Velocity 

Command 

Gazebo 

rqt_plot, rqt_graph 

RViz 

Obstacle Avoidance 

(created by students) 

 

The laboratory starts with simulating the Turtlebot in Gazebo as shown in Figure 3.1. 

Gazebo is used to simulate the robot in accurate real-life scenarios. It does this by 

employing physics engines that implement the non-linearities that are present in the 

system as well as adding noise to sensor data. This allows students to first test their 

algorithms in simulation before implementing them on a physical Turtlebot. ROBOTIS 

offers a set of environments available to use in Gazebo. The environment showed in 

Figure 3.1 shows the Turtlebot3 World offered by ROBOTIS. 
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Figure 3.1: Turtlebot3 in Gazebo simulation. 

 

Another tool the students use throughout the laboratory is RViz. RViz is a visualization 

tool from ROS that can show the robot model and sensor data among other things. The 

students use RViz in lab 3 to visualize the sensor data from the lidar sensor on the 

Turtlebot3 Figure 3.2: ROS RViz visualization of the Turtlebot3 and  
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Figure 3.2: ROS RViz visualization of the Turtlebot3 and lidar sensor. 

Students are tasked to create a teleoperation node for the Turtlebot. They create a script to 

map certain keys to velocity commands. Then they need to create a script to transform the 

velocity commands to more realistic commands. This involves ramping the velocity 

instead of making the velocity instantaneously jump. Once they execute this, they test it 

in the Gazebo simulation and view the ROS node graph for their package Figure 3.3. 

 

 

Figure 3.3 ROS node graph for Turtlebot3 teleoperation. 

 

For the last task, they must create a simple obstacle avoidance algorithm. This requires 

the students to work again with creating a new package and subscribing to the Turtlebot 

lidar sensor data. Once they subscribe to the data, they need to write a simple algorithm 

to publish velocity commands if the Turtlebot is within a certain distance to an object. 
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Once the students are done developing their algorithm, they test it using the Gazebo 

simulation. While the obstacle avoidance node is running, the students plot the velocity 

commands that their node is sending the Turtlebot Figure 3.4. 

 

Figure 3.4: ROS graph of linear and angular velocity. These are the command velocities 

sent to the Turtlebot3 during the automatic obstacle avoidance algorithm. 

The students also show the ROS node graph in Figure 3.5. This encourages them to see 

how using the obstacle avoidance algorithm creates a closed loop system with no input 

needed from the user as compared to Figure 3.3. 

 

Figure 3.5: ROS node graph for automatic obstacle avoidance package. 

 

3.2 Lab 4 (A.4) 

Lab 4 is the first lab where the students are using ROS on a physical robot. This is done 

by using a remote PC to connect over a network to the Raspberry Pi on the Turtlebot3 

Burger. The packages used in this lab are shown in Table 3.2. 
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Table 3.2 Packages used in Lab 4 

Packages Used 

Teleoperation 

Gazebo 

tf_tree 

rqt_plot, rqt_graph 

RViz 

Automatic Parking (created 

by students) 

 

The initial parts of this lab utilize the same teleoperation packages the students used in 

Lab 3. This is done to show students how the same packages in ROS can be used in both 

simulation and on the physical robot. The students view the tf tree of the Turtlebot 3 

Figure 3.6. 
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Figure 3.6: tf tree of Turtlebot3. 
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The final part of the lab is having the students create an automatic parking script. The 

automatic parking is done using the laser-distance scanner on the Turtlebot3. Reflective 

tape is then put on one of the walls in the laboratory. Then, the laser-distance scanner can 

detect the reflective tape and the students can design an algorithm to have the robot move 

and stop by the tape. The setup for this will be four walls to create a square/rectangle to 

place the Turtlebot3 into. Then, the reflective tape will be placed by the students in a 

random location on one of the walls. This ensures that the tape is in a different location 

for each student. Since lidar sensors are affected by the reflectivity of the materials 

around it, the reflective tape has greater intensity than anything else around the Turtlebot 

as shown in Figure 3.7 

 

Figure 3.7: RViz with Turtlebot3 and lidar scan data. The red arrow is added to 

emphasize where the reflective tape is placed. 

The automatic parking algorithm is split into four steps. Students are given Figure 3.8 in 

the laboratory manual to visualize the steps in the algorithm. An incomplete python script 

is given to them with four sections they need to complete with the four steps. 

Reflective Tape 
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Figure 3.8: Automatic parking algorithm steps. 

Once students complete the python script, they create the necessary launch files to 

complete the automatic parking algorithm node. They can then test their algorithm in the 

lab where an empty square will be setup with a strip of reflective tape. Figure 3.9 shows 

the RViz image of where the Turtlebot ends after the automatic parking node is run. 
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Figure 3.9: Turtlebot position after running the automatic parking node. 

The node graph of the Turtlebot3 running with the automatic parking algorithm is shown 

in Figure 3.10. 

 

 

 

Figure 3.10: ROS node graph for the automatic parking. 
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4 Fixed Motion 

This group of labs uses the Niryo Ned robotic arm. It is a 6-axis robot designed to be 

used in education and research. Niryo Ned interfaces well with ROS and offers many 

options to customize the robot and its applications.  

4.1 Lab 5 (A.5) 

Lab 5 introduces the student to the Niryo Ned robotic arm. The software packages used in 

this lab are shown in Table 4.1.  

Table 4.1 Software packages used in Lab 5 

Packages Used 

RViz Simulation 

Python3 

MoveIt 

RViz for Motion Planning 

There is a graphical user interface (GUI) offered by Niryo that allows students to change 

the angles of each of the joints Figure 4.1. Students can observe how the joint angles 

move the robot in the simulation. 
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Figure 4.1: Niryo Ned arm in ROS RViz simulation. 

Using this simulation, the students become familiar with where each joint is and how 

moving each joint angle affects the pose of the robot. Once the student is familiar with 

the robot and how it moves, an application is used so that students can control the 

simulated robot with a computer mouse Figure 4.2. This application shows the envelope 

for the robot in white, the current end-effector position in blue, and the desired end-

effector position in green. The desired end-effector position is set by the PC mouse and is 

under the blue dot in Figure 4.2. The application also displays the joint angles and pose of 

the end-effector. 
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Figure 4.2: Application students use for mouse control of the Niryo Ned robot 

Once the students have completed the application, they are instructed to view the node 

graph and the tf tree of the system. The node graph in Figure 4.3 is much larger than the 

Turtlebots node graph in Figure 3.5. This allows students to observe why more path 

planning packages are used with the Niryo Ned for most movement. 



2
2

Figure 4.3: ROS node graph of the Niryo Ned robotic arm. 
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The tf tree of the robotic arm is also viewed by the students Figure 4.4.  

 

Figure 4.4: ROS tf tree of the Niryo Ned robotic arm. 
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For the last part of the lab, students use the path planning feature provided by RViz to 

graphically plan a motion. In Figure 4.5, the desired pose is set by clicking and dragging 

the blue/red arrows. The end desired pose is shown in orange and the current is shown in 

the solid blue. The translucent Niryo arm is the visualization of the planned path from the 

current to the end pose. 

 

 

Figure 4.5: Path Planning in RViz. 

 

4.2 Lab 6 (A.6) 

Lab 6 is focused on controlling the pose of the robot arm. This is done using MoveIt [7]. 

MoveIt offers packages for forward/inverse kinematics, manipulation, and motion 

planning. This allows students to implement pose estimation in the timeframe required 

for the lab. First the students learn about the configuration needed to use MoveIt. It 

requires a URDF file for the robot, joint names, and joint groups.  The software packages 

used in this lab are shown in Table 4.2. 
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Table 4.2 Software packages used in Lab 6 

Packages Used 

MoveIt 

RViz 

Path Planning 

 

Once the MoveIt configuration files are done, the students then go through the process of 

motion planning. An initial python script is given to them that plans a cartesian path to a 

set pose of the end effector. They execute the file on the simulated Niryo arm and view 

the result Figure 4.6. 

 

 

Figure 4.6: Demonstration of Niryo Ned robot planning a motion. 

After students execute the initial planned movement, they must modify the script. They 

need to change it to have the end-effector of the robot draw a square by planning four 

different poses and executing it using one python script.  
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5 Sensing 

Working with sensors is a fundamental part of robotics. This group consists of only Lab 7 

and it goes back to working with the Turtlebot3. Sensors offered by Robotis are easily 

integrated with the Turtlebot3 and allow for students to learn how to create algorithms 

using sensor data without having to setup sensor interfaces. 

 

5.1 Lab 7 (A.7) 

The packages used in this lab are shown in Table 5.1. 

Table 5.1 Packages used in Lab 7 

Packages Used 

Publisher 

Subscriber 

Cliff Detection (students 

create) 

 

An IR sensor from Robotis is added by the students to the Turtleobt3. The sensor is going 

to be used by the students to allow the Turtlebot3 to detect negative obstacles. The 

students install the IR sensor at a 15° angle so that it can detect negative obstacles in front 

of the robot Figure 5.1.  
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Figure 5.1: Diagram of IR sensor setup to detect negative obstacles. 

 

At this point in the semester, more responsibility is assumed by the students to create the 

python scripts. The students will have to setup most of the python script with 

subscribers/publishers and calculating command velocities from the sensor data. Once 

students finish the simple algorithm, they test it on the physical Turtlebot3 in the lab. 

Once they show that their simple algorithm works, they will need to improve their 

algorithm. This is done by accounting for angular velocity when approaching a cliff and 

refining the algorithm to detect a slope as well as a cliff. 
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6 Navigation 

Robot navigation allows robots to determine their position/orientation within an 

environment. Labs 8 and 9 introduce the student to navigation based on the laser-distance 

scanner on the Turtlebot3. They do not use vision systems for navigation due to Lab 10 

being the introduction to vision systems. Lab 8 is focused on the mapping of 

environments and how to tune the parameters in ROS to create a better map. There are 

some simultaneous localization and mapping (SLAM) features used in this lab, however 

a deep dive into the different algorithms and how SLAM works is done in lab 9.  

 

6.1 Lab 8 (A.8) 

Lab 8 introduces the students to mapping. The packages used in this lab are shown in 

Table 6.1. 

Table 6.1 Packages used in Lab 8 

Packages Used 

rosbag 

Map server 

Gmapping 

 

The first part of Lab 8 is a simulation of the Turtlebot3 in a house Figure 6.1. The 

students use this simulation to record the data using a feature from ROS called rosbag. 

This exposes students to recording robot data and playing back that data to use later.  
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Figure 6.1: Turtlebot3 Gazebo simulation of a house for mapping. 

The students record data using a teleoperation node to drive the Turtlebot around all 

rooms of the simulated house. Once the recording is done, they playback that data to a 

mapping node. Once the students have created a map, they need to tune some parameters 

to create a better map Figure 6.2. The parameters are angular and linear update rate and 

the x/y minimum and maximum values. These parameters are largely dependent on the 

specifications of the laser-distance scanner: its refresh rate and minimum/maximum 

distance.  
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Figure 6.2: Map created after parameter optimization in the Gazebo simulation. 

 

Once students have optimized their parameters, they repeat the same procedure for 

creating a map on the physical Turtlebot3. The laboratory will be setup with a maze 

structure for the students to map. This is done to show that there may be discrepancies 

between the Gazebo simulation and the physical results. These discrepancies arise out of 

disturbances that are not accounted for in Gazebo simulation such as light reflecting off 

of surfaces, sensor interference, or physical laser-distance scanner parameters being 

different than the simulation. The parameters that were optimized for the simulation 

might not be optimized for the physical mapping process. The ROS node graph for the 

physical Turtlebot3 using rosbag data playing back to create a map is shown in Figure 

6.3. 
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Figure 6.3 ROS node graph for Turtlebot3 mapping using rosbag to playback the data. 

 

 

 

6.2 Lab 9 (A.9) 

Lab 9 is focused on SLAM methods in ROS. The packages used in this lab are shown in 

Table 6.2. 

Table 6.2 Packages used in Lab 9 

Packages Used 

Map server 

Gmapping 

Hector 

Karto 

RViz Path Planning 

 

The students start in a simulated house to create a map Figure 6.1. There are three SLAM 

algorithms that the students explore in simulation. The SLAM methods and their 

associated algorithms are summarized in Table 6.3. 



 

32 

Table 6.3: SLAM methods and associated algorithms for lab 9. 

SLAM Method Algorithm 

Gmapping (Figure 6.44) Rao-Blackwellized Particle Filter (PF) 

with the use of odometry data, [8], [9]. 

Hector (Figure 6.55) PF without the use of odometry data [9]. 

Karto (Figure 6.66) Graph-based algorithm [9]. 

 

The students create a map of the same house in Gazebo simulation using all three 

methods. They can then select what they observe to be the best method for the Turtlebot3 

in the simulation.  

 

 

Figure 6.4 Map creating using Gmapping SLAM. 
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Figure 6.5 Map creating using Hector SLAM. 

 

Figure 6.6 Map created using Karto SLAM. 
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Once they select the best SLAM method, the students complete a simulated path planning 

using the map they created. 

After this is complete, the students use the SLAM method that they determined to be the 

best on the physical Turtlebot3 to map a structure in the lab. Path planning is also done 

on the physical robot in the map that they create. The ROS node graph for the physical 

Turtlebot3 using hector SLAM method to create a map is shown in Figure 6.7. 

 

 

Figure 6.7: ROS node graph for Turtlebot3 running hector SLAM node. 
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7 Vision Systems 

Before this section, the labs do not implement a vision system. Detection and navigation 

are achieved using a laser-distance scanner or an IR sensor. Vision systems allow 

students to perform a lot of different applications that weren’t possible using only the 

laser-distance scanner. It also exposes students to the difficulties of working with 

cameras from distortion to calibration. 

 

7.1 Lab 10 (A.10) 

The raspberry pi camera does not work with the version of Ubuntu used for this lab. This 

is because the Multi-Media Abstraction Layer (MMAL) of the camera does not work 

with 64-bit systems. The first part of Lab 10 is calibrating the camera that is added to the 

Turtlebot3 burger. The packages used in this lab are shown in Table 7.1. 

Table 7.1 Packages used in Lab 10 

Packages Used 

Turtlebot3 Autorace [10] 

Pi Camera 

Rqt image view 

Rqt reconfigure 

Camera Calibration 

 

The intrinsic calibration uses a checkerboard pattern Figure 7.1. Intrinsic calibration 

accounts for parameters of the camera such as distortion, focal length, and skew. This is 

done using an intrinsic camera calibration GUI provided by ROBOTIS.  
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Figure 7.1 Checkerboard for intrinsic camera calibration. 

 

Extrinsic camera calibration determines the position and imaging plane of the camera. 

This is done by placing the robot between two parallel lines then adjusting the max/min x 

and y values for the imaging plane of the camera. 

 

The last part of the calibration is calibrating the camera to detect lanes; one white and one 

yellow similar to road lanes. This is done by changing the saturation, hue, and lightness 

values for the camera. Once students are satisfied with their calibration, they can move on 

to lane detection. 

 

The students start with a lane detection package provided by Robotis that is used in their 

Auto Race challenges [10]. The package includes a PD controller to provide robust lane 

tracking. Once the students get the package working, they go to the source files of the 

package and change the parameters of the PD controller and comment on the change in 

performance. 
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8 Future Work and Recommendations 

Ubuntu 18.04 was used to create the labs due to using [11] as a reference to learn ROS 

initially. In the future, the labs should be converted either to use Ubuntu 20.04 or to use 

ROS2. Switching to Ubuntu 20.04 will require much less work than switching to ROS2 

and should be done if time is an issue. If a switch is made, all of the labs will need to be 

tested using the new version to ensure that the packages used are supported. 

It was discussed later in this project that MATLAB may be better suited to teach students 

about the concepts intended for this laboratory. If it is decided that this is the direction the 

laboratory is to be taken, Appendix A.11 was created as an initial lab. This creates 

template and good starting point for the labs using MATLAB to connect to ROS. To get 

an overview of the connections created from MATLAB to ROS, the node graph in Figure 

8.1. This node graph is with ROS running a Gazebo simulation of a Turtlebot3 and 

MATLAB sending command velocities to ROS. 

 

 

Figure 8.1 ROS node graph for MATLAB to ROS connection for Turtlebot3 

 

MATLAB is also useful for easily plotting data that is published using ROS. An example 

of a plot of the laser scan data of the Turtlebot3 that is running from the node graph 

above is shown in Figure 8.2. 
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Figure 8.2: Laser scan data plotted using MATLAB using data from the Turtlebot3. 

 

Another feature of MATLAB that could be implemented in this laboratory would be to 

implement controllers on the Turtlebot3 using Simulink. The results of using a trajectory 

controller on the Turtlebot3 is shown in Figure 8.3 and Figure 8.4. 
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Figure 8.3 Turtlebot3 trajectory with no controller 

 

Figure 8.4 Turtlebot3 trajectory with Lyapunov controller 

 

Some student testing with the labs was done. The students were given the instructions to 

complete the lab and simulations but they were not given a time-frame to complete the 

lab in. Therefore, some testing will need to be done with students to ensure that all of the 

labs are able to be completed in a two-hour time frame.  

Initial feedback from students mainly involved specific commands or packages not being 

installed in their instance of ROS. There were also a few students who mentioned the 
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code being included in the lab manuals confusing so a few formatting changes were made 

to clearly distinguish the lines of code. 
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A Lab Manuals 

 

A.1 Lab 1 ROS Fundamentals 

 

 
1. Setup 

Before any code can be written, a catkin workspace must be created for the code to live 
in. Then, we can create packages and nodes within our workspace. To create a 
workspace called lab01, run the following lines of code in a command terminal. 
 

source /opt/ros/melodic/setup.bash 
mkdir -p ~/lab01/src 
cd ~/lab01 
catkin_init_workspace src 
catkin_make 
source devel/setup.bash 

 

 

To save you some work, use these lines to edit the bashrc file. 

echo source ~/lab01/devel/setup.bash >> ~/.bashrc 
source ~/.bashrc 

 

A ROS package resides inside the src directory of the catkin workspace we created. 
ROS packages contain nodes which will contain the python code. To create a package 
called learning_tf2, execute the following lines of code in your open command terminal. 
 

cd ~/lab01/src 
catkin_create_pkg learning_tf2 tf2 tf2_ros rospy turtlesim 
cd ~/lab01 
catkin_make  
source ./devel/setup.bash 

 
Next, a node will need to be created in the new ROS package with these two lines of 
code.  

cd ~/lab01/src/learning_tf2/src 
mkdir nodes 

 

 

 
2. TF Listener and Talker Python Script 
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ROS uses a package called tf2 to implement coordinate transforms. The following two 
python scripts create two “turtles”. One turtle is the “talker”, and the other is the 
“listener”. Suppose that there is a coordinate that is the “world” coordinate at the point 
(0,0,0) and the “talker” turtle is moving around in the world coordinate system. The ROS 
tf2 package will perform coordinate transformation to tell the “listener” turtle where the 
“talker” turtle is.  
 
This is the “talker” turtle script which will become a script in our node. Save the file 
turtle_tf2_broadcaster.py in the following location: 
/home/username/lab01/src/learning_tf2/src/nodes 
 
Save the file turtle_tf2_listener.py in the same nodes folder as the talker script 
 
Now that the python scripts are in our node, we need to tell ROS that these scripts are 
executable. To do this, return to your command terminal and execute these two lines. 
 

chmod +x nodes/turtle_tf2_broadcaster.py 
chmod +x nodes/turtle_tf2_listener.py 

 

A launch file must be created for our package to be executed. The following command 
will create a launch folder. 

mkdir launch 

 

Save the code start_demo.launch in the launch folder created above. The location 
should be in /home/username/lab01/src/learning_tf2/src/launch 
 
One last thing must be done before we execute our package. The following lines of code 
will open a file called CMakeLists.txt 
 

cd ~/lab01/src/learning_tf2 
gedit CMakeLists.txt 

 
Scroll down until you see the “Install” 
Like this: 

 
Under “Install”, copy and paste this code, then click save. 
When you are done, don’t close the text editor as we will need to modify it later. 
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install( 
    PROGRAMS 
      nodes/turtle_tf2_broadcaster 
    DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}) 
 
install( 
    PROGRAMS 
      nodes/turtle_tf2_listener 
    DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}) 

 

 

 

 

 
3. Launch Package and View Simulation 

 
These two lines of code will launch the package we created. After you execute these 
commands in the terminal, a simulation window will appear. 
 

cd ~/lab01 
roslaunch learning_tf2 start_demo.launch 

 
If this is the first time you are running a ROS simulation, it may take a minute or two to 
appear. After it appears, if everything is working correctly, you should see two turtles. 
Adjust your screen to view the command terminal and the simulation. To move the 
“talker” turtle, use the arrow keys on your computer. Note: the command terminal must 
be the active window to move the turtle. You should see the “listener” turtle follow the 
“talker” turtle in the simulation. Don’t close your simulation and move onto the next step. 
 

Since the tf command can be quite confusing, ROS offers several tools to visualize the 
command. We will explore the tf tree and RViz. First, the tf tree. To view the current tf 
tree of the package, first open a new command terminal tab and enter these two lines. 
 

rosrun tf2_tools view_frames.py 
evince frames.pdf 

  
This should open a pdf file. Take a screenshot of the tf tree to show to your TA 
 

TA Initials: _________________________ Date: ___________________________  
 

Press ctrl+C in the current command window (the one with the tf tree) to close the pdf. 
Run the following command to open RViz. Once RViz is open, you should see three 
coordinate axes. One for the “world”, one for the “listener” turtle, and one for the “talker” 
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turtle. Try moving the turtles in the simulation, and watch the RViz coordinate axes move 
in coordination. 
 

rosrun rviz rviz -d `rospack find turtle_tf`/rviz/turtle_rviz.rviz 

 
After viewing the RViz simulation, stop the simulations in both command terminal tabs by 
typing ctrl+C into both terminals. 
 

 

 
4. Add Static Coordinate Frame 

 
The process before this added two dynamic coordinate frames (the turtles). Dynamic 
meaning that the coordinate frames move with respect to the “world” frame. Another 
useful skill in ROS is adding a static coordinate frame. This could be used to add the 
position of a laser on a robot with respect to its center. In our case, we are going to add 
a baby turtle on top of the “talker” turtle. 
 
This process is very similar to adding the dynamic coordinate frames. Save the given file 
fixed_tf2_broadcaster.py in the same nodes folder as before. 
 
Tell ROS that the python file is executable with these commands. 
 

cd ~/lab01/src/learning_tf2/src 
chmod +x nodes/fixed_tf2_broadcaster.py 

 

Next, we need to add this new program to the CMakeLists file.. 
 

cd ~/lab01/src/learning_tf2 
gedit CMakeLists.txt 

 
Add these lines of code below the ones you added earlier. 

install( 
    PROGRAMS 
      nodes/fixed_tf2_broadcaster 
    DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}) 

 

Finally, the launch file must be changed.  

cd ~/lab01/src/learning_tf2/src/launch 
gedit start_demo.launch 

 
Once the launch file is open, copy/paste this code into the file. 
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<node pkg="learning_tf2" type="turtle_tf2_listener.py" name="listener" /> 
   <node pkg="learning_tf2" type="fixed_tf2_broadcaster.py" 
          name="broadcaster_fixed" output="screen"/> 

 

As before, launch the package with this line in your terminal. Again, a simulation will pop 
up. The simulation will appear the same as before with the two turtles. The difference 
after adding the static coordinate frame will be seen in the tf tree and in RViz. 

roslaunch learning_tf2 start_demo.launch 

 

View tf tree and take a screenshot to show your TA. Don’t forget that these lines will 
need to be run in the terminal window that isn’t running the package simulation. 

rosrun tf view_frames 
evince frames.pdf 

 
Comment on the difference between this tf tree and the one made in part 3. 

TA Initials: _________________________ Date: ___________________________  
 

To view RViz, execute this code. 

rosrun rviz rviz -d `rospack find turtle_tf`/rviz/turtle_rviz.rviz 

 

To finish, another useful ROS tool is the tf_echo. This command will output the 
transformation between any two coordinate frames in your command window. 

rosrun tf tf_echo [reference_frame] [target_frame] 

 

  
For example, you could view the coordinate transformation between the two turtles. 

rosrun tf tf_echo turtle1 turtle2 

 

Or you could view the coordinate transformation between the “talker” turtle and the baby 
turtle. 

rosrun tf tf_echo turtle1 baby_turtle 

  
 
TA Initials: _________________________ Date: ___________________________  
 

 

Items to submit: 
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Part 3: TF tree screenshot 
Part 4: TF tree screenshot and comments 
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A.2 Lab 2 Topics Services and Actions 
 

1. Topics: Publisher and Subscriber 

 

Create a Catkin workspace called “lab02”.  

source /opt/ros/melodic/setup.bash 
mkdir -p ~/lab02/src 
cd ~/lab02 
catkin_init_workspace src 
catkin_make 
source devel/setup.bash 

 

Next, create a package called “learning_sub” using the following command lines. This 

package has dependencies on std_msgs and rospy. 

cd ~/lab02/src 
catkin_create_pkg learning_sub std_msgs rospy 
cd ~/lab02 
catkin_make  
source ./devel/setup.bash 

 

To save us some work, we are going to edit our bashrc file. 

gedit ~/.bashrc 

 

Add this line at the end then save and close. 

source ~/lab02/devel/setup.bash 

 

Now we need to create a folder in our package to hold the publisher and subscriber. 

source ~/.bashrc 
roscd learning_sub 
mkdir scripts 
cd scripts 

 

The publisher (also called a “talker” in some cases) is defined as a Node in ROS. For this 

lab, our publisher is going to print a message to the command terminal, to the Node’s log 

file, and to rosout using a topic we are going to call “robotics”. Save the given file 

talker.py into the folder /lab02/src/learning_sub/scripts. 

 

Don’t forget to tell ROS that this file is executable by using the following line in the 

command terminal: 

chmod +x talker.py 



 

50 

 

Next, create the subscriber (or “listener”) Node. The subscriber subscribes to the 

“robotics” topic that was defined in the publisher. It then adds a “I heard” in front of 

whatever message it receives from the publisher. 

 

Use the same method as the publisher to save the given file listener.py into the scripts 

folder. 

Don’t forget to tell ROS that this script is executable using the chmod +x command. 

 

Next we need to modify our “CMakeLists.txt” file to add our two python scripts. 

 

cd ~/lab02/src/learnin_sub 
gedit CMakeLists.txt 

 

Add the following lines of code to the file then save and close. 

catkin_install_python(PROGRAMS scripts/talker.py scripts/listener.py 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 

 

Now that we have the publisher and subscriber Nodes made, we need to use the 

“catkin_make” command to build them. 

 

cd ~/lab02 
catkin_make 
source ./devel/setup.bash 

 

Before we run the publisher and subscriber, we need to start roscore. After you start 

roscore, open a new terminal tab and run the publisher. Take note that you need to run 

your source files for each new command terminal. 

 

rosrun learning_sub talker.py 

  

You should see the timestamp followed by “robotics is cool” scrolling on the terminal. 

In a new command terminal, run the “listener” Node: 

rosrun learning_sub listener.py 

 

You should see the timestamp followed by “I heard robotics is cool” scrolling on the 

terminal. Type ctrl+C into ONLY the terminals running the publisher and subscriber 

nodes. Don’t ctrl+C roscore yet. 
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For the final part on subscribers and publishers, go into the talker.py script and change 

the rate at which the messages are published to 1Hz. Run the two nodes again and ensure 

that your changes are correct.  

 

Show your TA the messages being produced on your terminals to get a signoff. Then 

press ctrl+C in all command terminals. 

 
TA Initials: _________________________ Date: ___________________________  
 

 

 

 

2. Services 

 

Before we can run our service and client we need to create a srv and msg. To make things 

easier, we are going to copy the srv from the rospy_tutorials package using the roscp 

command. 

 

 

 

roscd learning_sub 
mkdir srv 
roscp rospy_tutorials AddTwoInts.srv srv/AddTwoInts.srv 
mkdir msg 
echo "int64 num" > msg/Num.msg 

 

Next open up package.xml using the command: 

gedit package.xml 

 

Add the following two lines to the file to add message generation to our package. Don’t 

forget to save and close the file when you are done. 

  <build_depend>message_generation</build_depend> 
  <exec_depend>message_runtime</exec_depend> 

 

Now open the CMakeLists.txt file using the gedit command. Edit your file to add 

“message_generation” to the find_package command as shown below. 

roscd learning_sub 
gedit CMakeLists.txt 
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find_package(catkin REQUIRED COMPONENTS 
  rospy 
  std_msgs 
  message_generation 
) 

 

 

Then scroll down until you see ## Generate services in the ‘srv’ folder and add the 

following code then save and close. 

 

add_message_files( 
  FILES 
  Num.msg 
) 
generate_messages( 
  DEPENDENCIES 
  std_msgs 
) 
add_service_files( 
  FILES 
  AddTwoInts.srv 
) 
catkin_package( 
 CATKIN_DEPENDS message_runtime 
) 

 

 

Now that we have defined our service and messages, we can add our service and client 

nodes.  

First, we are going to create a service that will add two integers that you give it. Save the 

given code “add_two_ints_server.py” into the folder lab02/src/learning_sub/scripts 

 

Make the node executable using the chmod command and then add the following code to 

the CMakeLists.txt file. 

 

roscd learning_sub 
gedit CMakeLists.txt 

 

catkin_install_python(PROGRAMS scripts/add_two_ints.py 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 

 

Next the client node needs to be created called “add_two_ints_client.py”. Save the code 

in the same scripts folder. 
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Next, as before, make the node executable using the chmod command and then edit your 

CMakeLists.txt as shown below. 

catkin_install_python(PROGRAMS scripts/add_two_ints_server.py 
scripts/add_two_ints_client.py 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 

 

Now we can run our service and client. First, we need to use the catkin_make command 

in our workspace. 

 

cd ~/lab02 
catkin_make 
source ./devel/setup.bash 

 

In a new command terminal tab start roscore. 

 

Run the server node using the rosrun command. 

rosrun learning_sub add_two_ints_server.py 

 

You should see the command terminal say “Ready to add two ints.” 

 

Open a new terminal tab to run the client.  

rosrun learning_sub  add_two_ints_client.py 1 3 

 

This command runs the client and tells it to add 1 and 3. You should see the sum of these 

two integers output in the terminal. Try testing with other integers to ensure it is working. 

After showing your TA, ctrl-C your active terminals. 

 
TA Initials: _________________________ Date: ___________________________  
 

 

 

 

 

3. Actions 

 

We are going to create an action server that takes sensor data and computes the average 

and standard deviation of a requested amount of samples. To do this, we need to create 

another package called learning_action and a folder inside the package called action. 
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cd ~/lab02/src 
catkin_create_pkg learning_action actionlib message_generation roscpp rospy 
std_msgs actionlib_msgs 
roscd learning_action 
mkdir action 
cd action 

 

Create a file using the “gedit” command called “Averaging.action”. This file defines the 

goal, result, and feedback of the action. Copy and paste the following code into the file 

then save and close. 

#goal definition 
int32 samples 
--- 
#result definition 
float32 mean 
float32 std_dev 
--- 
#feedback 
int32 sample 
float32 data 
float32 mean 
float32 std_dev 

 

 

Save and close the text file then use catkin_make on your workspace. 

cd ~/lab02 
catkin_make  

 

 

Save the given code “averaging_server.cpp” into the folder 

/lab02/src/learning_action/src. 

 

Type the following command to open the CMakeLists file then copy and paste the 

following code into the file. 

roscd learning_action 
gedit CMakeLists.txt 

 

find_package(catkin REQUIRED COMPONENTS actionlib std_msgs 
message_generation)  
add_action_files(DIRECTORY action FILES Averaging.action) 
generate_messages(DEPENDENCIES std_msgs actionlib_msgs) 
 
add_executable(averaging_server src/averaging_server.cpp) 
target_link_libraries(averaging_server ${catkin_LIBRARIES}) 
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Now that the action server is made, we need to build our package. Note that it may take a 

few minutes for the package to be built. That is ok. 

cd ~/lab02 
catkin_make 

 

Open a new terminal and start roscore. 

Next, use rosrun to run the action server. 

rosrun learning_action averaging_server 

 

Run rostopic and the rqt_graph to ensure that the action server is working. 

rostopic list -v 

 

rosrun rqt_graph rqt_graph & 

 

Ctrl-C the action server then move on to create the action client. 

 

Save the given code “averaging_client.cpp” into the folder /lab02/src/learning_action/src. 

 

Open learning_action/CMakeLists.txt and add the following code. 

roscd learning_action 
gedit CMakeLists.txt 

 

add_executable(averaging_client src/averaging_client.cpp) 
target_link_libraries(averaging_client ${catkin_LIBRARIES}) 

 

Before we can run the action client, we need to build our package. 

cd ~/lab02 
catkin_make 

 

As before, in a new terminal, start roscore and then run the action client. 

rosrun learning_action averaging_client 

Your terminal should output “Waiting for the action server to start” 

 

View the rostopic list and the rqt graph to verify operation. 

rostopic list -v 

 

rosrun rqt_graph rqt_graph & 
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Ctrl-C the action client and then move on. 

 

Now that the action server and client are created, we should test that it works with some 

made-up sensor data. First we need to create a scripts folder for our sensor code to live in. 

 

roscd learning_action 
mkdir scripts 
cd scripts 
gedit best_sensor_ever.py 

 

In the text editor, copy and paste the following code, then save and close. 

#!/usr/bin/env python 
 
import rospy 
from std_msgs.msg import Float32 
import random 
def gen_number(): 
    pub = rospy.Publisher('random_number', Float32) 
    rospy.init_node('random_number_generator', log_level=rospy.INFO) 
    rospy.loginfo("Generating random numbers") 
 
    while not rospy.is_shutdown(): 
        pub.publish(Float32(random.normalvariate(5, 1))) 
        rospy.sleep(0.05) 
 
if __name__ == '__main__': 
  try: 
    gen_number() 
  except Exception, e: 
    print "done" 

 

Don’t forget to make the node executable using the chmod +x command. 

 

As always, we need to use the catkin_make command to compile the python script. Then 

we can run our sensor script using the rosrun command. 

cd ~/lab02 
catkin_make 

 

rosrun learning_action best_sensor_ever.py 

 

In a new terminal, run the action server. 

rosrun learning_action averaging_server 

 

Open a new terminal, and view the action feedback. 



 

57 

rostopic echo /averaging/feedback 

 

In a new terminal, run the action client. 

rosrun learning_action averaging_client 

 

Open a new terminal, and view the action result. 

rostopic echo /averaging/result 

 

Run the action client several times and view how the action result changes. 

 

In a new terminal, view the rqt graph and show your TA. 

rosrun rqt_graph rqt_graph & 

 

Note that the “&” at the end allows the rqt_graph to run asynchronously so that we can 

type in commands in the terminal while leaving the graph open. 

 

TA Initials: _________________________ Date: ___________________________  
 

Items to submit: 
Part 3: rqt_graph 
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A.3 Lab 3: Simulation 

 

 

1. Gazebo Simulation Environment 

  

Next we will create a workspace for all of our code to live in calle lab03. If you do not 

remember how to create a workspace, go back to Lab01 or Lab02. Don’t forget to run 

catkin_make and source your .bash file after you create the workspace. 

 

To save us some work, we are going to edit our bashrc file. 

gedit ~/.bashrc 

 

Add these lines at the end then save and close. 

source ~/lab03/devel/setup.bash 
export TURTLEBOT3_MODEL=burger 

 

Now you need to install the packages needed for turtlebot3.  

 

sudo apt-get install ros-melodic-joy ros-melodic-teleop-twist-joy \ 
  ros-melodic-teleop-twist-keyboard ros-melodic-laser-proc \ 
  ros-melodic-rgbd-launch ros-melodic-depthimage-to-laserscan \ 
  ros-melodic-rosserial-arduino ros-melodic-rosserial-python \ 
  ros-melodic-rosserial-server ros-melodic-rosserial-client \ 
  ros-melodic-rosserial-msgs ros-melodic-amcl ros-melodic-map-server \ 
  ros-melodic-move-base ros-melodic-urdf ros-melodic-xacro \ 
  ros-melodic-compressed-image-transport ros-melodic-rqt* \ 
  ros-melodic-gmapping ros-melodic-navigation ros-melodic-interactive-
markers 
  

 

sudo apt-get install ros-melodic-dynamixel-sdk 

 

sudo apt-get install ros-melodic-turtlebot3-msgs 

 

sudo apt-get install ros-melodic-turtlebot3-* 

 

catkin_make 

 

cd ~/lab03/src 
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git clone -b melodic-devel https://github.com/ROBOTIS-
GIT/turtlebot3_simulations.git 
git clone https://github.com/turtlebot/turtlebot.git 
cd ~/lab03 
catkin_make 

 

First we are going to launch a robot called a turtlebot into an empty Gazebo simulation. 

You will be using a non-simulated turtlebot later in this lab so these simulations will get 

you used to how the robot looks and operates. To launch the simulation, run these 

commands. 

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch 

 

It may take several minutes to launch the simulation if this is your first time doing 

simulations with ROS. After the simulation launches, you should see a turtlebot in an 

empty environment and you should not be able to move it. To move it, we need to use the 

teleoperation node. Open a new terminal and execute the following command. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Move the turtlebot around in the empty world using the keys as shown in the command 

terminal. The empty world is kind of boring, so ctrl-C on the terminal with the Gazebo 

simulation then execute the following command. 

roslaunch turtlebot3_gazebo turtlebot3_world.launch 

 

You should see a new simulation start with objects that form a turtle with the turtlebot 

inside. Move the turtlebot around to get used to the controls (you will need to relaunch 

the teleoperation node).  

 

View the linear and angular velocity in real-time with the rqt_plot command.  

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

After you launch the rqt_plot, click back onto the terminal running the teleoperation node 

and move the robot around a bit. If you go back to the rqt_plot tab, you will notice that it 

is very hard to see much that is going on. There are some changes you can make so that 

you can view the plots easier. First, in the upper right hand corner, uncheck autoscroll. 

Then, right above the plot click on the arrow picture going up. Once you click on this, 

change your x and y scales to view the plot. Change your title to be your name, and the 

section you are on in the lab. Example: Chelsey Spitzner Lab 3 Part 1. 
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Save an image of your plot using the save button to show your TA and to submit later. 

 

The turtlebot that we will use later in this lab has a LiDAR scanner on the top. We can 

visualize what the simulated scanner sees using the RViz command. Open a new terminal 

and run the command.  

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch 

 

Move the turtlebot around and watch as the laser scan changes as it detects different 

objects in its field of view. 

 
View tf tree and take a screenshot to show your TA. 

rosrun tf view_frames 
evince frames.pdf 

 

 

TA Initials: _________________________ Date: ___________________________  
 

 

 

 

 

  

2. Teleop-Bot 

 

Now we are going to create our own teleoperation node and compare it to the one you 

just used. 

To do this, we first need to create a node that will publish our keystrokes to be interpreted 

into velocity commands. Save the given code “key_publisher.py” in /lab03. Don’t forget 

to use the chmod +x command to make the code executable. 

 

Save the given file “ramped_velocity.py” into the /lab03 folder.  

The code below is mostly done, but you need to fill out the key_mapping. The characters 

are already filled in, but you will need to map them to linear or angular velocities. The 

mapping is as follows: ‘character’: [angular velocity, linear velocity]. Use only 0, 1, or 

-1 to map the characters to a velocity. 

When you have finished the code, save and close then use the chmod +x command to 

make the code executable. 
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In a new terminal, start roscore. Then launch a turtlebot simulation. 

roslaunch turtlebot3_gazebo turtlebot3_world.launch 

 

Next we need to run our keyboard publisher and teleoperation program in new terminals. 

./key_publisher.py 

 

./ramped_velocity.py 

 

Arrange your screens to be split so that you can see the Gazebo simulation and your 

command terminal. With the command terminal that is running the key publisher, type in 

some command (w,a,d,x) and watch the robot move. As you can see, the robot is moving 

way too much for each command. To change this, open your velocity_ramped.py and 

change the “g_vel_scales” and “g_vel_ramps” values. 

g_vel_scales = [0.25, 0.25] # units meters per second  
g_vel_ramps = [0.5, 0.5] # units: meters per second^2 

 

After saving your script, ctrl-C the terminal running the velocity_ramped.py and rerun the 

script. Try moving the robot around again and it should be much easier to control without 

bumping into objects.  

To get a feel for what all is running, run each of the following commands. Note you will 

have to run them one at a time and ctrl-C after each one to run the next command. 

rostopic list 
rostopic echo cmd_vel 
rqt_graph 

If your rqt_graph will not run, type rqt in the terminal. Once the window pops up, go to 

Plugins > Introspection > Node Graph 
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To make the node graph easier to read, under, Hide, select all as shown below 

 

 
 

View the linear and angular velocity in real-time with the rqt_plot command.  

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

After you launch the rqt_plot, click back onto the terminal running the key_publisher 

node and move the robot around a bit. You may need to change your x and y scales again 

to see the plot clearly. Change your title to be your name, and the section you are on in 

the lab. Example: Chelsey Spitzner Lab 3 Part 2. After you get some good motion 

showing on your plot, save an image using the save button. Show your TA your 

rqt_plot and your Gazebo simulation. 

 

TA Initials: _________________________ Date: ___________________________  
 

 

 

 

 

 

3. Obstacle Avoidance Algorithm 

 

For our final item in this lab, you are going to develop a simple obstacle avoidance 

algorithm. First start off by creating a package in our workspace. 

 

cd ~/lab03/src 
catkin_create_pkg obstacle_avoidance rospy 
cd ~/lab03 
catkin_make  
source ./devel/setup.bash 

 

Now we need to create a launch file for our code to work. 

roscd obstacle_avoidance 
mkdir launch 
roscd obstacle_avoidance/launch 
gedit naive_obs_avoid.launch 

 

Copy and paste the following code into the launch file then save and close. 

<launch> 
    <node name="obstacle_avoidance_node" pkg="obstacle_avoidance" 
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type="obs_avoid.py" /> 
</launch> 

 

Now that our package is set up, we can go about creating our algorithm. First create the 

file and then copy and paste the code into the text editor. 

cd ~/lab03/src/obstacle_avoidance/src 
gedit obs_avoid.py 

 

Save the given code “obs_avoid.py” into the folder /lab03/src/obstacle_avoidance/src. 

 

To help you out, we have given you the bulk of the code for this algorithm. Take your 

time to understand what each part of the code is doing. The only thing you need to do is 

figure out the move commands move.linear.x and move.linear.x for each case. Only use 

the numbers 0.0 and 0.5 for these values. Think about what direction you want the 

robot to go if there are no obstacles in front of it and what it should do if it does detect 

obstacles in front or to the sides. 

 

Once you have figured out the values, save and close the file and then set permissions 

using the chmod +x command. 

 

Now we can compile our workspace and run the package. 

cd ~/lab03 
catkin_make  
source ./devel/setup.bash 

 

Don’t forget to start a new terminal with roscore and then start a simulation in Gazebo. 

roslaunch turtlebot3_gazebo turtlebot3_world.launch 

 

Now we can launch our obstacle avoidance script. 

roslaunch obstacle_avoidance naive_obs_avoid.launch 

 

Once you launch the script, your turtlebot should start moving in the Gazebo simulation.  

View the linear and angular velocity in real-time with the rqt_plot command.  

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

You may need to change your x and y scales again to see the plot clearly. Change your 

title to be your name, and the section you are on in the lab. Example: Chelsey Spitzner 

Lab 3 Part 3. After you get some good motion showing on your plot, save an image 

using the save button. Show your TA your rqt_plot and your Gazebo simulation.  
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TA Initials: _________________________ Date: ___________________________  
 

Items to submit: 
Part 1: rqt_plot image 
Part 2: rqt_plot image 
Part 3: rqt_plot image and obs_avoid.py script 
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A.4 Lab 4: Mobile Motion 

 

 

1. Setup Connections 

If you are using VMware to set up a virtual machine to run Ubuntu, you will need to 

change your network connection. If you do not do this, you will be unable to connect to 

the turtlebot. First, right click on the virtual machine name then go to settings. 

 

 
 

Once you go to settings, navigate to the “Network Adapter” menu as shown below. Once 

you are in this menu, change your network connection from “NAT” to “Bridged”. 



 

66 

 
 

Now that the network is configured correctly, set up a workspace called lab04 (go back to 

lab01 or lab02 if you do not remember how). 

Next, as usual, set your bashrc file to automatically source the .bash file on each new 

terminal. 

 

gedit ~/.bashrc 

 

Add this line at the end 

source ~/lab04/devel/setup.bash 

 

Also make sure that the turtlebot3 model is set to burger not waffle then save and close 

the file. 

export TURTLEBOT3_MODEL=burger 

 

Now we need to connect the PC you are using to the Raspberry Pi on the turtlebot. To 

make sure you have some networking commands, first install net-tools. 
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sudo apt install net-tools 

 

The hostname -I command will display the IP address of the computer you are using. 

hostname -I 

 

The IP address that this command displays will be used several times in the future, it 

would be helpful to save it somewhere. Now that we know the address, we need to update 

the ROS settings in the bashrc file. 

nano ~/.bashrc 

 

Now that the bashrc file is opened, you need to change the “ROS_MASTER_URI” and 

“ROS_HOSTNAME” to the IP address that you found above. An example of this is 

shown below. Note that your IP address will be different; do not copy this ip 

address.  

Your bashrc file may or may not have the following lines at the end. If they are there, 

modify them to match the IP address you found above. If they are not there, add them as 

shown below. 

export ROS_MASTER_URI=http://YOUR.IP.ADDRESS:11311 
export ROS_HOSTNAME=YOUR.IP.ADDRESS 
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After you change the IP address, save by pressing ctrl+S and exit using ctrl+X.Then 

source the bashrc file. 

source ~/.bashrc 

 

We now need to follow the same steps for the Raspberry Pi. Boot up the Raspberry Pi 

then connect to a monitor. Next connect the Pi to power using USB. The Pi will prompt 

you to login using a username and password. Use login ID  ubuntu and Password 

turtlebot. Once you have logged in to the Pi, some system information will display on 

the terminal. One of the lines should be: 

IP address for wlan0: 192.168.1.26 

Note that your IP address will be different. Do not use this IP address. 

 

If this line does not show upon start-up run the following command to find the IP 

address. 

hostname -I 

 

Similar to the previous steps, we need to open the bashrc file and tell the Pi which 

computer to connect to. 

nano ~/.bashrc 

 

Once you open the file, change the following items: 

export ROS_MASTER_URI=http://{IP_ADDRESS_OF_REMOTE_PC}:11311 
export ROS_HOSTNAME={IP_ADDRESS_OF_RASPBERRY_PI_3} 

 

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X. Then 

source the bashrc file and disconnect the pi from the monitor. 

source ~/.bashrc 

 

Now that your remote PC and Pi are set up, we can connect them. First start a new 

terminal with roscore then execute this command. Make sure to replace the brackets with 

the IP address of the Pi. Once you execute this command it may ask you if you are sure 

you want to continue connecting. Type yes and then press enter. After that, you will be 

prompted to enter a password. Enter turtlebot. 

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI} 

 

After you execute this command you will see that instead of your username in the 

command terminal it is ubuntu@ubuntu. In this terminal, launch the bringup command for 

Turtlebot3 applications. 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 
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After you execute this, you should see lots of information displayed in the terminal. It is 

showing you the parameters of the turtlebot as well as all of the processes it started to run 

the turtlebot. Take a moment to look over the text to get familiar with the things that are 

going on in the background. 

 

Open a new terminal and launch a remote turtlebot3. You should notice that when you 

open a new terminal tab, the username is back to your normal username. From now on, 

you will need to keep track of if you are in the ssh terminal, or in your PC terminal by 

checking the username. 

roslaunch turtlebot3_bringup turtlebot3_remote.launch 

 

In another terminal (NOT ssh terminal, a terminal with your normal username) launch 

RViz. Once RViz is up and running, show your TA for a signoff. 

rosrun rviz rviz -d `rospack find turtlebot3_description`/rviz/model.rviz 

 

TA Initials: _________________________ Date: ___________________________  
 

 

 

2. Teleoperation 

 

Now that our robot is up and running it is time to start moving it around. First we will use 

our keyboard to control the turtlebot. You may recognize this command from the 

previous lab; that is why ros is so useful, the same nodes are used in simulation as the 

physical robot. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Once you launch the node, you should be able to control the robot with the w, a, d, x 

keys. Move your robot around carefully. Once you have moved your robot around a bit, 

we are going to move the turtlebot around with a bluetooth remote. 

 

Once you have moved around a bit, plot the linear and angular velocity using the rqt_plot 

command. 

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

A reminder from last week’s lab, you will need to change your x and y axis limits as well 

as your title. An example title is: Chelsey Spitzner Lab 4 Part 2. Save your plot and show 

your TA for a signoff. After you get a signoff, ctrl-C all active terminals. 

 
TA Initials: _________________________ Date: ___________________________  



 

70 

 

 

 

 

 
3. Automatic Parking 

 

This last section is going to take in data from the LiDAR scanner to create an automatic 

parking node. The LiDAR sensor detects light intensity as well as distance data. 

Therefore, if we place reflective tape somewhere, the turtlebot should be able to detect 

where that tape is. We are going to use this fact to create a script where the LiDAR 

scanner detects the tape, and then parks itself in front of the tape. 

 

To do this, you first need to place the tape somewhere at the “eye-level” of the robot. 

Next we need to make sure that you have everything you need for this package installed.  

sudo apt-get install python-pip 
sudo pip install -U numpy 
sudo pip install --upgrade pip 

 

Next we need to create a package for the automatic parking called “lidar_parking”  

 

cd ~/lab04/src 
catkin_create_pkg lidar_parking rospy std_msgs sensor_msgs geometry_msgs 
nav_msgs 
cd ~/lab04 
catkin_make  
source ./devel/setup.bash 

 

Next we need to edit the CMakeLists.txt file. 

roscd lidar_parking/src  
gedit CMakeLists.txt 

 

Scroll down until you see: 

 
 

Then add the following code. 

catkin_python_setup() 
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catkin_package( 
  CATKIN_DEPENDS 
   rospy 
   std_msgs 
   sensor_msgs 
   geometry_msgs 
   nav_msgs 
) 

 

Next, scroll down to the #INSTALL# section of the txt file then add the following: 

catkin_install_python(PROGRAMS  
  nodes/lidar_parking.py 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 
 
install(DIRECTORY launch rviz 
 DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} 
) 

 

Save and close the text file. Next we need to create the python setup script that we 

invoked in the CMakeLists.txt file.  

 

roscd lidar_parking  
gedit setup.py 

 

Copy and paste the following code then save and close the file. 

from distutils.core import setup 
from catkin_pkg.python_setup import generate_distutils_setup 
 
# fetch values from package.xml 
setup_args = generate_distutils_setup( 
    packages=['lidar_parking'], 
    package_dir={'': 'src'} 
) 
 
setup(**setup_args) 

 

Now we need to create a launch file for our code to work. 

mkdir launch 
roscd lidar_parking/launch 
gedit lidar_parking.launch 

 

Copy and paste the following code into the launch file then save and close the file. 
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<launch> 
  <node pkg="lidar_parking" type="lidar_parking.py" name="lidar_parking" 
output="screen"> 
  </node> 
</launch> 

 

To make things easier and faster for you, we are going to create a setup folder for rviz 

that contains a script to set up the software. 

roscd lidar_parking 
mkdir rviz 

 

Save the code given to you called “lidar_parking.rviz” into the rviz folder you just 

created. 

 

With all of this done, we can finally get to making the automatic parking algorithm. First, 

create a folder called “nodes” for the script to live in. 

roscd lidar_parking 
mkdir nodes 

 

Save the code given to you called “lidar_parking.py” into the nodes folder you just 

created. 

 

  

To give you a head-start, most of the code is given to you. The only part that you have to 

do is fill in the twist velocity commands near the end of this code. Scroll down until you 

find the comment saying you need to put your code here. Under this comment are several 

twist commands that are equal to #. Such as: twist.linear.x = # or twist.angular.z 

= # . You will need to put decimals instead of “#” in the code. 

 

To help you understand this part of the code, this picture should explain how the code is 

interpreting the angles of the turtlebot and the position of the reflective tape. 
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Next you will see that the code is divided into four “steps”. There are four elif step == 

#: sections where the number is either 1, 2, 3, or 4. These steps are the simple algorithm 

used for the automatic parking. Each of these steps are shown below. It is your job to 

interpret these steps into twist commands and separate them into either linear x velocity 

or angular z velocity commands. There are comments above each velocity pair that you 

need to input that tell you what magnitude numbers to use. 
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After you complete the python script, save and close the file then set permissions using 

the chmod +x command. Now we can compile our workspace and run the package. 

cd ~/lab04 
catkin_make  
source ./devel/setup.bash 

 

In a new terminal, run roscore. 

Then you need to run this command on the turtlebot’s command terminal (the terminal 

you ssh’d into). 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

 

Next the remote PC needs to launch the turtlebot packages. 

roslaunch turtlebot3_bringup turtlebot3_remote.launch 
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In a new terminal, run rviz with the following command. Note that this command is 

locating the rviz file that we created earlier and not just launching rviz. 

rosrun rviz rviz -d `rospack find lidar_parking`/rviz/lidar_parking.rviz 

 

After rviz is launched, we can launch the automatic parking script. 

roslaunch lidar_parking lidar_parking.launch 

 

If everything is working correctly, the turtlebot will detect where the reflective tape is, 

and then it will move towards the tape and stop in front of it. Try putting the tape in 

several places and test the limits of what the LiDAR sensor can detect. For one iteration 

of parking, run rqt_plot for the linear and angular velocities/ 

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

Don’t forget to change your x and y limits as well as the title. An example title is: 

Chelsey Spitzner Lab 4 Part 3. Save your plot and show your TA for a signoff. After you 

get a signoff, ctrl-C all active terminals. 

 

TA Initials: _________________________ Date: ___________________________  
 

Items to submit: 

Part 2: rqt_plot image 

Part 3: rqt_plot image and automatic_parking.py script 
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A.5 Lab 5: Fixed Motion 
 

1. Simulation 

 

First, create a catkin workspace called lab05. If you do not remember how, go back to 

lab01 or lab02. Then export the following line to the bashrc file. 

echo "source ~/lab05/devel/setup.bash" >> ~/.bashrc 
source ~/.bashrc 

 

Next we need to install some niryo packages. (not needed if using lab PCs) 

git clone https://github.com/NiryoRobotics/ned_ros src 

 

rosdep update 

 

rosdep install --from-paths src --ignore-src --default-yes --rosdistro 
melodic --skip-keys "python-rpi.gpio" 

 

sudo apt-get install python-pip ros-melodic-robot-state-publisher ros-
melodic-moveit ros-melodic-rosbridge-suite ros-melodic-joy ros-melodic-ros-
control ros-melodic-ros-controllers ros-melodic-tf2-web-republisher 

 

To finish the installation process, run catkin_make and source the bashrc file. 

catkin_make 
source ~/.bashrc 

 

All of these installations will work to simulate the robot arm. However, some packages 

beyond just simulation require a python library to work. These commands will install 

some python3 libraries. (not needed if using lab PCs) 

pip3 install numpy 
pip3 install pyniryo 
pip3 install pygame 
pip3 install opencv-python 

 

To simulate the robot, we are going to use Rviz. This command launches rviz and 

trackbars for each of the 6 joints of the niryo arm. Move each of the joints to get a feel for 

how the robot operates. 

roslaunch niryo_robot_description display.launch 

 

Now we need to launch something that will allow us to control the robot easily. Since we 

installed the Ned repository, we will use their code instead of developing our own. 
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Ctrl+C the current Rviz terminal. Install the following repository and ubuntu packages. 

(not needed if using lab PCs) 

git clone https://github.com/NiryoRobotics/ned_applications.git 

 

pip3 install -r src/requirements_ned2.txt 

 

sudo apt install build-essential 

 

sudo apt install sqlite3 

 

sudo apt install ffmpeg 

 

Then run catkin_make and source the .bashrc file. 

rosdep install -y --from-paths . --ignore-src --rosdistro noetic 
catkin_make 
source ~/.bashrc 

 

Now we can launch Rviz with the robot arm.  

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch 

 

 In a new terminal, open the code “robot_ned.py” 

gedit robot_ned.py 

 

Once the file is open, you need to make sure the IP address is correct. Scroll down until 

you see the line “robot_ip”. Make sure the IP is as shown below then save and close the 

file. 

robot_ip = "127.0.0.1" 

Now that the IP address is correct, we can launch the python program. 

cd ~/lab05/ned_applications/examples/Control_Ned_Mouse 
python3 robot_ned.py 
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After you launch this, you should see a mouse control API pop up. It contains a white 

area with a blue dot and a green dot. The white area is the envelope of the robot arm’s 

end effector. The green dot is the mouse position and the blue dot is the end effector’s 

position. The API also displays the pose of the robot along with all of the joint angles. 

 

This will allow you to control the movement of the robot with your PC mouse. Move 

your mouse around and watch the simulation in Rviz move as well. There are some other 

controls you can use as well with this program: 

• Use the scroll wheel to change the end effector’s height 

• Use the right click to open/close the end effector 

• X key to switch from rad to deg 

 

Run the rqt_graph and show your TA. 

 

rosrun rqt_graph rqt_graph 

 

Finally, view the tf_tree and show your TA 

rosrun tf view_frames 
evince frames.pdf 

 

 

TA Initials: _________________________ Date: ___________________________ 
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Ctrl-C all active terminals. 

 

 

 

 

2. Physical Movement 

 

The physical arm you are using in the lab should tell you the IP address of the arm that 

you need to be using. It should already be physically connected to your PC via an 

ethernet cable. To start, we are going to run the same program we did before. Make sure 

roscore is still running in a terminal. In a new terminal, open the code “robot_ned.py” 

gedit robot_ned.py 

 

Once the file is open, you need to make sure the IP address is correct. Scroll down until 

you see the line “robot_ip”. Change the IP address to the address that is given on the 

robot then save and close the file. 

robot_ip = "IPADDRESS" 

 

Now that the IP address is correct, we can connect to the physical robot. The IP address 

of the robot should be written on the robot, use this in the command line below. 

 

ssh niryo@<ned_static_ip_address> 

 

Next (in the ssh terminal), launch the hardware stack. 

roslaunch niryo_robot_hardware_interface 
hardware_interface_standalone.launch 

 

Launch the python program in a new terminal. 

python3 robot_ned.py 

 

Now you should be able to move the mouse of the PC around to control the arm. Be 

careful not to move the mouse too fast to prevent damage to the robot. 

Reminder: 

• Use the scroll wheel to change the end effector’s height 

• Use the right click to open/close the end effector 

• X key to switch from rad to deg 

 

Show your TA that your robot functions through the mouse movement. 

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all terminals when you are done experimenting. 
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3. Using Moveit 

 

The following command lines will install moveit on your PC. (not needed if using lab 

PCs) 

sudo apt install python3-wstool 

 

 

cd ~/lab06/src 
wstool init . 
wstool merge -t . https://raw.githubusercontent.com/ros-
planning/moveit/master/moveit.rosinstall 
wstool remove  moveit_tutorials 
wstool update -t . 
git clone https://github.com/ros-planning/moveit_tutorials.git -b master 
rosdep install -y --from-paths . --ignore-src --rosdistro noetic 
catkin_make 
source ~/.bashrc 

 

Next we need to ssh into the robot again. 

ssh niryo@<ned_static_ip_address> 

 

Next (in the ssh terminal), launch the hardware stack. 

roslaunch niryo_robot_hardware_interface 
hardware_interface_standalone.launch 

 

Now we can launch moveit for our robot control. 

roslaunch niryo_robot_bringup moveit_multimachines.launch 

 

In a new terminal, launch rviz so that we can utilize the moveit package. 

rosrun rviz rviz 

Once RViz is open, click on “MotionPlanning” to add it to our visualization. This should 

add a bunch of arrows around the end-effector in the visualization. Left-click to rotate, 

middle-click to move x/y, and right-click to zoom. Change the position of the robot using 

these controls. The new position of the robot should be shown in orange. Once you have 

decided upon a good pose for the robot, click “Plan & Execute”. The Moveit package 

automatically calculates the path for the robot from its current position to the planned 

pose.  
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4. Using Python to Move 

 

Using RViz to plan a movement is nice, but it is very non-specific as it is visual instead 

of inputting specific coordinates. Instead of RViz we can use a python script to tell the 

robot where to go. This is going to be a rudimentary script as we are going to tell the 

robot the angle of each joint. In the next lab, we will explore more elegant ways to do 

this. 

 

To start, let's create a python script called pick_and_place.py. 

gedit pick_and_place.py 

 

Once the file is open, copy and paste the code below into the text editor. In the third line, 

you will need to change IPADDRESS to the address that is given on the robot then save and 

close the file. Make sure to leave the quotes around the IP address. Examine this code to 

get a feel for how it works. The robot.move_pose command tells the robot where to put 

each joint (in radians). Once you are done, save and close the file. 

from pyniryo import * 
 
robot = NiryoRobot("IPADDRESS") 
 
robot.calibrate_auto() 
robot.update_tool() 
 
robot.release_with_tool() 
robot.move_pose(0.2, -0.1, 0.25, 0.0, 1.57, 0.0) 
robot.grasp_with_tool() 
 
robot.move_pose(0.2, 0.1, 0.25, 0.0, 1.57, 0.0) 
robot.release_with_tool() 
 
robot.close_connection() 

 

Next we need to ssh into the robot again. 

ssh niryo@<ned_static_ip_address> 

 

In the ssh terminal, launch the hardware stack. 

roslaunch niryo_robot_hardware_interface 
hardware_interface_standalone.launch 

 

Now we can launch our python script. 

python3 pick_and_place.py 

 



 

82 

Once it is working, show your TA. 

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all terminals when you are done experimenting. 
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A.6 Lab 6: Pose Estimation 
 

1. Create Path Planning Package 

 

First, create a catkin workspace called lab06. Then export the following line to the bashrc 

file. 

echo "source ~/lab06/devel/setup.bash" >> ~/.bashrc 
source ~/.bashrc 

 

Create a package called path_planning. 

cd ~/lab06/src 
catkin_create_pkg path_planning rospy 
cd ~/lab06 
catkin_make  
source ./devel/setup.bash 

 

Modify the CMakeLists.txt file. 

roscd path_planning 
gedit CMakeLists.txt 

 

Copy and paste the following into the CMakeLists.txt file then save and close. 

install(PROGRAMS 
  scripts/path_planning.py 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 
 
install(DIRECTORY launch DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}) 

 

Create a launch folder and add a launch file. 

mkdir launch 
roscd path_planning/launch 
gedit path_planning.launch 

 

Copy and paste the following into the CMakeLists.txt file then save and close. 

<launch> 
 
  <node name="path_planning_node" pkg="path_planning" 
type="path_planning.py" respawn="false" output="screen"> 
  </node> 
 
</launch> 

 

Create a scripts folder for our python script to live in. 
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roscd path_planning 
mkdir scripts 
roscd path_planning/scripts 

 

Download the file path_planning.py and save it in the scripts folder you just made. 

Make the code executable using the chmod +x command then compile the workspace. 

chmod +x path_planning.py 
cd ~/lab06 
catkin_make 

 

Path_planning.py gives you the code to set the pose (x, y, z) position for the end-effector 

of the robot. It plans a cartesian path, then executes it to move the robot to the goal pose. 

 

 

2. Simulation 

Now it is time to simulate our path_planning package. Start roscore then launch RViz for 

the Niryo arm. 

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch 

 

Next launch the python script you just created. 

rosrun Niryo path_planning.py 

 

Run the rqt_graph and show your TA. 

rosrun rqt_graph rqt_graph 

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all active terminals. 

 

 

3. Plot a Square 

Open the python script and take a good look to understand what it is doing. 

roscd path_planning/scripts 
gedit path_planning.py 

 

Change the python code so that it plots a square. You already have the code setup to 

move the end-effector to one position. Now, change it to go to four different locations to 

form a square. This may require some trial and error. Test it out on the simulated Niryo 

Ned arm using the steps in part 2. Once you get it working, get a TA signature. 

 
TA Initials: _________________________ Date: ___________________________ 
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4. Physical Robot 

Make sure roscore is running. In a new terminal, ssh into Ned.The IP address of the robot 

should be written on the robot, use this in the command line below. 

 

ssh niryo@<ned_static_ip_address> 

 

Next (in the ssh terminal), launch the hardware stack. 

roslaunch niryo_robot_hardware_interface 
hardware_interface_standalone.launch 

 

Before we can move the robot, we need to calibrate it. 

rosservice call /niryo_robot/joints_interface/calibrate_motors "value: 1" 
rosservice call /niryo_robot/learning_mode/activate "value: false" 

 

In a new terminal, launch rviz so that we can utilize the moveit package. 

rosrun rviz rviz 

 

Open a new terminal (NOT the ssh terminal), so that we can launch the moveit files for 

Ned. Niryo Robotics (the company who created Ned) has already created the moveit 

configuration for us. This saves us a lot of time as it can take a while to create a moveit 

configuration for a robot. 

roslaunch niryo_robot_bringup moveit_multimachines.launch 

 

Finally, launch the path planning python code. 

rosrun Niryo path_planning.py 

 

If all went correctly, the robot arm end-effector should move in a square similar to your 

simulation. 

 

Run the rqt_graph and show your TA the robot moving in a square. 

rosrun rqt_graph rqt_graph 

 
TA Initials: _________________________ Date: ___________________________ 
 

Items to submit: 
Part 3: Python code 
Part 4: rqt_graph  
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A.7 Lab 7: Sensing 

 

1. Setup IR Sensor 

 

In lab 3 we created a simple obstacle avoidance algorithm for a simulated turtlebot. The 

algorithm allowed the robot to autonomously navigate an unknown map and avoid 

objects. However, what would happen if there was a set of stairs in the area? The LiDAR 

scanner would not be able to detect this and the robot would fall. These types of obstacles 

are called negative obstacles. Some other scenarios could be potholes, curbs, or other 

sharp drop-offs. To detect negative obstacles we are going to use IR distance sensors. 

This process is commonly called cliff detection. The cliff detection we are implementing 

is relatively simple as it only uses one IR sensor. Cliff detection is commonly 

implemented with four to six sensors 

 

First we need to set up our IR sensor. Plug in the IR sensor to the openCR board in the 

orientation shown below. 

 

 

 
 

 

2. Cliff Detection Package 
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First, set up a workspace called lab07 (go back to lab01 or lab02 if you do not remember 

how). Next, as usual, set your bashrc file to automatically source the .bash file on each 

new terminal. 

 

gedit ~/.bashrc 

 

Add this line at the end 

source ~/lab07/devel/setup.bash 

 

Also make sure that the turtlebot3 model is set to waffle not burger then save and close 

the file. 

export TURTLEBOT3_MODEL=waffle_pi 

 

Next we are going to create a package called cliff_detection. 

cd ~/lab07/src 
catkin_create_pkg cliff_detection rospy std_msgs sensor_msgs geometry_msgs 
turtlebot3_msgs nav_msgs visualization_msgs message_generation  
cd ~/lab07 
catkin_make  
source ~/.bashrc 

Open the CMakeLists.txt file in the lab07 folder. 

roscd cliff_detection  
gedit CMakeLists.txt 

 

Add this code to the file then save and close. 

catkin_python_setup() 
 
catkin_install_python(PROGRAMS   
  nodes/turtlebot3_cliff 
  DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} 
) 
 
install(DIRECTORY launch rviz 
 DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} 
) 

 

Create a python setup script. 

 

gedit setup.py 

 

Copy and paste the following code into the python script then save and close. 

from distutils.core import setup 
from catkin_pkg.python_setup import generate_distutils_setup 
 
# fetch values from package.xml 
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setup_args = generate_distutils_setup( 
    packages=['turtlebot3_example'], 
    package_dir={'': 'src'} 
) 
 
setup(**setup_args) 

 

Now we need to create a launch file for our code to work. 

mkdir launch 
roscd cliff_detection/launch 
gedit turtlebot3_cliff.launch 

 

Copy and paste the following code into the launch file then save and close. 

<launch> 
  <node pkg="cliff_detection" type="turtlebot3_cliff" 
name="turtlebot3_cliff" output="screen"> 
  </node> 
</launch> 

 

With all of the background work done, we can get to making the cliff detection node. 

mkdir nodes 

 

Download the file “turtlebot3_cliff” into the nodes folder you just created. Most of the 

code is given to you but there are a few lines of code that you need to complete. The code 

you need to complete is the publisher and subscriber. Publishing and subscribing is a 

main part of ROS and it is important to know how it works.  

 

Let's first work on creating the publisher. The publisher has the syntax of 

rospy.Publisher(‘topic’, message type, queue size=#). The cliff detection algorithm 

should stop when the sensor detects a cliff. Therefore, we need to publish the velocity 

commands for the robot. The following list describes the topic and type of the velocity 

commands. 

• ‘topic’ = ’cmd_vel’ 

• Message type = Twist 

• queue_size=1 

 

Once you have set up the publisher, the subscriber needs to be set up. The publisher has 

the syntax of rospy.Subscriber(‘topic’, message type, invoke function, queue size=#). We 

need to subscribe to the data published by the IR sensor. 

• ‘topic’ = ‘sensor_state’ 

• Message type = SensorState 

• Function = self.get_cliff 

• queue_size=1 
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Once you have the publisher and subscriber setup, save and close the file. Set permissions 

for the file using the chmod +x command. 

chmod +x turtlebot3_cliff 

 

Compile the workspace using catkin_make then source the bashrc file. 

cd ~/lab07 
catkin_make  
source ~/.bashrc 

 

 

3. Bringup Turtlebot 

The same process from lab04 will be followed to connect your computer to the turtlebot. 

It has been a while since that lab, so we will walk you through it again. 

 

The hostname -I command will display the IP address of the computer you are using. 

hostname -I 

 

The IP address that this command displays will be used several times in the future, it 

would be helpful to save it somewhere. Now that we know the address, we need to update 

the ROS settings in the bashrc file. 

nano ~/.bashrc 

 

Now that the bashrc file is opened, you need to change the “ROS_MASTER_URI” and 

“ROS_HOSTNAME” to the IP address that you found above. An example of this is 

shown below. Note that your IP address will be different; do not copy this ip 

address.  

Your bashrc file may or may not have the following lines at the end. If they are there, 

modify them to match the IP address you found above. If they are not there, add them as 

shown below. 

export ROS_MASTER_URI=http://YOUR.IP.ADDRESS:11311 
export ROS_HOSTNAME=YOUR.IP.ADDRESS 
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After you change the IP address, save by pressing ctrl+S and exit using ctrl+X.Then 

source the bashrc file. 

source ~/.bashrc 

 

We now need to follow the same steps for the Raspberry Pi. Boot up the Raspberry Pi 

then connect to a monitor. Next connect the Pi to power using USB. The Pi will prompt 

you to login using a username and password. Use login ID  ubuntu and Password 

turtlebot. Once you have logged in to the Pi, some system information will display on 

the terminal. One of the lines should be: 

IP address for wlan0: 192.168.1.26 

Note that your IP address will be different. Do not use this IP address. 

 

If this line does not show upon start-up run the following command to find the IP 

address. 

hostname -I 

 

Similar to the previous steps, we need to open the bashrc file and tell the Pi which 

computer to connect to. 

nano ~/.bashrc 

 

Once you open the file, change the following items: 
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export ROS_MASTER_URI=http://{IP_ADDRESS_OF_REMOTE_PC}:11311 
export ROS_HOSTNAME={IP_ADDRESS_OF_RASPBERRY_PI_3} 

 

After you change the IP address, save by pressing ctrl+S and exit using ctrl+X. Then 

source the bashrc file and disconnect the pi from the monitor. 

source ~/.bashrc 

 

Now that your remote PC and Pi are set up, we can connect them. First start roscore then 

execute the ssh command in a new terminal. Make sure to replace the brackets with the 

IP address of the Pi. Once you execute this command it may ask you if you are sure you 

want to continue connecting. Type yes and then press enter. After that, you will be 

prompted to enter a password. Enter turtlebot. 

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI} 

 

After you execute this command you will see that instead of your username in the 

command terminal it is ubuntu@ubuntu. In this terminal, launch the bringup command for 

Turtlebot3 applications. 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

 

Open a new terminal and launch a remote turtlebot3. You should notice that when you 

open a new terminal tab, the username is back to your normal username. From now on, 

you will need to keep track of if you are in the ssh terminal, or in your PC terminal by 

checking the username. 

roslaunch turtlebot3_bringup turtlebot3_remote.launch 

 

In a new PC terminal, launch the teleoperation node. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

In another PC terminal, launch the cliff detection node. 

roslaunch cliff_detection turtlebot3_cliff.launch 

 

In the lab, there should be an elevated platform for you to place the turtlebot on. Using 

the teleoperation node, move the turtlebot around and test to see if it will stop itself when 

attempting to go off the edge of the platform. Note that since we only have preliminary 

cliff detection, it can only detect cliffs in front of the turtlebot and not to the sides or rear. 

Be cautious to not drive the turtlebot off of the platform in these directions. 

 

Test the cliff detection a couple times to see how it works. To help, view the linear and 

angular velocity. Don’t forget to change the x/y scales as well as changing the plot title. 
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rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

Show your TA the plot then ctrl+C on the terminals running the teleoperation and the 

cliff detection node. 

 
TA Initials: _________________________ Date: ___________________________  
 

 

 

 

 

4. Cliff Detection Improvement 

 

You may notice when you’re experimenting with the cliff detection that there are some 

flaws with our algorithm. If there is some angular velocity when approaching the cliff, 

the code does not account for this. It also changes the linear velocity to 0.05 if there is no 

cliff detected instead of leaving the linear velocity to the previous value. It is your job to 

correct these errors in the code. To give you a head start, the variable last_twist is defined 

and can be used to get the last twist command that the robot received. Use these two 

commands to open the cliff detection node. 

roscd cliff_detection/nodes 
gedit turtlebot3_cliff 

 

As you go through the code, you should notice that the last_twist variable is not used yet. 

The last_twist variable has two parts of data that we need; the linear velocity and the 

angular velocity. To index the linear velocity: last_twist.linear.x 

To index the angular velocity: last_twist.angular.z 

 

Your goal is to change the code of the if/else statements so that if a cliff is detected, both 

the linear and angular velocity are set to zero. But if there is no cliff detected. The linear 

and angular velocity should stay the same.  

 

When you are done with the code, save and close the file. Compile the workspace using 

catkin_make then source the bashrc file. 

cd ~/lab07 
catkin_make  
source ~/.bashrc 

 

Your ssh and roscore terminals should still be running. Open a new terminal and re-run 

the teleoperation node, then start another terminal and launch the improved cliff detection 

node.  
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Test the cliff detection a couple times to see if the performance improves. View the linear 

and angular velocity. Don’t forget to change the x/y scales as well as changing the plot 

title. 

rqt_plot cmd_vel/linear/x cmd_vel/angular/z 

 

Show your TA the plot then ctrl+C on all terminals and turn off the turtlebot 

 
TA Initials: _________________________ Date: ___________________________  
 

Items to submit: 

Part 3: rqt_plot image 

Part 4: rqt_plot image and turtlebot3_cliff script 
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A.8 Lab 8: Mapping 
 

1. Simulation 

 

Mapping is an important part of mobile robots. ROS offers many tools and packages to 

help with mapping. When testing things for the first time, it is often a good idea to run a 

simulation first. As usual, set up a workspace called lab08 and edit the bashrc file. 

echo source ~/lab08/devel/setup.bash >> ~/.bashrc 
source ~/.bashrc 

 

Launch roscore then open a new terminal to launch the simulation. 

roslaunch turtlebot3_gazebo turtlebot3_house.launch 

 

In a new terminal, launch the teleoperation node. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

ROS has a useful tool called rosbag that allows recording of data. We are going to use 

this to record the lidar scanner data and the coordinate transform data. Open a new 

terminal and launch rosbag. 

rosbag record -O lab08_1.bag /scan /tf /odom 

 

Drive the turtlebot around in the simulation while the data is recording. Make sure to go 

into all of the rooms several times so that you end up with a good map of the house. Once 

you are satisfied that you have covered enough ground, press ctrl-C in all terminals 

except for roscore. To make sure that it recorded correctly, execute this line in the 

terminal. 

rosbag info lab08_1.bag 

 

After you execute this command, you should see some information pop up about the file. 

We can now build our map from the recorded data. 

 

rosparam set use_sim_time true 

 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping 

 

After you run gmapping, it is going to wait for data to create the map. To give it the data 

we recorded using rosbag, we will use rosbag play. This command replays the data that is 

recorded. 

rosbag play --clock lab08_1.bag 
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This will run for a minute as the map is built. When it finishes, we need to run a map 

server to save the map. Make sure you leave the gmapping terminal running for this step. 

This step may also take a few minutes to run. 

rosrun map_server map_saver -f map1 

 

Once this is done, ctrl-C all terminals except for roscore. Open the map image created by 

the previous command and see how well the map was created. As you can see, the map is 

not perfect. No mapping will be perfect, but we can tune some parameters to try and get a 

more accurate map. 

rosparam set /slam_gmapping/angularUpdate 0.1 
rosparam set /slam_gmapping/linearUpdate 0.1 
rosparam set /slam_gmapping/lskip 10 
rosparam set /slam_gmapping/xmax 10 
rosparam set /slam_gmapping/xmin -10 
rosparam set /slam_gmapping/ymax 10 
rosparam set /slam_gmapping/ymin -10 

 

After these parameters are set, re-run through the process of running the simulation, 

driving the turtlebot around, then creating the map server. Rename the bag file as 

lab08_02 and change the map_saver name from map1 to map2 to keep track of your 

map reruns. Once you do this, compare your new map with the previous one. See if it is 

any better and if it isn’t try changing some other parameters and run through the mapping 

process again. 

 

As you can see, this process can be quite tedious and time consuming as the quality of the 

map construction depends highly on the parameters and on how the turtlebot is moved 

around in the environment. 

 

To make life a little easier for you, we can use a package from ros called explore-lite. 

Ctrl-C the teleoperation node, but leave the gazebo simulation and roscore running. Use 

sudo apt-get to install the package. 

sudo apt-get install ros-kinetic-explore-lite 

 

Once the package is installed, we need to launch something called move_base. This 

launch file is part of something called the navigation stack. The navigation stack 

combines information from a robot’s sensors, position goal, and odometry then outputs 

velocity commands. It is used in many different types of robots on ros and can take some 

work to set up. Luckily the navigation stack is already made for the turtlebot and you 

should already have it installed back from lab03. 

roslaunch turtlebot3_navigation move_base.launch 

 

In a new terminal, launch a turtlebot slam node. Next week’s lab will get into how SLAM 

works in ros, but for now, we are just going to use it within the explore-lite package.  

roslaunch turtlebot3_slam turtlebot3_slam.launch 
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Now, in a new terminal, we can launch the explore-lite package. This will autonomously 

navigate the world the turtlebot is in and then it will create a map at the end. This takes a 

lot of work off of your shoulders as you can launch the node and then let the package do 

all of the work. However, there are some limitations; this package does not do well in 

very small rooms. 

roslaunch explore_lite explore.launch 

 

While the explore node is running, launch the rqt_graph to see what nodes are running. 

rqt_graph 

Save a picture of the graph. 

 

Once the explore-lite package has produced a map, save it and show your TA. Ctrl-C all 

terminals besides roscore and close them. 

 
TA Initials: _________________________ Date: ___________________________ 
 

 

 

 

2. Physical World 

 

Now that you have simulated mapping in ros, we are going to follow the same procedure 

with the real turtlebot in the lab. On the PC in the lab, it should give you the IP address of 

the turtlebot you are using, use that to ssh into the turtlebot. If it prompts you for a 

password, enter turtlebot. 

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI} 

 

In the same terminal that you ssh’d into the turtlebot, launch the turtlebot3. 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

 

Now open a new terminal and remote launch the turtlebot3 from the PC. 

roslaunch turtlebot3_bringup turtlebot3_remote.launch 

 

From this point, the process is going to be very similar to the simulation, but with the 

physical robot. In a new terminal, launch the teleoperation node. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Open a new terminal and launch rosbag. 

rosbag record -O lab08_2_1.bag /scan /tf 
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Drive the turtlebot around while the data is recording. Once you are satisfied that you 

have covered enough ground, press ctrl-C the teleoperation and rosbag terminals. To 

make sure that it recorded correctly, execute this line in the terminal. 

rosbag info lab08_2_1.bag 

 

After you execute this command, you should see some information pop up about the file. 

We can now build our map from the recorded data. 

 

rosparam set use_sim_time true 

 

rosrun gmapping slam_gmapping 

 

After you run gmapping, it is going to wait for data to create the map. To give it the data 

we recorded using rosbag, we will use rosbag play. This command replays the data that is 

recorded. 

rosbag play --clock lab08_2_1.bag 

 

This will run for a minute as the map is built. When it finishes, we need to run a map 

server to save the map. Make sure you leave the gmapping terminal running for this step. 

rosrun map_server map_saver 

 

Once this is done, ctrl-C the gmapping terminal and the rosbag play terminal. Open the 

map image created by the previous command and see how well the map was created. As 

with the simulated turtlebot, you may have to change some of the tuning parameters for 

the mapping. Change some of these parameters to see how it affects the mapping. 

rosparam set /slam_gmapping/angularUpdate 0.1 
rosparam set /slam_gmapping/linearUpdate 0.1 
rosparam set /slam_gmapping/lskip 10 
rosparam set /slam_gmapping/xmax 10 
rosparam set /slam_gmapping/xmin -10 
rosparam set /slam_gmapping/ymax 10 
rosparam set /slam_gmapping/ymin -10 

 

Re-run through the process of running the simulation, driving the turtlebot around, then 

creating the map server. Rename the bag file as lab08_2_2 to keep track of your map 

reruns. Once you do this, compare your new map with the previous one. See if it is any 

better and if it isn’t try changing some other parameters and run through the mapping 

process again. 

 

As before, we are going to run the explore-lite package to see how it compares to the 

manual exploration of the environment. Ctrl-C the gmapping terminal and the rosbag 

play terminal.  
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Next in a new terminal, launch the move_base file. 

roslaunch turtlebot3_navigation move_base.launch 

 

In a new terminal, launch a turtlebot slam node.  

roslaunch turtlebot3_slam turtlebot3_slam.launch 

 

Now, in a new terminal, we can launch the explore-lite package. 

roslaunch explore_lite explore.launch 

 

While the explore node is running, launch the rqt_graph to see what nodes are running. 

rqt_graph 

Save a picture of the graph. 

 

Once the explore-lite package has produced a map, save it and show your TA. Ctrl-C all 

terminals besides roscore and close them. 

 
TA Initials: _________________________ Date: ___________________________ 
 

Items to submit: 

Part 2: map image and rqt_graph image 

Part 3: map image and rqt_graph image 
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A.9 Lab 9: SLAM 
 

1. Simulation SLAM  

 

As before, we are going to first simulate some SLAM methods in ROS before 

implementing them on the turtlebot. There are many different methods available in ROS 

that automatically implement SLAM algorithms depending on which package you 

choose. Each algorithm has strengths and weaknesses depending on the environment and 

the robot specifications. We are going to test a couple of these algorithms and decide 

which is best for us to use. 

 

First let's set up the workspace. Create a workspace called lab09 and then set up the 

bashrc file. 

echo source ~/lab09/devel/setup.bash >> ~/.bashrc 
source ~/.bashrc 

  

Then launch roscore and open a new terminal tab ( Ctrl + Alt + T ). 
 

The algorithms we will be using are: 

• Gmapping 

• Hector 

• Karto 

 

 

Gmapping 

Starting with gmapping, we first need to launch the simulation in gazebo. 

roslaunch turtlebot3_gazebo turtlebot3_house.launch 

 

Next launch the SLAM node. 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping 

  

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot 

around until a map is created. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Drive around using the teleoperation node until the map in the SLAM RViz is sufficient. 

Once the map is created, open a new terminal and run the following command to save the 

map. Once the map is saved, open the map and leave it open. 

rosrun map_server map_saver -f map1 

 

Ctrl-C the SLAM node and the teleoperation node but leave gazebo running. Next, the 

hector SLAM algorithm will be used. 
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Hector 

 

First install the hector slam algorithm. 

sudo apt-get install ros-melodic-hector-slam 

  

Launch the SLAM node: 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=hector 

  

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot 

around until a map is created. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Once the map is created, open a new terminal and run the following command to save the 

map. Once the map is saved, open the map and leave it open. 

rosrun map_server map_saver -f map2 

 

Ctrl-C the SLAM node and the teleoperation node but leave gazebo running. Next, the 

Core SLAM algorithm will be used. 

 

Karto 

Install: 

sudo apt-get install ros-melodic-slam-karto 

 

Launch: 

 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=karto 

 

Once the SLAM node is launched, the teleoperation node is used to drive the turtlebot 

around until a map is created. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Once the map is created, open a new terminal and run the following command to save the 

map. Once the map is saved, open the map and leave it open. 

rosrun map_server map_saver -f map3 

 

Now you should have three maps open. Compare them and determine which method 

created the best map. Take note of which file it is (map1, map2, map3) as you will need 

to use it for the next section. Show your TA your best map. Ctrl-C all active terminals 

besides roscore. 
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TA Initials: _________________________ Date: ___________________________ 
 

 

 

 

2. Simulation Path Planning 

 

One useful tool of creating maps is that the robot can move autonomously to a point with 

a path that is efficient and avoids obstacles in the map. To do this we need to use the 

navigation stack. You may remember that we used the move_base launch file in last 

week's lab from the navigation stack. However, instead of just using the move_base file, 

we need to launch the entire navigation stack and tell it what map to use. Make sure to 

replace map# with the map that you determined to be the best in the previous section. 

roslaunch turtlebot3_navigation turtlebot3_navigation.launch 
map_file:=$HOME/map#.yaml 

 

Once Rviz opens, click the 2D Pose Estimate button. 

 
This will put a green arrow on the map with the turtlebot. Drag the arrow over to the 

direction the robot is facing. Repeat the steps of clicking the 2D Pose Estimate then 

dragging the arrow a few times. 

 

Next we need to move the robot back and forth some to allow for a more precise initial 

pose estimate. Launch the teleoperation node then move the turtlebot a small amount 

back and forth. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Ctrl-C the teleoperation node when you are done. Now that the initial pose is set, we can 

give the turtlebot a navigational end point. Click the 2D Nav Goal. 

 
 

Now click on the map to tell the robot and end point. Once you click you will see a green 

arrow pop up. Rotate the arrow to tell the turtlebot the desired rotational position. Once 

you let go of the green arrow, the turtlebot should automatically move to the navigation 

goal. 

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all nodes besides roscore. 
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3. Physical Turtlebot SLAM 

 

Now that you have simulated SLAM in ros, we are going to follow the same procedure 

with the real turtlebot in the lab. On the PC in the lab, it should give you the IP address of 

the turtlebot you are using, use that to ssh into the turtlebot. If it prompts you for a 

password, enter turtlebot. 

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI} 

 

In the same terminal that you ssh’d into the turtlebot, launch the turtlebot3. 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

 

Now open a new terminal and remote launch the SLAM node from the PC. Use the 

method that you found to be most effective from part one: Gmapping, Hector, Karto, or 

Frontier Exploration. Replace BEST_METHOD  with that method. 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=BEST_METHOD 

In the lab there is a maze setup. Choose a spot to start your turtlebot and place it in the 

maze. On the PC, launch the teleoperation node. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Drive the turtlebot around in the maze. Avoid changing speed or turning too quickly and 

make sure to get every part of the maze. After the map is complete, ctrl-C the 

teleoperation node then save the map. 

rosrun map_server map_saver -f ~/map5 

 

Show your TA the map then Ctrl-C the  
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C the slam node. 

 

 

 

4. Autonomous Movement Using SLAM 

 

Similar to section 2, we are going to use the map we created to allow the turtlebot to 

autonomously navigate through the maze. 

roslaunch turtlebot3_navigation turtlebot3_navigation.launch 
map_file:=$HOME/map5.yaml 
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Once Rviz opens, click the 2D Pose Estimate button. 

 
 

This will put a green arrow on the map with the turtlebot. Drag the arrow over to the 

direction the robot is facing. Repeat the steps of clicking the 2D Pose Estimate then 

dragging the arrow a few times. 

 

Next we need to move the robot back and forth some to allow for a more precise initial 

pose estimate. Launch the teleoperation node then move the turtlebot a small amount 

back and forth. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

 

Ctrl-C the teleoperation node when you are done. Now that the initial pose is set, we can 

give the turtlebot a navigational end point. Click the 2D Nav Goal. 

 
 

Now click on the map to tell the robot and end point. Once you click you will see a green 

arrow pop up. Rotate the arrow to tell the turtlebot the desired rotational position. Once 

you let go of the green arrow, the turtlebot should automatically move to the navigation 

goal.  

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all nodes. 
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A.10 Lab 10: Machine Vision 

 

1. Camera Setup 

 

Before we can use the camera on the turtlebot, we will need to calibrate the camera. Start 

by setting up a workspace called lab10 and then set up the bashrc file. 

echo "source ~/lab10/devel/setup.bash" >> ~/.bashrc 
source ~/.bashrc 

  

Next we need to install some packages. 

cd ~/lab10/src/ 
git clone https://github.com/ROBOTIS-GIT/turtlebot3_autorace.git 
cd ~/lab10 
  
sudo apt-get install ros-melodic-image-transport ros-melodic-cv-bridge ros-
melodic-vision-opencv python-opencv libopencv-dev ros-melodic-image-proc 
 
catkin_make 

 

After your workspace compiles, launch roscore. In a new terminal, ssh into the robot. On 

the PC in the lab, it should give you the IP address of the turtlebot you are using, use that 

to ssh into the turtlebot. If it prompts you for a password, enter turtlebot. 

ssh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI} 

 

In the terminal that you just ssh’d into, run the following command to trigger the camera 

on the turtlebot. 

roslaunch turtlebot3_autorace_camera turtlebot3_autorace_camera_pi.launch 

 

In a new terminal (PC terminal, not the ssh terminal), execute the following command to 

view the camera image. 

rqt_image_view 

  

Once the image appears, change the first drop-down menu to 

/camera/image/compressed. 

 

Leave the image open and execute this command in a new terminal. 

rosrun rqt_reconfigure rqt_reconfigure 

 

This will open a gui so that you can calibrate the camera to get a clear image. In the left 

side of the gui, select camera. Change the sliders until you get a clear view from the 

camera image. 
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Once this is done, you can close the gui, but leave the camera image open. Next we need 

to change some values in the camera.yaml file. 

cd ~/lab09/turtlebot3_autorace_camera/calibration/camera_calibration 
gedit camera.yaml 

 

Once it is open, change the file to the following values then save and close.: 

camera: 
  ISO: 889 
  awb_mode: tungsten 
  brightness: 59 
  contrast: 50 
  exposureCompensation: 0 
  exposure_mode: auto 
  hFlip: false 
  saturation: 0 
  sharpness: 0 
  shutterSpeed: 25000 
  vFlip: false 
  videoStabilisation: false 
  zoom: 1.0 

 

Now we have calibrated the camera, we need to do something called intrinsic camera 

calibration. This type of calibration estimates intrinsic parameters of the camera such as 

distortion, focal length and skew so that the image that the robot perceives is more 

accurate to “real-life”. 

 

First we need to export some variables. 

export AUTO_IN_CALIB=calibration 
export GAZEBO_MODE=false 

 

Next we can launch the intrinsic calibration gui. 

roslaunch turtlebot3_autorace_camera 
turtlebot3_autorace_intrinsic_camera_calibration.launch 

  

In the lab, there should be papers with checkerboards on them. Position them in front of 

the turtlebot camera so that it fills the frame of the camera (check the camera view on the 

rqt_image_view terminal) but does not exclude any of the squares. Once you do this, 

click calibrate on the calibration gui.  

 

Once it finishes calibrating, click save. This will create a compressed file in a /tmp folder. 

To extract it, run the following command. 

cd ~/tmp 
tar -xvf calibrationdata.tar.gz 
gedit ost.yaml 
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This will open the ost.yaml file. Copy and paste the entire contents of this file. We need 

to paste this data into another file called camerav2_320x240_30fps.yaml. 

cd ~/turtleot3_autorace_camera/calibration/intrinsic_calibration 
gedit camerav2_320x240_30fps.yaml 

  

When the file opens, paste the data from ost.yaml into the file then save and close. Next 

we need to perform extrinsic camera calibration. This will determine the position and 

imaging plane of the turtlebot3 camera. 

First export some variables. 

export AUTO_IN_CALIB=action 
export AUTO_EX_CALIB=calibration 
roslaunch turtlebot3_autorace_${Autorace_Misson}_camera 
turtlebot3_autorace_intrinsic_camera_calibration.launch 

Next we can launch the extrinsic calibration file. 

roslaunch turtlebot3_autorace_${Autorace_Misson}_camera 
turtlebot3_autorace_extrinsic_camera_calibration.launch 

 

In a new terminal, execute rqt. 

rqt 

 

Select plugins>visualization>Image view. There should be two windows that open. One 

one window, select /camera/image_extrinsic_calib/compressed and in the other window 

select /camera/image_projected_compensated 

 

Keep these windows open and run the following command in a new terminal window. 

rosrun rqt_reconfigure rqt_reconfigure 

 

In the left menu, under Camera, select image_projection and 

image_compensation_projection. Simultaneously view this window and the 

/camera/image_extrinsic_calib/compressed from the rqt window. Place the robot in the 

lanes that are setup in the lab. There should be one white and one yellow similar to an 

actual road. Place the robot such that the yellow lane is on the left and the white lane is 

on the right. Change the parameters in the reconfigure window until the red box on the 

camera image matches up with the lanes.  

 

Make sure that the image_compensation_projection parameter is equal to 1. Ctrl-C all 

terminals besides roscore and the ssh terminal. 

 

We are almost done with calibration, we just need to apply our changes to the camera. To 

do this, execute the following lines in the command terminal 

 

roslaunch turtlebot3_autorace_camera 
turtlebot3_autorace_intrinsic_camera_calibration.launch 



 

107 

 

export AUTO_EX_CALIB=action 
 
roslaunch turtlebot3_autorace_camera 
turtlebot3_autorace_extrinsic_camera_calibration.launch 

 

Once this is done, the camera is finally calibrated. As you can see, this process can be 

lengthy and time consuming. However, as we will see in the next sections, having vision 

systems allows robots to do things that laser scanners simply cannot achieve. Leave the 

calibration launch terminals open and move onto the next section. 

 

 

2. Lane Detection Calibration 

The robot should be placed in the lanes setup in the lab. Make sure that the yellow lane is 

on the left and the white lane is on the right. In a new terminal, launch the lane detecting 

file. 

export AUTO_DT_CALIB=calibration 
roslaunch turtlebot3_autorace_detect turtlebot3_autorace_detect_lane.launch 

 

In a new terminal, execute rqt. 

rqt 

 

Select plugins>visualization>Image view. There should be two windows that open. One 

one window, select /camera/image_extrinsic_calib/compressed and in the other window 

select /camera/image_projected_compensated. Create 3 windows and then select the 

following in each respective window: 
/detect/image_yellow_lane_marker/compressed 
/detect/image_lane/compressed  
/detect/image_white_lane_marker/compressed 
 

Open a new terminal and execute: 

rosrun rqt_reconfigure rqt_reconfigure 

 

In the left menu, select detect_lane. The process of determining the parameters for lane 

detection can be finicky and may take some time. To get started, open lane.yaml and 

copy the values into the rqt_reconfigure gui. 

cd turtlebot3_autorace_detect/param/lane 
gedit lane.yaml 

 

Once this is done here is a general outline for how to adjust the parameters further. Note 

you should be adjusting the parameters and looking at each of the three image windows 

that you have open to determine if your adjustments are correct. 

1.  Start with hue values first. These are listed in the configure gui as hue_white_l, 

hue_yellow_l, etc. 
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2. Next do saturation values; make sure to do the saturation for both white and 

yellow. 

3. Now adjust the lightness values 

1. You do not need to adjust the lightness_white_l or lightness_yellow_l 

values. Just set the _h lightness values to 255 and leave the _l values 

alone. 

 

Once you are done calibrating, change the new parameters you have set in the lane.yaml 

file. You should still have this file open, if you don’t, just look a couple lines up to get the 

file open. Save and close the file then ctrl-C the rqt_rconfigure and the detect_lane.launch 

terminals then execute the following commands. 

export AUTO_DT_CALIB=action 
roslaunch turtlebot3_autorace_detect turtlebot3_autorace_detect_lane.launch 

 

3. Lane Detection Testing 

 

Now that we have calibrated the camera, we can launch our lane detection node. 

roslaunch turtlebot3_autorace_control 
turtlebot3_autorace_control_lane.launch 

 

Next we need to bringup the turtlebot3. Make sure you execute this command in the 

ssh terminal.  

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

 

After you launch this command, the turtlebot should start navigating through the lanes. 

The lane detection from the auto race package we are using implements a PD controller. 

This enables the turtlebot to navigate through the lanes very accurately, even with 

disturbances. As the turtlebot is going through the lanes, try pushing it a little bit of 

course (not completely out of the lanes though) to see if it will “course-correct”. Find the 

source files for the turtlebot3_autorace_control_lane.launch  file and change the 

parameters for the PD controller. Comment on the performance of the controller and how 

you changed it. 

 

Run an rqt_graph to see what nodes are running and to see how they are connected to 

each other. 

 
TA Initials: _________________________ Date: ___________________________ 
 

Ctrl-C all nodes. 
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A.11 MATLAB Introduction 

 

 

1. MATLAB Setup 

Ensure that MATLAB is allowed through the firewall of the PC so that it can transmit 

and receive messages to/from ROS. On Windows, this is done with the “Allow an app 

through Windows Firewall” application. 

 
Matlab needs to have python installed. The python version depends on the MATLAB 

version. MATLAB 2020a uses Python 2.7.8 

(https://www.python.org/downloads/release/python-278/).  Once it is installed, execute 

the following command in the MATLAB command window. 

pyenv('Version','C:\Python27/python') 

 

If it downloaded correctly, these commands should output “2.7” in the command terminal 

of MATLAB. 

pe = pyenv; 
pe.Version 

 

To connect MATLAB to ROS, you will need to know the IP of your PC and the IP of the 

virtual machine running ROS (if using one). To start, run roscore on the command 

terminal that is running ROS. From now on, this terminal will be referred to as the VM. 

To start a ros connection from MATLAB, the rosinit command is used. 

rosinit("http://IP_OF_VM:11311","NodeHost","IP_OF_PC"); 

 

To ensure that MATLAB is receiving information from ROS, run a rostopic list on 

MATLAB. 

rostopic list 

 

 

 

https://www.python.org/downloads/release/python-278/
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2. Control Turtlebot3 in Gazebo from MATLAB 

On MATLAB, open a new script and add the following code but do not execute yet. 

%SETUP PUBLISHER 
velocity=-0.1; 
robotCmd = rospublisher("/cmd_vel","geometry_msgs/Twist"); 
velMsg = rosmessage(robotCmd); 
 
%SEND VELOCITY COMMAND 
velMsg.Linear.X = velocity; 
send(robotCmd,velMsg) 
pause(4) 
velMsg.Linear.X = 0; 
send(robotCmd,velMsg) 
 
%SETUP SUBSCRIBER FOR POSE 
odomSub = rossubscriber("/odom","nav_msgs/Odometry"); 
odomMsg = receive(odomSub,3); 
pose = odomMsg.Pose.Pose; 
x = pose.Position.X; 
y = pose.Position.Y; 
z = pose.Position.Z; 
[x y z]  

 

On the VM, launch the Turtlebot3 in Gazebo. 

roslaunch turtlebot3_gazebo turtlebot3_world.launch 

 

Once Gazebo is launched, run the MATLAB script. Ensure that the Turtlebot3 moves 

forward and then stops. 

 

 

3. Plot Scan Data 

Update the MATLAB script and add the following code to the end. 

%SETUP SUBSCRIBER FOR LIDAR 
laser= rossubscriber("/scan","sensor_msgs/LaserScan"); 
scanMsg = receive(laser); 
figure 
plot(scanMsg) 
 
% SOME TEST CODE 
velMsg.Angular.Z = velocity; 
send(robotCmd,velMsg) 
tic 
while toc < 20 
  scanMsg = receive(laser); 
  plot(scanMsg) 
end 
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velMsg.Angular.Z = 0; 
send(robotCmd,velMsg) 

  

Run the script. A plot of the data from the laser-distance scanner should show and be 

updated for 20 seconds 

 

 

4. Obstacle Avoidance Script 

At the end of the current MATLAB script, add the following code which implements a 

simple obstacle avoidance algorithm using lidar. 

 

%TEST 
distanceThreshold=0.1; 
tic; 
  while toc < 20 
      % Collect information from laser scan 
      scan = receive(laser); 
      plot(scan); 
      data = readCartesian(scan); 
      x = data(:,1); 
      y = data(:,2); 
      % Compute distance of the closest obstacle 
      dist = sqrt(x.^2 + y.^2); 
      minDist = min(dist);      
      % Command robot action 
      if minDist < distanceThreshold 
          % If close to obstacle, back up slightly and spin 
          velmsg.Angular.Z = spinVelocity; 
          velmsg.Linear.X = backwardVelocity; 
      else 
          % Continue on forward path 
          velmsg.Linear.X = forwardVelocity; 
          velmsg.Angular.Z = 0; 
      end    
      send(robotCmd,velmsg); 
  end 
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