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Abstract

Polymers and their composites (PMC) have emerged as effective alternative materi-

als in structural, aerospace, and automotive industries due to their lightweight and

tunable properties compared to metals. However, these materials tend to degrade

during their operations in extreme environments. In this work, two extreme condi-

tions are considered: - i) high-temperature oxidative degradation of polymers and

polymer-based composites ii) Fracture and damage of polymer-based composites un-

der thermo-mechanical loading. Polymer oxidation starts when oxygen from the am-

bient diffuses into the bulk material and initiates chemical reactions to develop a

coarse, brittle oxide layer on the exposed surface. The oxidative degradation process

is inherently complex in nature, as it involves a coupling between diffusion, reaction,

and mechanics. As oxygen diffuses into the polymer, a series of chain reactions oc-

cur, resulting in residual shrinkage strain on the oxidized layer of the material due

to escaping of the volatiles. Consequently, residual stress develops within the mate-

rial, causing spontaneous cracking even without the application of external loading.

Thus, the oxidative aging can cause premature cracking in the material and requires

a better understanding of the interaction between the chemistry and mechanics at

different length scales and timescales to comprehend the effect of thermo-oxidative

aging of polymeric materials. In this work, a fully coupled thermodynamically con-

sistent chemo-mechanical phase-field fracture model is developed that attempts to

xxxi



bridge the gap between the experimental observations and a constitutive theory for

thermo-oxidative aging in polymeric materials. To accomplish this, a novel approach

has been adopted considering the chemical reactions at the polymer macromolec-

ular level, a reaction-driven transient network evolution theory at the microscale,

and a constitutive model at the macroscale. Finally, a phase-field fracture theory is

added to the chemo-mechanical model to predict the oxidation-induced fracture in

the polymer under mechanical loading. The model has been further extended to a

homogenized continuum theory to capture the anisotropic oxidation characteristic of

the fiber-reinforced polymer matrix composites. Specialized forms of the constitutive

equations and the governing partial differential equations have also been developed

for the polymers and the composite systems and numerically implemented in finite

elements.

Lastly, a unified phase-field fracture model is developed to create an experimentally

validated, physically motivated, and computationally tractable model to predict the

fracture response of the unidirectional fiber reinforced polymer matrix composites. A

homogenized, coupled thermo-mechanical model is developed considering a thermo-

viscoelastic polymer matrix. The model is numerically implemented by writing a

ABAQUS user-element subroutine (UEL). The model can predict the constitutive

response and direction-dependent damage propagation and final fracture in commer-

cially acquired unidirectional glass-fiber-reinforced epoxy composite and in substan-

tial agreement with the experiments.

xxxii



Chapter 1

A thermodynamically consistent

chemo-mechanically coupled large

deformation model for polymer

oxidation

1.1 Introduction

Polymers and polymer matrix composites (PMCs) are candidates for the replace-

ment of metals and alloys in many aeronautic and defense applications due to their
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well known specific properties, such as excellent strength to weight ratio, specific

toughness, damping, thermal stability, corrosion resistance etc. One of the con-

cerns linked to the long-term use of these materials is the modification of consti-

tutive behavior, degraded mechanical properties and failure due to thermo-oxidation

[102, 173, 193, 197, 269]. In general, the performance of polymers degrades signif-

icantly due to their long term exposure in extreme environments, such as chemical

corrosion, radiation, hygrothermal effect etc. High temperature oxidation or thermo-

oxidative aging in the polymer is one such example, where polymer undergoes a set

of irreversible chemical reactions, preferably at a temperature near or higher than its

glass transition (Tg) temperature, driven by oxygen (O2) diffusion. As a result of

this process, oxide layers form at the exposed surface, (often identified with a distinct

color change), which may lead to spontaneous microcracking [63]. These microc-

racks further act as a favorable path for O2 diffusion and promotes oxidation inside

the material, eventually causing the materials to fail [48, 49, 59, 63, 202, 240, 241].

Therefore, oxidative aging in polymers could be a major concern in the aerospace and

automotive industries, as it impacts both the safety and cost-effectiveness of these

materials for their long-term applications.

Thermo-oxidative aging in polymers is a highly nonlinear, irreversible phenomena
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driven by a coupled diffusion-reaction process, resulting in changes in the ma-

terials’ molecular configuration as well as at the macro-scale. Numerous stud-

ies have been reported in recent literature focusing on the changes in macro-

scopic properties and molecular structure of polymers due to thermo-oxidation as in

[59, 62, 63, 72, 193, 197, 200, 202, 240, 241]. According to these works, at the macro-

molecular level, chain scission and oxidative cross-linking affect the polymer network

and eventually alters the material property during oxidation. At the macroscale, as

oxygen infuses into the polymer, it reacts with the material to create oxides and

volatile compounds; latter leaving the material to form voids. Due to the void for-

mation, the material progressively loses weight. At the same time, due to oxidative

crosslinking, it becomes denser and end up with lower molecular weight. Ultimately

these combined factors result in irreversible volume shrinkage within the polymer. A

more detailed explanation of these can be found in [63]. Several quantifiable conse-

quences of oxidation in the polymer such as an increase in modulus and glass transi-

tion temperature, and decrease in failure strain, etc. are also being reported in recent

literature [40, 82, 87, 88, 172, 173, 193, 197]. Also, other effects of thermal oxidation

include debonding on the fiber-matrix interface in PMC’s and matrix micro-cracking,

which might lead to premature failure of the composites [104, 200, 202, 241].

Modeling of polymer oxidation is a great challenging task as it involves various highly

coupled physical and chemical phenomena. Early studies of thermal aging in poly-

mers and PMC’s were focused on determining the property deterioration and lifetime
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predictions by conducting accelerated aging experiments. These experimental data

were further extrapolated using Arrhenius laws to predict the materials’ behavior for

later periods [25, 32, 33, 168, 184, 243]. However, as mentioned in [64], Arrhenius law

can be applied only to an elementary reactive process, whereas polymer oxidation, in

general, involves at least six elementary reactions. Therefore, it might not be accurate

to use a generalized Arrhenius law for such complex cases. The deviation from Arrhe-

nius law has been shown experimentally in [47, 106, 107, 108, 109, 261]. The multiple

closed-loop chain reaction for polymer oxidation was also extensively studied and a

kinetic model was formed based on the reaction chemistry to track down oxide layer

thickness [19, 20, 21, 57, 59, 60, 61, 62, 63, 64, 193, 213, 262]. An extension of this ki-

netic model can be found in the literature, which is known as the three-zone oxidation

model that emphasized on the heterogeneity of diffusion of oxygen [200, 240, 241].

This heterogeneity in the degree of oxidation results in non-uniform mechanical prop-

erties and inhomogeneous stress/strain distribution within an oxidized polymer. For

a thick polymer specimen, diffusion-limited oxidation (DLO) model seemed more ap-

propriate, which showed that the oxidation reaction got blunt on the surface of a thick

sample instead of spreading toward the core [206]. These aforementioned models used

a semi-empirical approach to determine the mechanical properties of oxidized poly-

mers, such as correlating mechanical stiffness to the thickness of the oxidized layer

[104, 172, 173, 193, 197]. Till date, prediction of constitutive response of oxidized
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polymer is still trifling. The only acceptable thermodynamically consistent contin-

uum model to predict the constitutive response based on high-temperature oxidation

behavior was found in the work of [103, 104].

The coupling of multiple physics in the constitutive modeling of materials had

been explored in the mechanics’ community. For instance, a coupled theory for

high-temperature oxidation in metallic alloys had been developed by [153]. The

coupled stress-diffusion response in polymer gels had been extensively studied by

[52, 53, 54, 77, 113]. Recent work by [267] on the reaction-diffusion coupling in pho-

toresponsive gels is also noteworthy. Several research groups had also published recent

works on coupled photochemical reaction-large deformation theory as, [73, 220, 263].

In the present work, a thermodynamically consistent continuum-level theory is devel-

oped that incorporates the coupling between diffusion and the kinetics of oxidation

reaction along with the large deformation behavior of polymers. The model is further

implemented in a FE setting by writing a user element subroutine (UEL), to describe

the coupled thermo-chemo-mechanical behavior that arises due to high-temperature

oxidation in polymers. The paper is organized as follows- firstly, the coupled theory of

oxidation has been explained, followed by the specific constitutive model description.

Various numerical simulations have been done, and the results are analyzed in detail

to explain the capability of the model. In the end, the concluding remarks have been

presented.
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1.2 Chemistry of oxidation

The mechanistic reaction schemes proposed to describe the thermal oxidation of poly-

mers had a consensus in the literature except for some minor variation at the initia-

tion stage[19, 20, 21, 57, 59, 60, 61, 62, 63, 64, 213, 262]. According to this standard

mechanistic scheme, during oxidation, the polymer undergoes six sets of closed-loop

chain reactions involving three major steps identified as initiation, propagation, and

termination, respectively, as explained below:

(Ia) Initiation POOH → 2P∗

(Ib) Initiation PH + O2 → P∗ + POOH

(II) Propagation P∗ +O2 → PO∗
2

(III) Propagation PO∗
2 + PH → POOH+ P∗

(IV) Termination P∗ + P∗ → inactive products

(V) Termination P∗ + PO∗
2 → inactive products

(VI) Termination PO∗
2 + PO∗

2 → inactive products+O2

(1.1)

where PH represents the polymer substrate; P∗ is the alkyl radicals; POOH is the

hydroperoxide, PO∗
2 is the peroxy radical and O2 represents oxygen. These set of
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reactions was originally proposed by Verdu and coworkers [64]. For a specific ambient

condition, which particular subset of reactions would be dominating the oxidation

process is usually determined by comparing the activation energy and the reaction

rates for each reaction [57].

Among the two initiation reactions, activation energy associated with the hydroper-

oxide decomposition (Ia) is noticeably lower than the substrate decomposition or

substrate oxidation reaction (Ib). Hence reaction (Ia) is called the initiator of the

oxidation reaction as it tends to dominate the initiation rate [64]. On the other hand,

at high temperature and low POOH concentration, initiation is predominantly due

to the substrate consumption (Ib). In such case the rate of initiation becomes almost

constant or slowly decreases. This causes significant structural change in the polymer

as a result of the substrate consumption [64].

In the case of propagation reaction, the rate constant k2 for reaction (II) is much

faster than the rate constant k3 for reaction (III). Therefore, in the case of excess

availability of oxygen, reaction(III) becomes the dominant rate-controlling process,

as the propagation depends on the availability of polymer [64]. Further, due to the

presence of excess oxygen, alkyl radicals (P ∗) quickly transforms into peroxyl radical

(PO∗
2); thus, the termination reaction occurs mostly by reaction (VI). It was reported

in the literature that under the steady-state assumption, the overall rate of oxidation

in the case of excess oxygen is linked to the constant value of
k23

k6[PH]2
[19]. On the

other hand, in the case of limited oxygen availability, the overall rate can be linked
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to the constant k2k6
2k5k3[PH]

and
k23

k6[PH]2
[61, 62]. Finally, it is noteworthy to mention

that, there exists a critical oxygen concentration Cc, above which oxygen consump-

tion reaches the saturation limit, and is defined by a relation, Cc ≈ 6k5
k2

[PH]
k6

[60, 64].

Therefore, the kinetics of the oxidation reaction is influenced by several factors and

requires a thorough understanding at the macromolecular level to couple its effect

with the deformation kinematics.

1.3 Thermodynamically consistent chemo-

mechanically coupled theory for polymer

oxidation

1.3.1 Kinematics

1.3.1.1 Extent of reaction

Based on the work of high-temperature oxidation in metallic alloys [153] and a more

recent work in curing of glassy polymers [220], we define the extent of reaction for

each reaction (n) in a local dimensionless form as,
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0 ≤ ξ(n)(X, t) ≤ 1 (1.2)

where (n) is the number of reaction and can vary between 1 to 6 depending on

the oxidation kinetics for a specific polymer. Since polymer oxidation is a multi-

component system involving multiple reactions (as described earlier), the chemical

concentration for each component β would changed depending on the extent of all

the reactions in which it is participating,

r(β) =
∑
(n)

[
R(n)ξ̇(n)

](β)
(1.3)

where r(β) is the rate of production or consumption of chemical species β and R(n) is

the stoichiometric coefficient in reaction n (measured in moles per volume), denotes

the consumption or production rate for any species β.

1.3.1.2 Kinematics of the deformation

The notation used in this work is the standard of continuum mechanics [118]. The

function χ defines a map which converts every material point in the reference con-

figuration X ∈ BR to a spatial or current one as, x ∈ Bt. A smooth deformation is a
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one to one mapping, x = χ(X, t) with deformation gradient defined as,

F =
∂χ

∂X
with J = detF > 0 (1.4)

Oxygen embrittlement causes chain scission and weight loss in the polymer. The

combined effect of those induces shrinkage strain in the oxide layer. Treating the

shrinkage strain as irreversible, we consider a multiplicative decomposition of the

total deformation gradient based on the large deformation theory of polymers [12],

F = FeFp (1.5)

where Fe is the elastic component of the deformation gradient, Fp is the irreversible

plastic component, which incorporates the deformation due to permanent chemical

shrinkage and viscoplastic deformation that can occur in the glassy polymer. Refer-

ring to Eq.3.2 the determinant J can be decomposed into,

J = J eJ p, where J e = detFe > 0 and J p = detFp > 0 (1.6)

so that Fe and Fp are both invertible. The right polar decomposition of Fe is given
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by,

Fe = ReUe = VeRe (1.7)

where Re is the rotation and Ue and Ve are symmetric, positive-definite stretch

tensors with,

Ue =
√
FeTFe and Ve =

√
FeFeT (1.8)

The left and right Green-cauchy tensors are then defined as,

Be = Ve2 = FeFeT and Ce = Ue2 = FeTFe (1.9)

Further, the velocity gradient is defined as,

L = ḞF−1 (1.10)

Substituting Eq. 3.2 into Eq. 1.10, we get

L = ḞF−1 :

= ḞeFe−1 + FeLpFe−1

(1.11)
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with,

Le = ḞeF−e and Lp = ḞpF−p (1.12)

The elastic and plastic deformation tensor can be further defined from the standard

continuum mechanics as,

De = symLe, We = skwLe; Dp = symLp, Wp = skwLp (1.13)

So that, Le = De + We and Lp = Dp + Wp. Assuming plastic flow is irrotational,

(as,Wp = 0), the plastic velocity gradient becomes,

Lp ≡ Dp, with Ḟp = DpFp (1.14)

We also make another kinematic assumption that the plastic stretch Dp can be ad-

ditively decomposed as,

Dp = Ds +Dvp (1.15)

where Ds represents the inelastic strain rate due to oxidation induced shrinkage and

Dvp represents the inelastic strain rate due to bulk viscoplastic deformation in the

polymer with trDvp = 0. Among the 6 closed-loop chain reactions mentioned in

Eq. 1.1, propagation reaction (II) is the one where oxygen reacts with polymer radicals

to create peroxyl radicals, whose molecular weight is less than the polymer [58]. Thus
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we can consider that, the extent of propagation reaction (II), ξ(2), plays a major role in

oxidative shrinkage. Assuming chemical shrinkage to be volumetric as well as isotropic

and depends on the rate of extent of reaction, we have considered the following simple

form for Ds as,

Ds = γξ̇(2)I with trDs = 3γξ̇(2) (1.16)

where γ ≤ 0 is a material parameter that determines the amount of volume shrinkage.

By definition, J̇ p = J ptrDp. Hence, by integrating we can write,

J p = exp(3γξ(2)) and
∂J p

∂ξ(2)
= 3γJ p (1.17)

Finally, it can be shown that, Fp, Lp and Ce are invariant under any change in frame.

The readers are suggested to refer earlier literature, such as, [9, 11, 12, 52, 53, 54, 153],

for the detailed proof of frame-indifference.
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1.3.2 Balance laws

1.3.2.1 Mass balance for the diffusing and reacting species

Let P denotes any arbitrary part of the body BR surrounded by the boundary ∂P . Let

c
(β)
R (X, t) denotes the concentration of species β in moles per unit reference volume

which takes part into the oxidation reactions. The changes in the concentration of

c
(β)
R for any species β are caused by diffusion of that species across the boundary

∂P , which is characterized by a flux j
(β)
R (X, t), defined by the number of diffusing

species measured per unit area per unit time. Similarly r
(β)
R (X, t) denotes the number

of moles for species β that is either consumed or produced per unit time due to

the chemical reaction. The general mass balance law for any participating species β

therefore takes the form,

∫
P

˙
c
(β)
R dvR = −

∫
∂P

j
(β)
R .nRdaR +

∫
P

r
(β)
R dvR (1.18)

for every part P , nR represents a unit vector in the reference configuration. Bringing

the time derivative in Eq. 1.18 inside the integral and using the divergence theorem

on the integral over ∂P , we find that
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∫
P

(ċ
(β)
R +Divj

(β)
R − r

(β)
R )dvR = 0 (1.19)

Since P is arbitrary, this leads to the local mass balance as,

ċ
(β)
R = −Divj

(β)
R + r

(β)
R (1.20)

Finally, using Eq. 1.3 into 1.20, we can write,

ċ
(β)
R = −Divj

(β)
R +

∑
n

[Rnξ̇(n)]
(β) (1.21)

1.3.2.2 Specific form of mass balance in polymer oxidation

Based on the kinetics of oxidation reaction provided in the literature and discussed

in section 1.2, we make some reasonable assumptions for mass balance of the reacting

and diffusing species as given below,

† Oxygen is the only diffusing species- during oxidation, oxygen diffuses

into the polymer and reacts with polymer macromolecules. As a consequence of

the oxidation reactions some volatile compounds are also being produced which

eventually leaves the polymer. Therefore, during oxidation both inward and
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outward diffusion occurs. However, in this work, we consider oxygen is the only

diffusing species and neglect the outward diffusion of the volatile compounds.

† POOH initiates the oxidation chain-reactions-As per our discussion in

Section 1.2, we consider that initially some peroxide (POOH) is present as

unstable hydrocarbon in the system to initiate the oxidation. And since the

activation energy for POOH breaking into P∗ is much low compared to the

activation energy required for a direct reaction between PH and O2, the former

one is always favored when peroxide is present. Therefore we assume that, only

reaction (Ia) from Eq. 1.1 initiates the reaction.

† Steady-state condition- In a chain reaction consisting of multiple reactions,

steady-state condition means that the reaction reached at a point where the

amount of radicals produced at any time step gets consumed instantaneously

in the subsequent steps to generate some other product. Thus the radical is

considered as extremely reactive and is converted to some other product almost

instantaneously. Therefore, the rate of change of concentration of the radical

can be considered as zero. For more information on the steady-state chain

reaction, please see [18]

† Extent of reaction- for each elementary reaction, we have introduced a state

variable as, extent of reaction, ξ(n), where n indicates the number of elementary

reaction. We consider that, these extent of reactions are directly related to the

local reaction rate for each elementary reaction via a stoichiometric coefficient,
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Rn, so that the local reaction rate can be expressed as Rnξ̇(n).

† Global reaction rate for species- we employ a similar approach as proposed

in the kinetic model [64] to calculate the global reaction rate for each species.

Following this, the change in rate for any given species concentration is the

algebraic sum of elementary rates. Thus for any species β, the rate can be

expressed as,

r
(β)
R =

∑
n

[Rnξ̇(n)]
β (1.22)

With the assumptions mentioned above and using the closed loop reactions given

in Eq. 1.1, we can perform mass balance for oxygen, POOH and PH and POOP as

described in the next section.

1.3.2.3 Balance of oxygen concentration

Applying mass balance, to track the oxygen concentration during the oxidation reac-

tion at any time, t, we can write,

ċ
(O2)
R = −Divj

(O2)
R + r

(O2)
R (1.23)
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As discussed in section 1.2, oxygen is consumed in reaction (II) and produced in

reaction (VI). Thus, we can write,

r
(O2)
R = R2ξ̇(2) +R6ξ̇(6) (1.24)

where r
(O2)
R is the rate of consumption or production of oxygen. Substituting this into

Eq. 1.23 we have,

ċ
(O2)
R = −Divj

(O2)
R +R2ξ̇(2) +R6ξ̇(6) (1.25)

where R2 and R6 are the stoichiometric coefficients of oxygen in reaction (II) and

(VI), respectively. Note that, the stoichiometric coefficients for the consumed and

produced O2 are considered as negative and positive, respectively.

1.3.2.4 Balance of hydroperoxide, POOH and the polymer substrate, PH

and oxidation product, POOP

As discussed in section 1.2, POOH is the main initiator of the oxidation reactions.

The reaction becomes auto-accelerated due to the formation of this initiator further

in the propagation step. Therefore, the balance of POOH concentration comes from

the initiation reaction (Ia) and propagation reaction (III); following which we can
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write,

ċ
(POOH)
R = R1ξ̇(1) +R3ξ̇(3) (1.26)

where R1 and R3 are the stoichiometric coefficients of hydroperoxide in reaction (Ia)

and (III), respectively.

Since we do not consider initiation reaction (Ib), the rate of change of PH-

concentration can be tracked from only reaction (III) as,

ċ
(PH)
R = R3ξ̇(3) (1.27)

where R3 is the stoichiometric coefficient of substrate, PH in reaction (III).

The termination products due to oxidation are carboxyls (POOP). They are formed

in the termination reaction (V) and (VI). We can write the mass balance for POOP

as,

ċ
(POOP )
R = R5ξ̇(5) +R6ξ̇(6) (1.28)
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1.3.2.5 Balance of forces and moments

For the reference body, there exists a stress tensor, TR, called the Piola stress, such

that the surface traction on the surface ∂BR of reference body BR, is given by,

tR(nR) = TRnR (1.29)

where, tR(nR) is the surface traction and nR is a surface unit vector and TR satisfies

the local force and moment balance as,

DivTR + bR = 0 and TRF
T = FTT

R (1.30)

where bR is non-inertial body force per unit volume of the reference body. Piola

stress is related to Cauchy stress in the deformed body by,

T = J−1TRF
T (1.31)

1.3.2.6 Energy balance

Let us consider an isothermal polymer oxidation process in any arbitrary part P of

a reference body BR. Neglecting the inertia effect, the internal energy in P can be
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written as less than or equal to the power expended on the part plus the energy in-

crease in the system due to change in concentration in the species due to the diffusion.

Thus, denoting ψR as the internal energy density per unit volume of the reference

body, we can write the energy imbalance as,

˙∫
P

ψRdvR ≤
∫
∂P

TRnR · χ̇daR +

∫
P

bR · χ̇dvR −
∑
β

∫
∂P

μ(β)jR
(β) · nRdaR (1.32)

where μ(β) is the chemical potential for any species β and μ(β)jR
(β) is the energy

carried by species β into part P by the flux j
(β)
R . Applying divergence theorem to the

terms on the integrals over ∂P and bringing the time derivative inside the integral,

Eq. 1.32 can be re-written as,

∫
P

ψ̇RdvR ≤
∫
P

(
TR : Ḟ−

∑
β

(μ(β)Divj
(β)
R −

∑
β

(j
(β)
R ·∇μ(β))

)
dvR+

∫
P

(DivTR+bR)·χ̇dvR

(1.33)

Using mass balance Eq. 2.24, 1.22 and C.5 in Eq. 1.33 and considering P as arbitrary,

we get the local form of energy balance as,

ψ̇R −TR : Ḟ+
∑
β

j
(β)
R · ∇μ(β) +

∑
β

μ(β)
∑
n

[Rnξ̇(n)
](β) −∑

β

μ(β)ċ
(β)
R ≤ 0 (1.34)
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1.3.2.7 Stress-power

Assuming the constitutive behavior of a generic glassy thermoset as elasto-plastic, we

can write the stress-power as,

TR : Ḟ = TR : (ḞeFp + FeḞp)

= (JFe−1TFe−T ) : (FeT Ḟe) + (CeJFe−1TFe−T ) : Lp

(1.35)

From Eq. 3.12 the following stresses have been defined:

• The elastic second Piola stress,

Se = JFe−1TFe−T (1.36)

which is symmetric, as Cauchy stress T is symmetric.

• The mandel stress,

Me = JFeTTFe−T = CeSe (1.37)

which drives the inelasticity into the system, and in general, not symmetric. Also,

both Se and Me are invariant under the change of frame, as T is invariant.

Thus, using Eq. 1.36 and 1.37, the stress power Eq. 3.12 can be re-written as,
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TR : Ḟ =
1

2
Se : Ċe︸ ︷︷ ︸

elastic power

+ Me : Lp︸ ︷︷ ︸
inelastic power

(1.38)

Using kinematic relations from Eq. 1.14 and 3.3 we can further simplify the inelastic

power as,

Me : Dp = Me : Ds

= Me : γξ̇(2)I)

= γtr(Me)ξ̇(2)

(1.39)

So that the energy imbalance Eq. 1.34 can be rewritten as,

ψ̇R− 1

2
Se : Ċe−γtrMeξ̇(2)+

∑
β

j
(β)
R ·∇μ(β)+

∑
β

μ(β)
∑
n

[Rnξ̇(n)
](β)−∑

β

μ(β)ċ
(β)
R ≤ 0

(1.40)
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1.3.3 Constitutive theories

1.3.3.1 Basic constitutive equation

Guided by the free energy imbalance Eq. 3.11, a functional form is assumed for the

free energy ψR; the second Piola stress Se and the chemical potential of species μ(β)

are then determined by the constitutive equations of the form,

ψR = ψ̂R(C
e, c

(β)
R , ξ(n))

Se = T̂e(Ce, c
(β)
R , ξ(n)) (1.41)

μ(β) = μ̂(β)(Ce, c
(β)
R , ξ(n))

Further, the species flux j
(β)
R can be assumed to have the following constitutive form:

j
(β)
R = ĵ

(β)
R (Ce, c

(β)
R , ξ(n),∇μ(β)) (1.42)

Then, by invoking the thermodynamic restrictions it is possible to generate the specific

forms for the constitutive equations.
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Thermodynamic restrictions: Following Eq. 3.15, we get

ψ̇R =
∂ψ̂R

∂Ce
: Ċe +

∑
β

∂ψ̂R

∂cR(β)
: ċ

(β)
R +

∑
β

∂ψ̂R

∂ξ(n)
: ξ̇(n) (1.43)

In view of Eq. C.8, the free energy imbalance Eq. 3.11 is equivalent to the requirement

that the following inequality must be satisfied for all the constitutive processes:

(
∂ψ̂R

∂Ce
− 1

2
Ŝe

)
: Ċe+

∑
(β)

(
∂ψ̂R

∂cR(β)
− μ̂(β)

)
: ċ

(β)
R −

(
γtr(Me)−

∑
β

μ(β)R2 − ∂ψ̂R

∂ξ(2)

)
: ξ̇(2)

−
[(

−
∑
β

μ(β)
∑
n

Rn −
∑
n

∂ψ̂R

∂ξ(n)

)
: ξ̇(n)

]
n �=2

+
∑
β

ĵ
(β)
R · ∇μ(β) ≤ 0 (1.44)

To hold the above equation true for any arbitrary Ċe and ċ
(β)
R , their coefficients

must vanish. Therefore, satisfying the thermodynamic restrictions the following ’state

relations’ can be obtained:

1. The free energy determines the second Piola stress as,

Se = Ŝe(Ce, c
(β)
R , ξ(n))

= 2
∂ψR(C

e, c
(β)
R , ξ(n))

∂Ce
(1.45)
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and the chemical potential as,

μ(β) = μ̂(Ce, c
(β)
R , ξ(n))

=
∂ψR(C

e, c
(β)
R , ξ(n))

∂c
(β)
R

(1.46)

2. The species flux satisfies the species-transport inequality as,

j
(β)
R (Ce, c

(β)
R , ξ(n)) · ∇μ(β) ≤ 0 (1.47)

3. The following dissipation inequality must be satisfied by the chemical reactions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
−∑

β μ
(β)R2 + γtr(Me)− ∂ψ̂R

∂ξ(2)

)
ξ̇(2) ≥ 0 , n = 2(

−∑
β μ

(β)
∑

n Rn −
∑

n
∂ψ̂R

∂ξ(n)

)
ξ̇(n) ≥ 0 , n 
= 2

(1.48)

Thus from Eq. 1.48, it is possible to define a force of dissipative nature F(n)

which is a conjugate to ξ̇(n) for each reaction n. Thus,

F(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(2) + γtr(Me)−∑

β μ
(β)R2 , n = 2

A(n) −
∑

β μ
(β)Rn, , n 
= 2

(1.49)
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where A(n) is defined as affinity in the chemistry literature and defined by,

A(n) = − ∂ψR

∂ξ(n)
(1.50)

This reflects the fact that every chemical reaction relates to a dissipative mech-

anism. The extent of reaction for any reaction n, ξ(n) is assumed to evolve

according to a state relation

ξ̇(n) =
ˆ̇ξ(n)(F(n), ϑ, ξ(n), c

(β)
R ) ≥ 0 (1.51)

with F ξ̇(n) > 0, whenever ξ̇(n) > 0.

Fluid flux and Fick’s law In this work we assume that the fluid flux obeys Fick’s

law, i.e. flux depends linearly on the gradient of the chemical potential and thus can

be expressed by,

j(β) = −M(β)(Ce, c
(β)
R , ξ(n))∇μ(β) (1.52)

with M(β)(Ce, c
(β)
R , ξ(n)) is the mobility tensor. The consequence of species trans-

portation inequality Eqn.C.12 is that, the mobility tensor is positive-definite for any

non-zero concentration c
(β)
R . Considering isotropy of the polymer, the mobility tensor
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can be re-written as,

M(β)(Ce, c
(β)
R , ξ(n)) = −m(Ce, c

(β)
R , ξ(n))I (1.53)

with m > 0 is a scalar mobility.

1.4 Specialization of the constitutive equations

For deriving the specific constitutive forms, we consider the materials as initially and

continually isotropic. Under such assumption, it can be shown that the response of

the polymer is invariant under any arbitrary rotation in the reference configuration

or intermediate configuration and the constitutive responses do not change [9, 11, 12,

52, 53, 54, 153].

To simplify the numerical implementation, we consider a NeoHookean hyperelastic

free energy function for the mechanical part. The viscoplastic deformation of the

polymer has been neglected at this stage. For the reactive part of the free energy,

a simple quadratic function of the extent of reaction (ξ(n)) is considered, (based on

the literature [250]). Finally, the free energy for the diffusion is considered as the

energy of mixing between the species (β) and the polymer. Polymer has long-chain

macromolecues and the oxygen particle size is significantly small compared to the
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long polymer chain. Therefore, Flory-Huggin’s lattice theory of mixing seem to suit

better to model mixing of oxygen into the polymer [149, 225, 234]. In this work, we

use a similar expression for energy for diffusion of mixing reported in th earlier works

of [52, 53, 54, 91]).

1.4.1 Free energy

Motivated by the free energy representation in [153], a separable form of the free

energy has been considered as

ψ̂R(C
e, c

(β)
R , ξ(n)) = ψmech

I (Ce, c
(β)
R , ξ(n)) + ψchem

I (ξ(n)) + ψdiff
I (c

(β)
R ) (1.54)

(i) The free energy for a NeoHookean elastomer has the form,

ψmech
R (Ce, c

(β)
R , ξ(n)) =

G(ξ(n))

2
(trCe

dis − 3) +
K

2
(lnJ )2 (1.55)

where Cdis = J−2/3Ce, G(ξ(n)) is the oxidation dependent shear modulus and

K is the bulk modulus of the polymer.

(ii) ψchem
R is the reactive part of the free energy influencing the oxidation reaction
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and is given by,

ψchem
R =

∑
n

H(n)

2
(1− ξ(n))

2 (1.56)

where the parameter H(n) is the chemistry modulus of reaction n. This term in

the free energy favors the local state (ξ(n) = 1) [250].

(iii) ψdiff
R is the part of free energy involved in the diffusion of species (β) into

the polymer. As mentioned in section 3.2.3, oxygen is considered as the only

diffusing species. Here we have used Flory-Huggins theory of mixing to define

the free energy for diffusion [52, 53, 54, 91] as given by,

ψdiff
R = μ

(O2)
0 c

(O2)
R +Rϑc

(O2)
R

(
ln

(
Ωc

(O2)
R

1 + Ωc
(O2)
R

)
+ χ

(
1

1 + Ωc
(O2)
R

))
+ pac

(O2)
R Ω

(1.57)

where μ0(O2) is the reference chemical potential for oxygen, R is the universal gas

constant, ϑ is the temperature, χ is the dimensionless Flory-Huggins interaction

parameter, Ω is the volume of a mole of oxygen and pa is the hydrostatic stress in

the materials. In this case, the hydrostatic stress generates due to the oxidative

shrinkage as given by pa = 1/3J etrT.

30



Thus the complete free energy expression can now be written as,

ψ̂R(C
e, c

(β)
R , ξ(n)) =

G(ξ(n))

2
(trCe

dis − 3) +
K

2
(lnJ )2 +

∑
(n)

H(n)

2
(1− ξ(n))

2

+ μ
(O2)
0 c

(O2)
R +Rϑc

(O2)
R

(
ln

(
Ωc

(O2)
R

1 + Ωc
(O2)
R

)
+ χ

(
1

1 + Ωc
(O2)
R

))
+ pac

(O2)
R Ω (1.58)

Note that, here we ignore any contribution to the free energy contributed by the

swelling induced volumetric deformation caused by oxygen diffusion. This is due to

the fact that, the timescale for diffusion is much slower compared to that of the reac-

tion. Thus any oxygen entering the free volume of the polymer reacts instantaneously

with the free radicals. Moreover, the size of an oxygen particle is quite small com-

pared to the size of polymer chain, thus oxygen diffusion inside the polymer should

not generate any noticeable deformation in the material. Hence the swelling effect can

be considered as negligible. Thus, the volumetric deformation is assumed as primarily

contributed by the shrinkage due to chemical reaction.

1.4.2 Oxidation dependent shear modulus

Following the work of [104], we consider that the bulk modulus of the material does

not depend on oxidation. However, shear modulus becomes higher due to the ox-

ide formation [104]. As polymer radials (P∗) reacts with O2 to create PO∗
2 in the

propagation reaction (II) (also termed as oxidative crosslinking), we assume that the
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change in shear modulus happens mainly due to the propagation reaction (II). Thus,

we can write,

G(ξ(n)) = (1− ξ(2))Gun + ξ(2)Gox (1.59)

where Gun and Gox corresponds to the shear modulus of unoxidized and completely

oxidized polymer.

1.4.3 Stress, chemical potential and affinity

From the free energy Eq. 3.23 and using the guidelines for thermodynamic restriction,

it is possible to get the specific constitutive equations for Cauchy stress T, chemical

potential of oxygen, μ(O2) and affinity of each reaction, A(n).

Using Eq. 3.29 , 1.45 and 1.36, the Cauchy stress can be expressed in the following

form:

T = J−1[G(ξ(n))[(Bdis)0] +K(lnJ )1] (1.60)

where Bdis is the deviatoric part of elastic Left Cauchy-Green tensor Be.
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Chemical potential due to mixing of oxygen and polymer, μ(O2), can be obtained by

taking derivative of diffusive energy with respect to oxygen concentration as,

μ(O2) = μ
(O2)
0 +Rϑ

⎛
⎝ln

(
Ωc

(O2)
R

1 + Ωc
(O2)
R

)
+

1

1 + Ωc
(O2)
R

+ χ

(
1

1 + Ωc
(O2)
R

)2
⎞
⎠+ paΩ

(1.61)

Finally, the affinity of any reaction n can be calculated from Eq. 3.20, 3.29 and 3.23

as,

A(n) = −∂ψmech
R

∂ξ(n)
+H(n)(1− ξ(n)) (1.62)

.

1.4.4 Evolution of extent of reaction, ξ(n)

Based on the kinetics of chemical reaction for polymer oxidation and our discussion

in section 1.2, we choose a thermally activated relation for the evolution of extent of

reaction ξ̇(n) as,

ξ̇(n) = knexp

(−Q
(n)
act

Rϑ

)
F(n) (1.63)
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where, kn is the pre-exponential rate constant for reaction n and has unit of 1
MPa−s

,

Q
(n)
act is the activation energy for reaction n.

As explained earlier, reaction will occur only when F(n) > 0. Further, the reaction

will be considered as completed when the extent of reaction reaches unity. Following

this, we can rewrite Eq. 1.63 as,

ξ̇(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ξ̇(n) = knexp

(
−Q

(n)
act

Rϑ

)
F(n), when F(n) > 0 and ξ(n) < 1

0, otherwise

(1.64)

1.4.5 Oxygen flux and diffusivity

From Eq. C.13, oxygen flux is given by,

j
(O2)
R = −m(O2)∇μ(O2) (1.65)
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with m(O2) being the mobility of oxygen. Ignoring the effect of temperature gradient

we can write from Eq. 3.25,

∇μ(O2) =
Rϑ

c
(O2)
R

(
1

1 + Ωc
(O2)
R

− Ωc
(O2)
R

(1 + Ωc
(O2)
R )2

− 2χ
Ωc

(O2)
R

(1 + Ωc
(O2)
R )3

)
∇c

(O2)
R (1.66)

Further, diffusivity of oxygen can be defined as,

D = m(O2) × Rϑ

c
(O2)
R

(1.67)

and using Eq. 1.67 in 1.65 the constitutive relation for species flux can be obtained

as,

j
(O2)
R = −D

(
1

1 + Ωc
(O2)
R

− Ωc
(O2)
R

(1 + Ωc
(O2)
R )2

− 2χ
Ωc

(O2)
R

(1 + Ωc
(O2)
R )3

)
∇c

(O2)
R (1.68)

The diffusivity of oxygen in virgin or unoxidized polymer is different than the dif-

fusivity in the active oxidation zone or completely oxidized zone [240, 241]. Also,

diffusivity of the oxide layer is one of the reaction controlling parameter as it deter-

mines the availability of oxygen in the core to take part into further oxidation [240].

Thus to comply with the literature, a simple form of diffusivity is assumed in this
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work that varies linearly with the extent of propagation reaction (II) as,

D = (1− ξ(2))Dun + ξ(2)Dox (1.69)

where the parameters Dun and Dox indicate the diffusivity of oxygen in the unoxi-

dized polymer and in the oxide layer, respectively. Further, diffusivity follows simple

Arrhenius rule to incorporate the temperature dependencies as,

Dun = D0,un exp

(−Qd,un

Rϑ

)

Dox = D0,ox exp

(−Qd,ox

Rϑ

)
(1.70)

where D0,un and D0,ox are the reference diffusivity values and Qd,un and Qd,ox are the

activation energy of diffusion for the unoxidized and the oxidized material, respec-

tively.
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1.5 Governing differential equations and the

boundary conditions

There are two governing differential equations required to be solved in this case:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
DivTR + bR = 0

ċ
(O2)
R = −DivjO2

R +R2ξ̇(2) +R6ξ̇(6)

(1.71)

We require the initial and boundary conditions to complete the solutions of these

differential equations. Let, S1 and S2 are complementary subsurfaces of the boundary

∂BR of a reference body BR such that S1 ∪ S2 = ∂BR and S1 ∩ S2 = ∅. Similarly,

let ScR and SjR are complementary subsurfaces of the boundary ∂BR = ScR ∪ SjR

with ScR ∩ SjR = ∅. For a time interval t ∈ [0, T ], two boundary conditions can be

described such that displacement is known on S1 and traction on S2. Thus, we can

write,

χ = χ̌ on S1 ∀ t ∈ [0, T ]

TRnR = ťR on S2 ∀ t ∈ [0, T ] (1.72)
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Similarly, another pair of boundary condition can be considered for a time interval

t ∈ [0, T ] such that oxygen concentration is known on ScR and oxygen flux on Sj and

thus,

c
(O2)
R = čR on ScR ∀ t ∈ [0, T ]

−D(∇c
(O2)
R ) · nR = ǰR on SjR ∀ t ∈ [0, T ] (1.73)

The initial conditions are,

χ(X, 0) = χ0(X), and c
(O2)
R (X, 0) = cR0(X) in BR. (1.74)

Thus the coupled set of equations, Eq. 3.29, together with 3.30, 3.31 and 3.32 pose

an initial boundary value problem to be solved for the displacement χ(X, t) and

concentration cR(X, t) simultaneously. For more details on the solution method,

please see [54]. In this work, the system of equations are solved numerically for each

element by writing a user element subroutine in ABAQUS/Standard (2017) [1].

1.6 Representative numerical simulations

As mentioned in section 1.2, the activation energy for initiation reaction (Ia) is much

lower compared to that of reaction (Ib). Taking this into consideration, we assume
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that only reaction (Ia) is responsible for the initiation. Next, using Eq. 3.19 and 3.23,

we can express the reactive forces for individual reaction as,

Fn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(Gun −Gox)(trC

e
dis − 3) +H2(1− ξ(2)) + γtr(Me) +R2μ

(O2) , n = 2

Hn(1− ξ(n)) +Rnμ
(O2) , n 
= 2

(1.75)

As mentioned before, by considering the stoichiometric coefficients as negative for

consumption of the reacting species and positive for the formation, we have the fol-

lowing set of mass balance equations (based on Eq. 1.25,1.26, 1.27 and 1.28):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ċ
(O2)
R = −DivjO2

R − ξ̇(2) + ξ̇(6) for oxygen

ċ
(POOH)
R = −ξ̇(1a) + ξ̇(3) for POOH

ċ
(PH)
R = −ξ̇(3) for PH

ċ
(POOP )
R = ξ̇(5) + ξ̇(6) for POOP

(1.76)

At the steady state, the rate of change of concentration for P ∗ and PO∗
2 radicals is

zero. Applying this condition we get two additional set of relations as,

ξ̇(2) + 2ξ̇(6) = ξ̇(3) + ξ̇(5)

ξ̇(1a) + ξ̇(3) = 2ξ̇(4) + ξ̇(5)

(1.77)
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Hence, following Eq. 3.27, we need to define only 4 sets of evolution equations to

control the reaction kinetics as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇(1a) = k1aexp
(− Q1

RT

)F1

ξ̇(2) = k2exp
(− Q2

RT

)F2

ξ̇(3) = k3exp
(− Q3

RT

)F3

ξ̇(6) = k6exp
(− Q6

RT

)F6

(1.78)

Based on the above discussion, we organize our numerical result section as follows:

We first discuss how one can obtain kinetic and material parameters for this model.

After that, we describe some numerical simulations to describe different physical

phenomena involved in the oxidation process.

It is important to note that the timescale for diffusion is much longer and it depends

on the diffusivity paramters (Dun, Dox) as well as the dimension of the sample in the

direction of oxygen diffusion. On the other hand, the reaction time-scale is much

faster, and depends on the rate constants as, τr ≈ ∑
n 1/kn. When the oxidation

reaction depends on the availability of oxygen into the polymer, it is called a diffusion

limited case (DLO).In such case the heterogeneity of the concentration of oxygen

in the material will lead to a heterogeneous oxide formation as shown in Fig. 1.1.

Oppositely, oxide formation depends on the reaction speed, we call it a reaction
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limited oxidation (RLO). In such case, oxygen is always available inside the polymer,

so how fast the reaction will happen will depend on the reaction kinetics.

Figure 1.1: Diffusion limited oxidation in a polymer block.

In the following sections, we present numerical simulations considering a diffusion

limited case (DLO) and a reaction limited case (RLO). The effect of ambient factors,

such as, pressure and temperature is also simulated. Further, simulation is also done

considering the coupled mechanical stress-oxidation scenario. The results for all the

cases are analyzed in detail to compare the various conditions for the high temperature

oxidation in polymer. Finally, we simulate a randomly distributed fiber-reinforced

composite to demonstrate how oxidation effects composite behavior.
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1.6.1 Parameter estimation

There are numerous material parameters involved in the present theory due to the

complex coupling between the mechanics, diffusion and reaction phenomena. Fol-

lowing a detailed review of the literature, we chose typical values for some of these

material constants which are realistic to most of the polymers, (based on the work of

[57, 60, 63, 212, 213]).

For this coupled chemo-mechanical model, we are tracking four individual reactions.

Considering they evolve in an Arrhenius form, we need at least 3 parameters to define

each of the individual reaction, Hn, Q
n
act and kn. From Eq. 1.56, the chemical energy

is defined as Hn

2
(1 − ξ(n))

2. This quantity can be related to the Gibbs free energy.

Assume, for a particular reaction, r number of species react to produce p number of

products. The change in the energy Δφ for this reaction then can be calculated as,

Δφ =
∑

Gpc
p
R −

∑
Grc

r
R (1.79)

where Gp is the Gibbs’ energy of formation and cpR is the concentration for the product

p and Gr is the Gibbs energy of formation and crR is the concentration for the reactant

r. The Gibbs energy (Joules per mole) can be found for polymers, radicals, polymer

oxides and polymer oxide radicals in the chemistry literature [45]. Now, from Eq. 1.56,
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we see that with a variation of ξ(n) from 0 to 1 leads to a chemical energy change of

−H
2
. So we can write,

H = −2Δφ (1.80)

So this way, we can estimate the chemistry modulus for each reaction. The values of

chemistry moduli for a typical polymer chain reaction is given in Table 1.1.

The activation energies for reaction (II), (IV), (V) and (VI) are very low, considering

the radicals react instantaneously. Among the all six reactions, decomposition is

POOH (reaction Ia) is the slowest and therefore needs a much higher activation

energy compared to the other reactions. Finally, hydrogen abstraction reaction of

polyer (propagation reaction III) is strictly polymer material specific and can be

experimentally evaluated. In this work we chose the activation energy values from

[213].

The rate constants, kn (unit 1
s−Pa

)can be calculated from the known concentration

of the products (POOH and POOP). Experimentally, these values can be calculated

using FTIR spectrophotometry [212, 213]. For example, a study on the effect of partial

pressure of oxygen was performed in the work of [212] and the effect was characterized

by tracking the production of carbonyl (POOP). For instance, a 0.2mol/m3 carbonyl

was measured at 80oC under 0.2Mpa pressure after 200 hours. This data can be

fitted to get values for k5 and k6. Specifically, in this work, we considered that there

is enough oxygen available for all P ∗ radicals to become PO∗
2. Thus, all carbonyls are
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mostly formed from the termination reaction (VI) in such case. However, this could

be different from a real life oxidation problem, as we can expect both reaction (V) and

(VI) should take part in the carbonyl production. Numerically, to calculate the upper

bounds of these constants, we can first consider that, all the carbonyl is coming from

reaction (V), ignoring (VI) and calculate k5. Later, we can assume that all carbonyls

are forming from reaction (VI), ignoring (V) and calculate k6. This way, it is possible

to find the upper bound of both k5 and k6, respectively. Then, we can choose k6 as less

than the value we calculated as the upper bound. For more accuracy, Eq. 1.28 can be

fitted into the experimental carbonyl formation data to calculate a more preceise value

of k6. The concentration of peroxide due to oxidation of polypropelene was reported

in another work of the same author [213]. From this data, we calibrate k1 and k3

using the mass balance Eq. 1.26. Finally, enforcing our steady state assumption (

radicals are super reactive and gets consumed instantaneously), we assumed that,

for propagation reaction (II), the available P ∗ that forms PO∗
2 comes solely from the

peroxide (POOH) decomposition. From the literature [213], we used the peroxide

formation data to fit k2 as well. It is noteworthy to mention that, one can also

calibrate k2 from the knowledge of the size of the oxide layer thickness.

Lastly, we choose Young’s modulus of typical polymer as 1.5MPa with a poisson’s

ratio of 0.45 [147]. For the oxidized material, we assumed a oxidized shear modulus

value higher than the virgin polymer. Experimentally, the oxidation modulus can

be easily determined by a nano-indentation or a bending test. The diffusivity and
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the solubility data is taken from [212, 213]. For the Flory-Huggin’s interaction pa-

rameter, we assumed a simple value of 0.1 based on [52]. To understand the effect

of Flory-Huggin’s interaction parameter χ, we run the simulation for two different

values of χ, as shown in Fig. 1.2. As shown in the figure, χ does not influence the

oxidation reaction. The shrinkage parameter γ is related to the volume change dur-

ing oxidation reaction, which is experimentally determinable by tracking the volume

reduction during oxidation [63]. In this work, we choose a average value of γ based

on the weight loss and density variation data provided in literature [63, 241]. The

parameters are listed in Table 1.1 and 3.1, respectively.

Figure 1.2: Effect of χ on the extent of reaction (II)
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Table 1.1
Kinectic parameters related to diffusion and reaction for a typical polymer

oxidation reaction

Parameter Unit Value Reference

Solubility coefficient, S mol − L−1Pa−1 1.4× 10−8 [213]
Diffusivity (Neat), D0,un m2s−1 8.8× 10−5 [212]

Diffusivity (oxidized), D0,ox m2s−1 9.06× 10−4 calibrated
Diffusive activation energy, Ed kJ/mol 36.5 [213]

Reaction rate constants
k1 1/Mpa− s 3.67 calibrated
k2 1/Mpa− s 2.84× 10−9 calibrated
k3 1/Mpa− s 2.9× 10−9 calibrated
k6 1/Mpa− s 2.76× 10−9 calibrated
Q1 kJ/mol 100 [213]
Q2 kJ/mol 30 [213]
Q3 kJ/mol 45 [213]
Q6 kJ/mol 10 [213]
H1 J/mol 765.8× 106 [45]
H2 J/mol 128× 106 [45]
H3 J/mol 40.52× 106 [45]
H6 J/mol 267.26× 106 [45]

Gas constant, R J/(mol-K) 8.31446
χ 0.1 [54]

μ0 at STP J/mol 3.88× 105 [101]

C
(PH)
0 mol/L 20 [212]

C
(POOH)
0 mol/L 1× 10−4 [212]

1
Table 1.2

Material parameters for a representative elastomer.

Parameter Unit Value
Bulk Modulus, K GPa 5 [147]
Poisson ratio, ν 0.45 [147]

Shear Modulus (neat), Gun GPa 0.58 [147]
Shear Modulus (oxidized), Gox GPa 0.7 Calibrated

Shrinkage parameter, γ −0.01 Calibrated
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1.6.2 Case study 1: Diffusion limited oxidation

In the case of a large polymer specimen, diffusion limited oxidation (DLO) becomes

the governing mechanism for oxidation. For the reactions to happen, oxygen must

diffuse from the exposed surface into the core of the material. The rate of diffusion

depends on the permeability of the material (a combination of diffusivity and solu-

bility). In such case, the rate of oxidation at a material point depends on the time

required for enough O2 to diffuse. Besides, the diffusivity of virgin material is different

than that of the oxidized material, which leads to further heterogeneity of diffusion.

To demonstrate this, we simulate a case of uni-directional diffusion of oxygen into a

2D block of polymer as shown in Fig. 1.3. The specimen is a 3x3 mm block with the

top surface being exposed to oxygen and all the other surfaces are considered imper-

meable as shown in Fig. 1.3(a). Oxygen flows into the specimen along the negative

y-direction. For the mechanical boundary condition, we consider x-symmetry for the

left and right side, and y-symmetry at the bottom while keeping the top surface as

free. For the chemical boundary condition, we maintain a constant oxygen pressure

of 1 atm, which is equivalent to a concentration of Cs = 2.8mol/mL along the top

surface. It is to be noted that, we chose to use oxygen pressure as the boundary

condition instead of chemical potential. Chemical potential boundary conditions are

more suitable for the case of liquid diffusion in a gel, while in oxidation literature we

always see the ambient pressure is defined (pressure guides the flow of oxygen into the
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polymer). If the oxygen pressure and solubility of oxygen into the polymer is known,

it is possible to define a concentration-type boundary using Henry’s law, Cs = SP ,

where Cs is the oxygen concentration, S is the solubility of oxygen into the polymer

and P is the partial pressure of oxygen. In order to avoid numerical complicity, we

ramp up the oxygen concentration to the maximum value on the top surface over a

small time period of 2 hours, as shown in Fig. 1.3(b). The initial concentration of

resin (PH) and peroxide (POOH) are listed in table 1.1. We use the material param-

eters as listed in table 1.1 and 3.1 for the polymer material.

In the simulation, we let the sample oxidize for 100 hours at 80oC and study the

a) b)

Figure 1.3: a) Geometry of the polymer specimen subjected to DLO: E1

is an element on the top surface and E2 is an element close to the middle
core. b) b) boundary condition for oxygen concentration at the top surface

evolution of the extent of reactions. Here, all the 6 set of reactions are active in the

reaction process. However, we only track evolution of reaction (Ia), (II), (III) and
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(VI), as reaction (IV) and (V) are dependent on the other 4 by the steady-state as-

sumption. The extent of reaction (I) gives a measure of alkyl radical (P∗) formation.

The extent of reaction (II) aggregates the oxide volume fraction and the extent of

reaction (III) gives information regarding resin depletion while the extent of reaction

(VI) gives the termination rate. The contours for the extent of reactions are plotted in

Fig. 1.4 at the end of 100hrs. The contours for the oxygen, PH, POOH and carbonyl

concentrations are also plotted in Fig. 1.5 at the end of 100 hours. From Fig. 1.4, it

can be seen that, the extent of reaction (Ia) evolves at a slower rate compared to the

other reactions. This is because of the fact that, the activation energy for reaction

(Ia) is much higher than the other reactions. Alternatively, we can also mention that,

the radicals will react at a much faster rate than the stable polymer molecules. In

reaction (II) and (VI), (P∗) and (PO∗
2) take part in the reaction, leading to a higher

rate of the evolution of the extent of those reactions. Conversely, the decomposition

of (POOH in reaction (1a) is a much slower process. However, hydrogen abstraction

of (PH in reaction (III) is dependent on what polymer is taking part in the oxidation

reaction. For example, the hydrogen abstraction of polypropylene needs much less

activation energy than BMI ([63, 64, 213]). In this simulation, we chose the activation

energy of reaction (III) quite close to the reaction (II), based on the data provided at

[213], hence we observe quite a higher value for the extent of reaction (III). The extent

of termination reaction (VI) reaches to unity within half of the sample length, as can

be seen from Fig. 1.4(d). This is an indicative of the carbonyl (POOP) production.
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The contour plots of the concentrations of Fig. 1.5 show a continuous increase in the

concentration of (POOH and carbonyl product. The increase of peroxide ((POOH)

indicates an auto-acceleration of the oxidation reaction, while the increase of carbonyl

products indicate the build of inactive products on the polymer surface.

a) b)

c) d)

Figure 1.4: Evolution of the extent of reactions: a) ξ1a, b) ξ2, c) ξ3, d) ξ6
after 100 hours of oxidation

Effect of ambient pressure and temperature in DLO

Both diffusion and extent of reaction are thermally activated process, indicating that

polymer oxidation rate will become faster with increased temperature. Similarly,
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a) b)

c) d)

Figure 1.5: Contour plots of concentrations in mol/L of : a) O2, b) POOH,
c) PH, d) Carbonyl products after 100 hours of oxidation

there should be an increase in the evolution of extent of reaction (II) with increased

pressure. This is because of the fact that, reactive force is dependent on external

pressure. Higher ambient pressure will create higher chemical potential, which in

turn, will increase the reactive force. Consequently this will lead to a higher evolution

rate of the extent of reaction. To demonstrate the effect of these ambient factors, we

perform the following simulations using the same geometry shown in Fig. 1.3: i) We

use the same boundary conditions discussed for the diffusion limited oxidation case,

and oxidize the sample for 100 hours at 150oC at atmospheric pressure (0.2 MPa of

O2), ii) we keep same mechanical boundary condition as before, but apply 2 MPa
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pressure of O2, indicating a constant oxygen concentration of Cs = 2.8mol/mL along

the top surface and let the sample oxidize at 80oC for 100 hours.

Fig. 1.6 shows the effect of increasing temperature and pressure on the extent of

reaction (II) on the element E1 at the surface of the sample. In both cases, we can

see a significant increase in the extent of reaction (II) with increased temperature

and pressure. While at 80oC of temperature and 0.2MPa of oxygen pressure, ξ(2)

reaches to a maximum value of 0.8494, at 150oC of temperature and with the same

pressure, we observe that ξ(2) reaches to 1 in ∼30 hours. Similar effect is observed

when pressure is increased. We observe complete oxidation on the element E2 at the

surface in ∼22 hours when oxidized at 2MPa, indicating higher oxygen pressure will

increase the oxidation rate.
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time, hrs

0

0.2

0.4
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0.8

1
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80oC 0.2atm O2

150oC 0.2atm O2

80oC 2 atm O2

Figure 1.6: Effect of ambient temperature and pressure in polymer oxida-
tion
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Oxide Layer thickness

To see how oxide layer evolves with time, we continue the simulation described in the

DLO case for 200 hours. The value to xi(2) reaching to unity is an indication complete

oxidation at a material point. Fig. 3.3 plots the thickness of oxide layer normalized

against the sample thickness formed at the end of 200 hours of oxidative aging. The

visible identification of oxidation appears after 120 hours of exposure with a thin

oxide layer formation on the top surface which continue to increase monotonically.

The whole sample gets completely oxidized after 160 hours.
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time, hours
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0.4

0.6

0.8

1

Figure 1.7: Oxide layer thickness as a function of aging time

1.6.3 Case study 2: reaction-limited oxidation

If enough oxygen is available at a material point to react with the polymer molecules,

then the rate of oxidation is dependent on how fast the polymer is reacting with
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oxygen to create oxides. This can happen in the case of a thin film sample (thickness

in the order of microns), where oxygen sorption takes place into the surface instanta-

neously by Henry’s law as. As the thickness of the sample is quite small, the diffusion

can be ignored and the entire material can be assumed as saturated with enough oxy-

gen with no further flow. Thereafter the oxidation rate simply depends on the rate

of reactions. In such case, the reactions would continue until either ξ3 or ξ6 reaches

unity at all material points. If ξ3 reaches to 1 at the material points first, then it

indicates all the available PH has been consumed. On the other hand, ξ6 reaching to

unity at all material points first is an indicative of auto-retardation of the oxidation

process at that material point.

To simulate the reaction limited scenario, we consider a thin film of polymer sample

with initial PH concentration of 20 mol/L. The film is being oxidized under atmo-

spheric pressure. For a thin film, we consider an continuous oxygen sorption into the

entire film, allowing oxygen concentration being same as (2.8 mol/mL) everywhere.

Since O2 concentration does not vary within the domain, it suffices to simulate a

single element case. The properties of the material is given in table 1.1 and 3.1,

as earlier. We let the sample oxidize at 80oC for 100 hours. The evolution of the

extent of reactions is shown in Fig. 1.8(a). We see that, the rate of evolution of

ξ(6) is quite faster compared to ξ(3), indicating auto-retardation of oxidation reaction

would occur before the resin gets completely consumed. The variation of O2, PH and

POOH concentration, normalized against their initial values are shown in Fig. 1.8(b).
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The assumption of continuous sorption of atmospheric oxygen within the entire film

results in a constant availability of O2, as shown in Fig. 1.8(b). The resin gets very
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Figure 1.8: a)Evolution of the extent of reactions (Ia), (II), (III) and
(VI) for a reaction limited oxidation (RLO) after 200 hours of oxidation, b)
corresponding normalized concentration of oxygen, PH and POOH

slowly consumed by the reaction. We observe an increase in the POOH-concentration

indicating the auto-acceleration of the oxidation reaction would be followed.

Fig. 1.9 demonstrates a comparison between the extent of reactions considering a

DLO and a RLO conditions. We chose two elements as one located at the surface

and another at the core of the sample (as shown Fig. 1.3(a)) from the DLO-case study

to compare the results with the RLO-case. The extent of reactions are higher in the

RLO-element and the surface-DLO element compared to the DLO-core, presumably

due to oxygen sorption occurring in the RLO element and DLO-surface element in-

stantaneously. On the other hand, in the DLO-core element, the extent of reactions

is totally governed by the diffusion rate and noticeably lower than the surface.
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Figure 1.9: Comparison of the extent of reactions between DLO and RLO
a)ξ(1a), b) ξ(2), c)ξ(3), d)ξ(6)

1.6.4 Case study 3: coupled mechanical stress -oxidation

process

To simulate the mechanical stress coupled oxidation scenario, we consider the same

geometry as shown in Fig. 1.3a). We use the material parameters are listed in ta-

ble 1.1. Then we perform two sets of simulations considering a.) pure DLO oxidation

and b.) a stress-coupled diffusion limited oxidation process. For the pure DLO case,
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we have used the same boundary conditions as mentioned in 1.6.2. For the stress-

coupled situation, the chemical boundary condition has remained the same. For the

mechanical boundary condition, we set x-symmetry along the left and the right edges

and y-symmetry along the bottom surface. The non-zero displacement of 0.03 mm

has been applied at the top surface linearly over a time period of 2 hours along up-

ward direction and then held it for the rest of the simulation as shown in Fig. 1.10.

Figure 1.10: The displacement boundary condition for the stress-coupled
oxidation

For both cases, we let the sample oxidize at 80o C for 65 hours. Fig.1.11(a) and (b)

shows the comparison of the reactive force (II) between the two cases. The comparison

between oxide formation is plotted in Fig. 1.11(c). We can see approximately a 5 times

increase in the reactive force in case of the stress-coupled condition after 65 hours.

Since the rate of extent of oxidation is directly proportional to the reactive force, the

57



rate of reaction (II) also becomes 5 times faster, which eventually increases the overall

extent of reaction (II). In case of pure DLO, while extent of reaction (II) reaches only

to 0.45, in case of stress-coupled oxidation, it reaches to 1 in about 20 hours, as we

can see in Fig. 1.11(c).
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Figure 1.11: Comparion between the reactive force between a) pure oxida-
tion and b)stress-coupled oxidation c)effect of external stress on the extent
of reaction (II)

The comparison of Von-Mises stress contour between the two cases are also demon-

strated in Fig. 1.12. As expected, the magnitude of the Mises stress is much higher
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in the stress coupled case compared to the pure DLO case. The stress distribution

is entirely different due to the boundary condition as applied in the simulation- for

pure DLO case the top surface is left as free, whereas the non-zero Y-displacement

is applied in the stress coupled situation. We have applied the displacement on the

top surface of the stress-coupled oxidation sample for 2 hours and then held in in

that position for the rest of the simulation time (as can be seen from Fig. 1.10). This

indicates that the mechanical stress that is generated because of the displacement

should reach to maximum after 2 hours. For the rest of the simulation time, any

stress that has been generated can be attributed to the oxidation reaction. Contour

plot Fig. 1.12(b) shows the stress generated after 65 hours.

a) c)

Figure 1.12: Contour plots of Von-Mises stress : a) pure oxidation after
65 hours, and b) stress-coupled oxidation after 65 hours
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1.6.5 Residual stress and shrinkage strain developed in a ran-

domly distributed fiber composite subjected to oxida-

tion

In this section, we model a randomly distributed carbon fiber reinforced composite

specimen to predict the shrinkage strain developed due to accelerated oxidation and

corresponding residual stress following a similar work reported in [102]. The geometry

of the model is shown in Fig. 1.13. The dimension of the composite sample is 1 by

1 mm with the fiber radius of 3μm. We model the fibers as linear elastic and has

the properties as E = 230 GPa, ν = 0.3. We model the polymer matrix as the user

defined material properties given in Table 3.1. We assume the fibers as impermeable

and do not take part in the oxidation process. For the mechanical boundary condition,

we consider x-symmetry along the top and bottom surface and y-symmetry along the

right boundary of the sample. Perfect bonding between the fibers and matrix has

also been assumed for the interface. For the diffusion boundary condition, oxygen

is allowed to flow from the left side of the specimen geometry along the positive

X-direction.

Fig. 1.14a) shows the contour plot of the reaction II in the composite specimen after

15 h of exposure. Since fibers are randomly placed into the specimen, the density

of the fiber varies all over the sample. Fig. 1.14b) shows the maximum principal
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strain generated within the sample due to oxidation. As seen from Fig. 1.14a), rate

of reaction II is predominantly governed by the oxygen diffusion. The rate of reaction

is the highest near the left boundary where O2 concentration would be higher and

nearly zero at the right side of the specimen. We can also see (in Fig. 1.14b)) that

higher compressive strain getting generated in the less-dense fiber region (matrix-

rich). These zones are mostly affected by the oxidation and inhomogeneous shrinkage

strain appears.

Figure 1.13: Geometry of a randomly distributed fiber reinforced polymer
composite sample.Geometry of a randomly distributed fiber reinforced poly-
mer composite sample.

1.7 Concluding remark

In this paper we have presented a thermodynamically consistent, chemo-mechanically

coupled large deformation theory for high temperature oxidation in polymers. The
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a) b)

Figure 1.14: a) Contour plot for reaction II after 15 h of oxidation in the
randomly distributed carbon fiber composite specimen; b) corresponding
maximum (in-plane) principal strain generated within the matrix.

formulation takes into account the coupled effect of diffusion-driven chemical reactions

occurring at the molecular level and connects with the continuum level constitutive

response. Further, we have tested the capability of the model by implementing it

in a commercial FE package. The model shows the capability of predicting the pro-

gressive oxidation font in the material for given ambient conditions. The numerical

simulations show the usefulness of the model to simulate oxidation process in a ran-

domly distributed fiber composites. In future work, we plan to validate our model

with real experimental data for specific polymers. Once fully validated, the present

model would be capable of reducing the empiricism in long-term life prediction for

polymers due to oxidative aging.
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Chapter 2

A Reaction-driven Evolving

Network Theory Coupled with

Phase-field Fracture to Model

Polymer Oxidative Aging

2.1 Introduction

High-temperature oxidative aging in polymers and polymer matrix composites

(PMCs) involves a multi-scale phenomena that starts at molecular level with multiple
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chain reactions, leading to the microscale chain-scission and oxidative crosslinking.

These microscale events eventually degrade the material properties at the macroscale

and adversely affect the mechanical response of the polymers [102, 173, 193, 197, 269].

In particular, the inhomogeneous evolution of mechanical properties due to progres-

sive oxidation further promotes stress concentration in the material under loading,

initiating localized damage and, ultimately fracturing the material. Oxidation in

polymers at high temperature is characterized as a coupled diffusion-reaction phe-

nomenon driven by the diffusion of atmospheric oxygen. The damage induced by

oxidation significantly alters the constitutive response of the polymer and notably

reduces the lifetime expectancy. Polymeric materials are greatly desirable in many

applications for excellent exhibition of competing properties, (such as lightweight,

toughness, viscous dissipation, etc.). However, the current literature is still limited

in terms of the accurate response predictions of these materials at high temperature

oxidative environment, such as in the components of supersonic jets, pipelines and

chemical storage etc. [63].

The experimental studies as reported on the high temperature oxidation in polymers,

clearly demonstrate degradation of properties and constitutive response, such as an in-

crease in the modulus, decrease in the glass transition temperature and failure strain,

shrinkage strain development, etc. [63, 72, 82, 87, 88, 104, 112, 172, 193, 197, 269].

Significant contributions had been made to identify the underlying cause for such

embrittlement and degradation over the past few decades [50, 80, 81, 82, 86, 87, 88],
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both experimentally and computationally. While experiments are inevitable to char-

acterize the property changes in the course of oxidation, it may sometimes render

inadequate to gather all the information regarding material behavior for all the pos-

sible scenarios. In reality, the effect of high temperature oxidation in polymer is a

slow process requiring days or months to demonstrate measurable changes in polymer

response. However, the experiments are commonly being conducted at accelerated

aging conditions [49]. Therefore, modeling the oxidation in polymers has always been

a strong focus of the polymer-oxidation literature. The most popular model is the

mechanistic model, which was developed by a thorough investigation of the oxidation

reaction kinetics [21]. An extension of this model can also be found in the literature,

known as the three-zone oxidation model, that emphasized the heterogeneity of oxy-

gen diffusion [200, 240, 241]. This heterogeneity in the degree of oxidation results

in non-uniform mechanical properties and inhomogeneous stress/strain distribution

when the material is subjected to loading [103, 104, 240]. The property degradation

can be linked to the reduction of the molecular weight of the material due to an

irreversible alteration in the polymer network [87, 88]. Recently, a micro-mechanical

model based on the competition between chain-scission and crosslinking events oc-

curring at the polymer network during oxidation was reported to predict the changes

in the constitutive behavior of polymers [175]. On the other hand, a thermodynami-

cally consistent continuum model to predict the constitutive response based on high-

temperature oxidation behavior was found in the work of [103, 104]. However, these
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models do not consider the connection between the micro-scale polymer network evo-

lution with the macroscopic property degradation and damage initiation/propagation

for the oxidized polymer under mechanical loading.

In this paper, we develop an oxidation reaction-informed evolving network theory

coupled with phase-field fracture to connect the microscale network evolution with

macroscopic damage occurring in polymers during oxidative aging. We use the dy-

namic or transient network theory based on the statistical mechanics framework of

the polymer chains, (as used in [219, 239, 246, 253, 255]), to model the microscale

network evolution yielded by the chemical reactions. According to this theory, we

consider the evolution of the amorphous network in the polymer due to oxidation.

The degree of crystallinity in a semicrystalline polymer also gets affected by the

influence of high temperature but will not be considered in the present micromechan-

ics. We have also assumed that this amorphous network stays in the rubbery state

throughout the oxidation process. It is important to note that for prolonged oxida-

tion the polymer may not remain in the rubbery state for the entire duration and

the network’s viscoelasticity might get altered which has not been considered here.

The configuration of a polymer network changes as chain scission and new crosslinked

bonds are formed. We assume that the statistical distribution of the polymer chain

configuration can evolve both as a function of mechanical deformation and oxidation

reactions. We link this microscale chain distribution to the continuum kinematics de-

scription through the definition of a chain distribution tensor, as introduced in [255].
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To connect this microscale mechanics with the macroscale damage under mechanical

deformation, we further use the phase-field fracture to model the macroscopic damage

initiation, propagation, and ultimate fracture. The macroscale property degradation

in the aged polymer has been assumed as linear function of the chain-scission and

crosslinking events. It is important to note that the concept of network evolution

and the mechanical property degradation used in the present work is not thermody-

namically consistent, rather guided by the statistical mechanics approach. Finally, we

develop a macroscale continuum-level theory to model the coupling between diffusion,

chemical reactions and phase-field fracture, in a thermodynamically consistent way.

The novelty of the present work lies in the successful blending and numerical imple-

mentation of the two well known theories-namely, the transient network theory and

phase-field fracture to model the network evolution, local embrittlement of polymer

at the microscale ultimately interacting with the general state of stress to initiate

damage at macroscale. The present work provides an efficient theoretical and com-

putational framework to predict oxidative degradation in polymers incorporating all

the complex physical/chemical processes involved in the high temperature aging. The

paper is organized as follows- firstly, we explain the chemistry of oxidation reactions

in polymers followed by the statistics fundamental of the polymer chain network used

in the standard network theory and how it has been modified in the present setting

to incorporate the reaction-driven evolution. Subsequently, we present a continuum-

level chemo-mechanically coupled theory incorporating phase field fracture to model
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the macroscale damage initiation and propagation within the oxidized polymer. We

implement the proposed theory in a finite element setting by writing a user ele-

ment subroutine (UEL) in ABAQUS [1] and present several numerical simulations

to demonstrate the capability of the model. At the end, the concluding remarks are

presented.

2.2 A reaction-dependent network theory coupled

with phase-field fracture for polymers oxida-

tion

As mentioned earlier, during oxidation, polymer undergoes a series of chemical reac-

tions that lead to random chain scission and oxidative cross-linking at the microscale.

In the present section, we describe a micromechanically informed, chemo-mechanically

coupled theory to connect these microscale modifications in the polymer network due

to oxidation with the macroscopic damage initiation/propagation under mechanical

loading. We have included the description of the important mathematical symbols

used throughout this paper in Table 2.1, to add clarity. It is important to note

that, all the time derivatives used in the present formulation are considered as local

(spatial) for the respective quantities.
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Table 2.1
List of symbols and their meanings

symbol meaning symbol meaning
ξn Extent of reaction ′n′ β Chemical species
Rnβ Stoichiometric coefficient
CT Total chain concentration c(t) Active chain concentration
crc Active chain ratio crd Dissociated chain ratio
λL limiting stretchability Gc Fracture energy

of the chain network
kB Boltzmann constant ϑ Isothermal temperature
Gshear Shear Modulus Kbulk Bulk modulus
r chain end-to-end distance vector b Length of Kuhn segment
N Number of Kuhn segments φ Chain distribution function

in a polymer chain
fa, fd Reaction dependent functions ka, kd Rate like association

or dissociation coefficients
F Deformation gradient J detF
L Velocity gradient with L = ḞF−1

μ Chain distribution tensor λ̄ Average chain stretch
of the network

d Phase-field order parameter ∇d Gradient of d
lc length-scale parameter

associated with phase-field
cβR concentration of species β jβR Flux of the diffusing species β
μbeta Chemical potential of species β ∇μβ Gradient of μβ

TR Piola stress T Cauchy stress
S 2nd Piola stress
� Scalar microscopic stress ζ Vector microscopic stress
U =

∑3
i λiNi ⊗ Ni Tensor containing principal stretches

in the principal direction Ni
R Orthogonal rotational tensor

2.2.1 Chemistry of oxidation:- the reaction kinetics

In the recent literature, the kinetics of the closed-loop multiple chain reactions oc-

curring during polymer oxidation have been extensively studied [63, 64]. According

to [63, 64], the oxidation process involves a chain scission type event by breaking few

unstable hydroperoxides (POOH) to create polymer free radicals (P∗) in the initiation

stage (as shown in Fig 2.1b). As mentioned in [64], an initiation reaction involving

resin depletion (denoted by reaction (Ib)) requires significantly higher amount of acti-

vation energy compared to reaction (Ia), and happens only at very high temperature.
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Hence in the present work, we assume reaction (Ia) is the only active initiation re-

action. The free polymer radicals thus produced by reaction (Ia) eventually react

with the diffused oxygen to create (PO∗
2) radicals and the latter can further attack

the resin (PH) system to create a large number of chain scissions in the propagation

stage. These chain scission events seem to be playing an important role attributing to

the property degradation of the polymer [81, 86, 87, 88]. Eventually the reaction gets

terminated, as the free radicals react among themselves to create inactive products,

as P = P, POOP, etc. It is important to note that these inactive products do not

necessarily promote a healing process, rather the original network gets substituted

by these newly formed shorter chained products (also known as ”oxidative crosslink-

ing”), as shown in Fig 2.1b). It is also to be noted that the unsaturated double bonds

formed in the termination stage might further participate in the polyaddition reaction

when it is energetically favorable at comparatively very high temperature; however

such events are rarely reported in the oxidation literature.

In our earlier work, we discussed the reaction kinetics of the oxidation process and

proposed how the reaction kinetics can be connected to the continuum kinematics with

the help of internal state variables, namely extent of reaction. These state variables

measure and quantify the amount of reactants or products being consumed/generated

in one particular reaction [143]. Without reiterating the detail, we define the extent

of reaction for each reaction n at every continuum point X in a local dimensionless

form as, 0 ≤ ξn(X, t) ≤ 1, with ′n′ varies between 1 to 6. Subsequently, one can
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track the rate of change in concentration for species, β (reactants or products) during

oxidation via, rβ =
∑

n Rnβ ξ̇n, where rβ is the rate of production or consumption of

chemical species β and Rnβ is the stoichiometric coefficient in reaction n.

(c)

Figure 2.1: (a) Typical virgin polymer chains with Kuhn segment ’b’ and
end to end distance vector r, (b) polymer undergoing oxidation developing
new cross-links and broken chains, (c) typical distribution of the end-to-
end vector (φ(r)), the black line represents virgin polymer and the red line
represents oxidized polymer.

71



2.2.2 A reaction-dependent network theory based on the sta-

tistical mechanics of polymer chains

At the outset, we consider most of the polymer chains are attached to each other in

an amorphous network via crosslinks, representing a 3D solid polymer at its virgin

state. We also assume that, the actively crosslinked chains in the network essen-

tially provides the structural integrity for the polymer. In addition, the network also

contains some dangling chains, which could act as the initiator for the oxidation re-

action. Hence, the total number of chains in a polymer network (CT ) is the sum of

the active (c(t)) and inactive chains (cd(t)), expressed in terms of chain concentration

per unit volume (mol/m3). Following [124], under the assumption that individual

chains do not diffuse within the polymer, the total concentration follows the standard

conservation equation as,

ĊT + CT tr(L) = 0 (2.1)

where L is the macroscopic velocity gradient, defined as, L = ḞF−1, with F being

the deformation gradient. During oxidation, some polymer chains get broken (via re-

actions (I) and (III)). Since polymer radicals are highly reactive, these broken chains

can get re-attached via the termination reactions (IV, V, and VI). These new at-

tachments or bonds are formed with a much lower energy compared to the original

bonds in the virgin networks as reported in [28, 175]. Thus, one can consider that,
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the final oxidative product has more crosslinked network of smaller chains compared

to the virgin polymer with longer crosslinked network. It is important to mention

that, oxidation reaction gives rise to a different type of network in the oxide zone of

the polymer, a ”POOP” type network or, a ”P=P” type network compared to the

original P-P network. We attempt to describe the polymer oxidation phenomena as a

collective response of the chain detachments and attachments at the microscale gov-

erned by the chain reactions. With the help of a chain distribution function based on

the chain end-to-end vector r, (motivated by the transient network theory as intro-

duced in [239, 253, 254, 255]), we use a statistical framework to describe the physical

state of an oxidized polymer network. It is important to note that one of the key

limitations of this theory while deriving the free energy is the assumption of Gaussian

statistics of the polymer chains, which had been circumvented by [254], with the use

of so-called mean field approximation. In the present study, we also assume that

this approximation is valid, and the rate of attachment/detachment events due to

oxidation reactions are independent of mechanical deformation.

2.2.2.1 Chain distribution function

A standard polymer network constitutes of a large number of long chains spreading

in all possible directions and orientations in a 3-D coordinate system. Each chain

73



can be represented by a vectorial distance between their ends named as chain end-

to-end vector (r). Since the number of chains can be quite large in the network, it

is convenient to represent this end-to-end vector for the collection of chains in the

network through a statistical distribution. In this work, we describe this distribution

of the chain end-to-end vectors via a chain distribution function (φ(r, t)), indicating

the number of chains whose end-to-end vectors lie within r and r+ dr inside a repre-

sentative volume element dV . As the polymer undergoes physical/chemical processes

such as deformation or oxidation, this distribution changes. Fig. 2.1(c) represents

a typical Gaussian distribution for φ(r, t) corresponding to the virgin and oxidative

state of the polymer network, respectively. Thus, with the knowledge of why and

how this distribution evolves, it is further possible to predict the network’s elastic

response based on the entropic elasticity theory. In the following section, we define

the mathematical form of this distribution function in detail and successively provide

an evolution equation for the distribution due to the mechanical deformation and

chemical reactions.

To begin with, we consider the end-to-end vector (r) of a single chain as a primary

kinematical quantity to describe the polymer chain configuration. Let us consider

that every single chain is comprised of N number of freely joined Kuhn segments of

length b as demonstrated in Fig. 2.1a. As postulated in the classical random walk

model, we assume that all the actively crosslinked chains are of equal length. Hence,

the physical state of the polymer can be represented by the statistical distribution of
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the end-to-end vectors (φ(r)) for the entire chain population. Let us consider that,

the distribution function φ(r) can be expressed by a simple relationship between the

probability density function P (r) and active chain concentration c(t) as,

φ(r, t) = c(t)P (r, t) (2.2)

where c(t) has the unit of number of chains per unit of current volume. The active

chain concentration is the integral of all the possible chain distributions , φ(r, t) and

can be written as,

c(t) = 〈φ〉 (2.3)

where the operator 〈�〉 indicates the integral over all the possible chain configuration

as,

〈�〉 =
∫ 2π

0

∫ π

0

(∫ ∞

0

�r2dr

)
sinθ dθ dω (2.4)

where θ and ω are the direction of the end-to-end vector r in the spherical coordinates.

Further assuming that, at a length-scale much larger than the individual chains, the

network is random and isotropic, the stress-free chain distribution can be expressed

as a normal distribution P0(r) with a zero mean and a standard deviation
√
N/3b in

each of the three spatial directions. We use the expression for P0(r) as [246],

P0(r) =

(
3

2πNb2

)3/2

exp

(
− 3|r|2

2

)
(2.5)
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which leads to the chain distribution at stress-free configuration as,

φ0(r, t0) = c(t0)P0(r) (2.6)

where c(t0) is the active chain concentration at the stress-free configuration at time

t = t0.

2.2.3 Evolution of chain distribution due to the combined

effect of oxidation and mechanical deformation

The hypothesis is that in a network of polymer chains, the statistical distribution

of r changes as a function of mechanical deformation and chemical reactions. In

addition, we assume that the chain-scission and crosslinking events due to oxidation

are independent of mechanical deformation (stretching of the network). On the other

hand, the network evolution due to mechanical deformation originates in the form of

distortion or stretching of the chains without any attachment or detachment events.

Hence these two events occur independently of each other and the total change in the

network configuration can be expressed as a sum of these two independent evolving

phenomena, as,

φ̇(r, t) = φ̇(r, t)
∣∣∣
ox

+ φ̇(r, t)
∣∣∣
F

(2.7)
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The subscripts ’ox’ and ’F’ denote the change in φ while oxidation and deformation

gradient are held fixed, respectively. Assuming an affine deformation such that the

end-to-end vectors of all chains evolve proportionally with respect to the macroscopic

deformation gradient [255], we can write the 1st term of Eq. 2.7 as,

φ̇(r, t)
∣∣∣
ox

= −L : (∇φ⊗ r) (2.8)

where L is the macroscopic velocity gradient. Following the definition of spatial time

derivative and the use of transport theorem over the chain distribution space, the

derivation of the final form of Eq. 2.8 is not new and can be found in literature [255].

In this work, we investigate the 2nd term in further detail, which incorporates the

change in the chain distribution arising from the oxidation reactions.

We can see from Eq. 1.1, chain dissociation or scissions occur during reaction (I) and

(III) and chain reattachment happens in reaction (IV), (V) and (VI). We assume

that, the chain scission is proportional to the current distribution function φ(r, t) and

depends on the scission reactions. We further assume that, chain attachment happens

in a stress-free configuration depending on the termination reactions. Also, only a

fraction of chains that has been scissioned before gets reattached in the termination

process. Hence, one can write a kinetic form to accommodate the change in the
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distribution due to the reactions as,

φ̇(r, t)|F = fa(ξn)cd(t)P0(r)− fd(ξm)φ(r, t), with m = 1a, 3 and n = 4, 5, 6 (2.9)

where cd(t) = CT−c(t) equals the total number of detached or scissioned chains; fa and

fd are the reaction dependent functions. Further m,n denotes the reaction number.

In addition, we assume that the reaction dependent functions can be expressed as

follows:

fd(ξm) = kd(ξ1a + ξ3)

fa(ξn) = ka(ξ4 + ξ5 + ξ6)

(2.10)

where kd and ka are rate-like coefficients, denoting the chain detachment and attach-

ment rates, respectively. Substituting Eq. 2.10 into Eq. 2.9, we can get the evolution

of the chain distribution due to the reaction as,

φ̇(r, t)|F = ka(ξ4 + ξ5 + ξ6)(CT − c(t))P0(r)− kd(ξ1a + ξ3)φ(r, t) (2.11)

Substituting Eq. 2.8 and 2.11 into Eq. 2.7 yields the complete evolution equation for
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the chain distribution as,

φ̇(r, t) = −L : (∇φ⊗ r)+ ka(ξ4+ ξ5+ ξ6)(CT − c(t))P0(r)− kd(ξ1a+ ξ3)φ(r, t) (2.12)

2.2.3.1 Evolution of the concentration of active chains

Following Eq. 2.3, one can see that, the active chain concentration is the integral of

all the possible chain distribution function, φ(r, t). As the chain distribution evolves,

the concentration of the active chains would also change with time. Using the fact,

ċ = ˙〈φ〉 and by integrating Eq. 2.12 over the chain space, we can write the evolution

of the chain concentration as,

ċ = ka(ξ4 + ξ5 + ξ6)(CT − c(t))− kd(ξ1a + ξ3)c(t)〈P (r)〉 − c(t) tr(L) (2.13)

where 〈P (r)〉 represents the integration of the chain distribution over all the config-

uration and value of 〈P0(r)〉 = 1 is used in the 1st term. As per this expression, the

active chain concentration would increase while the reaction kinetics are dominated

by the termination reactions and would decrease when the kinetics are dominated

by the scission reactions. Also, the term, tr(L) vanishes for an incompressible poly-

mer. As the active chain concentrations provide rigidity in the polymer network,

any change in the active chain concentration would directly influence the mechanical
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properties and stored energy of the polymer.

2.2.3.2 Active chain ratio and the dissociated chain ratio

The chain scission and crosslinking events due to the oxidation reactions influence

the mechanical properties of the polymer network. We define a non-dimensional

parameter as a ratio between the current chain concentration c(t) to the total chain

concentration CT0 at the virgin state expressed as,

crc =
c(t)

CT0

with crc ≤ 1 (2.14)

This nondimensional quantity termed as ”active chain ratio”, attains a value of 1 for

a fully crosslinked network. A value of crc = 0 represents a network without any

crosslink (dilute chains). In an oxidative aging situation crc|t=0 = cr0 represents the

initial crosslinking density of the network, prior to any oxidation event. Further, we

also define another ratio termed as, dissociated chain ratio crd, which measures the

concentrations of chains per mole that has been dissociated from the network (cd(t)),

normalized with respect to CT0 as,

crd =
cd(t)

CT0

with crd ≤ 1 (2.15)
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where crd = 1 represents a network completely dissociated and crd = 0 represents a

fully crosslinked network.

2.2.3.3 Macroscopic property degradation due to oxidative embrittle-

ment

The continuous occurrence of chain detachment/attachment events during oxidation

alters the mechanical properties of the polymer network such as, the shear modulus

(Gshear), the limiting chain stretchability (λL) and the fracture energy (Gc), etc.

To correlate these macroscale properties with the evolving network, it is important

to mention the recent oxidation experiments highlighting the relation between the

polymer molecular weights and the change in mechanical properties [65, 86, 87, 88].

According to these studies, polymer undergoes a ductile to brittle transition during

the oxidation induction period, when the chain-scission reactions occur. During this

period a direct correlation between the drop in ultimate strain and reduction in

molecular weight is observed, as reported in [86, 87]. More than 90% drop in failure

strain was observed for oxidized polymer accompanying with a similar percentage

reduction in molecular weight. In addition, the chain-scission leads to the breakage

of the network entanglement resulting in significant drop in fracture toughness [86].

Based on these studies, we assume that the drop in ductility and fracture toughness

can be linked to the chain dissociation events. To quantify the drop in ductility,
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we use the limiting stretchability of the network and express that as a function of

scissioned chain concentration (crd). Similarly, the fracture energy of the network also

reduces as a function of this scissioned chain concentration. Hence, we assume the

functional relations for λL and Gc, as,

Γ = Ξi(crd) , where Γ ⊃ [λL, Gc] (2.16)

We assume that the mechanical stiffness or the shear modulus of the network is di-

rectly proportional to the active crosslinking density, following the standard definition

of modulus in rubber elasticity. The actively crosslinked network imparts the struc-

tural integrity of the polymer and the dangling chains do not contribute in this regard.

Thus for an amorphous polymer the shear modulus can be assumed as proportional

to the actively crosslinked chain density. However, in the case of semi-crystalline

polymers, the oxidative chemicrystallization also plays a role in the evolution of the

active network and the shear modulus, which has not been considered here. Hence,

we express the shear modulus evolution as, Gshear ≈ Υ(crc). The actual forms for the

function Υ and Ξi; i = 1, 2; will be discussed later in the specific constitutive forms.
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2.2.4 The chain distribution tensor and the free energy of

the oxidation reacted network

In order to connect the chain distribution function φ(r, t) with the macroscopic de-

scription of the state of the polymer chain network at any stage of the deformation

process, the chain distribution tensor (μ) is introduced as the second moment of

the distribution, following [254, 255]. As mentioned earlier, assuming a Gaussian

distribution for P0(r) at the stress-free configuration, μ0 can be written as,

μ0 = 〈P0r̃⊗ r̃〉 (2.17)

where r̃ is the normalized end to end vector with r̃ = r√
Nb

. Here N represents the

number of Kuhn segments in a single chain and b is the length of each segment.

Evaluating the above expression using Eq. 2.4, results into identity tensor, I. Other

than the stress-free configuration, μ is written as, μ = 〈P r̃⊗ r̃〉. Further assuming

the distribution P (r) still remains as Gaussian as the oxidation progresses, with

different distribution parameters, μ can be written as a symmetric (3× 3) tensor. As

it is well known, the symmetric tensor μ can be better represented by three of its

eigenvalues μi, i = 1, 2, 3; associated with its principal planes. These eigenvalues are

related to the square of the standard deviation of the current end-to-end distance r̄i
2

83



as, μi = 3r̄i
2/Nb2; where Nb2/3 is the mean-square end-to-end distance of the chains

at stress-free configuration. Hence, μ can be related further to the macroscopic

principal stretches and their directions as: μ = 3 〈λ ⊗ λ〉; where λ is the vector

containing the principal stretches [253]. Based on this, the average chain stretch can

be represented as,

λ̄ =
r̄

r̄0
=

√
trμ

3
(2.18)

where, r̄0 is the root-mean-square (average) distance of the chain end-to-end vector at

the stress-free configuration and r̄ is the current root-mean-square value of the chain

end-to-end distance. In elastomeric materials, the stored energy arises mainly due to

entropic contribution. Hence the free energy of the material can be expressed as a

function of λ̄ based on the statistical theory of entropic elasticity as,

ψR = ψ̄R

(
Gshear,

λ̄

λL

)
(2.19)

The specific form of the function ψR can be chosen as reported in [15, 99, 146] to

incorporate the limiting chain extensibility of the network.

To obtain the evolution equation for μ, one needs to integrate the evolution equation

for φ (Eq. 2.12) over the entire chain space. Finally it turns out as,

μ̇ = ka(ξ4+ξ5+ξ6)

(
CT − c(t)

c(t)

)
μ0−(〈kdP r̃⊗ r̃〉)(ξ1a+ξ3)− ċ(t)

c(t)
μ+Lμ+μLT (2.20)
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The term 〈kdP r̃⊗ r̃〉 can be simplified by assuming that the dissociation rate kd is

independent of r and hence constant. Hence, we get, 〈kdP r̃⊗ r̃〉 = kdμ. Replacing it

in Eq. 2.20, we can re-write,

μ̇ = ka(ξ4 + ξ5 + ξ6)

(
CT − c(t)

c(t)

)
μ0 − kd(ξ1a + ξ3)μ− ċ(t)

c(t)
μ+ Lμ+ μLT (2.21)

The two specific cases for μ evolution have been presented in the B. It is important to

note that the chain distribution may not remain as Gaussian for the entire deformation

history (especially in the regime, when the chain end-to-end distance attends full

contour length as |r| → √
Nb). For non-Gaussian distribution, simplification of μ

via a symmetric tensor is not possible. In the present study we assume that the

chain distribution remains close to Gaussian for the entire oxidation and deformation

history and the kinetics of the chain association/dissociation events are independent

of the mechanical force.

Another important point is to note that the quantities such as φ(r, t), (c(t)) and (μ)

are not standard kinematic quantities used in the continuum mechanics. However

these are very useful for the statistical description of an evolving polymer network

and can be correlated with certain macroscopic quantities on an average sense.
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2.2.5 A phase-field fracture model to predict macroscale

damage and fracture in polymers due to oxidation

In the previous section, we have proposed a method for predicting the microscale

evolution of the network morphology depending on the oxidative reaction kinetics.

We have also modeled the degradation of the mechanical properties yielded by the

network evolution in the oxidized polymers. In this section, our aim is to model

macroscale damage initiation and propagation in the oxidized material due to the

application of external loading. Hence, we propose a phase-field fracture theory to

model macro stress-induced damage initiation and propagation until complete frac-

ture. The final goal is to connect the reaction modified polymer network response

with the macroscopic damage behavior originating due to stress inhomogenity during

an oxidative aging process. It is important to note that the microscale chain scission

events may cause damage in the three dimensional network. However, as the set

of reactions occurs in a closed-loop, the scission events are always accompanied by

successive crosslinking. Hence, the usual irreversibility condition of a damage vari-

able might not hold at the microscale for the entire reaction history. As mentioned

earlier, these combined effects of chain scissions/crosslinking have been considered as

a newly formed network of shorter chains rather than a damaged network. Hence, in
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the present work, we have considered that the network modification affects the net-

work elasticity in the form of degraded mechanical properties but no damage at the

microscale. It is assumed that the modified network with heterogeneous properties

is prone to macroscale damage initiation due to localized stress concentration from

mechanical loading.

The use of a phase-field fracture model would help in predicting the macroscale dam-

age initiation and propagation in complex conditions such as mixed-mode, interacting

cracks, complex distribution of initiation sites etc., under a coupled physics driven

scenario such as oxidative aging. In order to overcome the difficulties in classical

Griffith-type theory of brittle fracture, phase-field fracture models have emerged as

an alternative way of modeling crack propagation using a smeared representation of

the crack topology [38, 39, 93, 169, 171]. The models originally devised as a mathemat-

ical regularization of the variational approach to brittle fracture, based on the ener-

getic competition between elastic potential energy and the dissipated fracture energy

needed to create fracture surfaces, through a minimization principle [38, 44, 69, 93].

They share a conceptual resemblance with the damage gradient models in which the

dissipated energy density contains a regularizing damage gradient term associated

with a regularizing internal length scale ′l′c [199, 227]. The main advantage of such

models is that no ad hoc crack propagation criterion is needed, as the damage evolu-

tion is based solely on energetic requirements. In the present work, the model builds
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upon a coupled mechanical and oxygen diffusion response, driven by the displace-

ment boundary conditions and the chemical potential gradients. It further considers

a reaction dependent amorphous polymer network with constantly evolving network

morphology and mechanical properties.

2.2.5.1 Phase-field order parameter or macroscale damage variable

In the phase-field fracture theory, we define a phase-field order parameter or damage

variable d such that,

0 ≤ d(X, t) ≤ 1 (2.22)

where d = 0 represents the material being intact, and d = 1 corresponds to a fully

broken material. Thus, the phase-field order parameter or damage variable interpo-

lates between the broken state of the material and its unbroken state [6, 169, 171].

We assume that d monotonically increases, such that ḋ ≥ 0, implying that the dam-

age is irreversible. In order to define a diffusive crack topology to approximate the

non-smooth crack field, the phase-field theory introduces an exponential function for

d(X), as [169, 170, 171],

d(X, t) = e−
X
lc (2.23)
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The length scale parameter lc is introduced to govern the regularization or the width

of the diffusive zone and yields the sharp crack topology for the limiting case as,

lc → 0 (Fig. 2.2). The theory further considers dependence on d and the gradient ∇d

to incorporate the spatial inhomogeneity due to localized damage formation and to

avoid the so-called ill-posed nature of the local damage models.

Figure 2.2: Sharp and diffusive crack topology: a sharp crack Γ embedded
into the solid B (left) and the regularized crack surface Γlc with a functional
of crack phase field d and the crack regularization length lc.

89



2.2.6 The chemo-mechanically coupled theory for polymer

oxidation:-the balance laws and thermodynamic con-

sistency

2.2.6.1 Mass balance for the diffusing and reacting species

In order to avoid redundancy, we rewrite only the specific local form of mass balance

for any species, β, as (following [143]):

ċβR = −DivjβR +
∑
n

[Rnβ ξ̇n] (2.24)

Assuming oxygen is the only diffusing species and for the other constituents, mass

balance would involve only the reaction dependant changes, we summarize the mass
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balance equation for each individual species as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ċO2
R = −DivjO2

R − ξ̇2 + ξ̇6 for O2

ċPOOH
R = −ξ̇1a + ξ̇3 for POOH

ċPH
R = −ξ̇3 for PH

ċP=P
R = ξ̇4 for P=P

ċPOOP
R = ξ̇5 + ξ̇6 for POOP

(2.25)

For more elaboration on the balance laws, the readers are referred to [143].

2.2.6.2 Balance of forces and moments

Using the principle of virtual power, we can derive the macroscopic and microscopic

force balance conditions. Following similar notation as mentioned in [118], we consider

the rate-like kinematical descriptors as χ̇, Ḟ, ξ̇n, ḋ and ∇ḋ.

For the macroscopic force balance, we consider that, on the arbitrary part P of the

reference body BR, there exists a traction force tR(nR) that expends power over the

velocity χ̇. There also exists a stress tensor, TR that expends power over the rate

Ḟ of the deformation gradient. Similarly, we consider a scalar microscopic stress

�, expending power over the rate of the damage variable, ḋ. Additionally, a vector
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microscopic stress ζ is introduced that expends power over the gradient ∇ḋ . Finally,

there also exists a scalar microscopic traction ζ(nR) that expends power over ḋ on

the boundary of the part. Subsequently, using the principle of virtual power, we can

derive the macro and micro-force balances together with the momentum balance as,

DivTR + bR = 0 and TRF
T = FTT

R (2.26)

Divζ −� = 0 and ζ(nR) = ζ.nR (2.27)

In the spatial configuration, the corresponding macro force balance equation can be

written as,

divT+ b = 0 and T = TT (2.28)

where T is the symmetric Cauchy stress tensor and b is the body force in spatial

configuration. The derivation of the force balance conditions are summarized in C.

2.2.6.3 Energy imbalance and thermodynamic consistency

Following the detailed derivation in our previous work ([143]), for an isothermal poly-

mer system undergoing oxidation, combining the 1st and 2nd law of thermodynamics,
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we re-write the local form of energy imbalance as:

ψ̇R−TR : Ḟ−�ḋ− ζ.∇ḋ+
∑
β

jβR ·∇μβ +
∑
β

μβ
∑
n

[Rnβ ξ̇n
]−∑

β

μβ ċβR ≤ 0 (2.29)

It is important to note that, with the specific choice of the free energy as,

ψR = ψR(λ1, λ2, λ3, c
β
R, ξn, d,∇d) (2.30)

we can determine the thermodynamic constraints for the mechanical, diffusion, ex-

tent of reactions and phase field constitutive equations from the dissipation inequality

(Eq. 2.29). In Eq. 2.30, λ1, λ2 and λ3, are the principal stretches and the correspond-

ing principal directions are given by (Ni⊗Ni)- which can be readily correlated to the

eigenvalues and eigenvectors of the chain distribution tensor, μ, as mentioned before.

Further, it is convenient to introduce a new stress measure called the 2nd Piola stress,

which is defined as,

S =
3∑

i=1

1

λi

∂ψR

∂λi

Ni ⊗Ni (2.31)

Then the Cauchy stress can be written as,

T = J−1R

( 3∑
i=1

UiSUi

)
RT = J−1 R

( 3∑
i=1

λi
∂ψR

∂λi

Ni ⊗Ni

)
RT (2.32)
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Using the fact that the spectral decomposition of μ in terms of principal stretches

and directions, is given by, μD = 3
∑3

i=1 λ
2
i Ni ⊗Ni, and further μD = RμRT , and

∂ψR

∂λ
= 1

λ̄
∂ψR

∂λ̄
λ, we can re-write Cauchy stress expression from Eq. 2.32 as,

T =
1

3λ̄
J−1R

3∑
i=1

(∂ψR

∂λ̄
μi Ni ⊗Ni

)
RT =

1

3λ̄
J−1 ∂ψR

∂λ̄
μ (2.33)

To construct the specific constitutive forms for the phase field micro-stresses � and ζ,

we consider a theory which allows for an energetic and dissipative effects associated

with the temporal changes in d, and also an energetic effect due to the gradient ∇d

[13, 185]. We also assume that the scalar microstress, �, can be broken down into an

energetic and dissipative part respectively, (based on the similar approach proposed

in [13, 185]) as,

� = �en +�dis (2.34)

This along with the thermodynamic constraints, provide us the constitutive relation

for energetic microstress as:

�en =
∂ψR

∂d
, ζ =

∂ψR

∂∇d
(2.35)

Hence we are finally left with the following dissipation inequality:-

�disḋ+

[(
−
∑
β

μβ
∑
n

Rnβ −
∑
n

∂ψ̂R

∂ξn

)
ξ̇n

]
≥ 0 (2.36)
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We assume that each individual term of Eq. 2.36 satisfies the dissipation inequalities

as: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
�disḋ ≥ 0(
−∑

β μ
β
∑

n Rnβ −
∑

n
∂ψ̂R

∂ξn

)
ξ̇n ≥ 0 ,

(2.37)

From Eq. 2.37, we consider that �dis is the driving force for the phase-field damage

d. Similarly, we define the bracketed part as conjugate to the extent of reaction (ξn)

as the driving force for each individual reaction as discussed in our earlier work [143].

2.2.7 Constitutive equations for the mechanical, diffusion,

chemical reactions and phase field damage

2.2.7.0.1 Free energy:- To be consistent with our transient network theory, we

use a Arruda-Boyce hyperelastic free energy function for the mechanical energy ex-

pression [15]. Based on our earlier work [143], we write the free energy as the sum

of separable energies arising from mechanical deformation, oxygen diffusion, chemical

reaction combined with a quadratic fracture energy to account for the phase field

fracture. The chemical energy is considered as a simple reaction dependent quadratic

form, as proposed by [250] and later used by [153]. The diffusion energy is considered

as following the Flory-Huggins form [91]. As the size of oxygen molecules are quite

small compared to the long polymer chains, the diffusion can be best represented by
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the Flory-Huggins lattice theory [52, 91]. It is important to note that as the phase

field damage progresses, the stored or mechanical energy of the material continues to

degrade. In order to model that, we incorporate a widely used degradation function

g(d) as reported in the phase-field literature [13, 165, 169, 171, 185]. The function

g(d) is a monotonically decreasing function in d and it satisfies:- g(0) = 1, g(1) = 0,

g′(d) ≤ 0 and g′(1) = 0. We use the most common form for degradation function

used in the literature [13, 169, 171, 185], as,

g(d) = (1− d)2 + κ (2.38)

where κ is a small positive-valued constant which is introduced to prevent ill-

conditioning of the model when d = 1. Thus the complete free energy expression

can now be written as,

ψ̂R = g(d)

[
c(t)kBϑ λL

(
λ̄γ − γ0

λL

+ ln
γsinh(γ0)

γ0sinh(γ)

)
+

Kbulk

2
( lnJ )2

]
︸ ︷︷ ︸

Mechanical

+
∑
n

Hn

2
(1− ξn)

2

︸ ︷︷ ︸
Chemical

+

μO2
0 cO2

R +RϑcO2
R

[
ln

(
ΩcO2

R

1 + ΩcO2
R

)
+ χ

(
1

1 + ΩcO2
R

)]
︸ ︷︷ ︸

Diffusion

+
Gclc
2

|∇d|2︸ ︷︷ ︸
Fracture

(2.39)

where, kB is the Boltzmann constant, ϑ is the oxidation temperature, as standard in

rubber elasticity, we consider G = c(t)kBϑ is the shear modulus, λL is the limiting

chain extensibility parameter, Kbulk is the bulk modulus. The terms γ = L−1
(

λ̄
λL

)
and γ0 = L−1

(
1
λL

)
are the inverse Langevin function as, L = coth x − x−1, which
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is used to capture strain stiffening response of the polymers at large stretch. Hn is

the chemistry modulus for each reaction, ′n′, defined as twice the negative change in

Gibbs energy required for reaction ′n′ to take place; μO2 and cO2
R are the chemical

potential and concentration of oxygen, respectively, Ω is the molar volume of the

polymer in L/mol, χ is the dimensionless Flory-Huggins parameter that defines the

interaction between oxygen and the polymer. Finally, Gc is the Griffith-type fracture

energy of the polymer.

2.2.7.0.2 Stress and chemical potential Following the free energy expression,

Cauchy stress can be expressed as,

T = J−1 g(d)

[
ckBϑλL

3

[
1

λ̄
L−1

(
λ̄

λL

)
μ− L−1

(
λ̄

λL

)
I

]
+Kbulk(lnJ )I

]
(2.40)

Based on the Flory-Huggins form as given in Eq. 3.23, the chemical potential driving

the diffusion of O2, μO2 , can be obtained by taking the partial derivative of the

diffusive energy with respect to oxygen concentration as,

μO2 = μO2
0 +Rϑ

(
ln

(
ΩcO2

R

1 + ΩcO2
R

)
+

1

1 + ΩcO2
R

+ χ

(
1

1 + ΩcO2
R

)2
)

(2.41)

In addition, the reactive force expression (Fn), conjugate to the extent of reaction for

each individual reaction (ξn) can also be determined from the dissipation inequality

as shown in C.1.
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2.2.7.0.3 Governing equation for the phase-field variable d:- We can write

the energetic microstress as,

�en =
∂ψR

∂d
= −2(1− d)ψmech

R (2.42)

where, ψmech
R is the mechanical free energy of the reaction modified polymer network,

but without any macroscopic damage (the 1st term in Eq. 3.23).

To determine the expression for �dis, let us consider the recent phase field literature

[169, 171], where the energy required to create a new fracture surface was given by

the crack surface density functional involving both d and ∇d as,

ψs =

∫
P

Gc

(
1

2lc
d2 +

1

2
lc|∇d|2

)
dV (2.43)

In order to be consistent with the energy dissipated per unit volume to create new

surface (as the first term in Eq. 2.43) the associated microstress is defined as,

�dis =
Gc(crd)

lc
(2.44)

This could be obtained by dividing the 1st term in the fracture energy density with the

corresponding 1st term in the crack surface density functional, given as
(

d2

2
+ l2c |∇d2|

2

)
,

with lc → 0, as used in the phase-field literature [169, 171]. It is important to recall
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that the modification of the fracture energy (Gc) would occur due to the chain scis-

sions occurring in the polymer network during oxidation, as mentioned in Sec.2.2.3.2.

Therefore, Eq. 2.34 can be re-written as,

� = �en +�dis = −2(1− d)ψmech
R +

Gc

lc
(2.45)

Further, we can derive the vector microstress ζ using Eq. 3.15-b together with the

free energy as,

ζ = Gclc∇d (2.46)

Substituting Eq. 4.23 and 2.46 into the microstress balance, Divζ−� = 0, yields the

evolution equation for d as,

2(1− d)ψmech
R − Gc

lc
+GclcΔd = 0 (2.47)

where Δd represents the Laplacian of d. It is important to note that the difference

in phase-field fracture with the damage mechanics approach lies in the variational

approach of solving the fracture problem based on the minimization of the global

energy. Hence, the solution of phase field damage variable appears as the solution of

the differential equation as given by Eq. 2.47, instead of a time-dependent evolution

of a state variable [169, 171].
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It is also important to note that the evolution of d in Eq. 2.47 does not ensure the

irreversibility constraint of the damage (ḋ ≥ 0). In order to ensure the irreversibility

condition, we can rewrite Eq. 2.47 while neglecting the gradient effect (∇d) on the

damage variable as,

2(1− d)

[
ψmech
R − Gc

2lc

]
− Gc

lc
d = 0 (2.48)

It can be shown, that a monotonically increasing evolution of d requires the the term(
ψmech
R − Gc

2lc

)
to be strictly positive for the entire deformation history, [13, 169, 171,

185, 237]. Based on that, a monotonically increasing history field H is introduced as,

H(t) = maxs∈[0,t]

∣∣∣∣ψmech
R (s)− Gc(s)

2lc

∣∣∣∣ (2.49)

So that the evolution equation has the final form as,

2(1− d)H− Gc

lc
d+GclcΔd = 0 (2.50)

2.2.7.0.4 Reaction dependent shear modulus, fracture energy and lim-

iting chain extensibility parameters:- According to the description in section

2.2.3.3, we assume that, shear modulus is directly proportional to the active chain

ratio and can be written as,

Gshear(crc) = crcG0 = crcc(t0)kBϑ (2.51)
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Figure 2.3: Linear trend of fracture energy and limiting chain stretchability
paramater as a function of dissociated chain ratio

where G0 is the virgin shear modulus of the material which is a function of active

chain concentration at virgin state c(t0).

Fracture energy (Gc) and the limiting chain stretchability parameter (λL) have been

considered as degrading linearly with the dissociated chain ratio (as shown schemat-

ically in Fig 2.3), characterizing the increase in brittleness due to oxidative scissions

in the network. Thus, we define the reaction dependent fracture energy via a linear

relation as,

Gc(crd) = α1crd + C1 (2.52)

with α1 =
Gc,ox−Gc,un

crd,ox−crd,un
and C1 = [Gc,ox +Gc,un −α1(crd,ox − crd,un)]/2; where Gc,ox and

Gc,un are the fracture energy at completely oxidized and virgin states respectively,

and crd,ox and crd,un are the corresponding dissociated chain ratios.

Similarly, we define the limiting chain extensibility parameter as,

λL(crd) = α2crd + C2 (2.53)
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where, α2 =
λL,ox−λL,un

crd,ox−crd,un
and C2 = [λL,ox+λL,un−α2(crd,ox− crd,un)]/2; with λL,ox and

λL,un are the stretchability at completely oxidized and virgin states respectively.

2.2.8 Governing differential equations and the boundary con-

ditions

There are three governing partial differential equations required to be solved in this

coupled physics problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

DivTR + bR = 0

ċO2
R = −DivjO2

R − ξ̇2 + ξ̇6

2(1− d)H− Gc

lc
d+GclcΔd = 0

(2.54)

We require the initial and boundary conditions to complete the solutions of these

differential equations, as detailed in our earlier work for the mechanical and the dif-

fusion [143]. The boundary conditions for the evolution of d are also standard as

provided in [170, 171]. Hence the system of equations, Eq. 3.29, combined with the

appropriate initial-boundary conditions, are required to be solved for the displace-

ment χ(X, t), oxygen concentration cO2
R (X, t) and the phase field damage parameter

d simultaneously.

102



Additionally, we require to solve the sets of ordinary differential equations for the

active chain concentrations, (Eq. 2.13), chain distribution tensor (Eq. 2.21), and the

extent of reactions given in Eq. C.16. In this work, the system of equations are

solved numerically by writing a user element subroutine (UEL) in ABAQUS/Stan-

dard (2017) [1].

2.3 Material Parameter Estimation

To numerically implement the present theory, a number of material parameters are

required for modeling the coupled behavior of multiple chemical reactions-diffusion,

large deformation and phase field fracture in polymer. Estimation of the kinetic

parameters for the diffusion and chemical reactions has been explained in detail in

our previous work [143]. Hence, we ignore that part here for the sake of brevity. The

kinetic parameters used in the present work are listed in 1.1.

As described in Section 2.2.3.2, chemical reactions in the oxidation process cause

chain-scissions (associated with the rate coefficient kd ) and oxidative crosslinking

(associated with the rate coefficient ka); which in turn, leads to the evolution of the

active chain concentration and chain distribution. In order to determine these rate-

like reaction dependent coefficients, we have used experimental data as reported in

[87]. A simple curve-fitting procedure is adopted assuming an exponential relation
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between the concentration data for chain-scissions and crosslinks as a function of oxi-

dation time, as shown in Fig. 2.4. As evident from the data in [87], the chain-scission

phenomenon essentially dominates over the oxidative crosslinking in this typical ther-

moplastic polymer. On the other hand, crosslinking events could be more prominent

in the case of some typical thermosets during oxidation, as reported in [80, 81, 82].

Figure 2.4: Estimation for the ka and kd, the rate-like coefficients for
polyethylene; the ”markers” correspond to the experimental data from [87].

Thermo-oxidative aging significantly affects the critical strain energy release rate

or the fracture toughness (Gc) of the material, reducing it by two or three orders

of magnitude, as reported in [86, 87]. As identified, the chain-scission mechanism

destroys the polymer network structure to a point where plastic deformation process

do not initiate and hence the embrittlement occurs [87]. In this work we choose a
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Griffith-like fracture energy release rate as 1.44 kN/m for virgin polymer and 100 N/m

for a completely oxidized polymer, consistent with the values as reported in the

literature [86], for a typical polymer.

The other parameter to describe the mechanical free energy of the polymer network

is the limiting chain extensibility (λL). Oxidative embrittlement process notably

reduces the ultimate failure strain of the material, as the stretchability drops from a

value of 800% to 10% as observed in the case of oxidative aging of polypropylene, [86].

For the present simulation, we use λL = 9.0 for the unoxidized polymer and λL = 1.9

for the completely oxidized polymer. The Gc and λL values used in the simulations

are tabulated in the appendix (Table 3.1).

2.3.0.0.1 Choice of lc From the material’s microstructure perspective, lc should

represent the length of the lowest micro-structural change that one could use as a

representative unit to identify the initiation of macro-scale damage. For an amor-

phous polymer, it can be as small as in the range of micrometers. However, in the

case of the phase field model, in order to maintain computational tractability of the

numerical simulation and simultaneously to get a reasonably low lc value, we first

tentatively compute the critical stress at which damage initiates in a linear elastic

brittle material having the similar mechanical properties as the polymer under con-

sideration in uniaxial tensile loading. Using Eq. 2.48, we can write the homogeneous
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solution for the phase-field variable ignoring the gradient term, d as,

d =
ψmech
R lc

Gc + ψmech
R lc

(2.55)

For a linear elastic material the stored mechanical energy can be approximated as,

ψmech
R = 1

2
Eε2, where E is the Young’s modulus of the polymer and ε is the correspond-

ing axial strain. Hence, our degraded mechanical energy is given by, 1
2
(1 − d)2Eε2.

For the damage to initiate, this stored energy must be equal to the energy required

to create a new surface (Eq. 2.43) over the smallest length scale such as lc, that is,

1

2
(1− d)2Eε2 = Gc

(
1

2lc
d2
)

(2.56)

Here once again, the gradient term is ignored. The solution of Eq. 2.56 gives us the

critical strain value corresponding to the damage initiation as,

εc =

√
Gc

Elc
(2.57)

Substituting Eq. 2.57 into the stress equation as, σc = (1− d)2Eεc, yields the length

scale parameter value, lc in terms of the mechanical properties of the polymer as

follows,

lc ≈ GcE

16σ2
c

(2.58)
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where σc is the critical stress, at which damage initiates under uniaxial tensile loading.

Considering the values for Gc = 1.44 kN/m, σc = 35 MPa and E = 1.6 GPa for

polypropylene, we get, lc ≈ 0.12 mm. Hence, any value � 0.12 mm would be a

reasonable choice for lc in our simulations. Based on the choice of lc, the smallest

element in our FE mesh has been chosen as h ≈ lc/4 throughout the simulations.

2.4 Representative numerical simulations

2.4.1 Case study-1: Oxidative aging of a dogbone specimen

followed by tensile loading

In this example, we numerically simulate the oxidative aging of a representative poly-

mer dogbone specimen followed by a tensile testing to imitate a typical oxidation ex-

periment performed in a laboratory setting. In the simulation, we consider the initial

shear modulus as G0 = 0.58GPa and a final oxidized modulus as Gshear,ox = 0.7 GPa.

The other important mechanical and kinetic parameters are as listed in Table 3.1 and

1.1 respectively. The geometry of the dogbone sample has been shown in Fig. 2.5(a).

Due to the symmetry, we analyze only one-quarter of the sample using 2D plane

strain elements and apply symmetric boundary conditions along the mid-planes in

the x and y-directions. The length scale parameter to describe the diffuse damage
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zone has been chosen as, lc = 0.12 mm. In a traditional lab environment, a sample

is first oxidized within an oven at a temperature close or higher than the glass tran-

sition temperature of the material for several hours. Subsequently, it is taken out

to perform mechanical testing to determine the effect of oxidation on the material’s

response. In what follows, we perform a two-step simulation where at first, we let the

sample oxidize at 80oC for several hours in an accelerated aging environment. In the

second step, we pull the sample at a displacement rate of 1 × 10−5 mm/s until the

final failure happens. The corresponding chemical and mechanical boundary condi-

tions are shown in Fig. 2.5(b). In the first step, we consider that the sample surface is

surrounded by a constant flow of O2 with partial pressure of 2 atm, which translates

to a constant O2 concentration of 2.8×10−2 mol/L. In order to avoid the convergence

issues, we have applied the chemical boundary condition in a ramp-like manner over a

small time period of 2 hours. In the following step, we have applied the displacement

boundary condition on the top surface of the specimen linearly as a function of time

(Fig. 2.5(b)). Our aim is to study the effect of oxidative aging in terms of mechanical

property degradation upon oxidizing the sample for 30, 50 and 200 hours, respectively.

We consider two specific cases to understand the kinetics of the chains- i) when chain

scission rate is dominant over the reattachment rate (ka < kd) and ii) when the chain

reattachment is higher (ka > kd) compared to the scission rate. Since oxidation is

a time-dependent process, longer exposure to oxidative environment inevitably leads

to higher values of the extent of reactions, which, in turn, yields harsher property
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degradation, as demonstrated in the simulations results, as discussed in the following

paragraph.

(a) (b)

Figure 2.5: (a) Geometry of a dogbone specimen (all dimensions are in
mm); (b) boundary condition for the oxygen concentration applied at the
edges of the dogbone sample (top) and the displacement boundary condition
applied at the top surface of specimen in Step-2 (bottom).

Fig. 2.6(a) and (b) show the contour plots of extent of reaction (III) (ξ3) and extent of

reaction (VI) (ξ6) at the end of 30 hours (left), 50 hours (middle) and 200 hours (right),

respectively. The corresponding changes in Gshear and λL are shown in Fig. 2.7 and

Fig. 2.8, respectively. The extent of reactions monotonically increase in a continuous

oxidation process. As time progresses, the evolution of ξ3 leads to resin depletion
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(a) (b)

Figure 2.6: Contour plots for (a) extent of reaction ξ3 after 30 hours (left),
50 hours (middle) and 200 hours (right); (b) extent of reaction ξ6 after 30
hours (left), 50 hours (middle) and 200 hours (right).

Figure 2.7: Contour plots of shear modulus (in MPa) after (a) 30 hours,
(b) after 50 hours (with ka < kd), (c) 50 hours (with ka > kd) and (d) 200
hours.

by breaking the PH-chains and formation of some new hydro-peroxides (POOH). On

the other hand, the termination reaction (VI) forms new PO-OP bonds and these

new bonds accumulate within the material as the reactions progress. As explained

in the theory, the chain distribution changes as a function of oxidation reactions and
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(a) (b)

Figure 2.8: (a) Contour plots of λL after (i) 30 hours, (ii) after 50 hours
(with ka < kd), (iii) 50 hours (with ka > kd) and (iv) 200 hours; (b) Com-
parison of (normalized) limiting stretchability with experiment from [86].

alters the active chain concentrations c(t). For numerical simplicity, we consider only

reaction (III) and (VI) as the chain scission and crosslinking reactions, respectively.

Hence, following Eq. 2.9, the chain detachment happens as a function of ξ3, as fd =

kdξ3. Similarly, the chain reattachment happens as a function of ξ6 as, fa = kaξ6.

For kd > ka condition, the number of active chains decreases leading to a decrease

in the shear modulus (Gshear) as seen in Fig. 2.7(a), (b) and (d). On the other

hand, when ka > kd, we observe an increase in Gshear with respect to the virgin

state, as demonstrated in Fig. 2.7(c). The contour plots of the limiting stretchability

parameter, λL at various stages of oxidation are also shown in Fig. 2.8(a). It is

important to note that λL is essentially a function of the dissociated chain ratio, crd.

As the oxidation progresses, the number of dissociated chains goes up, leading to an

increase in crd for the ka < kd condition; which in turn causes a reduction in the
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stretchability, as shown in Fig. 2.8(i), (ii) and (iv). Fig. 2.8(b) shows a qualitative

comparison of the drop in the limiting stretchability (normalized at its virgin value)

obtained from our model prediction to the experimental data at as reported in [86], for

polypropylene. The model prediction shows reasonable agreement with experimental

data. In the numerical results, a continuous drop in λL is observed between 50 to

150 hours, while the experiments indicate a sharp drop around 150 hours in the data.

The reason might be due to the choice of a linear function used in the modeling

(Eq. 2.53) for stretchability evolution. A more accurate experimentally informed

evolution function could be chosen to improve the numerical prediction in future.

(i) (ii)

Figure 2.9: (i) Force vs displacement plots for the dogbone sample sub-
jected to tensile loading upon oxidation for various hours; (ii) Contour
plots of the phase field damage variable at significant points in the force-
displacement plot as marked ’a’, ’b’ and ’c’.

The changes in the material properties further lead to a change in the constitutive

response of the polymer. Fig. 2.9(i) shows the force versus displacement plots for

the dogbone samples oxidized for several hours. In general, a significant drop in the
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limiting stretchability and tensile strength has been observed for the cases ka < kd

due to oxidation. Approximately 50% drop in the limiting stretchability has been no-

ticed after 200 hours of oxidation. The maximum tensile strength of the material also

decreases significantly. We also observe a slight change in the stiffness of the material

during the initial period of oxidation (between 30 to 50 hours), which significantly de-

creases upon further oxidation (at 200 hours). Fig. 2.9(ii) shows the damage contours

of the dogbone sample corresponding to the significant points in the load-deformation

curve as denoted in Fig. 2.9(i) for 50 hours of oxidation (corresponding to ka < kd

condition). The force reaches a maximum value at point a, with a displacement of

0.06 mm. Beyond this point, the force starts dropping, and the sample is unable to

stretch any further. The continued loading of the sample ultimately causes rupture

of the material, as shown by c in Fig. 2.9(i) with corresponding damage contours in

Fig. 2.9(ii)c.

2.4.1.0.1 Case ka > kd :- For some amorphous thermosets, crosslinking process

can be dominating over the chain-scission process, as reported in [80, 81, 82]. However,

specific numerical values for the crosslinking and chain-scission density for such cases

have not been reported in the literature. For numerical demonstration purpose, we

assume ka ≈ 100 kd, and compare the results with the ka < kd case, upon 50hrs

of oxidation. We observe a significant increase in the shear modulus after 50 hours

(Fig. 2.7(c)), almost a rise of≈ 20% with respect to the virgin material on the oxidized
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surface. The limiting stretchability remains almost unchanged as the virgin polymer

(Fig. 2.8(iii)). This reflects in the constitutive response of the material, as both the

maximum tensile strength and stretchability are observed higher compared to the

ka < kd case after 50 hours of oxidation, as shown in Fig. 2.9(i).

2.4.2 Case study-2: Oxidation followed by Mode-I loading in

a single-edge-notched plate

In this example, we attempt to predict the response of a polymer specimen containing

a pre-existing crack undergoing oxidation. In reality, the presence of cracks promotes

oxygen diffusion providing favorable paths. Hence pre-existing flaws make the mate-

rial more prone to oxidation near and around the crack-zones. To simulate one such

scenario, we choose to study the effect of oxidation on a single-edge-notched polymer

plate, as shown in Fig. 2.10(a). The notch has a width of 2 × 10−3 mm. As earlier,

the kinetic and material parameters are chosen from Table 3.1 and 1.1, respectively.

The chemical boundary condition is considered as the same as in case study 1. In

this simulation, we assume that oxygen diffuses from the left side of the plate and

through the entire free surface of the pre-existing crack, with all the other edges being

impermeable. We let the sample to oxidize at 80oC for 100 hours. Following which,

the oxidized sample is pulled at a rate of 1 × 10−5mm/s along the top-edge, till the

final fracture occurs.
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(a) (b)

(c) (d)

Figure 2.10: (a) Geometry of the single-edge-notched tension sample (all
dimensions are in mm); Contour plots for the (b) oxygen concentration
(mol/L); (c) extent of reaction (III), ξ3; and (d) chain dissociation ratio
crd, after 100 hours of oxidation.

Fig. 2.10(b) shows the contour plot of oxygen concentration within the plate after 100

hours of oxidation. As observed, oxygen concentration is the maximum at the left side

of the boundary and around the pre-existing crack, as a continuous flow is occurring

through these surfaces. The concentration gradually plummets through the sample
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(a) (b)

Figure 2.11: Contour plots of (a) Gc in (N/m); (b) λL after 100 hours of
oxidation.

thickness toward the impermeable right side, as a function of the continuous diffusion.

It is to be noted that, as the new free surfaces form in a propagating crack, the diffu-

sion and oxidation reactions would become faster due to more access to atmospheric

oxygen through the new surfaces. This would eventually degrade local properties and

cause further crack propagation. The interaction between the newly formed free sur-

faces and the diffusion-reaction process promoting further damage propagation has

been ignored in the present case study.

Fig. 2.10(c) and (d) show the contour plots of extent of reaction, ξ3 and the chain disso-

ciation ratio, crd, respectively after 100 hours of oxidation. As seen in Fig. 2.10(c), ξ3,

reaches to a value of ≈ 0.6 at the outermost surface along the left boundary as well as

around the crack tip, indicating chain-scission would take place predominantly within
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(a)

(b)

Figure 2.12: (a) Force vs. displacement plot of the single-edge-notch sam-
ple ; (b) Contour plots of the phase field variable d at significant points in
the force-displacement plot marked as a, b, and c for the oxidized polymer.

this zone. As a result, the chain dissociation ratio continues to increase and reaches

a value of ≈ 50% on the left surface and around the crack tip after 100 hrs, as shown

in Fig. 2.10(d). This phenomenon further leads to a reduction in the limiting chain

extensibility and fracture energy in the oxidized zones, as shown in Fig. 2.11. The

117



fracture energy drops significantly in the oxidized zone, from 1.44 kN/m to 450 N/m

after 100 hrs of oxidation, as seen from Fig. 2.11(a). The limiting chain extensibility

also drops down to ≈ 5.0 on the left surface compared to the unoxidized value of 9.0

for the virgin polymer as shown in Fig. 2.11(b). Consequently, these events affect the

load-displacement response of the material as demonstrated in Fig. 2.12(a). After

100 hrs of oxidation, we see a significant drop in the maximum load, compared to the

virgin material (as ≈ 67%). Similarly, the stretchability of the oxidized material has

been dropped compared to the virgin material, as seen from the ultimate displacement

values corresponding to the final fracture. Fig. 2.12(b) shows the phase field contour

plots of the oxidized polymer sample corresponding to the locations marked by a, b

and c in the force-displacement curve. The sample reaches the maximum load at the

point a. Beyond this point, the load continues to drop with a continuous increase

in the phase field parameter value. Finally the sample completely breaks at point c,

with the phase field value reaching almost equal to 1, as shown in Fig. 2.12(b)-c.

2.4.3 Case study-3: Effect of oxidative aging in an asymmet-

rically notched specimen

As mentioned in case study-2, the presence of cracks promotes oxidation by providing

new paths for oxygen diffusion and creates secondary oxide zones at the crack-tip.
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Therefore, it is expected that the presence of multiple cracks would create heteroge-

neous oxide layers near and around the crack, eventually governing the local material

behavior and damage propagation at the macro-scale. In this simulation, we apply a

tensile loading in an asymmetrically notched specimen subjected to various oxidation

boundary conditions. Fig. 2.13 refers to the geometry of the asymmetrically notched

specimen as considered. The sample dimension is 10 mm× 15 mm. Similar to the ear-

lier case studies, a two-step simulation is followed, with the sample being oxidized at

80oC for 50 hours (in the 1st step) followed by a vertical displacement applied at the

top surface with the bottom held fixed. The notch at the right edge is located closer

to the top surface and is larger compared to the one located at the left side of the

specimen, as shown in Fig. 2.13. Both cracks possess a width of 0.01 mm. For a pure

mechanical loading without any oxidation, it is expected that the larger notch would

propagate at a faster rate than the smaller one (as observed in Fig 2.15b-1). However,

under the presence of oxidation, the damage propagation is entirely governed by the

heterogeneous nature of the property distribution caused by the chemical reactions.

To isolate and identify that the heterogeneous oxidation indeed changes the course of

damage propagation, we study and compare two different types of oxidation bound-

ary conditions, as-i.) oxygen is allowed to diffuse from both the left and right sides

of the specimen and ii) oxygen is allowed to flow only through the left side.

The contour plots for the extent of reaction (III) (ξ3) after 50 hours of oxidation is
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Figure 2.13: Geometry and dimension for the asymmetrically notched
specimen.

shown in Fig. 2.14 (a). The top and the bottom row represent the contour for the left-

side oxidation and the both-side oxidation conditions, respectively. As can be seen

from these contours, the extent of reaction reaches at a higher value toward the core

for the specimen allowed to oxidize from both sides compared to the only left-sided

one. Consequently, this situation results in completely different property distribution

within the sample, for the two cases, as shown in Fig. 2.14(b), and (c), respectively for

Gc and λL. As expected, these non-uniform property distributions would eventually

lead to a very different constitutive response and damage propagation in the specimen,

as explained below.

Fig. 2.15(a) shows the force vs. displacement plots for the two different oxidation

conditions as compared to the virgin (unoxidized) sample. The unoxidized specimen
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Figure 2.14: a) Contour plots of extent of reaction (III) after 50 hours
of oxidation: b) corresponding contour plots of Fracture energy, Gc(N/m)
and c) contour plots for limiting stretchability, λL; top row- only left side
oxidized; bottom row- both sides oxidized.

can carry the maximum load of about 400N, while the left-side oxidized specimen only

carries a maximum load of about 280N, with the both-side oxidized sample has the

lowest load carrying capacity of about 250N. Fig. 2.15(b) shows the corresponding

damage contours for the three cases, respectively. It is already mentioned, in the

case of the unoxidized sample, the larger crack propagates at a much faster rate,

dominating the final failure of the specimen. In the case of both side oxidation,

still the larger crack propagates dominantly, with the smaller one closely following.

On the other hand, for the case where only left side is oxidized, the smaller crack

propagates faster compared to the larger one. This is due to the fact that the property

degradation near the left edge due to oxidation is dominant compared to the right
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edge, and an increase in local brittleness influences the crack propagation path near

the left edge. Hence, it is observed that oxidative aging introduces local heterogeneity

in the mechanical properties, which in turn governs the localized damage initiation,

propagation, and the final response of the oxidized polymer.

(a)

(b)

Figure 2.15: (a) Force vs. displacement plot for the asymmetric notched
specimen under different oxidation conditions; (b) the corresponding damage
contours near the final failure point.
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2.5 Concluding remark

In this work, we have developed a reaction-driven evolving polymer network theory

coupled with phase-field fracture to model the high-temperature oxidative degrada-

tion and fracture in amorphous polymers. The proposed theory considers the closed-

loop chain reaction kinetics occurring at the polymer chain level and incorporates

them into the statistical mechanics based network theory to account for the network

alternation and mechanical property degradation. The proposed theory is capable of

quantifying and reflecting the network level changes in the polymer via the active and

dissociated chain ratios; both of which evolve as a function of oxidative crosslinking

and chain scission. Upon establishing a seamless connection between the micro and

macro-scale kinematics, the continuum level constitutive response of the material is

further derived. In addition, we have used a continuum level phase-field fracture

theory to model the macroscopic damage originating due to the heterogeneous stress

distribution in the material under prolonged oxidation. We further tested the capabil-

ity of the proposed model by numerically implementing it in a commercial FE-setting

and performing several important case studies.
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Chapter 3

A homogenized large deformation

constitutive model for

thermo-oxidation in

fiber-reinforced polymers

3.1 Introduction

Long-term durability and the use of polymer matrix composites at elevated temper-

atures are limited by their susceptibility to thermo-oxidative degradation. Thermo-

oxidation in PMCs is a type of aging process, where the polymer matrix reacts with
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atmospheric oxygen, at a temperature close to or above the glass transition tempera-

ture (Tg) [57, 63, 64], causing significant degradation in mechanical performance and

long term durability. The chemical reactions at high temperature in the presence of

oxygen cause mass and density variations and irreversible shrinkage strains respon-

sible for residual stress in the PMCs. Other effects of thermo-oxidation consist of

a substantial change in local mechanical properties, fiber-matrix debonding, matrix

microcracking etc.

The basic oxidation mechanism in polymer matrix has been widely investigated in

the recent literature both from an experimental and modeling point of view, as

[22, 59, 62, 63, 102, 104, 143, 175, 200, 240, 241]. However, the presence of fibers in the

composites results in complicated interaction between the composite’s microstuctures

and the multiphysics character of the matrix’s thermo-oxidation process involving dif-

fusion, chemical reactions and thermomechanics. When carbon/glass fiber PMC is

concerned, since the fibers are reasonably inert to oxidation, the degradation effects

concern the polymer matrix only [58, 63, 201, 241]. Incorporation of the fibers results

in directional dependencies (anisotropy) in the oxygen diffusion, chemical reactions

and further the shrinkage strains in the composites. Recent studies have focused on

carbon-epoxy systems, to address the effect of the fiber reinforcement on the oxidative

degradation of the composites across different length scales [68, 174] and for various

composite’s microstructure [273]. The visible effect of oxidation in the composites

in the form of a growing oxide layer (few microns in size) on the outer surface of a
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specimen-has been characterized by microscopic measurements [172, 200, 256]. The

formation of the degraded oxide layer is further accompanied by a local gradient in

the mechanical properties within this layer. To characterize and quantify the extent

of oxidation, measurements of local elastic indentation modulus, shrinkage strain etc.

have been extensively used for polymers and PMCs, cf. [55, 102, 103, 104, 193, 256].

The oxidation-induced anisotropic degradation in PMC was first reported by [188],

where a dominant degradation was observed in graphite/polyimides composite at the

surface perpendicular to the fiber. The presence of a much thicker oxide layer along

the fiber direction was also experimentally observed by [224]. Though the fibers are

mostly inert to chemical reactions, their presence introduces additional factors such

as, orientation of the fibers [200, 202, 224, 241], fiber volume fraction [102, 103], siz-

ing of the fiber [251], stacking sequence [202] etc., to influence the diffusion-reaction

process in thermo-oxidation. The anisotropic effect in oxidation as driven by the

preferential diffusion of oxygen along the fiber direction– reported to be 8 to 10 times

higher compared to the perpendicular direction [40, 184, 200, 202, 241]. This prefer-

ential diffusion promotes heterogeneous rates in the chemical reactions, and thus the

resulting shrinkage strain is also much higher along the fiber path [224, 241]. By using

experimental technique such as, interferometric microscopy, experiments have been

performed to measure these shrinkage strains and damage development. In [256], it

was shown for a unidirectional IM7/977− 2 carbon-epoxy composite systems, ma-

trix shrinkage between fibers increases with aging time and the value is significantly
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higher in the resin rich zones. Since the fibers do not deform with aging, they con-

strain the development of matrix resin shrinkage-which is more visible in the resin-rich

zones. Similar experiments are also done by [102] on a HTS/TACTIX carbon-epoxy

composite to measure the surface shrinkage strain (microscopic) and compare the

values with virgin samples and at different values of oxygen partial pressure. Their

study showed a significant effect of fibers arrangement and volume fraction on ma-

trix shrinkage development. In [148, 202], a comprehensive experimental effort has

been detailed on characterizing thermo-oxdation in laminated and woven carbon-fiber

polyimide composites, to understand the influence of ply layup, laminate architecture

and thickness.

In addition to the experimental efforts, various modeling frameworks to describe

thermo-oxidation in PMCs have also been reported in the literature. Incorporating

the anisotropy in oxygen diffusion in the fiber and fiber-matrix interphases, modeling

route has been provided by [200, 202] to simulate oxidation in PMCs. The stiffness

changes due to oxidation as well as shrinkage strains are also modeled explicitly in

their study. Based on the thermodynamics of irreversible process, in [104], a theory

and numerical implementation has been presented to model thermo-oxidation induced

shrinkage strains, stresses in polymer composites and compared with experiments in

good agreement. The existing modeling efforts are limited in terms of incorporating

the interaction between the composite microstructures (fiber direction, volume frac-

tion) and the coupled nature of the oxidation process involving reaction, diffusion
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and thermo-mechanics.

In this work, we present a novel continuum-scale homogenized constitutive theory

to model the anisotropic diffusion, chemical reactions and a preferential oxide layer

growth in a fiber reinforced polymer matrix composite. Based on an existing mul-

tiphysics model for the bulk polymer oxidation [143], the present homogenization

incorporates the effect of fiber in the composites for predicting the thermo-oxidation

behavior in fiber-reinforced PMCs. In the proposed framework, the composite RVE is

modeled as a mixture of fibers and isotropic matrix, where the fibers are characterized

by their orientations and respective volume fractions. The oxygen diffusion, and the

resulting shrinkage strain developed due to the chemical reactions are considered as

anisotropic, being dominant along the fiber direction. In addition, a heterogeneous

RVE consisting of the fibers and matrix separately is also considered to simulate the

anisotropic diffusion and reactions. The models are numerically implemented by writ-

ing user-element subroutines (UEL) in Abaqus/Standard [1] and various numerical

simulations are performed in 2-D and 3-D to elucidate the effect of fibers in the com-

posite’s thermo-oxidation process. It is important to note that the oxidative aging can

occur along the fiber/matrix interfaces, causing delamination. However the present

homogenized approach does not consider any explicit account for the interfaces. The

heterogeneous model could be extended to incorporate the interfaces and a cohesive-

zone type model can be used to simulate the delamination type failures combining

with the present framework. It is also important to note, that the homogenized model
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would be helpful to predict the effect of oxidation at the composite’s component level

such as lamina or panel etc. On the other hand, the heterogeneous model would

demonstrate the oxidation behavior (such as local failure, matrix cracking, degra-

dation etc.) at the composites’ microscale, where the details of the microstructural

features are particularly important.

3.2 Homogenized constitutive theory of oxidation

in a fiber-reinforced polymer matrix composite

In this section, we present the homogenized theory of oxidation in composites that

incorporates the anisotropic effect due to the presence of fibers on the oxidative

constitutive response. Based on an earlier developed model for bulk polymers [143],

the present formulation also considers the coupled effect between the oxygen diffusion,

chemical reactions and large deformation behavior of the fiber-reinforced composite

system. Since the fibers are mostly inert to chemical reactions, the oxidation reactions

affect only the polymer matrix. However the kinematics of the homogenized RVE

depends on the fiber arrangements and thus influences the overall response of the

composite during oxidative aging.
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3.2.1 Oxidation reaction kinetics and the associated state

variable

Based on the kinetics of the oxidation reaction for polymers [58, 59, 60, 63], we have

adopted a closed-loop chain reaction scheme in our earlier work [143]. For the sake

of completeness, we present a highlight of that scheme in the following. For details

the reader is referred to our previous work [143] and the references therein.

In the thermo-oxidation of polymers, the oxidative reactions consist of hydroperox-

ide generation and various reactants and substrate consumption phenomena. The

mechanistic scheme as identified in [57, 58, 59, 60, 61, 62, 63, 64], describes differ-

ent chemical species such as-POOH, PH, volatiles, O2, P
∗, PO∗

2 and three species of

inactive products being involved in the set of six reactions. The closed-loop chain

reaction scheme as adopted in the present work has been provided in ??, for refer-

ence. To calculate the progression of the chemical reactions as a function of aging

time, a set of thermodynamic state variables (internal variables) named as extent of

reaction have been introduced in our earlier work [143]. In the present setting, we

use the same set of six state variables, as extent of reactions, denoted by ξn(xR, t);

with 0 ≤ ξn(xR, t) ≤ 1, where n is the reaction number. Hence, ξn = 0 indicates

reaction n has not occurred and ξn = 1 indicates the reaction has been completed at

the material point xR. Subsequently, we would be able to track the rate of change of
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concentration for a reacting species or product β as, rβ =
∑

n

[
Rnβ ξ̇n

]
, where Rnβ

is the stoichiometric coefficient in reaction n. It is to note that rβ is measured in

mol/m3.

Further it is also important to note that the extent of reaction can be used as an

indicator of the oxidation progression in the material domain. In particular, we have

used ξ2 ≈ 1 as an indication of complete oxidation, since the reaction kinetics sug-

gest reaction II being a characteristic reaction for the oxidation process. Hence, by

measuring the domain on which the value of ξ2 has reached one, we have tracked

the evolution of oxide layer thickness as a function of time in the bulk material, as

described later. In the present study the evolution of oxide layer has not been treated

as a (separate) free surface formation and thus any kind of stress or diffusion induced

surface instabilities arising due to the stiffness mismatch between the bulk unoxidized

material and the oxide surface has been avoided[70].

3.2.2 Kinematics-incorporating the anisotropic effect due to

the fibers

Let us consider the domain of a composite representative volume element (RVE) as

BR, constitutes of α different fiber families embedded into a polymer matrix. Each

fiber family is represented by their volume fraction fα
R and direction aα

R. The presence
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of fiber generates anisotropy in the kinematics of the composite’s deformation. We

assume the fibers are chemically inert to the diffusion-reaction process and perfectly

bonded with the matrix. Following the constitutive theory of highly anisotropic mate-

rial [232], deformation in the fibers in a fiber-reinforced composite can be described by

introducing an additional pseudo-invariant (as done previously in [24, 36, 124, 189]).

Assuming the fiber family α is oriented along the direction of the unit vector aα
R, the

pseudo-invariant can be defined as,

Iα
4 = aα

R . Caα
R = (λα)2 (3.1)

where, C = FTF is the right Green-Cauchy tensor, with the deformation gradient as

F = ∇χ, for a continuous deformation map as, x = χ(xR, t), within the domain BR;

and λα is the stretch of fiber α along the direction aα
R.

As mentioned in the introduction, the volatile products generated during the chemical

reactions in oxidation of polymers escape the material volume creating mass loss for

the material. At the same time the oxide formation results in an increase in the local

density-the combined effect of which causes irreversible volumetric shrinkage in the

material. As per the literature data supporting the preferential direction of oxidation

along the fiber path [202, 241] in unidirectional composites, we also assume anisotropic

diffusion leading to higher reaction rates along the fiber direction compared to the

transverse direction. Since the oxidation reactions occur preferentially along the fiber
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direction as well as the presence of fibers provide constrain to the matrix in the

transverse direction, it is conceivable that the resulting shrinkage is also anisotropic

in nature. Treating oxidation induced shrinkage as thermodynmically irreversible, we

apply a multiplicative decomposition of the total deformation gradient, based on the

large deformation theory of polymers [12] as,

F = FeFs (3.2)

where Fe is the elastic component of the deformation gradient, and Fs is the irre-

versible shrinkage component, which incorporates the deformation due to permanent

volumteric shrinkage occurring due to the chemical reactions. We also conclude that

the jacobians J e = detFe and J s = detFs are both greater than 0, such that Fe and

Fs are both invertible.

Further, introducing the velocity gradient as, L = ḞF−1 = Le + Ls, where Le and

Ls are the elastic and irreversible part of the velocity gradient, Ls can be further

decomposed into (Ds) and the spin tensor (Ws). Assuming Ws = 0, we can re-write

Ls ≡ Ds. Considering the anisotropic effect in the shrinkage, the rate of shrinkage

strain tensor can be defined as

Ds = ξ̇2S
α (3.3)
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where, an anisotropic tensor, Sα is introduced as,

S
α = βα

I a
α
R ⊗ aα

R + βα
II(1− aα

R ⊗ aα
R) (3.4)

where βI and βII are the scalar quantifying the magnitudes of the shrinkage in the

direction of fiber (α) and perpendicular to the fiber, respectively (cf.[26, 153, 187]).

It is to be noted that βI > βII , as the magnitude of the volume shrinkage would be

lesser in the transverse direction compared to the axial due to the constrain provided

by the fibers. Further we have assumed that the shrinkage strain evolution Ds is a

function of the extent of reaction (II) (ξ2). Since reaction (II) is the dominant reaction

indicating the propagation of the oxidation front, it is reasonable to assume that the

shrinkage strain would evolve as a function of the extent of reaction (II). However,

oxidation reaction is a closed-loop chain reaction scheme; hence consideration of any

other reaction would also predict similar trend of the shrinkage strain evolution.

We further define a mean shrinkage strain rate along the (fiber) direction α as,

β̇α =
1

3
trDs =

ξ̇2
3
(βα

I + 2βα
II) (3.5)

Introducing the standard result of continuum mechanics as, J̇ s = J strDs, combined

with Eq. 3.5, standard integration results in the volumetric shrinkage as,

J s = exp(3βα) (3.6)
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3.2.3 Mass balance for the diffusing and reacting species

The local mass balance equation for any species β, participating in the underlying

diffusion-reaction process of thermo-oxidation, holds up as,

ċβR = −DivjβR +
∑
n

[Rnβ ξ̇n
]

(3.7)

where jR is the diffusive flux. At the outset, we consider that oxygen is the only

diffusing species and the other constituents present in the system, such as, POOH, PH

and POOP only participate in the chemical reactions. Hence, we can write the

following mass balance equations for the constituents involved in a standard oxidation

scheme as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ċO2
R = −DivjO2

R − ξ̇2 + ξ̇6 for O2

ċPOOH
R = −ξ̇1a + ξ̇3 for POOH

ċPH
R = −ξ̇3 for PH

ċPOOP
R = ξ̇5 + ξ̇6 for POOP

(3.8)
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3.2.4 Balance of forces and moments

From standard continuum mechanics, we can write the force and momentum balance

equations as:

DivTR + bR = 0 and TRF
T = FTT

R (3.9)

where TR and bR are the Piola stress and external body force, respectively in a

reference body. As is standard, Piola stress is related to the symmetric Cauchy stress

in the deformed body by,

T = J−1TRF
T (3.10)

3.2.4.1 Thermodynamics and the energy balance

The complete thermodynamically consistent derivation of a coupled chemo-

mechanical model for polymer oxidation is presented in one of our earlier work [143]

and is avoided here. We describe the thermodynamic restrictions in the present con-

stitutive setting for a FRPMC, starting from the local form of energy balance for a
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chemo-mechanically coupled system as given by,

ψ̇R −TR : Ḟ+
∑
β

jβR · ∇μβ +
∑
β

μβ
∑
n

[Rnβ ξ̇n
]−∑

β

μβ ċβR ≤ 0 (3.11)

where ψR represents the free energy of the system and μβ represents the chemical

potential of the diffusing species. Since the stress measure TR is not symmetric, we

decompose the stress-power as [also done in [143]],

TR : Ḟ = TR : (ḞeFs + FeḞs) (3.12)

= (JFe−1TFe−T ) : (FeT Ḟe) + (CeJFe−1TFe−T ) : Ls

Introducing the elastic second Piola stress as, Se = JFe−1TFe−T , right Cauchy-Green

strain tensor as Ce = FeTFe, and the Mandel stress as, Me = CeSe, we can write the

irreversible part of the stress power as,

Me : Ls = Me : Ds

= Me : ξ̇2S

= ξ̇2[βI trMe + (βI − βII)(aR .MeaR)]

(3.13)
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Then Eq. 3.11 can be finally re-written as,

ψ̇R−Se :
1

2
Ċe−ξ̇2[βI trM

e+(βI−βII)(aR .MeaR)]+
∑
β

jβR·∇μβ+
∑
β

μβ
∑
n

[Rnβ ξ̇n
]−

∑
β

μβ ċβR ≤ 0 (3.14)

3.2.5 Basic constitutive equations

Using Eq. 3.14 and invoking the thermodynamic restrictions, we can further obtain

the constitutive relations for all the processes (diffusion, mechanical deformation etc.)

for a given choice of the free energy function as,

ψR = ψ̂R(C
e, cβR, ξn) (3.15)

Hence, the constitutive forms for second Piola stress and the chemical potential of

species β can be obtained as,

Se = 2
∂ψ̂R(C

e, cβR, ξn)

∂Ce
(3.16)

and the chemical potential as,

μβ =
∂ψ̂R(C

e, cβR, ξn)

∂cβR
(3.17)
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Additionally, we assume that the fluid flux in the reference config. obeys the following

constitutive form:

j
(β)
R = J−1M̂β(Ce, cβR, ξn)F

−T∇μβ (3.18)

where M̂β is a mobility tensor associated with the diffusing species β. Finally, we

define a dissipative-type driving force as a conjugate to the extent of reactions:

Fn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A2 + [βI trMe + (βI − βII)(aR .MeaR)]−

∑
β μ

βR2 , n = 2

An −
∑

β μ
βRn, , n 
= 2

(3.19)

where An is the chemical affinity defined as,

An = −∂ψR

∂ξn
(3.20)

Assuming each individual reaction follows an Arrenhius type evolution and its pro-

gression depends on the availability of the reactants, we can define the evolution of

ξn as,

ξ̇n = ˆ̇ξn(Fn, ϑ, ξn, c
β
R) ≥ 0 for Fn > 0 & cβR > cβ,critR (3.21)

where ϑ represents the reference temperature and cβ,critR represents the critical con-

centration of the species β, below which the reaction won’t occur.
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3.2.6 Specific constitutive form for the homogenized fiber-

reinforced polymer composites

We consider the total free energy of the composite undergoing oxidation can be written

as a separable form consisting of mechanical free energy, free energy for the diffusion

of oxygen into polymer and free energy of the chemical reactions. Separating the

mechanical free energy further into the contribution of matrix and fibers, the total

mechanical free energy can be written by following the rule of mixture as,

ψmech
R = (1−

∑
α

fα
R)ψ

mech
R,matrix +

∑
α

fα
Rψ

mech
R,fiber (3.22)

where
∑

α f
α
R is the total fiber volume fraction. For the brevity of expression, we write

fR =
∑

α f
α
R. For the free energy of the matrix, we consider the Gent hyperelastic form

[99]. For the energy contribution due to fibers, we use a quadratic energy form based

on the pseudo-invariant approach, as adopted by [36, 124, 187]. For the diffusion of

oxygen, we use Flory-Huggin’s form of free energy. Finally, for the chemical energy

for the reactions, we use a quadratic free energy as a function of the extent of reaction

(ξn). Hence, the complete expression of free energy is given as,
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ψR = (1− fR)

[
−1

2
Gshear Imln

(
1− Ī1 − 3

Im

)
+ J s1

2
Kbulk( lnJ

e)2
]

︸ ︷︷ ︸
Mechanical energy for matrix

+

(1− fR)

[
μO2
0 cO2

R +RϑcO2
R

[
ln

(
ΩcO2

R

1 + ΩcO2
R

)
+ χ

(
1

1 + ΩcO2
R

)]]
︸ ︷︷ ︸

Energy of diffusion

+

∑
n

Hn

2
(1− ξn)

2

︸ ︷︷ ︸
Chemical energy

+
∑
α

1

2
fα
RE

α(Iα
4 − 1)2︸ ︷︷ ︸

Mechanical energy for fiber

(3.23)

where, Gshear and Kbulk are the ground state shear and bulk modulus of the polymer

matrix; Ī1 = trC̄e, with C̄e = J−2/3Ce, being the deviatoric part of the elastic right

Green-Cauchy tensor; Im is the Gent parameter representing the limiting stretchabil-

ity as (Ī1 − 3). It is important to note that Gent model is capable of capturing the

finite strain hardening response of the polymer chains through this Im parameter.

In addition, Hn is the chemistry modulus (unit–J/m3) defined as, Hn =

−2(
∑

p G
pcpR − ∑

r G
rcrR), where G indicates the Gibbs energy for the product p

and reactant r, respectively. μO2
0 is the reference chemical potential for oxygen, R

is the universal gas constant, ϑ is the temperature, χ is the dimensionless Flory-

Huggin’s interaction parameter, and Ω is the molar volume of oxygen (unit–L/mol).

For further details about the free energies, readers are advised to refer to our earlier

work [143]. Lastly, Eα is the elastic modulus of the fiber family α.
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3.2.6.0.1 Cauchy stress, chemical potential and affinity:- Following the free

energy the Cauchy stress can be found using Eq. 3.23, C.6 and 3.16 as,

T = J−1[2FeSeFe]

= J−1(1− fR)
[
Gshear

(
Ī1 − 3

Im

)−1

(Bdis)0 + J s Kbulk lnJ
eI
]

(3.24)

+J−1
∑
α

2fα
RE

α(J s)2/3(Iα
4 − 1)Fe(aR ⊗ aR)F

eT

where (Bdis)0 is the deviatoric part of the left Green Cauchy tensor, Be.

Chemical potential driving the diffusion of O2, μ
O2 , can be obtained from Eq. 3.23

and 3.17 as,

μO2 = (1− fR)

[
μO2
0 +Rϑ

(
ln

(
ΩcO2

R

1 + ΩcO2
R

)
+

1

1 + ΩcO2
R

+ χ

(
1

1 + ΩcO2
R

)2
)]

(3.25)

It is important to note that we have assumed the diffusion and mechanical deformation

as uncoupled in the present setting. This assumption is realistic considering the

diffused oxygen molecules are extremely small compared to the long chain polymers.

Hence diffusion of oxygen does not influence the polymer’s deformation. In addition,

the chemical reactions occur at a much faster rate than the diffusion. Hence any

diffused molecule instantly gets consumed by the reactions. Thus the diffused oxygen
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does not affect the deformation of the matrix, but the chemical reactions does through

the shrinkage behavior, as described earlier.

Finally, the affinity of any reaction n can be calculated from Eq. 3.20 and 3.23 as,

An = Hn(1− ξn) (3.26)

.

3.2.6.0.2 Evolution of extent of reaction ξn:- Based on our earlier work [143],

we choose a thermally activated Arrenhius type relation for the evolution of extent

of reaction ξ̇n as,

ξ̇n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
knexp

(
−Qn

act

Rϑ

)
Fn, when Fn > 0 and ξn < 1

0, otherwise

(3.27)

where, kn is the pre-exponential rate constant for reaction n and has an unit of 1
MPa−s

,

Qn
act is the activation energy for reaction n.

3.2.6.0.3 Oxidation dependent shear modulus, diffusivity and stretchabil-

ity:- As evident in the polymer oxidation literature, prolonged oxidation leads to an

increase in the modulus and diffusivity of the polymer matrix [102, 103, 104, 240, 241].
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In the present work, we assume a linear dependence of shear modulus, diffusivity and

stretchability as a function of extent of reaction (II), ξ2 based on our earlier proposi-

tion for polymer oxidation [143]. We define,

G(ξ2) = (1− ξ2)Gun + ξ2Gox (3.28)

Dm(ξ2) = (1− ξ2)Dun + ξ2Dox

Im(ξ2) = (1− ξ2)Iun + ξ2Iox

where Gun and Gox corresponds to the shear modulus of unoxidized and completely

oxidized polymer. Similarly, Dun and Dox indicate the diffusivity of oxygen in the

unoxidized polymer and in the oxide layer, respectively and Dm is the diffusivity of

the polymer matrix. Iun and Iox are the stretchability of the virgin and oxidized

polymer, respectively.
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3.2.7 Governing differential equations for the coupled

diffusion-reaction-mechanical system

There are two governing partial differential equations required to be solved in the

oxidation phenomenon:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
DivTR + bR = 0

ċO2
R = −DivjO2

R − ξ̇2 + ξ̇6

(3.29)

We require the initial and boundary conditions to complete the solutions of these

differential equations. Let, S1 and S2 are complementary subsurfaces of the boundary

∂BR of a reference body BR such that S1 ∪ S2 = ∂BR and S1 ∩ S2 = ∅. Similarly,

let ScR and SjR are complementary subsurfaces of the boundary ∂BR = ScR ∪ Sj

with ScR ∩ SjR = ∅. For a time interval t ∈ [0, T ], two boundary conditions can be

described such that displacement is known on S1 and traction on S2. Thus, we can

write,

χ = χ̌ on S1 ∀ t ∈ [0, T ]

TRnR = ťR on S2 ∀ t ∈ [0, T ] (3.30)

Similarly, another pair of boundary condition can be considered for a time interval
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t ∈ [0, T ] such that oxygen concentration is known on ScR and oxygen flux on SjR

and thus,

cO2
R = čR on ScR ∀ t ∈ [0, T ]

−D(∇cO2
R ) · nR = ǰR on SjR ∀ t ∈ [0, T ] (3.31)

The initial conditions are,

χ(X, 0) = χ0(X), and c
(O2)
R (X, 0) = cR0(X) in BR. (3.32)

Thus the coupled set of equations, Eq. 3.29 together with 3.30, 3.31 and 3.32 pose

an initial boundary value problem to be solved for the displacement χ(X, t) and

concentration cR(X, t) simultaneously. In addition, there would be a set of ordinary

differential equations to solve for the mass balance and evolution equations for the

state variables. The proposed model has been implemented in general purpose finite

element code Abaqus [1] by writing a user element subroutine (UEL) to solve this

coupled system of equations.
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3.3 Representative numerical simulations

In this section, we present various numerical simulations for fiber-reinforced polymer

composites undergoing oxidation using the proposed homogenized model. For a de-

tailed comparison, the results obtained from the homogenized model are juxtaposed

with a heterogeneous modeling framework considering the fiber and matrix as separate

constituent materials. In this heterogeneous model, the fibers are considered as linear

elastic and impermeable. Further the fiber acts as inert with respect to the oxidation

reaction, while the polymer matrix is modeled as a large deformation strain harden-

ing material participating in the oxygen diffusion and the chemical reactions (same

as the homogenized model). We demonstrate the capability of the proposed model

by performing numerical simulations in both two dimensional and three-dimensional

settings. We predicted the important characteristics of the thermo-oxidative aging

process in FRPMCs such as the formation of heterogeneous oxide layer as a function

of fiber orientation, anisotropic distribution of shrinkage strains, effect of fiber volume

fractions etc. The material parameters such as elastic modulus, poisson’s ratio, etc.,

are chosen for a HTS/TACTIX carbon-epoxy composite as reported in [102]. The

solubility and diffusivity parameters of epoxy are taken from [79]. The mechanical

properties of the representative fiber-matrix composites samples are reported in Ta-

ble 3.1. For other kinetic constants related to the diffusion and chemical reactions,

we use the parameters reported in our earlier work as given in Table 1.1, [143]. The
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choice of the reaction kinetic parameters for a generic polymer system is considered

acceptable to model the carbon fiber-reinforced composite system, as it is expected

to only affect the magnitude of the oxidation rates without altering the underlying

physics. Based on the experimental data provided by [202, 224], we assume the oxygen

diffusivity to be ten times higher along the fiber direction compared to the transverse

direction. It is to be noted that, the consistent experimental data was not available

in the literature to calibrate the reaction kinetic parameters for a specific polymer

matrix composite system. Hence, in the present work, we restrict ourselves with a

qualitative comparison between the model predictions and the experimental data. In

the following, case studies are done to explore -

† variation in oxide layer growth along the fiber direction compared to the trans-

verse direction in 2-D and 3-D composite RVE.

† effect of fiber volume fraction on the oxidation rate and shrinkage strain evolu-

tion in the RVE.

† oxidative aging in a composite bracket containing two different fiber families

aligned in mutually perpendicular directions.

3.3.0.0.1 Case study 1-2-D unidirectional fiber-reinforced composite

RVE undergoing isothermal oxidation:- In this simulation we consider a 2-

D fiber-reinforced polymer matrix composite RVE undergoing isothermal oxidative
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Matrix Kbulk 2395 MPa [103]
Gun 850 MPa [103]
Gox 1000 MPa
Im 3

Fiber Eα 230 GPa
να 0.3

Shrinkage βI −0.05
βII −0.005

Table 3.1
Material parameters for a representative fiber-reinforced composite

undergoing oxidation

aging. The block has a dimension of 1 mm × 1 mm, in which cylindrical fibers of

0.2 mm diameter are embedded along the vertical direction (unit vector e2), as shown

in Fig. 3.1(a). The RVE consists of a fiber volume fraction of 0.4. The corresponding

homogenized model is shown in the right of Fig. 3.1(a). For the mechanical bound-

ary condition, we consider symmetry along 1 and 2 direction for the left and bottom

edges, respectively. The other two sides are left free. For the chemical boundary

condition, we consider as oxygen flowing from the right and top side of the sample,

while the other two sides are impermeable. The chemical boundary in terms of the

oxygen concentration is applied in a ramp-like manner on the respective surfaces,

as shown in Fig. 3.1(c). In what follows, by maintaining the constant atmospheric

pressure on the pertinent edges a concentration of 5×10−4 mol/L as absorbed oxygen

is obtained on the surface. It is to be noted that to compute oxygen adsorption on

the surface, Henry’s law of solubility is used [79]. For the present study, we assume

D2 = 10 D1, where D1 = Dm is the diffusivity of oxygen in bulk epoxy as listed in

Table 1.1. We take the initial resin concentration as, cPH∗
0 = (1−fR) c

PH
0 , where cPH

0

is the available resin concentration in the RVE without the presence of fibers. The
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sample is then oxidized at 150oC for several hours and examined to study the effect

of fiber presence in the RVE through the course of oxidation.

(a)

(b)

Figure 3.1: Geometry and boundary conditions for 2D unidirectional com-
posite RVE: (a) (left) Heterogeneous RVE showing fibers and polymer ma-
trix; (right) corresponding homogenized 2D version; (b) chemical boundary
condition for oxygen concentration.

Fig. 3.2 shows the comparison of contour plots for the extent of reaction (II), vol-

umetric shrinkage (Js) and von-mises stress (σeq) after 80 hours of oxidation for

heterogeneous (left) and homogenized (right) model predictions. As seen in Fig. 3.2
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(a.) both the heterogeneous and homogenized models predict very similar profile for

extent of oxidation. After 80 hours of oxidation, ξ2 reaches to a value of 0.545 on the

outermost surfaces. However, the top surface grows a thicker oxide zone compared

to the right edge, as the fibers are aligned along the vertical direction. Since the

oxygen diffusion along the fiber direction is faster than the transverse direction, the

extent of oxidation is also faster along the fiber direction. A very similar behavior is

also observed in the case of the volumetric shrinkage and Von Mises stress evolution.

Higher extent of oxidation on the top and right surfaces results in higher volumetric

shrinkage and equivalent stress on the respective areas, while the RVE core stays

almost unaffected. We observe a maximum J s of 0.968 on the oxidized surfaces,

indicating an average volumetric shrinkage of 4.2% (as seen in Fig. 3.2(b)) generat-

ing an average stress of 45 MPa on these elements (Fig. 3.2(c)). It is to be noted

that the volumetric shrinkage and the resulting stresses generated during oxidation

is considered as permanent due to the irreversible nature of the chemical reactions.

Hence these stresses would remain in the RVE as residual stresses even after the ox-

idative aging is completed. It is important to note that, while the magnitudes of the

plots from both heterogeneous and homogenized models are same, there is a slight

variation in their respective profiles, as evident from Fig. 3.2. This is expected as

the fibers and the matrix are modelled as separate constituents in the heterogeneous

case considering the fibers as linearly elastic and chemically inert. These variation in

the fiber-matrix properties would influence the output quantities along the interfaces,
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as observed in the ξ2 and Js plots. On the other hand, in case of the homogenized

model fiber and matrix are considered in an average (smeared) sense with the fiber

volume fraction as a parameter. Accordingly, the results obtained from the homoge-

nized model do not have the precise information about the presence of interfaces. The

difference in the contours is more prominent in the Von-Mises stress plots, as shown

in Fig. 3.2(c). Since in the case of heterogeneous model, we assumed fibers are much

stiffer and perfectly bonded to the matrix, it acts like a constrained boundary at the

fiber-matrix junction (interface) causing a local stress gradient. On the other hand,

the homogenized model predicts a smeared stress distribution without the influence

of the fiber-matrix property difference along the interfaces.

It is important to note that there could be stresses generating within the domain

due to the mismatch in thermal co-efficient between the fibers and matrix as propor-

tional to (αf − αm)Δθ; where α’s represent the thermal expansion coefficient of the

constituents and Δθ represents the temperature difference. However, based on the

literature data assuming the composite’s thermal expansion coefficient being nearly

zero, this stresses has been neglected in the present simulation [75]. Further, the

present formulation considers an isothermal oxidative aging; hence the temperature

fluctuation wouldn’t occur during the aging process.

3.3.0.0.2 Comparison between axial and transverse oxide layer growth in

unidirectional RVE:- We continue to oxidize the 2D unidirectional fiber reinforced
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(a)

(b)

(c)

Figure 3.2: Contour plots for the -(a) extent of reaction (II); (b) shrinkage
strain and (c) Von-mises stress after 80 hours of oxidation; the left figures
correspond to the heterogeneous model while the right figures represent the
results from the corresponding homogenized model.

sample as considered earlier for 1000 hours at 150oC and compare the oxide layer

thickness formed along the direction of the fibers (axial) with the same in transverse

direction. We assume that a value of ξ2 > 0.95 represents the complete oxidation of

that material points. For a qualitative comparison, we present the simulation results
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together with the experimental data as reported by [202, 224] on G30-500/PMR-

15 Fig. 3.3 shows the oxide layer thickness normalized against the maximum oxide

layer formed at the end of 1000 hrs, along the axial (e2 in the Fig. 3.1) and the

transverse directions. As shown by the solid lines in Fig. 3.3, the oxide layer thickness

is much higher along the fiber direction, compared to the transverse direction. This

observation is also consistent with the experimental data [202, 224], represented by the

dashed lines. As mentioned earlier, in the present study our objective is to compare

the qualitative trends between the rate of oxidation along the axial and transverse

directions of the fibers. To predict the accurate quantitative growth of oxide layer,

the diffusivity, solubility and kinetic parameters pertinent to PMR-15 resin used in

the experiment would be required. Due to the non-availaibility of consistent data

for PMR-15, we have used the data for a generic polymer system for which we had

the chemistry of reactions known in details as given in Table 1.1. However, it is

expected that as the matrix molecular structure changes these reactive and diffusivity

parameters would change and hence the model prediction differs quantitatively from

the experiments in the present case study.

3.3.0.0.3 Extent of oxidation in composites as a function of fiber volume

fraction:- In this simulation, we vary the fiber volume fraction to study its effect

on the oxidative aging in fiber-reinforced PMCs using the homogenized model. The

geometry and the boundary conditions for the RVE are considered to be the same
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Figure 3.3: Anisotropic growth of the oxide layer in a typical unidirectional
fiber-reinforced PMC as a function of time:- ta corresponds to the normalized
oxide layer along the axial direction; tt denotes the normalized oxide layer
in the transverse direction, respectively.

as given in Fig. 3.1. We consider three different volume fractions for the fiber as

fR = {0.1, 0.3, 0.5}. In what follows, we oxidize the specimen for 100 hours at 150oC

at atmospheric air. Fig. 3.4(a) shows the contour plots for the extent of reaction (II)

for the three different fiber volume fractions. We observe a decrease in the extent of

oxidation as the fiber volume fraction increases. It is seen that ξ2 has a maximum

value of 0.936 for fR = 0.1, whereas it reaches to 0.4 for fR = 0.5, while keeping the

aging time and temperature same for both the cases. The corresponding volumetric

shrinkage and equivalent stress contours are shown in Fig. 3.4(b) and (c), respectively.

The stress and strain plots also corroborate similar findings observed in Fig. 3.4(a), as
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the magnitudes drop in both cases as a function of increasing fiber volume fraction. As

the fiber volume fraction increases, the available matrix participating in the oxidation

reactions reduces, and the effect of oxidative aging goes down as observed in this set

of results. It is important to note that in the present formulation the diffusivity

(a)

(b)

(c)

Figure 3.4: Effect of fiber volume fraction on the FRPMC oxidized at
150oC for 100 hrs- contour plots of (a) extent of reaction (II), ξ2; (b) volume
shrinkage, J s; and (c) Von-Mises stress.

matrix has been assumed as diagonal. Thus assuming two orthogonal networks of
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fibers in the 2D RVE as considered in the present case study, with the fibers being

aligned along 1 and 2 directions, respectively, one could anticipate an isotropic nature

of diffusion followed by identical growth of oxide layer and the resulting stresses along

1 and 2. However, in reality two orthogonal network of fibers may introduce non-zero

off-diagonal coefficients in the diffusivity matrix, resulting into non-isotropic diffusion

and heterogneous oxidation reactions. In such cases these off-diagonal values would

be estimated by analyzing the fiber architectures in detail.

3.3.0.0.4 Comparison of shrinkage strain evolution with experiments as a

function of fiber volume fraction:- In the previous case study, we demonstrated

that shrinkage strain decreases with increasing fiber volume fraction in a composite

RVE. This particular finding can be used to correlate with the local shrinkage de-

velopment in a FRPMC undergoing thermal oxidation. In this context, we refer to

the experimental study on HTS/TACTIX carbon/epoxy composite, where shrinkage

strains were measured by the interferometric microscopy reported by [102]. In this

study, the fibers were randomly distributed unidirectionally in the specimen, result-

ing in non-uniform local shrinkage with Zone A having the highest density of fibers,

followed by zone B, C and D, respectively. The density of the fibers were charac-

terized by the relative spacing between the fibers in these zones. The authors found

out that shrinkage is more prominent in the less fiber dense zones of the composite

microstructure. In order to simulate a similar phenomenon, we have considered a
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2D homogenized RVE with a given dimension, where the fiber volume fractions are

used to control the spacing between the fibers. In what follows, we found fR = 0.66

represents the zone A, 0.33 for zone B, 0.22 for zone C and 0.165 for zone D, re-

spectively. Next, we simulate the RVEs to oxidize at 150oC under 2 bar of oxygen

pressure for 42 hours and compare the shrinkage developed in these 4 zones. The

simulation parameters are taken from Table 3.1 and Table 1.1, as before. The nor-

malized shrinkage values computed as ( Js

Js
max

); where Js
max is the maximum shrinkage

obtained in the simulations corresponding to the zone D, are plotted in Fig. 3.5 and

compared with the experimental (normalized in the same way) data as observed by

[102]. The results show a good agreement with the experiment at lower fR values

or larger fiber spacing, but deviates at higher fR. Once again, the prediction could

possibly be improved by choosing the kinetic parameters specific to the epoxy resin

for the composite used in the experiment. Thus, the present homogenized approach

qualitatively predicts the oxidation mechanism in FRP composites.

3.3.0.0.5 Case study 2-oxidation in a unidirectional 3-D composite RVE:-

In order to further explore the capability of the proposed model, we perform numerical

simulation considering a 3-D composite RVE. The geometry of the 3-D composite

RVE is shown in Fig. 3.6. The left image shows the heterogeneous RVE and the right

image represents the corresponding homogenized model. The fibers are indicated

with the red circles, consisting a volume fraction of 0.3 and their orientation is along
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Figure 3.5: Effect of fiber volume fraction (or the fiber spacing) on the
residual shrinkage generated in the FRPMC – normalized oxidative shrinkage
plotted as a function of fiber volume fraction.

3-3 direction (denoted by the unit vector e3). For the diffusion boundary condition,

oxygen is allowed to flow from the top and front surface of the specimen with all

the other sides assumed as impermeable. For the mechanical boundary conditions

the back surface is considered fixed in all degrees of freedom. We let the specimen

to oxidize for 80 hours at 150oC in atmospheric air. To incorporate the anisotropic

diffusion due to the presence of fibers the diffusivity is considered as a tensor given

by,

D =

⎡
⎢⎢⎣
Dm 0 0

0 Dm 0

0 0 10 Dm

⎤
⎥⎥⎦

Simulation results are compared for the heterogeneous and homogenized model.

Fig. 3.7(a) represents the contour plots for the extent of reaction (II) after 80 hours

of oxidation. Qualitatively, both heterogeneous (left) and homogenized (right) model
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predict the similar extent of reaction profile. Along e3 i.e. the fiber direction, the

oxidized zone is more prominent compared to the transverse direction, which in turn,

generates a wider shrinkage zone along the direction e3, as shown in Fig. 3.7(b).

Hence, the 3-D implementation of the proposed homogenized model also predicts the

preferential growth of oxide layer along the fiber direction and compares well with

the heterogeneous model results.

Figure 3.6: Geometry for the 3D unidirectional composite RVE:- (left) the
3-D heterogeneous RVE; (right) the corresponding homogenized model.

3.3.0.0.6 Case study 3-oxidative aging in a composite bracket with two

different fiber orientations:- In this example, we simulate an L-shaped composite

bracket containing fibers aligned in two mutually perpendicular directions using the

homogenized model. The geometry and boundary conditions of the RVE are shown

in Fig. 3.8. Fibers are aligned along 1-1 direction in the horizontal leg of the bracket
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(a)

(b)

Figure 3.7: Contour plot for the (a) extent of reaction (II) (ξ2); (b) volu-
metric shrinkage J s, after 80 hrs of oxidation.

and along 2-2 for the vertical part as shown in Fig. 3.8. The two legs are assumed

to be perfectly bonded at the corner. In both the legs fiber volume fraction is fR =

0.1. Assuming oxygen could flow from all sides of the sample the whole bracket is

considered as susceptible to oxidation. Keeping the chemical boundary conditions in

terms of the O2 concentrations as the same as used in the previous studies, we let the

bracket oxidize for 100 hours and study the effect of oxidative aging in the presence

of fibers. The bracket is mechanically supported at the left and right corner of the

horizontal leg to prevent any rigid body motion.

Fig. 3.9(a), (b) and (c) show the contour plots of extent of reaction (II), volumetric
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Figure 3.8: Geometry and the boundary conditions of the composite
bracket.

shrinkage strain and von-mises stress, respectively. The effect of the fiber orientation

in the two legs is apparently clear in these plots, as we see heterogeneous oxide layers

around the surfaces and the thickness of these layers being dependent on the fiber ori-

entation. The layer is much thicker at the top of the vertical leg, as well as at the left

and right edge of the horizontal leg-further establishing the preferred oxidation direc-

tion along the fibers. This heterogeneity in oxidation causes heterogeneous shrinkage

and the residual stress distribution, as seen in Fig. 3.9(b) and (c), respectively.
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(a) (b)

(c)

Figure 3.9: Contour plots for the (a) extent of reaction (II); (b) volumetric
shrinkage; and (c) Von-mises stress after 100hrs of oxidation

3.4 Concluding remark

In this work, we investigate the effect of the presence of fibers on the oxidation of

polymer matrix composite by using a thermodynamically consistent large deforma-

tion homogenized constitutive model. Incorporating the effect of anisotorpy in the

diffusion-reaction process due to the fibers, an existing chemo-mechanically coupled

framework of polymer oxidation is modified to represent the high temperature oxi-

dation in FRPMC in a homogenized sense. Numerical implementation of the model

has been done in a finite element framework and various simulations are performed
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to demonstrate the preferential oxide layer growth and the resulting heterogeneous

volumetric shrinkage within the composite’s RVE. This heterogeneity in the stress

distribution has been identified as a major cause of failure for these materials in

a thermo-oxidative environment in the existing literature. The homogenized model

qualitatively agrees with the heterogeneous model predictions and captures the trend

observed in the experiments. Further, the computational efficiency of the homoge-

nized model is worth noting-as for a standard 3D RVE simulation the CPU time is

several order of magnitude faster (≈ 140 times) compared to a heterogeneous simula-

tion. In addition, for the heterogeneous model to predict results for various different

volume fractions and fiber alignments, the simulation domain requires remeshing,

which can be entirely avoided in the homogenized framework without altering the

accuracy. In future, we aim to perform more quantitative validations of the model

predictions with experiments.
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Chapter 4

A unified phase-field fracture

model for fiber-reinforced polymer

composites

4.1 Introduction

Fiber reinforced composite materials have emerged as an effective alternative to

metals-owing to their high specific strength, stiffness and better resistance against

adverse environment. These materials are now being used in several fields of engi-

neering such as aerospace, automotive, marine vessels, wind turbine blades, where the
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composites undergo adverse and coupled mechanical and thermal loading causing var-

ious forms of damage. In general, fracture in a FRP composite laminate is a collection

of damage events-namely matrix cracking, delamination, fiber/matrix debonding and

fiber breakage. These multi-form damage events interact with each other depending

on the composite’s microstructure (anisotropy, fiber architecture), properties of the

fiber, matrix and the interfaces, as well as characteristics of the externally applied

loading. Due to the interactive nature of the damage modes the task of composite’s

progressive damage modeling is a complex one. It is challenging to address the sig-

nificant variability in the microscopic damage mechanisms as well as the macroscale

fracture response of FRPC through a predictive modeling framework.

Experimental studies on the quasi-static and damage response of these materials

reveal a strong dependence on the fiber volume fraction and orientations [41, 42,

51]. At low fiber content, matrix cracking and interfacial debonding are the main

damage mechanisms for FRP, while fiber pullouts and fiber breakage are the main

cause of failure with increased fiber content [42]. On the other hand, off-axis fiber

orientations cause a drop in the stiffness and strength of the material, showing a

drastic reduction as the orientation changes from 0 to 90o [41]. For fiber orientations

below 45o, increasing the fiber volume fraction improves the composite’s property,

while at higher angles the effect is negligible.

Additionally, the high-strain rate loading often shows an increase in the tensile
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strength and modulus, and a drop in the ultimate strain in these materials- as detailed

in [134] and the references therein [105, 123, 142, 194, 217, 230, 247]. However, it is

important to mention that, the strain-rate effect is negligible in angled ply compos-

ites, especially at angles 45o or higher, as reported in [41, 151]. Further, the ambient

temperature significantly influences the fracture behavior of FRPCs. If the matrix is

in glassy stage (below Tg), stiffness and toughness could improve with increasing tem-

perature over a short range; however closer to the glass transition temperature, the

stiffness and the fracture toughness always decrease [14, 89, 90, 194, 211, 214, 259].

The high-temperature degradation of FRPCs are often explained as a consequence of

polymer-matrix softening, causing the inability of the matrix to transfer load from

the fiber reinforcements [89, 90, 194]. As reported in [23, 244], high-strain rates and

high-temperature significantly alter the thermo-viscoelastic properties of the matrix,

which in turn, influence the FRPC behavior.

The traditional strength-based models consider composites as homogeneous solids

and cannot distinguish between the different failure modes [74] in the constituents.

In the finite element modeling, failures within the lamina and at the interfaces are

often modeled in a decoupled fashion– with the continuum damage model (CDM)

or extended finite element types (XFEM) approach for fiber breakage and matrix

cracking, combining with a cohesive zone model to predict delamination or debond-

ing [160, 160, 248, 258, 268]. However, these models are computationally expensive,

(often) mesh-sensitive and unable to predict complex crack propagation and mixed
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failure mechanisms [207]. A more recent modeling strategy involves phase-field frac-

ture modeling of anisotropic materials, that relies on the variational principle of energy

minimization proposed by [93] and regularized by [38] for numerical implementation.

The anisotropic phase-field theory has been used to model fracture in composite lam-

inates and proven useful to predict fiber-orientation dependent crack-growth in a

straight-forward manner [3, 30, 74, 207, 208, 210].

In this work, we use an experimentally informed, unified phase-field fracture the-

ory to model progressive damage and fracture in unidirectional FRPCs based on

a homogenized constitutive model incorporating the effect of fiber orientations and

finite thermo-viscoelasticity of the polymer matrix. Based on the classical Ambrosio-

Tortelli type (AT-2) second order phase-field model, the present theory considers

an unified framework to incorporate two competing damage mechanisms namely the

matrix cracking and fiber breakage for predicting unidirectional FRPCs’ fracture re-

sponse. We introduce a novel split in the crack-driving force calculation to distin-

guish between the two competing failure mechanisms finally to incorporate within an

anisotropic phase-field evolution. The model is also exploited to derive the fracture

behavior of the FRPC system at high ambient temperature to study the effect of

thermo-viscoelasticity of the matrix. We numerically implement the proposed model

in a commercial finite element package ABAQUS/Standard and establish the reli-

ability of the model predictions by comparing with the in-house experimental data.

Finally, we demonstrate the usefulness of the model by simulating few important case
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studies.

4.2 Theoretical aspects of the model:-

Basic kinematics

Let us consider a continuum domain of FRPC at a reference time t0 represented by BR

with the material point (X, t0). The body undergoes a deformation with a mapping

function χ(X), such that x = χ(X), where (x, t) is the coordinate of the deformed

body B at current time t. The deformation gradient is then given by, F = ∇χ(X),

with J = detF > 0. As standard, we define the left and right Green-Cauchy tensor

as, b = FFT and C = FTF, respectively.

For a weakly compressible polymer, assuming viscoelasticity effects are exclusively

restricted to the isochoric part of the deformation, we can decompose the deformation

gradient, F into the volumetric (dilatational) and isochoric (distortional) part as

[92, 125, 209, 223],

F = FvolF̄, with Fvol = J 1/3I, (4.1)

where Fvol is the volumetric and F̄ is the isochoric part of the deformation gradi-

ent, respectively. We consider the deviatoric part of the deformation gradient as
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unimodular, such that,

F̄ = J−1/3F with detF̄ = 1 (4.2)

Viscoelasticity in the polymer matrix

(i) (ii)

Figure 4.1: (i) Schematic representation of the finite viscoelastic model; (ii)
schematic representation of the phase-field approximation of a crack in a 2-D
domain: (a) Sharp crack topology and (b) regularized crack approximation
over the length l.

To characterize the viscoelastic behavior of the polymer matrix, we follow the mi-

cromechanically motivated model as proposed in [152], for the finite deformation

setting. Let us consider a simple rheological model as shown in Fig. 4.1(i), contain-

ing the time-independent spring with relaxed shear modulus G0 and k = 1, 2, ..n,

number of time-dependent branches represented by a series of springs and dashpots,

characterized by their shear modulus Gv
k and dashpot constant ηk, respectively. The

relaxation time for each Maxwell branch is calculated as, τ k = Gv
k/ηk. The macro-

scopic tensorial stretch in each branch is expressed by a series of internal variables,
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[Ak, k = 1, 2, ..., n]. Each Ak is symmetric and analogous to the isochoric symmet-

ric strain tensor C̄. It is important to mention that, A′
ks are the internal variables

in the essence of a phenomenological model and are not experimentally measurable

quantities. The evolution of these viscoelastic internal variables are given by [152],

Ȧk =
1

τk

(
C̄−1

k −Ak

)
(4.3)

Eq. 4.3 can be physically interpreted as the evolution of these tensorial quantities

(Ak) being dependent on the difference between the viscous overstretch and inverse

of the isochoric right Green-Cauchy tensor. The difference diminishes as the model

approaches to a fully relaxed state and the time-dependent behavior vanishes.

Kinematics for the FRPC incorporating fiber-induced

anisotropy

The presence of fibers in polymer matrix composite introduces anisotropy in the

deformation. In the present study of interest, fibers can deform either due to me-

chanical loading or due to thermal expansion. Considering that fibers do not impart

any viscous response (perfectly elastic), we introduce two pseudo-invariants to ac-

count for the deformation of fibers due to mechanical loading and thermal expansion,

respectively. At this stage, we consider that the body BR contains a fiber family, γ,
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characterized by the fiber volume fraction, fγ
R and a reference direction aγ

R, such that

aγ = Faγ
R, with aγ being the fiber direction in the deformed configuration. Following

the theory in [232], in a composite the deformation in fibers can be described by

introducing an additional invariant as done in [24, 36, 46, 114, 115, 124, 189]. Herein,

we define the first pseudo-invariant accounting for the mechanical stretch as,

I
γ
4,M = aγ

R . Caγ
R = (λγ

M)2 (4.4)

where, λγ
M is the mechanical stretch of the fiber family γ along the direction aγ

R.

Next, we define a second pseudo-invariant to account for the deformation due to

thermal expansion as,

I
γ
4,ϑ = (λγ

ϑ)
2aγ

R .aγ
R (4.5)

where λγ
ϑ is the magnitude of stretch in the fiber due to temperature rise as given by,

λγ
ϑ = 1 + αf (ϑ− ϑ0) (4.6)

where αf is the thermal expansion coefficient of fiber, ϑ0 is the reference temperature

and ϑ is the working temperature. It is important to note that the thermal contraction

would introduce a negative stretch in the fibers, which has not been considered here.

Since the focus of the present work is to study tension-dominated fracture, we consider

positive stretches due to thermal expansion as, λγ
ϑ � 1, only.
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Phase-field description of fracture

In this section, we first present the standard phase-field fracture theory consider-

ing isotropic material. Following which, we present a modification to incorporate

anisotropy imparted by the fibers in the FRPCs. In classical phase-field theory, a

sharp crack Γ is approximated by the local variation of a continuous or diffusive

scalar field variable, termed as phase-field (d) that smoothly varies between 0 and 1,

within a zone of interest [5, 6, 169, 171]. At the center of the crack it takes a value of

d = 1 and at the location away from the crack or undamaged region, d = 0, as shown

in Fig. 4.1(ii). This transition from cracked to undamaged region occurs over a small

zone whose width is controlled by the regularization (localization) length, l. When

the length scale parameter, l → 0, the phase field model converges to the Griffith’s

formulation of brittle fracture [93]. The theory also considers that d monotonically

increases, such that ḋ ≥ 0, implying the damage being irreversible. Following the

standard practice in the phase-field literature, we also include ∇d to incorporate

the spatial inhomogeneity arising due to damage in the form of a non-local term to

overcome the mesh dependency associated with the continuum damage models. The

crack surface, Γ is then approximated through a regularized crack surface density

functional, γd, which successively converts a surface integral to a volume integral,
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and one can write [5, 39],

Γ(d) =

∫
Γ

dA ≈ Γl(d) =

∫
B
γd(d,∇d)dV (4.7)

For an isotropic material, a widely used regularized surface density functional is given

by the well known Ambrosio-Tortelli type (AT-2) model as, [5, 46, 169, 170, 171],

γd(d,∇d) =
1

2l
(d2 + l2|∇d|2) (4.8)

In the case of an anisotropic material such as FRPC, the orientation of the fibers

also becomes a deciding factor to evaluate the damage initiation, propagation and

the direction of the crack growth. Thus, a modification in the surface density

functional is required to incorporate the direction dependent crack-growth in such

cases. This is often accomplished by introducing an additional structural tensor, cf.,

[74, 115, 182, 207, 270]. In case of an unidirectional FRPC, the intra-ply fracture

mechanism changes based on the mode of loading, the fiber volume fraction and

the orientation of the fibers. The damage can occur either due to matrix cracking,

fiber pullout/breakage or due to delamination. Predicting delamination is beyond

the scope of the present work; herein we are interested to predict the FRPC fracture

response as dominated by the other two modes namely, the matrix cracking and fiber

breakage, as influenced by the fiber orientations in an unidirectional lamina. This has
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been incorporated by considering the fracture criteria for matrix and fiber separately

(based on their respective fracture energies) and by introducing two separate length-

scale parameters associated with those two damage mechanisms, while considering a

single phase-field damage variable (d) to predict the overall fracture response of the

composite. In order to do so, firstly we adopt the anisotropic structural tensor intro-

duced by [115] to incorporate the influence of fibers on direction dependent damage

propagation in the FRPC. The modified surface density functional then reads,

γd(d,∇d;L) = 1

2lM
(d2 +∇d.L∇d) (4.9)

where, L is an anisotropic tensor, whose specific form closely resembles the form

proposed in [207], such that it contains both the fiber and the transverse directions to

promote the fracture path to be aligned along the fiber direction in a unidirectional

FRPC. The specific form of L is given by,

L = l2M [ωγaγ
R ⊗ aγ

R + (I− aγ
R ⊗ aγ

R)] (4.10)

Here, the dyad (aγ
R ⊗ aγ

R) denotes the fiber direction, and (I − aγ
R ⊗ aγ

R) represents

the transverse direction. Further, ωγ is an anisotropic parameter, that regulates the

transition from weak to strong directional dependence, which lies in the open range

of (−1 < ωγ < ∞), as necessary to satisfy the ellipticity condition of ΓL, cf. [115],
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and lM is the length regularization parameter associated with the damage in polymer

matrix.

Remark : In the absence of fibers, setting aγ
R ⊗ aγ

R = [0] and ωγ = 1, the anisotropic

term vanishes in Eq. 4.9, and one can recover the crack density functional correspond-

ing to an isotropic case as given by Eq. 4.8.

4.2.1 Balance laws

In this section, we have formulated a thermodynamically consistent phase-field frac-

ture theory for FRPC incorporating the thermo-viscoelastic response of the compos-

ites based on a homogenized constitutive description. The theory is derived upon

the principle of virtual power which requires development of macro and microforce

balances and the free energy imbalance guided by the thermodynamic laws [118, 186].

The macroforce balance is the standard momentum balance equation, and the micro-

force balance is coming from the phase field kinematic quantities, ḋ and ∇ḋ. The dis-

sipation inequality rises due to the viscous contribution of the matrix, dissipation due

to damage evolution and the non-isothermal temperature rise. These balance equa-

tions provide a set of thermodynamic constraints to derive the constitutive equations

for the present formulation.

177



4.2.1.0.1 Macro and micro-force balance– Negelecting inertia, the standard

macro-force balance equation is given by,

DivTR + bR = 0 (4.11)

where TR is the 1st Piola stress and bR is a reference body force. The Cauchy stress,

T is related to the Piola stress by the relation,

T = J−1TRF
T (4.12)

Similarly, the non-standard micro-force balance in the reference configuration is ex-

pressed as [13, 145, 185],

Divζ −� = 0 (4.13)

where ζ is a vector microstress that spends power over the rate of the gradient ∇ḋ,

and � is a scalar microstress that spends power over the rate ḋ.

4.2.1.0.2 Balance of energy- thermodynamic consideration– considering

εR as the internal energy density, ηR as the entropy, qR as the heat flux, ϑ as the

absolute temperature and qR as the external heat supply per unit reference volume,
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the balance of energy in the local form is written as,

ε̇R = TR : Ḟ−Div qR + qR +� ḋ+ ζ.∇ḋ (4.14)

and the local entropy imbalance has the form,

η̇R ≥ −Div

(
qR

ϑ

)
+

qR
ϑ

(4.15)

It is convenient to introduce a symmetric 2nd P-K stress tensor, S and following the

standard continuum mechanics theory the stress power can be written as,

TR : Ḟ =
1

2
S : Ċ (4.16)

Substituting Eq. 4.14 and 4.16 into Eq. 4.15 and after few mathematical manipulation

we end up with the following local energy imbalance as,

( ˙εR − ϑη̇R)− 1

2
S : Ċ+

1

ϑ
qR.∇ϑ−� ḋ− ζ.∇ḋ ≤ 0 (4.17)
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In this context, we introduce the standard Helmholtz free energy as,

ψR = εR − ϑηR (4.18)

Substituting Eq. 4.18 into 4.17 yields the local form of energy imbalance as,

ψ̇R + ηRϑ̇− 1

2
S : Ċ+

1

ϑ
qR.∇ϑ−� ḋ− ζ.∇ḋ ≤ 0 (4.19)

Next, we define the set of kinematical and internal variables as, Λ = (C,Ak, k =

1, 2, ..., n, ϑ, d,∇d; I4,M , I4,ϑ). This leads to the following dependencies as [56, 186,

209],

ψR = ψ̂R(Λ) ; S = Ŝ(Λ) ; ηR = η̂R(Λ) ; qR = q̂R(Λ) ; ζ = ζ̂(Λ) ; Tv
k = T̂v

k(Λ)

(4.20)

Using Eq. 4.20 into 4.19, we get the following expression:

(
S−2

∂ψR

∂C

)
:
1

2
Ċ−

n∑
k=1

∂ψR

∂Ak

: Ȧk−
(
∂ψR

∂ϑ
+ηR

)
ϑ̇−

(
�−∂ψR

∂d

)
ḋ−

(
ζ− ∂ψR

∂∇d

)
.∇ḋ+

1

ϑ
qR.∇ϑ ≤ 0

(4.21)
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Applying the thermodynamic restriction, we can write the specific constitutive rela-

tions for the Piola stress (S), entropy (η), vector microstress (ζ) and viscous overstress

(Tv
k) as,

S = 2
∂ψR

∂C
; ηR = −∂ψR

∂ϑ
; ζ =

∂ψR

∂∇d
; Tv

k =
∂ψR

∂Ak

(4.22)

Also, we consider that the scalar microstress can be additively decomposed into the

energetic and the dissipative part, as adopted in our earlier work, [145], based on the

theory proposed by [13, 185, 186] as,

� = �en +�dis (4.23)

where �en and �dis are the energetic and the dissipative microstress, respectively. As

done in [185, 186], we take

�en =
∂ψR

∂d
(4.24)

Then the following inequality remains to satisfy the 2nd law of thermodynamics,

n∑
k=1

∂ψR

∂Ak

: Ȧk +�disḋ− 1

ϑ
qR.∇ϑ ≥ 0 (4.25)

which can be satisfied by choosing certain specific forms forAk, qR and�dis evolution.
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The heat flux obeys the Fourier’s law of heat conduction, i.e.,

qR = −K(Λ)∇ϑ, (4.26)

where K is the conductivity tensor.

4.2.1.0.3 Further consequences of thermodynamics: evolution of temper-

ature– we obtain the 1st Gibbs relation from Eq. 4.20 as,

ψ̇R =
1

2
S : Ċ− ηRϑ̇+�enḋ+ ζ∇ḋ+

n∑
k=1

Tv
k : Ȧk (4.27)

and we obtain the second Gibbs relation incorporating Eq. 4.18 into 4.27 as,

ε̇R = ϑη̇R +
1

2
S : Ċ+�enḋ+ ζ∇ḋ+

n∑
k=1

Tv
k : Ȧk (4.28)

The rate equation for entropy can be obtained from Eq. 4.20 and 4.27 as,

η̇R = −
(
1

2

∂S

∂ϑ
: Ċ+

∂ψ2
R

∂ϑ2
ϑ̇+

∂�en

∂ϑ
ḋ+

∂ζ

∂ϑ
.∇ḋ+

n∑
k=1

∂Tv
k

∂ϑ
: Ȧk

)
(4.29)

Since, the energetic scalar and vector microstress related to the damage variables are

not temperature dependent, we get ∂�en

∂ϑ
= 0; and ∂ζ

∂ϑ
= 0.

182



Further, as a standard, we define the specific heat as,

c = −ϑ
∂2ψR(Λ)

∂ϑ2
(4.30)

Using Eq. 4.14, 4.29, 4.30 and 4.26 into 4.28, we finally obtain the partial differential

equation for temperature evolution as,

cϑ̇ = −Div(K∇ϑ) + qR + ϑ

(
1

2

∂S

∂ϑ
: Ċ+

n∑
k=1

∂Tv
k

∂ϑ
: Ȧk

)
(4.31)

4.3 Specialization of the theory for the constitu-

tive forms

4.3.0.0.1 Free Energy:- we start with the assumption that the free energy can

be expressed as a sum of separable energies contributed by the thermo-mechanical

energy of the matrix and the same for the fibers. Thus, in the absence of damage, we

write a total energy expression for the FRPC system as,

ψR =

(
1−

∑
γ

fR

)
ψM
R +

∑
γ

fγ
Rψ

F
R (4.32)
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where, ψM
R and ψF

R denote the energy in the matrix and in the fiber family γ, respec-

tively.

To describe the thermo-viscoelastic response of the matrix the energy can be further

decomposed into the time independent elastic part, time-dependent viscous part and

the contribution due to temperature induced deformation. Thus,

ψM
R = ψM

R,elastic(C̄, J ) + ψM
R,visco(C̄, (Ak, k = 0, 1, ..n), ϑ) + ψR,thermal(ϑ, J ) (4.33)

Herein, we adopt a NeoHookean hyperelastic model for the time-independent elastic

energy. As mentioned before, the specific form of the time-dependent viscous part

is taken as derived in [152]. The specific form of the thermal energy in the matrix

is considered as the standard thermo-elastic energy, cf. [209]. Hence, we write the

complete form of the energy in the polymer matrix as,

ψM
R =

G0

2
(trC̄)︸ ︷︷ ︸

time independent

+
Kbulk

2
(lnJ )2︸ ︷︷ ︸

volumetric

+
n∑

k=1

1

2
Gv

k(ϑ)[Ak(ϑ) : C̄− 3− ln detAk]︸ ︷︷ ︸
time dependent

−

(ϑ− ϑ0)(3Kbulkαm)(lnJ )− cln

(
ϑ

ϑ0

)
︸ ︷︷ ︸

thermal

(4.34)
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where, Kbulk is the bulk modulus and αm is the thermal expansion coefficient of poly-

mer matrix. Here, both the time-dependent shear modulus and the viscous stretch

tensor are considered as a function of temperature. The reason behind is that the

viscoelastic constitutive response of the polymeric material depends on the ambient

temperature fluctuation. The specific forms of these dependencies for Gv
k(ϑ) and

Ak(ϑ) will be discussed later.

Next, we consider that the energy in the fiber can also be decomposed into elastic and

the thermal contribution. For the mechanical or elastic part, we consider a quadratic

form depending on I
γ
4,M , consistent with the standard approach, cf. [74, 144, 205].

For the energy associated with the thermal expansion of the fibers, we adopt a similar

quadratic form as a function of Iγ4,ϑ. The thermo-mechanical energy in the fibers then

is given by the following expression,

ψF
R =

∑
γ

[
Eγ

γ

2
(Iγ4,M − 1)2︸ ︷︷ ︸
elastic

+
Eγ

γ

2
(Iγ4,ϑ − 1)2︸ ︷︷ ︸
thermal

]
(4.35)

where, Eγ
γ is the modulus of the fiber family γ.

Finally, we need to provide a specific form of the fracture energy for the fiber-

reinforced polymer composite. The fracture energy contains a dissipative component

associated with the damage or phase-field variable part and an energetic compo-

nent that depends on the gradient of damage, ∇d and the anisotropic tensor L, (as
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explained in section 4.2). Here, we write the specific form of the fracture energy

considering the contributions from the matrix and the fiber separately in a single ply

containing a fiber family γ as,

ψγ
R,frac =

Gc,M

2lM
(d2 + l2m∇d.(I− aγ

R ⊗ aγ
R)∇d) +

Gγ
c,F

2lF
(d2 + l2F∇d.(aγ

R ⊗ aγ
R)∇d) (4.36)

For the notational convenience we assume a single family of fiber in the domain such

that, ψR,frac =
∑

γ ψ
γ
R,frac. Here, Gc,M is the Griffith-type energy release rate of the

polymer matrix and lM is the corresponding regularization parameter. Similarly, Gγ
c,F

is the Griffith-type energy release rate of the fiber family, and lF is the corresponding

regularization parameter. It is important to note that the fracture energy expression

in Eq. 4.36 is valid as long as each individual ply of the composite lamina contains only

one fiber family, and would require modification for a single composite ply containing

more than one fiber families.

4.3.0.0.2 Energy split:- To avoid the damage evolution due to compression, the

total elastic energy is further decomposed into the active/positive (due to tensile)

(ψ+
R,el) and the inactive/negative part (due to compressive) (ψ−

R,el). Hence, we reor-

ganize the total energy expression as,

ψR = [(1− d)2 + κ]ψ+
R,el + ψ−

R,el + ψR,thermal + ψR,frac (4.37)
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where g(d) = [(1 − d)2 + κ], is a standard degradation function associated with the

elastic energy degradation due to damage, and κ is a small parameter to avoid nu-

merical convergence issues when damage or phase-field parameter reaches to 1. The

active elastic energy, ψ+
R,el, contains the mechanical energy contributed by the fiber

and the matrix during tension and shear and a portion of the viscoelastic energy

stored due to stretching in the springs attached in the viscous branches, as shown in

Fig. 4.1i). At this stage, we consider that the mechanical part of the active elastic

energy comes from the deviatoric contribution of the time-independent energy and

the positive part of the volumetric deformation of the polymer matrix (lnJ ≥ 1),

and the mechanical energy stored in the fibers due to tensile stretching, i.e., when

I4,M ≥ 1. To account for the elastic part from the viscoelastic branches of the matrix,

we first calculate the amount of energy lost due to viscous dissipation, which can

be determined by calculating the viscous overstresses in each branch and the corre-

sponding strain conjugate. Thus, the lost energy due to viscous dissipation can be

approximated as,

ψvisco,loss = Tv
k : (Ak − I) (4.38)

In what follows, we obtain the viscoelastic contribution in the active elastic energy

by deducting this dissipated energy from the total time-dependent energy expression

as given in Eq. 4.34. Thus, we obtain a complete expression for the available active
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energy driving the evolution of damage as,

ψ+
R,el =

(
1−

∑
γ

fR

)[
G0

2
(trC̄0) +

Kbulk

2
H1(J )(lnJ )

2 +
n∑

k=1

[
1

2
Gv

k[Ak : C̄− 3− ln detAk]−

Tv
k : (Ak − I)

]
+
∑
γ

fγ
RH2(I

γ
4,M)

Eγ
γ

4
(Iγ4,M − 1)2

(4.39)

where, C̄0 is the deviatoric part of C̄ as, C̄0 = C̄ − 1
3
trC̄; H1 and H2 are the two

Heaviside functions as given by,

H1(J ) = 1, if lnJ ≥ 1

= 0, otherwise ;

H2(I
γ
4,M) = 1 if Iγ4,M ≥ 1

= 0, otherwise ; (4.40)

4.3.0.0.3 Cauchy Stress:- Cauchy stress is defined as, T = J−12F∂ψR

∂C
FT . Using

Eq. 4.20, we arrive at the specific form of the Cauchy stress as given below,
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T = (1−d)2 J−1

(
1−

∑
γ

fγ
R

)[(
G0

(
b̄0

)
+Kbulk(lnJ )+

n∑
k=1

Gv
kF̄AkF̄

)
−3Kbulkαm(ϑ−ϑ0)I

]

+ J−1

[∑
γ

fγ
RE

γ
γ (I4,M − 1)FaR ⊗ aRF

T +
∑
γ

fγ
RE

γ
γ (I4,ϑ − 1)FaR ⊗ aRF

T

]
(4.41)

where, b̄0 is the deviatoric part of the left Green-Cauchy tensor b̄ and defined as,

b̄0 = b̄− 1
3
trb̄.

4.3.0.0.4 Effect of temperature on the FRPC material properties:- The

viscoelastic properties of the polymer matrix in the FRPC are influenced by the am-

bient temperature rise. As mentioned in the literature, non-isothermal heating within

the matrix softens the materials, while decreasing the matrix’s capacity to transfer

load coherently within the fiber reinforcements. As a result the loads are primar-

ily carried by the fibers due to the matrix being softer and the response eventually

becomes brittle with a drop in composite’s fracture energy.

Assuming the polymer matrix as a thermo-rheologically simple material, the effect

of the temperature rise on the viscoelastic parameters can be incorporated by using

the well-known time-temperature superposition principle. In this work we adopt the

widely used Williams-Landel-Ferry (WLF) shift factor to account for the modification

in the visoelastic relaxation parameters due to local temperature rise in the polymer
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matrix [260]. This shift factor, denoted by aT is simply defined as the ratio of in-

ternal viscosity at the operating temperature to the internal viscosity at reference

temperature (in this case the glass transition temperature). The shift factor is then

used to scale all the relaxation times appropriately. The modified relaxation times

of the viscoelastic branches at the operating temperature (other than the reference

room temperature) are then given by,

τk(ϑ) = aT τk(ϑ0) (4.42)

where ϑ and ϑ0 are the working and the reference temperature, respectively. The

shift factor is calculated as,

log aT =
−c1(ϑ− ϑ0)

c2 + (ϑ− ϑ0)
(4.43)

where, c1 and c2 are two empirical constants related to WLF equation. Since the re-

laxation times at high temperature becomes much faster, all the viscoelastic branches

instantly get relaxed upon mechanical deformation and the matrix behaves as an hy-

perelatic soft solid in the composites. It is observed that the critical energy release

rate in elastomeric materials drops with increasing temperature near or above the

glass transition temperature [98].
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4.3.0.0.5 Anisotropic phase-field evolution in FRPC:- In order to incorpo-

rate the anisotropic effect in the damage growth or crack propagation, we consider

both the fiber and matrix individually satisfies Eq. C.7. Using the facts, ζi =
∂ψR,i,frac

∂∇d
,

�en,i =
∂ψ+

R,i,el

∂d
and �dis,i =

∂ψR,i,frac

∂d
, where i denotes the matrix or fiber, one can write

the damage evolution equation for matrix as,

l2MDiv((I− aγ
R ⊗ aγ

R)∇d)− d+ 2(1− d)
ψ+
R,el,M

Gc,M/lM
= 0 (4.44)

Eq. 4.44, has been normalized with the term Gc,M/lM . Similarly, we re-write the

normalized micro-force balance equation for the fiber as,

l2FDiv((a
γ
R ⊗ aγ

R)∇d)− d+ 2(1− d)
ψ+
R,el,F

Gc,F/lF
= 0 (4.45)

Combining Eq. 4.44 and 4.45, we get

l2MDiv

[(
I− aγ

R ⊗ aγ
R +

l2F
l2M

aγ
R ⊗ aγ

R

)
∇d

]
− 2d+ 2(1− d)

(
ψ+
R,el,M

Gc,M/lM
+

ψ+
R,el,F

Gc,F/lF

)
= 0

(4.46)

Comparing Eq. 4.10 with 4.46 we obtain a specific expression for, ωγ = l2F/l
2
M .

Eq. 4.46 does not ensure damage irreversibility condition. In order to hold the cri-

terion as ḋ ≥ 0, one needs to ensure that the term

(
ψ+
R,el,M

Gc,M/lM
+

ψ+
R,el,F

Gc,F /lF

)
is always

increasing (time derivative ≥ 0), so that the self-healing of the cracked surface can be
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avoided. We consider this quantity as the crack driving force, D and can substitute

this driving force with a so called history function to ensure Ḋ ≥ 0, as done in phase-

field literature [5, 13, 46, 145, 169, 170, 171, 185, 186, 223]. However, in the FRPC, an

useful approach is to split the crack driving force, cf. [170, 207, 208], which allows the

association of different driving forces corresponding to different fracture mechanisms.

For FRPCs, among the several failure mechanisms we consider the matrix cracking

and fiber breakage as the two possible modes of failure in unidirectional composite.

Hence, we additively decompose the crack driving force arising due to the matrix and

fiber contribution as,

D = DM +DF (4.47)

with

DM =

〈
ψ+
R,el,M

Gc,M

2lM

− 1

〉
; and DF =

〈
ψ+
R,el,F

Gc,F

2lF

− 1

〉
(4.48)

Note that, here the splitting of the crack driving force physically coincides with the

theory of phase-field fracture, that upon minimization of the potential energy, crack

will grow in the most favorable energetic path. In this context, we introduce two

history variables respectively for the driving forces as,

HM(t) = max
s∈[o,t]

[〈
ψ+
R,el,M

Gc,M

2lM

− 1

〉]
(4.49)
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and

HF (t) = max
s∈[o,t]

[〈
ψ+
R,el,F

Gc,F

2lF

− 1

〉]
(4.50)

Here the Macaulay bracket denotes
〈
.
〉
= 1

2
(. + |.|). Then, the combined history

function can be written as,

H = HM +HF (4.51)

Introducing the history function, Eq. 4.46 can be re-written as a rate-independent

evolution equation for the damage variable as,

Div(L∇d)− 2d+ 2(1− d)H = 0 (4.52)

4.4 Experiments and material parameter calibra-

tion

4.4.1 Materials and methods

The material used for the experiments in this work is a unidirectional glass-fiber

reinforced epoxy composite (GFRC) bar-stock (GC-67-UB) supplied by Avient. This

particular composite has a fiber volume fraction of 67%. The flexural modulus and

the flexural strength of the material are 5.8 Msi and 153 Ksi respectively, as reported
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by Avient. To study the constitutive response of the GFRC under tension, we have

prepared various tensile samples with different fiber orientations. In addition, to test

the time-dependent behavior of the GFRC, we have performed dynamic mechanical

analysis (DMA) and stress relaxation test at 0o and 90o fiber orientations. The

fracture patterns of the composite specimens during tensile testing at different fiber

orientations are observed by visual inspection and in conjunction with digital image

correlation (DIC).

For tensile testing, we have prepared two batches of tensile bars: the first set of

bars have a dimension of 5” by 0.5” with approximately 3” gauge length and 0.1”

thickness. The second set of bars are 4” by 1” with approximately 1” gauge length

and 0.06” thickness. The bars are cut at 0o, 45o and 90o angles to study the effect of

fiber orientations on the constitutive response and fracture patterns. To reduce the

stress concentration at the grip, the specimens are attached with soft tabs at the grip

area using multipurpose flame-retardant garolite G-10/FR4 sheets. Finally, single-

edge notches are created in each batches of specimens using diamond saw cutter with

notch lengths, a = 0.2w and a = 0.5w (where w is the specimen width) to conduct

single-edge notched tensile testing. Fig. 4.2(a) shows the test specimens, where fiber

direction is shown in black arrow. Fig. 4.2(b) shows one representative tensile bar with

the tabs attached near the grip location. We have performed quasi-static monotonic

tensile tests on these specimens using a Instron 4206 tensile and compression testing

machine with MTS TestSuite tw elite testing software. A constant displacement rate
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of 0.05 inches/sec is applied using a Futek 10k-lb load cell. Additionally, we have used

digital image correlation (DIC) to observe the anisotropic fracture patterns of the

composite specimens for different fiber orientations. The tension tests are performed

in both un-notched and single-edge notched specimens. The tests are performed at

room temperature (ϑroom) and at elevated temperatures of 140o C and 150o C using

an environmental chamber for 0o and 90o fiber orientations to determine the effect of

ambient temperature on the constitutive and fracture response.

(a) (b)

Figure 4.2: (a) Single-edge notched tensile bars at different fiber orien-
tations: fiber orientations are shown with single black arrows, L and w
represent the gauge length and the width of the specimen, respectively; here
crack length a = 0.2w; (b) A composite bar with the tabs attached as grips
for the tension test.

For the dynamic mechanical analysis, we used a DMA Q800 V21.3 Build 96 machine.

Firstly we have performed stress relaxation tests at 35oC for both 0 and 90o fiber

orientations on rectangular bars of dimension 35 × 9.5 × 1.85 mm. The samples are
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held at 0.05% constant strain for 10 minutes in a uni-axial load setting. Next, we

have performed both temperature and frequency sweeps on the rectangular bars of

same dimensions using a 3-point bending clamp having a 90o fiber orientation to

obtain the glass transition temperature, storage and loss modulus and the phase-shift

(tanδ). For the temperature sweep, a temperature range of 40 − 160oC at a rate of

3oC/min at 1 Hz frequency is considered. For the frequency sweep, 1− 200 Hz range

of frequencies at two temperatures, 35oC and 125oC has been performed. Here it is

to note that, 35oC is the lowest temperature setting for DMA machine used in this

work, thus it has not been possible to go perform frequency sweep below 35oC.

4.4.2 Experimental results

4.4.2.0.1 Dynamic mechanical analysis The stress relaxation data is plotted

in Fig. 4.3(a), which shows that stress does not drop at 0o fiber orientation over the

relaxation period, whereas we see a significant stress relaxation at 90o fiber orien-

tation. At 0o fiber orientation, stress response is strongly influenced by the fiber

properties, whereas for fibers oriented at 90o, matrix response becomes dominant,

and stress drops due to viscoelastic relaxation. Therefore, we choose the 90o fiber

orientation to undermine the effect of the fibers and determine the most viscoelastic

response due to the matrix for the rest of the DMA studies. In what follows, we
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perform temperature and frequency sweeps only for 90o fiber alignment. Fig. 4.3(b-

d) show temperature sweep and frequency sweeps of GFRC for 90o fiber orientation.

The DMA result with temperature sweep shows a glass transition temperature of

126.4oC for the 90o composite, as plotted in Fig. 4.3(b). The frequency sweep data

from DMA showing the storage modulus and the phase-shift (tan δ) data at 35oC and

125oC (close to Tg) are given in Fig. 4.3(c) and Fig. 4.3(d), respectively. We observe a

drastic change between 35oC and 125oC DMA plot. At high temperature tanδ values

increase significantly, and storage modulus decreases to almost by half in magnitude.

The difference becomes even more prominent at high frequency ranges, signifying a

detrimental effect is expected in the life-expectancy of the composite material during

high frequency fatigue-type applications at high ambient temperature, where matrix

softening can cause premature failure in these materials due to thermo-mechanical

coupling.

4.4.2.0.2 Quasi-static tensile testing of un-notched bars at different fiber

orientations Fig. 4.4(a) shows the load-displacement plots obtained from the

monotonic, quasi-static tensile testing at different fiber orientations at room temper-

ature. The influence of fiber-orientation is clearly visible in the constitutive behavior

of the composite specimens. Both stiffness and strength of the material is highest at

0o fiber-alignment and both of which drops as the fiber-angle rotaes from 0 to 90o.

The constitutive response of the composite specimen reveals its poorest behavior at
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(a) (b)

(c) (d)

Figure 4.3: DMA results: (a) Stress relaxation data of GFRC at 0o and 90o

fiber orientations; (b) Temperature sweep; (c) Frequency sweep at 35oC; (d)
Frequency sweep at 125oC. The plots (b-d) considers 90o fiber orientation.

90o fiber-orientation, where we observe about 40 times drop in the maximum load

magnitude compared to the 0o orientation, (as shown in Fig. 4.4). The stretchability

of the composite also drops from 0 to 90o alignment.

4.4.2.0.3 Effect of temperature on single-edge notched tension (SENT)

specimens:- Fig. 4.5(a) and (b) show the effect of high-temperatures on the single-

edge notched composite specimens (a/w = 0.2) at fiber orientations γ = 0o and

198



Figure 4.4: Experimental load-displacement plots for un-notched GFRC
bars at different fiber orientations.

γ = 90o, respectively. Here we have performed tensile testing of the SENT specimens

at temperatures higher than the glass transition temperature and studied how tem-

perature affected the constitutive and fracture response. As seen in Fig. 4.5, both

140oC and 150oC curves demonstrate softened response of the material, compared to

the room temperature, regardless of the fiber orientations. It is observed during ex-

periments that, at 150oC, the matrix becomes extremely soft such that it completely

loses the load carrying capacity. The thermo-viscoelastic polymer matrix gets softer

with increased temperature, in particular above Tg, which is reflected in the overall

composite behavior, through a degradation of stiffness in both orientations. This

reduction in the stiffness can be correlated with the storage modulus drop plotted

in Fig. 4.3(b). At temperature higher than Tg, the storage modulus drops almost

to zero, indicating all the rate-dependent moduli-terms vanishing, and the material
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responds proportional to its long-term modulus.

(a) (b)

Figure 4.5: Experimental comparison of the load-displacement plots at
different temperatures: (a) γ = 0o; (b) γ = 90o (ϑRoom denotes the room
temperature).

4.4.2.0.4 DIC analysis of the single-edge notched tensile specimens at

different fiber orientations:- Fig. 4.6 shows the crack patterns as observed by

visual examination of the fractured samples of un-notched specimens at different fiber

orientations. In all the samples fracture occurred along the fiber direction. Similarly,

Fig. 4.7 shows the crack propagation and vertical displacement contour plots obtained

through the digital image correlation (DIC) technique on the single-edge notched

specimens subjected to tensile loading at different fiber orientations. The images

clearly show the influence of fiber anisotropy on the respective crack propagation

paths. For an isotropic material, the initial notch would propagate perpendicular to

the loading direction in case of Mode-I loading. However, due to the presence of the
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embedded fibers in these specimens, cracks propagate parallel to the fiber orientations,

as seen in Fig. 4.7(a) for 0o fiber orientation, Fig. 4.7(b) for 45o fiber orientation and

Fig. 4.7(c) for 90o fiber orientation, respectively.

Figure 4.6: Fracture patterns observed at different fiber angles after tensile
testing of GFRC specimens. The affected fracture zone is marked with red
box.

4.4.3 Calibration of GFRC properties

4.4.3.0.1 Determination of the thermo-viscoelastic parameters of epoxy

matrix and fiber modulus: At first, the storage modulus, loss modulus and tanδ

obtained as a function of frequencies from the DMA frequency sweep are fitted using

a Prony series type model to determine the viscoelastic parameters for the epoxy

matrix. Five (5) viscoelastic branches are considered to obtain the shear moduli (Gk)

and the relaxation time constants (τk) for each of the branches along with the long-

term shear modulus of the hyperelastic spring (G0). The numerically fitted curves are
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Figure 4.7: DIC images (diplacement contour) of single edge-notched ten-
sile specimens at different fiber orientations: (a) Different stages of crack
propagation when fibers are embedded at 0o; (b) Crack propagation path at
fracture for 45o fiber orientation; (c) Crack propagation path at fracture for
90o fiber orientation.

shown in Fig. 4.8 at 35oC and Fig. 4.9 at 125oC, respectively. The detailed explana-

tion of the fitting procedure of the viscoelastic parameters is available elsewhere and

thus omitted here, cf. [221]. We use the viscoelastic parameters obtained at 35oC to

predict the constitutive response of GFRC at room temperature. It is to be noted

that, the difference between room temperature and the glass transition temperature

(Tg) of the epoxy resin used in this particular composite is more than 100oC. There-

fore, it is not possible to use the William-Landel-Ferry (WLF) constants calibrated

at Tg to estimate the shear moduli and relaxation time constants at room tempera-

ture. Thus, we need a separate set of DMA frequency sweep data to determine these
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viscoelastic constants at room temperature. As mentioned in Section 4.4.1, the ap-

paratus for DMA used for these experiments cannot go below 35o C, so we calibrated

the viscoelastic parameters at 35o C. However, the other tensile tests are performed

at the room temperature or the lab environment temperature ( which varied between

25-32o C). Assuming that, at this temperature, which is so far below from Tg, the

viscoelastic constants do not vary significantly between 25− 35o C, we use the same

viscoelastic constants throughout this temperature range. For temperatures higher

than Tg, we use the WLF constants calibrated at Tg to determine the shift factors (in

this case, corresponding to 140 and 150oC temperatures, respectively) using Eq. 4.43

to predict the constitutive response of the composite at temperatures higher than

Tg, as shown later in the numerical section. In this work, we have taken the WLF

constants from [167] at Tg as c1 = 21.4 and c2 = 153.7K,respectively. The conductiv-

ity and other relevant thermal parameters for epoxy are taken from [17]. The fitted

parameters for the epoxy matrix are tabulated in Table 4.1.

τk (s) (ϑroom) Gk (MPa) (ϑroom) τk (s) 125oC Gk (MPa) 125oC
0.00686 82.9 0.0041 600.9
3892.2 3840.49 0.3895 0.16
414.4 172.9 0.001 673.4
1.16 3375.37 0.3895 1518.8

4.64× 10−6 51541.86 0.0256 673.9
G0 (MPa) 50.78

ν 0.28
αM (/K) 70× 10−6 [17]

Specific heat (J/Kg −K) 1110
Rgas (Jkg

−1K−1) 8.314
Conductivity (W/mK) 0.252 [17]

Table 4.1
Material parameters for epoxy
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(a) (b)

Figure 4.8: Frequency sweep at 35oC fitted against the Prony series model:
(a) Storage modulus; (b) tanδ fit

(a) (b)

Figure 4.9: Frequency sweep at 125oC fitted against the Prony series
model: (a) Storage modulus; (b) tanδ fit

Upon calibration of the matrix properties, we use these parameters to simulate the

composite response at 90o fiber orientation. For this purpose we choose the un-

notched tensile geometry as shown in Fig. 4.2(a). The sample is stretched at a

displacement rate of 0.05 inches/sec. The results from numerical simulation is shown

in Fig. 4.10 along with the experimental data. As can be seen from this figure, the
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numerical results are in very good agreement with the experimental data.

Figure 4.10: Load vs. displacement plot from the quasi-static tensile test-
ing of un-notched composite bars: model vs. experiment for fiber alignment
of 90o with respect to the loading axis.

Next, we use the tensile testing data at 0o fiber orientation to calibrate the glass-fiber

modulus, Eγ. In order to do that, we numerically simulate the tensile testing of the

same composite block mentioned above with 0o fiber orientation. The modulus of

the glass fiber is then calibrated with the initial portion of the load-displacement

data as shown in Fig. 4.4. This is done due to the fact that the initial stiffness of

the samples loaded along the fiber direction is predominantly governed by the fiber

modulus. Fig. 4.11 shows the results from the numerical simulation plotted against

the experiments, yielding the Eγ value to be 280 MPa.

Subsequently we require to calibrate the fracture properties of the fiber and matrix
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Figure 4.11: Load vs. displacement plot from the quasi-static tensile test-
ing of un-notched composite bars: model vs. experiments for fiber alignment
of 0o with respect to the loading axis.

for the 0o and 90o notched specimens in a trial and error basis. In the model, the

parameters that are needed to be calibrated are the fracture energies of the matrix and

fiber and the associated length-scale parameters, GM
c , GF

c , l
M
c , and lFc . The detailed

explanation of the fracture parameter estimation is provided in the next paragraph.

4.4.3.0.2 Determination of the length-scale parameters and fracture en-

ergies for matrix and fiber: In the present phase-field approach, we consider

a quadratic crack surface density functional, which is widely known as AT-2 model

in the literature [7]. In the AT-2 model, the length-scale parameter influences the

ultimate strength of the material, thus it is calibrated as a material parameter rather

than a numerical regularization parameter [35, 207]. In particular, along with the
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chosen quadratic form of crack density functional, for an elastic material, the homo-

geneous solution of PF damage gives the following expression for l in terms of the

critical stress and fracture energy,

l =
27

256

GcE

σ2
c

(4.53)

where σc is the critical strength of the material. For detailed discussion on how to

obtain this relation, readers are referred to [35, 207, 264] and the references therein.

For GC-67-UB composite used in this study, the individual fiber and the matrix

properties were not accessible. Since we were unable to perform experiments at the

individual constituent level, a trial and error is necessary at this stage. We assume

that, individually the length-scale parameters are numerical regularization quanti-

ties; however, GM
c

lM
and GF

c

lF
are material parameters associated with the maximum

load or the critical stress in the constitutive response of the composite. In retro-

spect, we assume that GM
c

lM
and GF

c

lF
stay constant for any geometry of interest in the

present paper. In what follows, we match the numerical simulation results with the

experimentally obtained data to the maximum load point of the single-edge notched

bars (with a/w = 0.2) to obtain the values for GM
c

lM
and GF

c

lF
. We have seen that,

GM
c

lM
= 1.9 N/mm2 and GF

c

lF
= 200 N/mm2, respectively matches reasonably well

with the experimental SENT results for a/w = 0.2. In addition, we have consid-

ered lF = 10lM throughout this work, which, in turn, gives anisotropic parameter,

ω ≈ 100. It can be noted here that, the length-scale parameter associated with the
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fiber can also be orientation dependent, as shown in [150]. However, we have not

considered that in the present model. The glass-fiber properties and fracture energies

are reported at Table 4.2.

fR 0.67
Eγ (MPa) 280

Gf
c

lF
(N/mm2) 200

Gm
c

lM
(N/mm2) 1.9

αf (/K) 6.18× 10−6 [177]

Table 4.2
Material parameters for glass-fiber and fracture properties of GFRC

4.5 Representative numerical examples showing

model prediction

4.5.1 Mode-I fracture tests of a single-edge notched speci-

mens at different fiber orientations and crack length

In this example, we study the effect of fiber orientations on the fracture response of

a single-edge notched tension specimen. Fig. 4.12 shows the zoomed view of the FE

mesh and the boundary conditions for this particular geometry at fiber orientations

0, 45 and 90o, respectively for the crack length of a/w = 0.5. As can be seen we

have refined the mesh along the prospective crack propagation path using an element
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size of h = 0.1mm. The dimension and the loading conditions are consistent with

the experiments as discussed in Section 4.4. For these simulations, we have used the

length-scale parameters of lM = 0.5 mm and lF = 5 mm, respectively. The other

material properties used are listed in Table-4.1 and Table-4.2. The numerical simula-

tions have been conducted for cases a/w = 0.2 and a/w = 0.5. Fig. 4.13 demonstrates

the corresponding load vs. displacement plots at different fiber orientations for both

the crack lengths, comparing the results from numerical simulation with the experi-

ments. The numerical results are in good agreement with the experimental results for

all the fiber orientations and for the two crack lengths considered. Fig. 4.14 shows the

damage contour at the post-peak load regime where the damage propagation always

favors along the fiber direction as observed in experiments (in Fig. 4.7). At 0o fiber

orientation, fiber debonding becomes the most dominating failure mechanism, result-

ing crack propagation in-between fibers along the fiber direction. In the simulation

we observe that, upon initiation at the notch-tip, the crack indeed propagates parallel

to the fiber direction. For 45o fiber orientation, we see crack propagates along the

fiber direction as well. However, the dominating failure mechanism is attributed to

matrix cracking for this particular orientation, as the elastic energy, ψM
R,el >> ψF

R,el in

this case. This is demonstrated in Fig. 4.15, where elastic energy contributions from

the matrix and fiber along with the corresponding history function is plotted as a

function of time at the notch tip, where the stress concentration is maximum. Lastly,

as expected, for 90o fiber orientation, matrix cracking is always the dominating failure
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mechanism. The strength and ductility of the composite is also much lower in 45o

and 90o compared to 0o, as observed in the load-displacement plot in Fig. 4.13.

Fig. 4.16 shows the contour plots of the local temperature rise during tensile loading

of the SENT specimen for a/w = 0.5. From this plot, it is evident that the local

of temperature of the composite rises along the crack propagation path. The main

source of temperature rise is due to the viscous dissipation of the matrix, and the heat

generated due to dissipation is maximum along the direction of the crack propaga-

tion/ maximum stress. It is important to mention that, for this particular GFRC, the

exact thermal conductivity and specific heat parameters for the epoxy matrix are not

known. Hence the experimental comparisons were not presented here. The tempera-

ture contours demonstrate the model’s capability to incorporate a thermo-mechanical

coupling framework.

Figure 4.12: Zoomed view of the meshing and the boundary conditions
of a single-edge notched 1” × 1” specimen with a/w = 0.5: (a) γ = 0o; (b)
γ = 45o; and (c) γ = 90o.
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(a) (b)

(c)

Figure 4.13: Load-displacement plot for SENT specimens: comparison
of model prediction with the experiments for (a) 0o with a/w = 0.2 and
a/w = 0.5; (b) 45o with a/w = 0.5; (c) 90o with a/w = 0.2 and a/w = 0.5

4.5.2 Effect of high temperature on the GFRC response

As mentioned in Section 4.1 and shown in our experimental results, at high temper-

ature, specially above the glass transition temperature, the stiffness of the composite

211



Figure 4.14: Contour plots of d at different fiber orientations for single-edge
notched specimen with a/w = 0.5 corresponding to Fig. 4.12: (a) γ = 0o;
(b) γ = 45o; (c) γ = 90o.

Figure 4.15: Comparison of elastic energy between matrix and fiber and
the corresponding history functions at the notch tip of the SENT-specimen
with fiber orientation, γ = 45o.

degrades considerably and results in a softer response. In order to numerically simu-

late such cases, using time-temperature superposition principle, we calculate a shift

factor aT to modify the relaxation time constants from their known values at Tg. As

mentioned in Section 4.4.3, we use a WLF shift factor using Eq. 4.43. The WLF
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Figure 4.16: Contour plots of temperature, ϑ at different fiber orientations
for single-edge notched specimen with a/w = 0.5 corresponding to Fig. 4.12:
(a) γ = 0o; (b) γ = 45o; (c) γ = 90o.

constants are taken as c1 = 21.4 and c2 = 153.7K respectively, as mentioned in Sec-

tion 4.4.1. By using Eq. 4.43, the shift factor for 140oC turns out to be 0.0125. We

can therefore estimate the new relaxation time constants at 140oC by multiplying the

time constants estimated at Tg with this shift factor by following Eq. 4.42. In what

follows, we numerically simulate a the SENT specimen with a/w = 0.2, subjected to

tensile loading at 140o C. Fig. 4.17(a) and (b) show the comparison between exper-

iments and model predictions at 0o and 90o fiber orientation, respectively. As seen

from Fig. 4.17, for both 0o and 90o fiber orientations, experimental plots significantly

vary over a range (for 0o orientation a maximum load difference of ≈ 4000 N is ob-

served). A plausible reason being matrix softening at this high temperature causing

slippage at the grip loading. Our numerical simulation results (blue solid lines) show

a reasonable agreement with the experimental data up until 4 mm displacement for 0o

and 0.6 mm displacement for 90o fiber orientation, respectively. However, the model

falls short in the the post-peak response for both cases. This is because of the fact
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that we use the same GM
c

lM
and GF

c

lF
values as used for room temperature simulations,

which may not be applicable at 140oC. While it is well known that the critical stress

of the composite definitely gets affected by the ambient temperature, it is not clear

whether it is needed to lower the fracture energy or alter the length-scale parameter

in the present model to accommodate that. However, to match the experimental

result observed at 90o fiber orientations, we run one further simulation considering

GM
c

lM
= 0.095 N/mm2, as shown by the red line in Fig. 4.17(b). This clearly shows a

reasonable load drop and the prediction matches much better with the experimental

data. However, more experimental data are needed to reach a specific conclusion at

this point to predict how the critical fracture energy of a composite material gets

affected at high temperature.

Figure 4.17: Load-displacement plot of GFRC at 140oC: (a) γ = 0o; (b)
γ = 90o
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4.6 Conclusion

In this work, we have developed an experimentally informed, unified phase-field theory

to predict anisotropic fracture and damage propagation in a polymer-matrix compos-

ite using a single phase-field or damage variable. The theory considers two distinguish

failure modes in composite, fiber breakage or pullout and matrix cracking by consid-

ering two different energy-based failure criteria. The anisotropic crack propagation is

incorporated by using an anisotropic tensorial term in the gradient calculation of the

phase-field variable. The constitutive theory for the composite material considers a

thermodynamically consistent, large deformation homogenized microstructure of the

fiber-reinforced polymer, considering the polymer matrix as thermo-viscoelastic. The

model has been numerically implemented in a finite element setting and then validated

against a commercially available glass-fiber reinforced epoxy composite’s experimental

data. It has been shown that the model can successfully predict experimental results.

In addition, the model considers a thermo-mechanical coupling in the proposed con-

stitutive framework, which is an essential part of composite fracture modeling, as

ambient temperature rise affects the composite’s response due to the softening of

the matrix. The proposed modeling framework demonstrates a classical phase-field

theory based formulation being capable of predicting orientation-dependent crack

propagation and the global force response of the fiber-reinforced composite.
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Chapter 5

Future recommendations

In light of the current present work and progress, we propose the following futuristic

directions:

Polymer Oxidation:

Calibration and validation of the proposed model: Our theory considers a

rigorous mathematical model considering all the complex physics and chemistry in-

volved in the thermo-oxidative aging of polymers. However, it still needs a rigorous

experimental characterization and validation of based on specific polymers useful for

structural, aerospace, and automotive application. For this purpose, we propose the

followings: :

i) Characterize important thermoplastic and glassy polymers using microscopy, FTIR

Spectroscopy/ X-ray photoelectron spectroscopy (XPS) at virgin and oxidized state.
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These calibrated parameters then can be used to validate the model’s reaction kinet-

ics at different oxidized states (longer aging period or at a different temperature).

ii) Perform mechanical testing of the virgin and aged specimens, correlate with ex-

perimental observation, and compare with model prediction for complete fracture

behavior under oxidative aging.

Modification of present model to improve the accuracy in the lifetime pre-

diction and constitutive response:

i) Our present model requires 18 material parameters to characterize the oxidation

process accurately. Some of the reactions during polymer oxidation are instanta-

neous (especially reactions involving the radicals), and it is impossible to quantify

them experimentally in a chain reaction mechanism. To avoid this, we propose using

an idealized reaction that considers the contributions from all chain reactions in the

evolution kinetics but deals only with the reactant and product species, which are

experimentally measurable quantities. Then, the state of oxidation will be expressed

using a single ’extent of reaction’ (instead of six), and the number of material pa-

rameters could be reduced to only 3. This idealization in the reaction kinetics will

increase the ease of usability of the present model and appeal to a broader range of

end-users.

(ii) The model can be extended to include the effect of change in the degree of crys-

tallinity in thermoplastics.

(iii) The homogenized model proposed in Chapter 3 needs to be further extended to
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predict oxidation-induced damage and degradation in polymer-matrix composites.

Polymer-matrix composite fracture:

Inclusion of delamination and debonding using a cohesive-type phase-field

(PF-CZM) model:

In the event of a FRP composite’s fracture, multiple competing damage mechanisms

are involved in the micro/mesoscale such as-matrix cracking, fiber breakage, fiber/ma-

trix debonding, and delamination. Our current work does not consider fiber-matrix

debonding and the delamination across the lamina as an important mode of fracture.

In that light, we propose modifying the current model by adding a PF-CZM type

model for fiber-matrix interface and ply-to-ply interface to simulate a cohesive-type

failure response. This will enable to accurately simulate progressive damage and fail-

ure in the laminated composite for other loading configuration such as three-point

bending and double cantilever beam bending.

Extending the unified phase-field model to incorporate fatigue in phase-

field fracture of composites:

The proposed phase-field fracture theory for FRPC can be easily extended to predict

fatigue crack propagation in UD composites. Since the fatigue damage is history-

dependent, we propose to modify the phase-field fracture theory to take into account

the history-dependent degradation of the fracture strength. Here we will introduce a

suitable fatigue history variable for each of the damage mechanisms described above
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and a function that will modify the dissipated fracture energy depending on the ac-

cumulated history variables. All the model modifications will eventually be validated

with experimental data to ensure robustness and accuracy of their predictions.
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[31] Böger, L., Nateghi, A., Miehe, C., 2017. A minimization principle for

deformation-diffusion processes in polymeric hydrogels: Constitutive model-

ing and fe implementation. International Journal of Solids and Structures 121,

257–274.

[32] Bolland, J., 1949. Kinetics of olefin oxidation. Quarterly Reviews, Chemical

Society 3, 1–21.

225



[33] Bolland, J., Gee, G., 1946. Kinetic studies in the chemistry of rubber and related

materials. ii. the kinetics of oxidation of unconjugated olefins. Transactions of

the Faraday Society 42, 236–243.

[34] Borden, M.J., Hughes, T.J., Landis, C.M., Anvari, A., Lee, I.J., 2016. A phase-

field formulation for fracture in ductile materials: Finite deformation balance

law derivation, plastic degradation, and stress triaxiality effects. Computer

Methods in Applied Mechanics and Engineering 312, 130–166.

[35] Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M., 2012.

A phase-field description of dynamic brittle fracture. Computer Methods in

Applied Mechanics and Engineering 217, 77–95.

[36] Bosnjak, N., Wang, S., Han, D., Lee, H., Chester, S.A., 2019. Modeling of

fiber-reinforced polymeric gels. Mechanics Research Communications 96, 7–18.

[37] Bourdin, B., 2007. Numerical implementation of the variational formulation for

quasi-static brittle fracture. Interfaces and free boundaries 9, 411–430.

[38] Bourdin, B., Francfort, G.A., Marigo, J.J., 2000. Numerical experiments in

revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48,

797–826.

[39] Bourdin, B., Francfort, G.A., Marigo, J.J., 2008. The variational approach to

fracture. Journal of elasticity 91, 5–148.

226



[40] Bowles, K.J., Nowak, G., 1988. Thermo-oxidative stability studies of celion

6000/pmr-15 unidirectional composites, pmr-15, and celion 6000 fiber. Journal

of Composite Materials 22, 966–985.

[41] Brunbauer, J., Pinter, G., 2015. Effects of mean stress and fibre volume content

on the fatigue-induced damage mechanisms in cfrp. international Journal of

Fatigue 75, 28–38.

[42] Brunbauer, J., Stadler, H., Pinter, G., 2015. Mechanical properties, fatigue

damage and microstructure of carbon/epoxy laminates depending on fibre vol-

ume content. International Journal of Fatigue 70, 85–92.

[43] Bryant, M., Khonsari, M., Ling, F., 2008. On the thermodynamics of degrada-

tion. Proceedings of the royal society A: mathematical, physical and engineering

sciences 464, 2001–2014.

[44] Buliga, M., 1998. Energy minimizing brittle crack propagation. Journal of

Elasticity 52, 201.

[45] Calvert, J.G., Pitts, J.N., 1966. Photochemistry .

[46] Carrara, P., Ambati, M., Alessi, R., De Lorenzis, L., 2020. A framework to

model the fatigue behavior of brittle materials based on a variational phase-

field approach. Computer Methods in Applied Mechanics and Engineering 361,

112731.

227



[47] Celina, M., Gillen, K.T., Assink, R., 2005. Accelerated aging and lifetime

prediction: review of non-arrhenius behaviour due to two competing processes.

Polymer Degradation and stability 90, 395–404.

[48] Celina, M., Wise, J., Ottesen, D., Gillen, K., Clough, R., 2000. Correlation

of chemical and mechanical property changes during oxidative degradation of

neoprene. Polymer degradation and Stability 68, 171–184.

[49] Celina, M.C., 2013. Review of polymer oxidation and its relationship with ma-

terials performance and lifetime prediction. Polymer Degradation and Stability

98, 2419–2429.

[50] Celina, M.C., Dayile, A.R., Quintana, A., 2013. A perspective on the inherent

oxidation sensitivity of epoxy materials. Polymer 54, 3290–3296.

[51] Chambers, A., Earl, J., Squires, C., Suhot, M., 2006. The effect of voids on the

flexural fatigue performance of unidirectional carbon fibre composites developed

for wind turbine applications. International journal of fatigue 28, 1389–1398.

[52] Chester, S.A., Anand, L., 2010. A coupled theory of fluid permeation and large

deformations for elastomeric materials. Journal of the Mechanics and Physics

of Solids 58, 1879–1906.

[53] Chester, S.A., Anand, L., 2011. A thermo-mechanically coupled theory for fluid

permeation in elastomeric materials: application to thermally responsive gels.

Journal of the Mechanics and Physics of Solids 59, 1978–2006.

228



[54] Chester, S.A., Di Leo, C.V., Anand, L., 2015. A finite element implementation

of a coupled diffusion-deformation theory for elastomeric gels. International

Journal of Solids and Structures 52, 1–18.

[55] Cinquin, J., Colin, X., Fayolle, B., Mille, M., Terekhina, S., Chocinski-Arnault,

L., Gigliotti, M., Grandidier, J.C., Lafarie-Frenot, M.C., Minervino, M., et al.,

2016. Thermo-oxidation behaviour of organic matrix composite materials at

high temperatures. Advances in aircraft and spacecraft science 3, 171–195.

[56] Coleman, B.D., Gurtin, M.E., 1967. Thermodynamics with internal state vari-

ables. The journal of chemical physics 47, 597–613.

[57] Colin, X., Audouin, L., Verdu, J., 2004. Determination of thermal oxidation

rate constants by an inverse method. application to polyethylene. Polymer

Degradation and Stability 86, 309–321.

[58] Colin, X., Audouin, L., Verdu, J., 2007. Kinetic modelling of the thermal oxida-

tion of polyisoprene elastomers. part 1: Unvulcanized unstabilized polyisoprene.

Polymer degradation and stability 92, 886–897.

[59] Colin, X., Marais, C., Verdu, J., 2001a. A new method for predicting the

thermal oxidation of thermoset matrices: application to an amine crosslinked

epoxy. Polymer Testing 20, 795–803.

[60] Colin, X., Marais, C., Verdu, J., 2001b. Thermal oxidation kinetics for a poly

(bismaleimide). Journal of Applied Polymer Science 82, 3418–3430.

229



[61] Colin, X., Marais, C., Verdu, J., 2002. Kinetic modelling and simulation of

gravimetric curves: application to the oxidation of bismaleimide and epoxy

resins. Polymer Degradation and Stability 78, 545–553.

[62] Colin, X., Verdu, J., 2003. Thermal ageing and lifetime prediction for organic

matrix composites. Plastics, rubber and composites 32, 349–356.

[63] Colin, X., Verdu, J., 2005. Strategy for studying thermal oxidation of organic

matrix composites. Composites Science and technology 65, 411–419.

[64] Colin, X., Verdu, J., 2012. Mechanisms and kinetics of organic matrix thermal

oxidation, in: Long-term durability of polymeric matrix composites. Springer,

pp. 311–344.

[65] Coquillat, M., Verdu, J., Colin, X., Audouin, L., Nevière, R., 2007. Thermal

oxidation of polybutadiene. part 1: Effect of temperature, oxygen pressure and

sample thickness on the thermal oxidation of hydroxyl-terminated polybutadi-

ene. Polymer degradation and stability 92, 1326–1333.

[66] Crupi, V., Guglielmino, E., Risitano, G., Tavilla, F., 2015. Experimental analy-

ses of sfrp material under static and fatigue loading by means of thermographic

and dic techniques. Composites Part B: Engineering 77, 268–277.

[67] Curtis, P., 1991. Tensile fatigue mechanisms in unidirectional polymer matrix

composite materials. International journal of fatigue 13, 377–382.

230



[68] Daghia, F., Zhang, F., Cluzel, C., Ladevèze, P., 2015. Thermo-mechano-
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Appendix A

Numerical Implementation of the

coupled diffusion-deformation

multiphysics problem

The weak forms of the initial boundary value problems described in Eq. 3.29 are

obtained by multiplying each of the equations by two weight functions w1 and w2,

respectively; w1 vanishes over the boundary S2 and similarly, w2 vanishes over SjR .
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In absence of the body forces, the corresponding weak forms are given by

∫
B

(
TR :

∂w1

∂x

)
dV =

∫
S2

(
w1 · ťR

)
dA

∫
B

(
˙cR
O2 + ξ̇ − ξ̇6 +D

∂w2

∂x

∂cR
∂x

)
dV = −

∫
SjR

w2
∂cR
∂x

ǰRdA (A.1)

Next, the body is approximated using finite elements as B = ∪Be. Assuming the

nodal solutions are the displacement vector and the oxygen concentration, the trial

solutions are interpolated inside each element by,

u =
∑

uANA,

cO2
R =

∑
cARN

A (A.2)

where A denotes the node of the element and NA is the shape function, uA and cAR

are the nodal displacement and oxygen concentration respectively, and u = x − X.

The weight functions are interpolated using same the shape function as,

w1 =
∑

wA
1 N

A,

w2 =
∑

wA
2 N

A (A.3)
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Using Eq. A.2 and A.3 into A.1 yields the following system of equations:

∫
B

(
TR :

∂NA

∂x

)
dV =

∫
S2

(
NAťR

)
dA,

∫
B

(
NA(c

(O2)
R + ξ̇2 − ξ̇6) +D

∂NA

∂x

∂cR
∂x

)
dV = −

∫
SjR

(
NAǰR

)
dA (A.4)

Following which the system of equations are solved using an iterative Newton solver,

with the element level residuals are given in the form as,

RA
u = −

∫
Be

(
TR :

∂NA

∂x

)
dV +

∫
S2

(
NAťR

)
dA (A.5)

for displacement residual and

RA
c =

∫
Be

(
NA(c

(O2)
R + ξ̇2 − ξ̇6) +D

∂NA

∂x

∂cR
∂x

)
dV −

∫
SjR

(
NAǰR

)
dA (A.6)

for oxygen concentration, respectively.
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The tangents for Newton solver are defined as,

KAB
uu = −∂Ru

A

∂uB
, KAB

uc = −∂Ru
A

∂cBR

KAB
cu = −∂Rc

A

∂uB
, KAB

cc = −∂Rc
A

∂cBR
(A.7)

Considering no traction force working over the boundary S2, the index form of KAB
uu

can be written as,

KAB
uiuk

=

∫
Be

(
∂NA

∂xj

∂Tij

∂uB
k

)
dV (A.8)

where uB
k indicates the nodal displacement in direction k at node B. Using the

identity Fmn = δmn +
∂NA

∂Xn
uA
m, such that ∂Fmn

∂uB
k

= ∂NA

∂Xn
δmk, it can be obtained as,

∂Tij

∂uB
k

=
∂NB

∂Xn

∂Tij

∂Fkn

(A.9)

Then Eq. A.8 can be written as,

KAB
uiuk

=

∫
Be

(
∂NA

∂xj

∂NB

∂Xn

∂Tij

∂Fkn

)
dV (A.10)
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Next, the tangent related to change in concentration cR is calculated as,

KAB
cc = −

∫
Be

(
NANB

Δt
+NANB

(
∂ξ̇2
∂cR

− ∂ξ̇6
∂cR

)
+D

∂NA

∂xi

∂NB

∂xi

+
∂D

∂cR
NB ∂NA

∂xi

∂cR
∂xi

)

(A.11)

where Δt denotes the difference between two consecutive time steps. Similarly, the

last two tangents are calculated as,

KAB
uc =

∫
Be

(
∂NA

∂xi

NB ∂Tij

∂ξ

∂ξ

∂cR

)
dV (A.12)

and

KAB
cuk

= −
∫
Be

(
∂NA

∂xi

(
D
∂cR
∂xk

δil

)
∂NB

∂xl

)
dV (A.13)

The system of equations are solved numerically for each element by writing a user

element subroutine in ABAQUS/Standard (2018) [? ].
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Appendix B

Evolution of the chain distribution

tensor

† while no oxidation (or chemical reaction is taking place), pure deformation

Eq. 2.21 can be concisely written as,

μ̇ = Lμ+ μLT (B.1)

with all other reaction-dependent terms being zero and assuming the un-reacted

network as incompressible. In such case, the solution for μ turns out to be

μ = FFT , which is equivalent to the left Cauchy-Green strain tensor as,

B = FFT . [255].
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† when the mechanical deformation is held constant (F = I) and oxidation (only

chemical reactions) is allowed to happen

Introducing,

α = (ξ4 + ξ5 + ξ6)
CT − c(t)

c(t)
(B.2)

and β = ξ1a + ξ3 in Eq. 2.21, we get,

μ̇ = kaα I−
[
kdβ +

ċ(t)

c(t)

]
μ+ (μ+ μT ) (B.3)

Following which, the solution of μ turns out as,

μ = Fe−(kdβ+cm)tFT +
kaα

kdβ + cm
FFT (B.4)

where cm = ċ(t)
c(t)

, is used.
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Appendix C

Principle of virtual power

We can write the external and internal power of the system as,

Wext =

∫
∂P

tR(nR) . χ̇ daR +

∫
P

bR . χ̇ dvR +

∫
∂P

ζ(nR) ḋ daR (C.1)

Wint =

∫
P

(
TR : Ḟ+�ḋ+ ζ.∇ḋ

)
dvR (C.2)

where bR is the non-inertial body force per unit volume of the reference body. Intro-

ducing the virtual rate fields as (χ̃, F̃, d̃,∇d̃), we can further write the external and
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internal expenditures of virtual power as,

Wext,V =

∫
∂P

tR(nR) . χ̃ daR +

∫
P

bR . χ̃ dvR +

∫
∂P

ζ(nR) d̃ daR (C.3)

Wint,V =

∫
P

(
TR : F̃+�d̃+ ζ.∇d̃

)
dvR (C.4)

Now the principle of virtual power requires that Wext,V = Wint,V , and Wint,V = 0

for rigid virtual velocity V , for any part P . The consequence of these requirements

provides us the macroforce balance consistent with the Piola stress as,

DivTR + bR = 0 and TRF
T = FTT

R (C.5)

Eq. C.5 represent the local macroforce and moment balance for the reference body.

As is standard, Piola stress is related to the symmetric Cauchy stress in the deformed

body by,

T = J−1TRF
T (C.6)
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And the microstresses ζ and � are consistent with the microforce balance equation

together with the microtraction condition as:

Divζ −� = 0 and ζ(nR) = ζ.nR (C.7)

C.1 Energy imbalance

With reference to [143], for an isothermal polymer oxidation process, the local form of

energy balance can be written as in Eq. 2.29, with additional terms appearing for the

phase field damage process. Then, following the specific free energy form as Eq. 3.15,

we get

ψ̇R =

(
∂ψ̂R

∂λ
⊗ λ

)
: L+

∂ψ̂R

∂d
ḋ+

∂ψ̂R

∂∇d
.∇ḋ+

∑
β

∂ψ̂R

∂cRβ
ċβR +

∑
n

∂ψ̂R

∂ξn
ξ̇n (C.8)

In view of Eq. C.8, the free energy imbalance Eq. 2.29 is equivalent to the requirement

that the following inequality must be satisfied for all the constitutive processes:

(
1

λ̄

∂ψ̂R

∂λ̄
λ⊗ λ− J T̂

)
: L+

(
∂ψ̂R

∂d
−�

)
ḋ+

(
∂ψ̂R

∂∇d
− ζ

)
.∇ḋ

+
∑
β

(
∂ψ̂R

∂cRβ
− μ̂β

)
ċβR −

[(
−
∑
β

μβ
∑
n

Rnβ −
∑
n

∂ψ̂R

∂ξn

)
ξ̇n

]

+
∑
β

ĵβR · ∇μβ ≤ 0 (C.9)

273



In the above equation, the stress-power (TR : Ḟ) has been related to the spatial

configuration as,

TR : Ḟ = J T : L (C.10)

To hold the above inequality true for any arbitrary L, ċβR and ∇ḋ, their coefficients

must vanish- the criteria which provides the constraint for the specific constitutive

forms for the Cauchy stress, T, the microstress, �en and ζ (as shown in the main

text). In addition, thee chemical potential, μβ is given as [143],

μβ =
∂ψR(L

m)

∂cβR
(C.11)

From the dissipation inequality, further the species flux needs to satisfy the species-

transport inequality as,

jβR(L
m) · ∇μβ ≤ 0 (C.12)

As in [143], we assume the oxygen flux obeys Fick’s law, as,

jβR = −Mβ∇μβ (C.13)

with Mβ being the mobility tensor. Substituting Eq. C.13 into C.12, we get the

species-transport inequality always satisfied, for a positive definite mobility tensor as,

∇μβ ·Mβ(Lm)∇μβ ≥ 0 (C.14)
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In addition, based on Eq. 2.37 the driving force for each individual reaction can be

defined as,

Fn = −∂ψR

∂ξn
−
∑
β

μβRnβ, (C.15)

and we choose a thermally activated relation for the evolution of extent of reaction

ξ̇n as,

ξ̇n = knexp

(−Qn
act

Rϑ

)
Fn (C.16)

where, kn is the pre-exponential rate constant for reaction n and has an unit of 1
MPa−s

,

Qn
act is the activation energy for reaction n.
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