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Abstract

Anomalous extensive air showers have yet to be detected by cosmic ray observatories.

Fluorescence detectors provide a way to view the air showers created by cosmic rays

with primary energies reaching up to hundreds of EeV . The resulting air showers

produced by these highly energetic collisions can contain features that deviate from

average air showers. Detection of these anomalous events may provide information

into unknown regions of particle physics, and place constraints on cross-sectional in-

teraction lengths of protons. In this dissertation, I propose measurements of extensive

air shower profiles that are used in a machine learning pipeline to distinguish a typ-

ical shower from an anomalous shower. Finally, constraints on yearly detection of

anomalous events using the machine learning pipeline are given based on EPOS-LHC

and QGSJET-II simulations for the Pierre Auger Observatory FD.
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Chapter 1

Introduction

For roughly a century, thousands of scientists across hundreds of experiments have

developed what we know as the Standard Model of particle physics (SM). The SM has

enjoyed success after success describing nature with its most recent achievement, the

discovery of the Higgs boson, receiving tons of press. However, there are unanswered

pieces the SM has yet to describe. The field of particle physics beyond the SM has

many possible extensions, with no clear model standing at the front of the line. The

pursuit of finding experimental evidence for SM extensions has ushered scientist to-

ward grand collision experiments, like the Large Hadron Collider. The Large Hadron

Collider is designed to facilitate proton-proton collisions that range in energies from

hundreds of GeV up to 14 TeV, covering 3 orders of magnitude. Even with the broad

range of energies available to the LHC searches for hidden-sector particles have yet to

bare fruit. Luckily for scientists, there is natural phenomenon that occurs thousands

of times a day across the atmosphere of Earth that we can use to reach even higher

collision energies. To witness them we must turn our instruments and minds to the

sky.
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Cosmic rays have captured the interest of scientist for generations. In 1912 Viktor

Hess discovered them in his famous balloon experiment. Since then scientists have

been unraveling the mystery behind their origins, spectrum, and acceleration. Pierre

Auger, a french physicist, led the discovery of air showers produced by cosmic ray

collisions in Earth’s atmosphere. With this new knowledge Physicists got to work

devising detectors that used Earth’s atmosphere as a huge calorimeter. The success of

early detectors like Volcano Ranch, and Fly’s Eye, made it natural to dream of a bigger

more robust experiment. The Pierre Auger Observatory combined the best parts of

earlier cosmic ray air shower observatories into one hybrid detector. Comprised of

two detectors; the 1660 Cherenkov water tanks, and the four fluorescence detectors

the Pierre Auger Observatory is the largest cosmic ray observatory in the world.

Covering an area approximately the size of Rhode Island, this enormous aperture

allows for the observatory to be witness to the highest energy collisions available on

Earth. At 1 · 1020 electron volts cosmic rays contain enough energy to surpass the

energies produced by collisions at modern particle accelerators. In this dissertation

we will explore the possibility of probing the frontier of new particle physics using

these energetic collisions in Earth’s atmosphere.

The rest of Chapter 1 gives a quick recap of the discovery of cosmic rays and extensive

air showers. In Chapter 2 the present understanding of cosmic rays and extensive air

showers are covered. Chapter 3 focuses on the development of longitudinal air shower

energy profiles and how air shower profiles can deviate from a universal development

profile. The Pierre Auger Observatory is discussed with greater emphasis on the flu-

orescence detector (FD) in Chapter 5. Chapter 6 begins with defining measurements

on FD longitudinal development profiles that are later used for machine learning. The

rest of the chapter covers training a binary classifier that tags air showers as typical

or anomalous using the defined measurements. Smoothing observed FD data with

profile histograms and the LOWESS technique as a pre-processing step is outlined in

Chapter 7. Finally, the expected 100 year flux of anomalous air showers is explored
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and places the capstone on this thesis in Chapter 8.

1.1 The Discovery of Cosmic Rays

Viktor Hess discovered cosmic rays through a series of balloon flights in 1912 [1].

During these flights, he noticed that the flux of ionizing radiation increased as you

go higher into the atmosphere. Intuitively, Hess explained this by attributing it

to an increased radiation flux coming from outside Earth’s atmosphere. Hess also

investigated the sun’s effect on this flux. By taking balloon flights during the night,

and a partial eclipse, he showed that the change in ionization flux did not change

enough to attribute this radiation to the sun. Therefore, the source of this radiation

had to be from space itself. Hess’s discovery was later confirmed by Werner Kolhörster

[2].

The creation of the term cosmic rays can be attributed to Millikan. He devised

an experiment to take measurements in high-altitude lakes at different depths. The

ionization rate at the surfaces of a lower altitude lake matched the ionization rate of a

lake located 2km higher in altitude with only a depth of 2m. Millikan surmised that

2km of air absorbed the same amount of radiation as 2m of water, and convinced him

that the radiation came from a cosmic origin [3]. The epiphany of the ‘ray’-diation

coming from cosmic origins resulted in the nomenclature “cosmic ray”.

1.2 The Discovery of Extensive Air Showers

When a cosmic ray enters Earth’s atmosphere, a series of collisions, interactions, and

scattering events generate a cascade of particles called an extensive air shower (EAS).
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In 1939 Pierre Auger was attributed with the discovery of EAS [4]. The invention

of the Geiger counter led Auger to put them to use in evaluating radiation in our

atmosphere [5]. By placing Geiger counters up to 300 m apart, Auger noticed coin-

cident detection despite the large separations. The concurrent detection proved that

the particles arriving at these unique detectors originated from the same source. The

particles activating the Geiger counters were secondary particles generated from a

cosmic ray interacting with atmospheric matter. The chain reaction of events gen-

erates secondary particles that cascade through the atmosphere, reaching the Geiger

counters. With this discovery, experiments begin development to capture these air

showers.

1.2.1 Historical Extensive Air Showers Detectors

The Volcano Ranch experiment in New Mexico measured the first cosmic ray particle

at Ultra-High energies estimated to be at 1020 eV [6]. It used photo-multiplier tubes

to capture light created when a charged particle passed through the plastic scintil-

lation material of the device. The scintillation technique continued to be utilized in

experiments such as Yakutsk array, and the AGASA array [7, 8].

Figure 1.1: The array at Haverah Park. Each hut is a cluster of water
tanks. Each hut on the perimeter is located 500 m from the central group.
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Another early experiment, Haverah Park, employed a new technique to capture infor-

mation from secondary particles. The Haverah Park experiment was built in England

in 1962. The array consisted of clusters of four water tank detectors [9]. Each wa-

ter tank was made of galvanized steel with dimensions 1.85 x 1.24 x 1.29 m. The

tanks each had 1.2 m of water inside and had photo-multiplier tubes submerged in

them Fig 1.1. The water tanks were used to collect photons emitted by the water

molecules that are excited from particles passing by them faster than the speed of

light in water. The emission of photons in this way is known as Cherenkov radiation.

The photo-multiplier tubes submerged in the tanks collected this radiation, and the

total number of photons collected is directly relatable to the primary particle energy.

Eventually, scintillators were added to compare their response to air showers with

that of the response of water tanks. It was found that the scintillators increased

the angular resolution of the observatory and were then used in coincidence with the

water tanks. Haverah Park produced much more statistically accurate measurements

of shower energy than previous experiments with the combination of the two detec-

tion methods. The Haverah Park experiment found agreement with Volcano Ranch’s

observation of a flattening of the cosmic ray spectrum at higher energies.

Figure 1.2: Left: An image of the Fly’s Eye experiment. Right: A recon-
struction of a shower using Fly’s Eye data. The grey streak is an air shower
captured by the detector.
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Another technique sought to utilize Earth’s atmosphere as a calorimeter. The Fly’s

Eye experiment used ultraviolet light emitted from atmospheric nitrogen that became

excited when the secondary particles of an EAS passed by them. The release of

photons by nitrogen atoms is called fluorescence. The amount of fluorescence that the

nitrogen emitted can be directly linked to the primary cosmic ray particle’s energy.

At the Dugway Proving Grounds in Utah, a group of fluorescence detectors were

arranged such that the coverage of the detector resembled a fly’s eye Fig 1.2. The

only drawback to this technique was that it could not be employed during daylight as

the solar UV light would overload the sensitive photo-multiplier tubes. The Fly’s Eye

experiment operated with a single detector in monocular mode from 1981-1986. A

second array was added later, increasing the accuracy of the direction of the incoming

cosmic ray. With the addition of the second detector, the experiment operated in

stereoscopic mode from 1986-1993. During this time an extremely high energy particle

was detected at 3.2 · 1020eV [10].

The Fly’s Eye experiment was later upgraded and renamed to the Hi-Res experiment

[11]. Hi-Res stands for High Resolution Fly’s Eye; it used larger mirrors than the

original Fly’s Eye, allowing for smaller pixels and higher resolution. Hi-Res had two

telescope modules located 12.6 km apart. Hi-Res-I had 22 telescopes, and Hi-Res-II

had 42. Each mirror was 3.7 m in diameter and focused the UV light collected onto

256 photo-multiplier tubes. Hi-Res’s old telescopes are now used in the modern Tele-

scope Array [12], [13]. Like Fly’s Eye, Hi-Res could operate in both monocular and

stereoscopic modes. Hi-Res focused on studying the energy range near the GZK cut-

off. The Hi-Res experiment was one of the first experiments to confirm the existence

of the cut-off with their data set, nearly doubling other experiments’ contributions to

the effort [14]. Hi-Res stopped data collection in 2006.
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Chapter 2

Ultra-High-Energy Cosmic Ray

Physics

Cosmic rays are relativistic particles that originate outside of the Earth’s atmosphere.

Scientists have studied cosmic rays for generations starting from their discovery. Mod-

ern cosmic ray research focuses on solving the mystery behind their origin, compo-

sition, and acceleration mechanisms. Cosmic ray species contain the components of

atoms such as protons, electrons, neutrons, and atomic nuclei. The exact quantity of

each of these species that make up the composition of all cosmic rays is not known.

The majority of all cosmic rays that enter Earth’s atmosphere are created within

our galaxy. However, the highest energy cosmic rays must have an extra-galactic

origin. Cosmic rays with energies in excess of 1 · 1018 eV are considered Ultra-High-

Energy (UHE). Determining where these UHE cosmic rays are born and accelerated

is another mystery yet to be solved completely by scientists.
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2.1 Cosmic Ray Energy Spectrum and Composi-

tion

Figure 2.1: The complete cosmic ray energy spectrum measured by various
experiments. From [15]

Figure 2.2: A zoomed in look at the UHE cosmic ray energy spectrum,
and primary density. Left: The current energy density of cosmic ray species
at UHE from [16]. Right: The UHE cosmic ray energy spectrum scaled with
E2.6 to exaggerate features.
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The energy spectrum of cosmic rays spans a wide range, from a few GeV up to several

hundred EeV [17]. Fig 2.1 shows the entire cosmic ray spectrum that is measured by

various cosmic ray detector experiments. The cosmic ray spectrum follows a steeply

falling power law with the form in Equation 2.1.

J ≈ E−γ (2.1)

The full energy spectrum shows three locations where the power-law curve changes.

The changes in the γ factor of the power-law at these locations gave them the nick-

names: knee, 2nd knee, and ankle. The changes in γ are due to changes in cosmic

ray acceleration mechanisms. The ankle of the cosmic ray energy spectrum is home

to the very few highest-energy cosmic rays that have ever been detected. For the rest

of this thesis we will focus on the ankle, or the ultra-high-energy cosmic rays (UHE),

because of their ability to create the highest energy particle-particle collisions Earth

can witness. The UHECR energy spectrum is comprised of the ankle of the cosmic

ray spectrum, and is shown in Fig 2.2, starting at 1018 eV and extending to 1020.1

eV. The ankle of the cosmic ray spectrum contains the end of possible mechanisms of

acceleration to cosmic rays. There are several possibilities to the decline in observed

cosmic rays at the ankle. There simply may not be objects in the universe capable of

accelerating cosmic rays beyond these energies. Even if some mechanism exists, cos-

mic rays lose energy as the travel through the Universe. One of the loss mechanisms is

the interaction with the cosmic microwave background (CMB). Interactions with the

CMB were theorized by Greisen, Zatspin, and Kuz’min, who calculated that cosmic

rays beyond the energy of 5 · 1019 eV would begin to interact with the CMB. Another

energy loss mechanism which occurs at UHE is the Photo-disintegration of heavier

nuclei [18]. Photon-disintegration is when a nuclei absorbs with a gamma-ray photon.

Heavier nuclei may also undergo spallation, which fragments large nuclei into smaller

nuclei and ultimately into individual nucleons. Spallation occurs when a nuclei comes

in contact with another heavy particle. This collision fractures the original nuclei,
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reducing the number of protons, or neutrons per cosmic ray nucleus. Cosmic rays

traverse the Universe, undergoing all of these processes until reaching Earth. Very

few cosmic rays will ever be measured beyond this limit due to their constant loss of

energy from repeated interactions with microwave background photons. The details

of these cosmic ray energy loss processes are further discussed in Chapter 2.1.2.

Cosmic ray composition is the term used to describe the frequency of each species

of cosmic ray that enter our atmosphere. In the left plot of Fig 2.2 an example of

composition of at UHECR is shown for latest observed cosmic rays by the Pierre Auger

Observatory. As cosmic ray energy increases, the atomic mass of the species increases,

with less and less low mass cosmic rays contributing to energy density of cosmic ray.

Recently, a shift from pure proton compositions to this heavier composition became

the leading model for atomic composition of UHE cosmic rays for the Pierre Auger

collaboration [16].

2.1.1 Cosmic Ray Acceleration and Propagation

The variety in cosmic rays observed on Earth suggests a broad range of cosmic ray

acceleration mechanisms and origins. Cosmic rays with energies up to 1018 eV are

thought to be of galactic origins. Light nuclei make up most of the galactic cosmic ray

spectrum with as little as 1% of the density having atomic numbers more significant

than Helium [19]. Ultra-high energy cosmic rays are assumed to be from extra-galactic

sources. The different features in the power-law spectrum at UHE point toward no

one source as the sole producer of cosmic rays, but to a universal production. Cosmic

rays with these high energies reside in the ankle of the cosmic ray spectrum and are

strongly debated about what accelerates particles to these astounding energies.
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The acceleration theory of cosmic rays tries to understand how interstellar magnetic

fields affect the acceleration of charged particles. Enrico Fermi developed the math-

ematical model for these accelerations in 1949, and it is now referred to as Fermi

acceleration [20]. First-order Fermi acceleration occurs when a cosmic ray particle

and a shock front interact. Imagine a supernova remnant which has a ring of material

expanding away from the core. There is a shock front ahead of the expanding mate-

rial with velocity vs. If we consider the case where the interstellar medium is ionized

the vs is proportional to the velocity of the material by the ratio 4
3
Vr, where vr is

the speed of the remnant material. vr is much higher than the speed of sound in the

interstellar medium which creates the shock front. The cosmic rays that are in the

interstellar medium ahead of the shock front can cross the front moving down stream.

The same particle can scatter back across the front, returning upstream. Each cross-

ing, upstream or downstream, increases the cosmic rays kinetic energy. The average

energy gain per crossing is 2.2. 〈
∆E

E

〉
=

4vr
3c

(2.2)

Where c is the speed of light. The resulting spectral index, γ, from this 2. The

observed value of the spectral index at Earth is 2.7, which is slightly harder than at

the generation point. To achieve UHE, cosmic rays must undergo many passes across

the shock front.

For a given astrophysical object, we can approximate the maximum energy that it

could impart to a cosmic ray while the cosmic ray is contained in it by Equation 2.3.

Emax = β · Z ·B · L (2.3)

Where β is the shock front velocity, Z is the particle’s charge, B is the magnetic

field strength of the astrophysical object, and L is the object’s size. A graphical
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Figure 2.3: Magnetic field strength versus the size of astrophysical objects.
The two lines represent the cut-off for sources that can accelerate protons
beyond 1020 eV (green), and 1021 eV (red) respectively.

representation is shown in the Hillas diagram in Fig 2.3. Objects that can accelerate

charged particles beyond 1020 eV lay above the green line where sources above the

red could even push energies to 1021 eV [21]. A cosmic ray with energy above 1021 eV

has yet to be seen by detector experiments. Cosmic rays with such incredible energies

are unfortunately difficult to detect because after they travel a certain distance they

hit a theoretical brick wall.
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2.1.2 UHECR Energy Loss and the GZK Cutoff

If a cosmic ray has high enough energy, it will interact with the cosmic microwave

background over long distances. A cosmic ray proton can undergo pair production

with a cosmic microwave background photon by inelastic scattering. Pair production

occurs at cosmic ray energies given by Equation 2.4 [22].

Epp = mempc
4/2kT0 ≈ 1.0 · 1018eV (2.4)

Where me is the mass of the electron, mp is the mass of a proton, c is the speed of

light, T0 is the CMB average photon temperature of 2.725 K, and k is the Boltzmann

constant. The reaction produces both an e+ and e−, carrying away some momentum

from the cosmic ray proton, given by Equation 2.5.

p+ γCMB → p+ e− + e+ (2.5)

Every time a pair production occurs, a cosmic ray would lose on the order of 2 ·me ·c2

energy. At higher energies another mechanism for energy loss in UHECR is the

production of a ∆+. ∆+ has two decay channels, given below.

p+ γCMB → ∆+ → p+ π0 (2.6)

p+ γCMB → ∆+ → n+ π+ (2.7)

The creation of a ∆+ is known as delta resonance. ∆+ resonance occurs at cosmic

ray energies calculated by Equation 2.8.

Eπ = 4(mπc
2)2/kT0 ≈ 3.33 · 1020eV (2.8)
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Where mπ is the mass of the pion. ∆+ are shortly lived and decay into either a proton

and neutral pion or neutron with a pion carrying the charge. The ∆+ resonance of high

energy cosmic rays was predicted shortly after the discovery of the cosmic microwave

background by Greisen, Zatespin, and Kuzmin, giving it its name GZK cutoff [23],

[24]. Cosmic rays above 50 EeV view the path through the cosmos as opaque. The

average interaction length for energy loss by creation of a ∆+ is approximately 6

Mp. It’s easy to imagine this energy loss as a human with a bunch of a balloons

fastened to its body running through a thicket. Each balloon would represent a

bundle of energy in an atomic nucleus. After a short run through the thicket, all of

the balloons would have been popped; and our poor, imaginary human would just be

left sad and balloon-less. The newly balloon-less human represents the energy left in

the nucleus once it has shed the necessary energy to no longer interact with the cosmic

microwave background (thicket). Fig 2.4 shows the energy suppression of ultra-high

energy protons as they travel through space. After 100 Mpc of propagation, cosmic

ray energies all converge to sub-1020 eV (balloon-less) energies.

If the cosmic ray is heavier than a proton it may also undergo photo-disintegration.

Photo-disintegration happens when a heavy nucleus absorbs a gamma-ray photon.

The newly excited nucleus must shed the extra energy, and does so through releasing

one or two nucleons. Equation 2.9 is an example of a Beryllium photo-disintegrating

into two Helium atoms and a neutron.

Be+ γgamma → 2He+ n (2.9)

The chance of a nucleus photo-disintegration depends on its atomic mass, and charge.

The cross-section to absorb a photon goes by Equation 2.10

σabs =

∫ ∞

0

σ(E)dE ≈ 60
NZ

A
mb/MeV (2.10)
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Figure 2.4: The suppression of energy of three different energy cosmic ray
protons as they travel in mega-parsecs.

Where σ(E) is the cross-section of a photon with energy, E, in the rest system of the

nucleus, N is the number of neutrons, Z is the charge of the cosmic ray, and A is the

mass number of the cosmic ray. This approximation does not take into account the

stability of the nucleus. Energy loss due to a single photo-disintegration is simple to

estimate byNnuc·Mp·c2. WhereNnuc is the number of ejected nucleons,Mp is the mass

of a proton and c is the speed of light. The rate of photo-disintegration depends on the

atomic mass, charge, and energy of the incident photon, and number of nucleons lost

to the disintegration, so it is difficult to give an exact rate of occurrence. The paper

[25] gives an excellent overview of loss rates for some of these various circumstances.

Spallation of UHE cosmic rays is a much rarer event then the two previous discussions

of energy loss for UHE cosmic rays. Spallation mainly occurs in dense regions of the
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Universe, such as galaxies. On average the amount of heavy matter in the universe

is roughly 1 nuclei per cm3, nearly all of which is hydrogen. While travelling the

interstellar medium, the chance of a cosmic ray coming into collision with another

nucleus is so low that we will ignore it here. However, if the cosmic ray is travelling

through a denser part of the universe spallation shouldn’t be ignored. UHE cosmic

rays are also less susceptible to spallation because they are not as effected by galactic

magnetic fields, and escape faster into the interstellar medium.

2.2 Extensive Air Showers

Figure 2.5: An illustration of a developing EAS. Atmospheric molecules
are seen in blue. Secondary particle production is seen in read. Xmax is
shown where the highest number of particles exists.

When a cosmic ray enters Earth’s atmosphere, it collides with an atmospheric particle

and leaves a wake of secondary particles. This wake of secondary particles is called

an Extensive Air Shower (EAS). All EAS continue to generate secondary particles

until reaching a maximum size where the energy of individual particles is no longer

sufficient to create another particle. The atmospheric depth where this occurs is

called Xmax. The EAS then begins to wane as the number of particles in the shower

decreases. An example of this phenomenon is shown in Fig. 2.5. There are two main
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processes within an EAS; the electromagnetic cascade and the hadronic cascade.

2.2.1 The Electromagnetic Cascade

The electromagnetic cascade of an EAS is comprised of the process that electromag-

netic particles undergo during an EAS. Electrons, positrons, and photons are particles

that make up electromagnetic cascades. One process that contributes to the electro-

magnetic cascade is when a charged particle passes through the magnetic field of

atomic nuclei. The charged particle slows down, releasing energy in the form of a

photon. The release of a photon in this manner is named Bremsstrahlung radiation,

which means “breaking radiation”. The process is shown in Equation 2.11.

e± → e± + γ (2.11)

The energy lost by the charged particle through the emitted photon is calculated by

Equation 2.12.

− dE

dx
= 4πN0

Z2

A
r2emec

2[ln(
2mv2γ2

I
)− 1] Where I = I0Z (2.12)

Where dE is the amount of energy lost by the charged particle, dx is the distance

traveled, N0 is Avogadro’s number, Z is the atomic number of the atomic nucleus,

A is atomic mass, re is the classical electron radius, me is the electron mass, I is the

effective ionization potential. I0 are values that can be found in tables of effective

ionization potential per unit atomic electron. For diatomic nitrogen I0 = 15.5 eV

[26].

The other process that occurs in the electromagnetic component of EAS is pair pro-

duction. Pair production occurs when a photon comes close to a nucleus. The
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photon decays into an electron and positron pair, preserving the charge shown in

Equation 2.13.

γ → e+ + e− (2.13)

Pair production can only occur above a threshold of photon energy. Equation 2.18

shows the minimum threshold energy of pair production, ignoring the momentum

component of the nucleus.

E = Ee− + Ee+ (2.14)

= (me−c
2 +KEe−) + (me+c

2 +KEe+) let me− = me+ = mO (2.15)

= 2mOc
2 +KEe− +KEe+ let KEe− = KEe+ = 0 (2.16)

= 2mOc
2 (2.17)

= 1.022 MeV (2.18)

At energies lower than 1.022 MeV, the kinetic energy terms drop out, giving the

electron and positron pair no velocity. Pair production and Bremsstrahlung have a

working relationship in particle showers. Bremsstrahlung radiation produces more

photons which undergo pair production of more electrons and positrons, which once

again, Bremsstrahlung; radiating more photons until the threshold energy is attained.

These processes then come to a stop, and the shower diminishes. A cartoon of both

Bremsstrahlung radiation and pair production is shown in Fig 2.6. The electromag-

netic component of a shower makes up a bulk of the secondary particles created in

EAS.
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Figure 2.6: Left: A cartoon of pair production. Right: A cartoon of
Bremsstrahlung radiation.

2.2.2 The Hadronic Component

When a collision occurs between two particles that are made up of quarks, a hadronic

cascade occurs. Pions are created when a collision between a quark and another quark

generate so much energy that its anti-quark is created. A quark and its anti-quark

form a pion which frees the pair from the nucleus. During a cosmic ray induced EAS,

pions are created in large numbers. There are three types of pions π+, π−, and πo.

The πo particle has an extremely short lifetime of 8.4 ·10−17 s. The πo particles decay

almost immediately into photons. These photons go on to produce electromagnetic

showers of their own. The π+ and π− have longer lifetimes of about 26 nanoseconds

and often collide again and create lower energy charged pions. Suppose these lower

energy charged pions do not interact again, or their energy is too low such that they

cannot produce another charged pion. In that case, they decay into a muon and muon

neutrino with the same charge as the parent charged pion. All pion decays are shown
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below.

π+ → µ+ + νµ (2.19)

π− → µ− + νµ (2.20)

πo → γ + γ (2.21)

The production of pions make hadronic and electromagnetic showers produce different

shower profiles. Electromagnetic showers lack the muons generated by pion decays.

These differences in secondary particle composition allow instruments to differentiate

between the types of initial particle that enters Earth’s atmosphere [27]. However, for

all UHECR air showers, the primary particle is always a hadron and will have both

electromagnetic and hadronic shower components. A gamma-induced air shower has

never been detected above 1 · 1014 eV [28].

2.2.3 The Heitler Model of EAS

Figure 2.7: A simplified model of air shower development called the Heitler
model. Energy is evenly distributed across all particles for every reaction
length λ.

Heitler created an approximation method to describe electromagnetic cascades that

does an excellent job of explaining shower development up to the shower’s maximum

size [29]. Heitler assumes that after a particle travels a reaction length d, where
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d = λrln(2) and λr is the reaction length in the medium, the particle will split into

two new particles. After n number of splittings, the particles will be at a depth, x,

shown in Equation 2.22; with the total number of particles shown Equation 2.23.

x = nλrln(2) (2.22)

Nmax = 2n = e
x
λr (2.23)

The splitting of particles stops when the energy of the secondary particles is too low

for Bremsstrahlung or pair production to occur. This energy we will call Ec, and it

occurs at 85 MeV in air. The location where the maximum number of particles that

is created is called Xmax, and it occurs at Equation 2.24.

Xmax = nλrln(2) = λrln

(
Eo

Ec

)
(2.24)

Where Eo is the primary particles energy. For Hadronic cascades, however, we have

to consider pions. A similar approach to Heitler can be made for pions where the

reaction length is now Equation 2.25.

λ = λ1ln2 (2.25)

Where λ1 is the interaction length of strongly interacting particles. This is approxi-

mately 120 g
cm2 for air. Since there are three types of pions (plus, minus, and neutral),

there will be Nch charged pions and 1
2
Nch neutral pions created every reaction length

traveled. A πo will be said to decay immediately into photons. The charged pions

will be let to continue another interaction length and split again. Once the charge

pions fall below the critical energy, they are counted as muons.
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2.2.4 Nuclear Primaries

Matthews took the Heitler model and applied it to nuclear primary particles using

superposition [30]. Superposition allows a nucleus with some atomic mass number A

and energy Eo to be thought of as A particles with the total energy shared between

them as Eo

A
. The resulting shower from a nuclear primary would then be A proton

showers; all superimposed on each other. To find the total number of muons in this

type of shower, we have Equation 2.26.

NA
µ = A

(
Eo

AEπ
c

)0.85

= A0.15

(
Eo

Eπ
c

)0.85

= A0.15NP
µ (2.26)

Where NP
µ is the number of muons in a single proton shower with the same initial

energy of Eo. From Equation 2.26 it’s inferred that as the mass number A increases,

more muons will be seen in the shower. Knowing that our primary particle can be

thought of as A superimposed showers, it should be expected to have a XMax at a

higher point in the atmosphere because the threshold energy for particle production

will be reached much sooner. Lets call XMax of a nuclear primary shower XA
Max and

that of a proton XP
Max. Then the XA

Max is equal to Equation 2.27.

XA
max = X0+λrln

( E0

A

3NchEc

)
= X0+λrln

(
E0

3NchEc

)
−λrln(A) = XP

max−λrln(A)

(2.27)

Where X0 is the depth of the first interaction, Nch is the number of charged pions,

and XP
Max is the depth maximum for a proton shower with the same initial energy Eo.

Equation 2.27 shows when A increases the 2nd term will get larger; decreasing XA
max

which means the location of the maximum number of particles in a nuclear primary

shower will always be closer to the primary particle than a single protons showers

XP
max is to the primary proton.
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Chapter 3

Longitudinal Development of Air

Showers

3.1 Typical Development of Extensive Air Show-

ers

The number of secondary particles in EAS development starts at the first interaction

and then grows at an exponential rate, quickly reaching a maximum at a depth called

Xmax. After this maximum number of particles is reached, the number of secondary

particles created decreases after each interaction length. The decrease in secondary

particles happens at a slower rate than the increase to the maximum number at Xmax.

The evolution of the number of particles in an air shower is mathematically described

by the Gaisser-Hillas function [31]. Equation 3.1 is the four-parameter version of the
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equation.

N(X) = NMax

(
X −X0

XMax −X0

)XMax−X0
λ

· exp

(
XMax −X

λ

)
(3.1)

Where NMax is the number of particles at depth XMax. λ and X0 are energy and

primary mass dependent parameters. Studying the longitudinal profile of an air

shower has led to direct relationships to XMax and cosmic ray energy [32].

As relativistic secondary particles travel through the atmosphere, they produce light

by air fluorescence from the excitation of nitrogen molecules in the air. As the primary

particle energy that creates an air shower increases so to does the number of fluoresced

photons emitted by the nitrogen molecules. The light created by air fluorescence is

directly related to the amount of charged particles in the air shower at discrete depths.

The Gaisser-Hillas function is often written instead in terms of energy deposit as a

function of slant depth shown in Equation 3.2.

fGH(X) =

(
dE

dX

)
Max

(
X −X0

XMax −X0

)XMax−X0
λ

· exp

(
Xmax −X

λ

)
(3.2)

The Gaisser-Hillas function, in this form, gives us a way to directly look at where the

energy of the primary cosmic ray particle is deposited along the track of an EAS.

The shape of the shower profile can fluctuate. The first interaction of the cosmic

ray particle and atmospheric particle, X1, is the main source of fluctuation in profile

development. Cosmic ray species also cause the longitudinal profile to fluctuate.

Higher mass cosmic ray air showers fluctuate less because their energy is spread

across individual protons and neutrons by E0

A
, where A is the number of nucleons in

the cosmic ray. Figure 3.1 shows ten simulated proton and ten simulated iron showers.

The fluctuations between each longitudinal profile within its own species are from the
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first interaction depth of the individual showers. The fluctuations between species

is due to superposition principle discussed previously. The differences in Xmax are

apparent between protons and iron induced showers that are displayed in the figure.

In the next section, a transformation of the Gaisser-Hillas function is able to reduce

Figure 3.1: 10 of each iron and proton simulations using the EPOS particle
interaction model at 1019 eV. Fluctuations in X0 are seen more commonly
in lower atomic mass primaries.

the differences between iron and proton fluctuations to minuscule levels.

3.2 Universality of the Shape of Longitudinal Pro-

files

Longitudinal shower profiles vary from air shower to air shower due to primary particle

and first interaction depth. Since the depth of XMax is known to be dependent on

cosmic ray primary, we can reduce the variance of longitudinal development by species

by shifting all XMax to a fixed position. Coincidentally, the variation due to first

interaction depth is completely eliminated with this transformation [33], [34]. The
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resulting transformation can be written using the Gaisser Hillas function with the

following substitutions: X
′

= X − XMax, R =
√
λ/|X ′

0|, and L =
√
|X ′

0|/λ;

where X
′
0 = X0−XMax. The reduced Gaisser Hillas form is shown in Equation 3.3.

dE

dX

′

=

(
1 +R · X

′

L

)R−2

· exp

(
− X

′

R · L

)
(3.3)

If the same air showers from Figure 3.1 are re-plotted under this transformation they

become indistinguishable from one another. Figure 3.2 shows the same proton and

iron showers now all piled on-top of one another in this transformed space. Using

Figure 3.2: The same 20 iron and proton simulations from Figure 3.1
plotted under the reduced Gaisser-Hillas transformation. All fluctuations
from first interaction depth and primary particle species vanish.

the reduced Gaisser-Hillas function makes typical air shower profiles nearly universal.

Taking a closer look at the reduced Gaisser-Hillas parameters, we can think of the

function as Gaussian with a width of L, and an asymmetry of R. Figure 3.3 shows

the dependency of R and L with primary particles using the QGSJET-II.04 model

at 1019 eV. Here we still see a slight dependency on cosmic ray primary for the R

and L parameters. In the same study, R and L are shown to depend on the hadronic

interaction model. The average values of R and L for FD showers have been measured
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Figure 3.3: The R and L shape parameters of average shower profiles over
10,000 QGSJET-II.04 simulations. Each dot represents a mixed composition
and crosses represent pure compositions. From [33].

Table 3.1
Summary of measured values of average R and L taken by the Pierre Auger

Observatory FD detectors. Average energy bin is given as well as
systematic uncertainties. From [35].

Energy [eV] log10[E/eV ] N R R Error L L Error

1017.8 − 1018.0 17.90 7829 0.260 +0.039
−0.040 226.2 +5.7

−4.9

1018.0 − 1018.2 18.09 5648 0.244 +0.037
−0.039 227.6 +5.6

−4.5

1018.2 − 1018.5 18.33 4780 0.252 +0.035
−0.037 229.1 +5.6

−4.3

1018.5 − 1018.8 18.63 1907 0.267 +0.034
−0.035 231.4 +6.2

−4.1

1018.8 − 1019.2 18.97 1026 0.264 +0.033
−0.034 233.3 +7

−4

E > 1019.2 19.38 342 0.264 +0.023
−0.035 238.3 +7.3

−4

by the Pierre Auger Observatory FD [35]. A summary of the R and L values from their

findings is shown in Table 3.1. There is no dependency on R as energy increases, but

L has a gradual increase. A comparison to the measured values and simulated values
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using three hadronic interactions models is shown in Figure 3.4. Each interaction

model shifts upward in L but stays relatively the same in R. For the two energy

bands shown, simulated and measured values agree to 2σ. In the reduced Gaisser-

Hillas parameterization there are some weak dependencies on energy and cosmic ray

primary composition from these studies. To visualize what this means in terms of

Figure 3.4: Measured (grey) and simulated (colored polygons) L vs R
values. Two energy bands are shown with the higher energy band in better
agreement. A 2σ contour is plotted in grey. Proton showers can be seen in
the top left of the polygons where the composition transitions to iron as you
move down and right. From [35]

longitudinal development, 15,000 proton and 15,000 iron showers are simulated over

a range of 45o − 80o Zenith angle and 1018.7 − 1020.1 eV. Averaging both data sets

produces average longitudinal development profiles in Fig 3.5. Even though the two

cosmic ray species have considerable differences in atomic mass, and the energy varied

over 2 orders of magnitude, their respective average profiles vary by just a handful of

g/cm2.

The average shape of air showers varies so little under this transformation that it

should be considered universal. All variance in the universal shape is seen from

heavy cosmic ray primaries, like the iron confidence band shown in the figure. Later
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in Chapter 6.1, we will exploit the universal nature of the longitudinal profile devel-

opment to distinguish typical air showers from anomalous showers.

Figure 3.5: The average shapes of 15,000 iron and proton showers using
the Sibyll 2.3 hadronic interaction model. The colored bands are the 95%
confidence level.

3.3 Anomalous Extensive Air Showers

The longitudinal development of extensive air showers can rarely deviate from the

universal profile. Showers that exhibit shapes that do not conform to the universal

profile are considered anomalous.
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3.3.1 Anomalous Air Showers from Deeply Penetrating Par-

ticles

There is a chance for a secondary particle created in an EAS to penetrate into Earth’s

atmosphere much deeper than it normally would. If a secondary particle avoided inter-

action well passed its average interaction length it would generate a sub-shower along

the axis of the primary shower, creating an additional bump of substantial energy.

The chance of a particle penetrating some distance ∆X is given by Equation 3.4.

P (∆X) = e−
∆X
λ (3.4)

Where λ is the hadronic interaction length in air. λ values are determined using

Equation 3.5.

λ =
MMolar

NA · σ
(3.5)

Where MMolar is defined as the molar mass of the target, NA is Avogadro’s number,

and σ is the cross-sectional interaction length of the beam particle. The molar mass of

air is the average molar mass of the elements in the air, and the average is dominated

by nitrogen. The molar mass of dry air is a constant 28.97 g
mol

up to 90 km [36]. For

illustrative purposes, we will only consider the inelastic component of the proton-

proton cross-section, which is modeled by Equation 3.6.

σinel
pp = 65

(
1 + 0.237ln

(
E

200GeV

)
+ 0.01ln2

(
E

200GeV

))
mb (3.6)

Cross-sectional interaction length increases with particle energy. A quick calculation

of λ for a proton of 1 · 1019 eV would give you approximate 90 g
cm2 . The chance of a

deeply penetrating nucleon decreases with energy, but increases as the atomic mass

of the particle species is lowered. Since the Hietler model of air showers considers
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a nucleus of A nucleons as A separate proton showers, it is easy to see how the

penetration power decreases as the number of nucleons increases. Figure 3.6 shows

the probability of interaction for two cosmic ray protons of different energy. Lower

energy cosmic ray particles are more likely to penetrate deeper into the atmosphere

and produce anomalous shower events than heavier cosmic rays. In this simplified

Figure 3.6: The probability of iron and proton cosmic rays interacting with
air for two energy levels.

model we can see that at a depths greater than 300 g
cm2 there is a probability of

penetration of 4% for a proton of 1 · 1019 eV. Simulations of anomalous showers

that include all physical interactions have found the probability of penetration to

be much lower; on the order of 10−3 at the same energy [37]. Examples of possible

air shower profiles created from deeply penetrating secondary particles are shown in

Figure 3.7. A search of 217,762 typical air showers, created for use in this thesis, with

the EPOS-LHC hadronic interaction model found 687 candidate spectator nucleon

showers. Figure 3.7 displays two Helium showers found in this search that have

anomalous features. Both air showers exhibit features not normally seen in the orange,

universal profile shape under the reduced Gaisser-Hillas transformation. Dividing 687

by 217,762 gives a rate of 3 · 10−3 which agrees with the order of magnitude 10−3 rate

from the anomalous air shower paper. Figure 3.8 shows the latest result from the
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Figure 3.7: Two EPOS-LHC simulated air showers that have deeply pene-
trating spectator nucleons. The top shower of energy 1 · 1018.87 eV, features
an anomalous extra bump. The bottom shower has energy 1 · 1019.38, and
displays a widening of the shower profile. These two showers were found in
the typical air shower database that is used later in the machine learning
step of this thesis. Each example has the universal EAS profile overlaid on
the graph to show how large the anomalous features are.

Pierre Auger Observatory on the cross-sectional interaction length of a proton with

air at 1·1018.32 eV. If the Pierre Auger Observatory measures enough ultra-high energy

anomalous events, a revision of this study is possible for an even higher energy p-

air cross-section measurement. Current hadronic interaction models predict a deeply
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Figure 3.8: The measured cross-sectional interaction length of a proton
with air from various experiments. The trend lines are generated using four
popular hadronic interaction models that are interpolated for higher energies.
The top axis is in units of

√
spp to give a comparison to LHC center of mass

collision energies. From [38].

penetration of a nucleon occurring at a rate of 1
1000

events. If an excess of 1 out

of 1000 events is witnessed at energies above 1019 eV, new particle physics may be

present in UHECR air showers. If even one anomalous event created by a spectator

nucleon or leading particle is observed at UHEs, new cosmic ray interaction length

constraints are possible.

3.3.2 Anomalous Showers from Exotic Particles

Spectator nucleons, or leading particles penetrating deeply into the atmosphere, may

not be the only way to create an anomalous air shower. The collisions between a

cosmic ray and an atmospheric particle are at such high energies that they could

create new particles beyond the standard model. The Large Hadron Collider (LHC)
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is the worlds leading facility for probing for new particle physics beyond the standard

model [39]. The CMS collaboration uses a technique that searches for displaced jets of

particles that do not have an existing trail from the collision area [40]. Exotic particles

are thought to travel some distance away from the center of the proton-proton collision

and decay back into SM particles which are then seen by the various detectors that

encircle the collision area. However, the ATLAS and CMS collaboration have yet to

discover many theorized particles such as SUSY and WIMPS [41] while looking for

these displaced vertices.

The search for hidden-sector particles is hindered by two factors when using the LHC.

The first problem is the LHC maybe experiencing an energy barrier barring it from

creating new particles. Currently the LHC is only consistently capable of achieving
√
13 TeV collisions. Even with the enormous luminosity of the LHC it may just

not have enough “umph” to find new particle Physics. The next best place to look

for high energy collisions is in Earth’s atmosphere, through the lens of cosmic ray

observatories. If we consider the atmosphere as a fixed target experiment we can

calculated the center of mass energy of a particle collision by Equation 3.7

ECM =
√
2MtargetEbeam (3.7)

Where ECM is the energy of the particle beam of the experiment and Mtarget is the

rest mass of the target. A typical UHECR collision in the atmosphere would be

with diatomic nitrogen. Nitrogen is made of protons and neutrons, which contain up

and down quarks. The rest mass of an up quark is currently believed to be between

1.7− 3.3 MeV; the down quark 4.1− 5.8 MeV [42]. At UHE, the collision of a proton

cosmic ray with the nitrogen would be with the quarks themselves. Equation 3.8

gives a ball-park calculation of the center of mass energy for an UHE proton cosmic
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ray of energy 1.31 · 1019 colliding with a nitrogen’s down quark.

ECM =
√

2(5.8 · 106eV ) · (1.31 · 1019eV ) = 1.31 · 1013eV (3.8)

If we compare our result to the LHC’s highest energy collision, we can see that the

cosmic ray collision in this example is 1.01 times higher energy in Equation 3.9. This

calculation is also a conservative estimate since the rest mass energy of the up and

down quarks increase by ∼ 100 times if you include the gluon field.

1.31 · 1013eV
13 · 1012 eV

= 1.01 (3.9)

As the energy of the cosmic ray primary increases, the gap between the center of

mass energy the LHC can produce and cosmic ray center of mass energy collisions

increases. To achieve a collision with the same energy as the highest energy cosmic

primary particles of energy 1020 eV, a collider would have to be built with a radius of

the planet Mercury’s orbit. It may never be practical to build a beam collider with

the capability to achieve UHE conditions.

The second issue the LHC has is that when extremely short lifetime particles decay

near the proton-proton collision point it doesn’t have sufficient time to be labelled as a

displaced vertex. The decay of exotic particles this close to the center of the collisions

are indistinguishable with SM particles created from the same collision. Displaced,

hidden-sector particles must travel a sufficient distance and then decay back into SM

particles for the LHC trigger to flag them as displaced vertices. If the collisions at

the LHC imparted particles with near speed of light velocities their Lorentz factor

would give sufficient time for them to be displaced far enough from the center of

the collision. The LHC is capable of seeing particles with lifetimes between .001 and

100 ns [43]. Generation of particles with lifetimes below .001 ns are indistinguishable

from other particle tracks. Particles with lifetimes in excess of 100 ns would most
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likely decay outside of the LHC field of view. With the Pierre Auger FD Detector it

would be possible to distinguish massive exotic particle decays that happen near p-p

collision through their corresponding EAS. The Lorentz factors for the LHC are in

the range from 1-15. At UHEs, secondary particles generated in EAS from cosmic ray

collisions have Lorentz factors on the order of 1 · 1010. Particles with short-lifetimes

will exists much longer in the lab frame of the Pierre Auger Observatory due to time

dilation, ∆t. ∆t is calculated by 3.10.

∆t = γ · τ (3.10)

Where γ is the Lorentz factor and τ is the particles lifetime at rest. Cosmic ray

generated exotic particles will live 10 order of magnitudes longer than particles gen-

erated within the LHC. The probability for a particle to decay in time t is given by

Equation 3.11.

P (t) = e
−t
γτ (3.11)

Where γ is the Lorentz factor and τ is the life time of a particle. To find the lifetimes

of particles that the Pierre Auger Observatory could bare witness to we just have

to find the length they could decay in. If we assume particles are traveling near the

speed of light, a particle will travel 1 km in 3 µ second. Long track lengths across the

Auger Observatory are between 60 and 100 km. Figure 3.9 shows various probabilities

of decay for particles with short lifetimes versus there length of travel. Particles with

lifetimes less than 1 · 10−15 should decay within the field of view of the Pierre Auger

Observatory. Particles with longer lifetimes would travel beyond the aperture of the

Pierre Auger Observatory before decaying. The top cut off isn’t a hard cut-off for

detection, but merely for having the chance to distinguish the lifetime of the particle.

Particles that have shorter lifetimes than roughly 1 · 10−18.5 seconds would all appear

to decay instantly in EAS. These types of decays would add energy to the beginning

of the longitudinal development profile. The distances on the x-axis correspond to
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Figure 3.9: The probability of an exotic particle decaying into standard
model particles within the aperture of the Pierre Auger Observatory. There
are two cut-offs; one for the minimum distinguishable lifetime, and one for
the maximum lifetimes.

the primary particles first interaction out to the total track length for an air shower

with 80o zenith angle. The average zenith angle the anomalous air shower search this

thesis is focusing on is 58o, which is 28.3 km in distance. Exotic particle searches

using cosmic ray observatories are possible at different energy, and particle lifetime

scales than are possible at the LHC.

These two differences provide a complimentary way to probe for exotic particles be-

yond the standard model using cosmic ray observatories. Theorists have already

shown that a gluino-induced showers may be visible at the Pierre Auger Observatory

[44], [45]. Other candidates for anomalous air shower producers would be short-

lifetime, weakly interacting, massive particles. These types of particles may not be

capable of detection within the background of collider experiments, but the large field

of view of the Pierre Auger Observatory could provide the necessary space for their

development [46]. Extensive air showers produced by exotic particles would have sep-

arate maxima along the longitudinal axis of EAS; similar to the deeply penetrating

nucleons. The difference is the additional maxima are produced from the decay of the

exotic particle into standard model particles. If an experiment could find anomalous
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showers in excess above the number of showers predicted by Equation 3.4 new particle

physics could be studied in Earth’s atmosphere.

3.3.3 Anomalous Air Showers from Clouds

Clouds not only effect the precise measurement of the energy deposit of EAS, but are

also a background for anomalous air shower searches. Anomalous air shower profiles

may be produced from the presence of clouds within the path of the longitudinal

development of an EAS. There are two possible scenarios that effect how the lon-

gitudinal development profile is measured by the FD due to cloud cover. The first

is an enhancement of the shower energy deposit in the location of the cloud. If a

cloud is present within the path of the EAS the Cherenkov light that is produced

gets scattered by the cloud. The scattered UV Cherenkov photons increase the num-

ber of photons collected at FD photo-multiplier tubes (PMTs). These extra photons

increase the reconstructed energy deposit at the locations the are observed. A cloud

enhanced longitudinal profile may have extra peaks along its track.

The second scenario is when a cloud is present between the path of the shower and

the FD telescope. In this scenario the fluoresced photons emitted by atmospheric

nitrogen will attenuated within the cloud. A smaller number of UV photons reaches

the FD aperture, resulting in a lower energy or completely missing portions of the

longitudinal profile. The two cases are demonstrated in Figure 3.10.

In both cases extra peaks that resemble anomalous air showers produced from deeply

penetrating secondary particles or hidden-sector particles are created from the cloud

cover. To search for true anomalous showers all showers that are near clouds have to

be rejected before analysis.
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Figure 3.10: Longitudinal profiles that are effected by clouds. Top: A
reconstruction effected by a cloud between the FD telescope and the shower
front. Bottom: A reconstruction effected by a cloud within the shower front.
Both cases shows anomalous features in the black, data points. The red line
is a Gaisser-Hillas fit to the data. From [47]

Efforts have already been made to find anomalous air showers with EAS experi-

ments [48]; however, they found no conclusive evidence. The search technique used

Gaisser-Hillas functions with one and two peak locations. Low statistics, as well as

cloud-induced anomalous air showers, create a large uncertainty in anomalous shower

identification. An experiment has never verified an anomalous air shower detection.

The arguments for searching for new particle physics in EAS experiments is varied

and compelling. The need for an effective method for anomalous air shower detection

is growing. This thesis aims to develop an improved measurement method, using the

Pierre Auger fluorescence detector, to find anomalous extensive air showers.
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Chapter 4

EAS detectors

EAS detectors rely on measuring the photons emitted by matter as charged particles

pass through a material. There are two main types of detectors that use similar

processes in ground array instruments: scintillators, and Cherenkov water tanks.

Scintillators are pieces of plastic that readily interact with relativistic particles and

re-emit many lower energy photons. The re-emitted photons are collected by light

guides that focus the photons onto PMTs. The number of photons detected by the

PMTs depends on the path length of the charged particle through the scintillator.

Cherenkov water tanks take advantage of Cherenkov radiation. Cherenkov radiation

occurs when a charged particle has a velocity greater than the speed of light in the

medium. Excited atoms near the particle become polarized and coherently emit

radiation at an angle given by Equation 4.1.

cos(θ) =
1

n · β
(4.1)

Where n is the refractive index of the medium and β is vp/c; the particle’s velocity

over the speed of light in a vacuum. When the Cherenkov photons reach a wall

41



of the tank, they are reflected, bouncing around the tank until a PMT captures

them. In either detector case, many detectors units are distributed over large areas

to capture a fraction of all secondary particles emitted by an EAS. Both ground

Figure 4.1: A PMT schematic. The photo-electric effect creates a cascade
of electrons, converting the photons to an electrical signal. Dynodes amplify
the signal.

array techniques use PMTs. PMTs are so sensitive they can make detection down

to a single photon through the power of the photo-electric effect. When photons

of sufficient energy collide with metallic surfaces they dislodge electrons from the

material’s surface. When a photon enters a PMT, it is directed to a metallic plate,

releasing an electron. The number of photo-electrons is increased through a series of

dynodes by secondary emission. A schematic of the process is shown in Figure 4.1.

Another type of detector captures the isotropically emitted photons from air fluores-

cence. The technique for detection of EAS using air fluorescence came from a Ph.D.

thesis at Cornell University by Bunner [49] [50]. Air fluorescence occurs when a rela-

tivistic charged particle passes through air and ionize atmospheric molecules. When

the molecules return to their resting energy levels, they emit photons in the ultra-

violet (UV) spectrum [51]. The isotropically emitted light has wavelengths between

300 nm to 430 nm. The relative intensities of nitrogen air fluorescence are shown in

Figure 4.2 with their energy level transitions labeled. Detectors that measure fluores-

cence photons are called Fluorescence Detectors (FDs). The amount of light emitted
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Figure 4.2: The nitrogen fluorescence spectrum with their energy level
transitions as measured by the AIRFLY experiment [52]

by fluorescence is proportional to the energy deposited in the atmosphere by the EAS

charged particles. Simply integrating over the entire depth of the shower gives the

total energy deposited in the atmosphere by the charged particles of an EAS. Measur-

ing the total energy deposit due to charged particles determines the primary cosmic

ray particle’s energy. FD telescopes consist of large, spherical mirrors that focus the

UV fluorescence light onto arrays of PMTs. The PMTs arrays image the EAS as it

crosses through the field of view.

Current cosmic ray experiments employ both of these techniques together to provide

a better geometric reconstruction of EAS.
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Figure 4.3: The Pierre Auger Observatory layout. The 1660 surface detec-
tor units are seen as dots. The four fluorescence detectors are seen as blue
fans.

4.1 The Pierre Auger Observatory

The Pierre Auger Observatory is a hybrid cosmic ray detector using water tank and

fluorescence telescope detection methods. One thousand six hundred and sixty water

tank detectors in an area of approximately 3000 km2 make up the surface array.

At the edges of the surface array, four FD sites look toward the center of the array

observing air showers with the ultra-violet light produced from air fluorescence. The

observatory headquarters is located on the edge of the town Malargüe, Argentina.

The observatory’s main objectives of scientific study are to find ultra-high energy

sources of cosmic rays, measure the cosmic ray energy spectrum, and uncover the

mass composition of cosmic rays. Throughout its years of operations, the Pierre

Auger collaborators have also found other uses for the experiment, such as measuring

proton-air cross-section, measurement of upper atmosphere lightning called ELVES

[53], and searching for neutrinos [54]. The Pierre Auger Observatory began operation

in 2004 while it was only partially built. Construction was completed in 2008, starting

its full capacity data collection. As of today, the Pierre Auger Observatory is the

largest operating cosmic ray detector in the world.
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The Auger Observatory employs two detection methods. Water Cherenkov tanks

make up the ground array, and FDs are used at night [55]. FDs are located at four

sites around the perimeter of the array. Four buildings containing six FD telescopes

each sit along the edge of the ground array, facing the array’s center. Each FD

telescope has a 30o azimuth view. Besides these 24 telescopes, an additional three are

used in the High Elevation Auger Telescopes (HEAT) experiment. These telescopes

point higher, seeing the sky between 30 and 58 degrees above the horizon. Showers

at these angles are lower-energy and have a lower brightness.

The Auger Observatory is designed to detect Ultra High Energy Cosmic Rays

(UHECR) [56]. These cosmic rays tip the scales of energy, clocking up to 1 · 1020

eV. Many upgrades to help the Auger Observatory discover their origins are un-

derway. The AugerPrime upgrade looks to add a plastic scintillator to count the

electromagnetic component of the shower that enters the water tanks [57]. These

scintillators help separate the electrically charged particles and photons from neutral

particles, aiding in reconstructing the original shower. Knowing the relative amounts

of electromagnetic and hadronic matter in water tanks will provide valuable informa-

tion in identifying the primary particle that the shower originated from. The AMIGA

upgrade looks to bury muon detectors below the surface of the ground. By placing

muon detectors underground, they are shielded from all other particles because other

particles will not penetrate deeply enough into the Earth to be counted by the de-

tector. Radio antennae will also be added to each ground array water tank. The

antenna will detect the radio photon emissions from particle showers. Radio anten-

nae are especially useful for showers that skim the surface of Earth. These types of

showers are known as horizontal air showers. All of these upgrades are additionally

making the Pierre Auger Observatory a more robust, all-in-one tool for high-energy

particle astronomy now and into the future.
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4.2 The Ground Array of the Pierre Auger Obser-

vatory

Figure 4.4: The Pierre Auger Observatory ground array water tank layout.
The red line is a charged particle entering the tank. The dotted, blue lines
are photons emitted by the water molecules. Not pictured: a rectangular
scintillator and a radio antenna.

The ground array of the Pierre Auger Observatory is comprised of 1660 Cherenkov

water tanks. Each water tank has three 9 inch PMTs that are mounted ontop of the

inside of the tank facing downward. Each water tank is equipped to be self sufficient.

A solar panel is used to charge a 12V battery that powers the communications antenna

and electronics. The structure of the tank is made of a high-density polythene plastic

that reaches 3.6 meters in diameter and 1.6 meters in height. A schematic of a

water tank is seen in Figure 4.4. Each water tank is filled with 12 tons of specially

purified water sourced from the headquarters in Malargüe. The walls of the tank are
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sealed with a reflective Tyvek liner [58]. Each water tank is spaced 1500 meters from

each other. Water Cherenkov detectors are sensitive to muons, electrons, and photon

secondary particles produced by EAS.

4.3 The Fluorescence Detector of the Pierre Auger

Observatory

Figure 4.5: The Los Marados FD site at night.

The fluorescence detector of the Pierre Auger Observatory only operates on clear-

moonless nights. Due to its nighttime restriction, the FD only has 13% up-time

compared to the ground array. However, even with the limitation of its operation,

the FD is an integral part of the Pierre Auger Observatory. The fluorescence detector

of the Pierre Auger Observatory is separated into four main stations at the site

locations Los Leones, Los Morados, Loma Amarilla, and Coiheueco. Each location is

called an “eye” of the FD, and they are labeled in Figure 4.3. Each station is situated

on the perimeter of the ground array on hills to raise them above ground level. The

Coiheueco site is raised significantly higher, sitting at 1700 m above sea level. The

rest of the array averages an altitude of 1400 m. Each FD station has a building

housing 6 telescopes. The buildings are split into 6 sections, each containing a mirror
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and camera. The buildings are designed to protect the telescope mirrors from adverse

weather and the dusty climate. An example of an FD building is shown in Figure 4.5.

The total number of telescopes is 24, excluding the three additional telescopes that

are part of the high altitude extension of the FD; which is called HEAT.

Each telescope has a 1.1 m radius diaphragm covered with a Schott MUG-6 filter glass

window. The transmission of the filter is above 50% between 310 and 390 nm in the

UV spectrum. The filter is crucial to reduce background light entering the telescope’s

cameras, improving the signal-to-noise ratio of the air shower. Shutters protect the

PMTs from day-light UV radiation. At night the shutters are opened by FD shifters

that operate the instrument from remote stations unless stormy conditions, or intense

moonlight are present.

After a photon passes through the filter into the building, it is reflected onto a con-

stellation of PMTs by a segmented-concave mirror. The mirrors have a surface area

of 13 m2 and a reflectively greater than 90% at 370 nm wavelength. There are two

configurations of mirrors; 36 rectangular segments made of coated aluminum and 60

hexagonal segments made of borosilicate glass coated with aluminum. A schematic of

the interior of the building as well as an individual telescope is shown in Figure 4.6.

Once a photon is reflected, it travels into one of the 440 model XP3062 PMTs that

make up the telescope’s camera. The PMTs are arranged into a 22 row by 20 column

rectangle. The boundaries of each PMT are hexagons with a side distance of 45.6mm.

PMTs have a 1.5o of angular distance between each other. The housing for the PMTs

is machined from a single block of aluminum and has a hexagonal pattern shown in

Figure 4.7. If a photon were to fall on the housing border, a loss of signal would occur.

To avoid this problem, a light collector designed in the shape of a “Mercedes star”

is added to each vertex of the hexagonal grid housing. The familiar triangular shape

of the Mercedes stars is shown in Figure 4.7, and is used to direct incoming light
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Figure 4.6: Left: Schematic of an entire FD site. Right: Layout of an
individual telescope with rectangular mirrors. All of its crucial components
labelled. From [55].

into the PMT aperture. Adding the stars at each vertex of the hexagonal opening

increased collection efficiency by 24% up to 94%.

Figure 4.7: Left: The hexagonal housing of the telescope camera. Right: A
group of 6 Mercedes stars that are attached to each opening of the housing.
From [55].

Individual telescopes have a field of view of 30o by 30o in azimuth and elevation. The

minimum elevation of a telescope is 1.5o above the horizon. The total combination
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of azimuth coverage for a site is 180o. When an EAS manifests in a telescope’s field

of view, a line of PMTs is activated on the grid. The number of photons, and arrival

time are used to reconstruct the EAS’s longitudinal development profile.

4.3.1 Calibration of the FD

To reconstruct EAS with fluorescence light, the signal amplitude from each PMT has

to be related directly to the number of photons entering the PMT. To perform this

calibration, a portable 2.5 m diameter drum light that can produce a flux of photons

with known intensity is attached to the aperture of each telescope. An ultra-violet

LED of wavelength 375 nm is pulsed inside the drum creating a diffused light source

of uniform intensity. The drum light illuminates each individual PMT of the telescope

camera. The intensity of light emitted per unit solid angle from any small area A

coming from the drum is given by Equation 4.2.

I(θ) = I0Acos(θ) (4.2)

Where I0 is the intensity of the LED, a diagram of the process is shown in Figure 4.8.

Each pixel is evaluated for every telescope using this method. The process is also

repeated across multiple wavelengths using a monochromator and xenon flasher to

determine the wavelength-dependent efficiency of each PMT. Wavelength-dependent

measurements have been made at 320, 337, 355, 380, and 405 nm using this method

with the responses shown on the right in Figure 4.8. Besides the calibration of each

PMT by a uniform flux of photons, a second method using mobile vertical laser shots

is performed. A nitrogen laser of 337 nm is moved 4km from each telescope and

is fired vertically. The flux of photons captured by each PMT is compared to the

predicted value of flux.
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Figure 4.8: Left: To preform photon-to-signal calibration a drum light is
attached to the aperture of each telescope. Right: the response of an FD
telescopes relative to 380 nm. From [55].

Each night of operation, two calibration measurements are also performed. Before

the data-taking operations begin, an LED is pulsed through a diffuser in the center

of each telescope mirror. The same pulse is performed at the end of the shift. The

data from these measurements are used to track the performance of each PMT over

time.

Not only is the response of each PMT calibrated, but background UV radiation must

also be measured and removed. UV photons are present in the atmosphere due to

moonlight, stars, planets, and twilight. Moonlight is the main source of background

UV photons limiting the FD to operation to nights below 60% moon fraction. The

threshold for FD activation must not trigger due to the background UV flux.

4.3.2 Triggering

The FD has several triggering levels to identify air showers. These triggers filter

data to avoid cluttering storage systems with data that doesn’t contain air showers.
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Figure 4.9: The fundamental types of PMT activation that SLT logic
activates on. From [55].

The first level trigger (FLT) monitors a column of 22 pixels of an FD camera. The

primary duties of the FTL logic are to constantly adjust to the change in background

UV radiation, provide memory allocation for triggered events, and provide input to

the second level trigger if the hit rate of pixels exceeds a threshold within 100 ns bins.

The second level trigger (SLT) uses logic to find air shower tracks in readouts from

the FLT. The algorithm looks for neighboring PMTs that activated in lines of five

or more. Fundamental pattern types that activate SLT are shown in Figure 4.9.

Rotations and reflections of these tracks also activate SLTs. Data acquisition will not

always have perfect activation of these types of patterns. To handle these situations,

or to handle dead PMTs, the digital logic only needs four triggered pixels out of five to

cause SLT trigger. In addition to the original five patterns, another 104 are possible

when a single PMT is removed from each permutation of the five patterns. A full

scan of all 440 PMT’s requires 1 microsecond. The SLT also provides time-stamps for

each triggered event. A third level trigger (TLT) is used to remove triggered events,

like lightning, that pass through the logic of the SLT.

Hybrid trigger (T3) events are events that incorporate both water tank data and

FD data. Every time an FD shower occurs, a T3 trigger sequence activates to find

the water tanks associated with it. Cherenkov water tanks will not always trigger at

energies below 3·1018 eV. The T3 algorithm calculates a preliminary shower geometry

and impact time. SD signals close to the reconstructed area are also added to the

readout, saving them for hybrid shower reconstructions.
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4.3.3 Reconstruction of Shower Axis using Hybrid Mode

Figure 4.10: The shower axis reconstruction using the SDP method. From
[59].

Hybrid mode provides the best possible geometrical accuracy. The timing information

from both the FD pixels and SD stations are used. The shower detector plane (SDP)

passes through the location of the FD telescope and the shower axis. The SDP is

found using the measured track by observing the directions of the triggered camera

PMTs. A cosmic ray shower is detected as a sequence of activated PMTs that progress

in a line across the sky. Figure 4.11 shows a shower trace on an FD camera. The faux

colors indicate the time in which each PMT is activated; the pixels here are activated

in order from cool colors to warm colors. Within the SDP the shower axis is defined

using two parameters; Rp and χ0. Where Rp is the perpendicular distance from the

FD camera to the track and χ0 is the angle the track makes with the horizontal line

in the SDP. Figure 4.10 illustrates the geometry of the SDP plane. Within the SDP,

each pixel views the shower axis at an angle, χi, with respect to the horizontal. We
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Figure 4.11: An example of activated PMTs with the timescale shown in
rainbow colors. The warmer colors occur later in time.

can define t0 as the time when the shower front passes by the closest point to the

camera. the time at which the shower passes through the ith pixel is calculated in

terms of t0, χ0, and Rp using Equation 4.3.

ti = t0 +
Rp

c
· tan[(χ0 − χi/2)] (4.3)

In FD mono reconstruction, the data points (ti χi) are fit to Equation 4.3 to get the

parameters t0, χ0, and Rp.

χ2 =
∑
i

(ti − t(χi))
2

σ(t2i )
+

(tSD − t(χSD))
2

σ(t2SD)
(4.4)

Unfortunately, for short shower tracks the fits are quite inaccurate due to the degener-

acy between two of the three parameters. The degeneracy is broken when we include

additional timing information from the ground array. If a single ground tank is able
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to provide time information for reconstruction the degeneracy of the two variables

is easily broken. In Equation 4.4 we added the surface detector time information to

break the degeneracy. Figure 4.12 shows a mono FD reconstruction versus a hybrid

Figure 4.12: An example of why tank information is critical to reconstruc-
tion. The mono reconstruction, in this case, is very different from the more
accurate hybrid reconstruction thanks to the tank data shown as empty
squares. From [55]

reconstruction with tank timing information. The addition of the tank timings brings

out the curvature in t(x) so as to allow for the independent determination of all three

parameters.

4.3.4 Reconstruction of Longitudinal Shower Profile and En-

ergy

With the geometry of the shower defined, the shower longitudinal energy profile is

constructed. The light collected at each PMT as a function of time is converted to

energy deposit as a function of slant depth. The total number of photons, Nγ, at a

55



given atmospheric depth, X, captured by a FD is modeled by Equation 4.5.

dNγ

dX
=

dEtotal

dX
·
∫

f(λ, p, T )τ(λ,X)ϵdet(λ,X)dλ (4.5)

Where f is the fluorescence yield and λ, p, and T are the dependencies of wavelength,

pressure and temperature. ϵdet and τ are the detector efficiency and optical trans-

mittance of the atmosphere. By knowing the number of photons captured by the

PMTs the intensity of the emitted light is relate-able to the energy dissipated by the

travel of the charged particles through the atmosphere. The primary particle energy

is simply found by integrating the energy dissipated over the slant depth. It is critical

for all contributing light sources to be disentangled from the fluorescence light gen-

erated by the air shower. The accuracy of the primary particle energy is dependent

on the removal of Cherenkov and scattered light that arises from atmospheric effects.

An example of the light background from multiple sources is shown in Figure 4.13 in

comparison to the total light captured by an FD camera. Finally, the FD method is

Figure 4.13: The total light captured by an FD camera during an EAS.
The amount of light attributed to scattering and Cherenkov phenomenon is
seen in colored curves.
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only sensitive to the electromagnetic component of the air shower. The energy con-

tribution from muons and neutrinos is not detectable through FD methods and must

be re-added to the final reconstruction. After all factors are taken into consideration,

the energy resolution of the FD detector is ≤ 10% [60].

4.4 Atmospheric Monitoring of the Pierre Auger

Observatory

To effectively reconstruct air showers using the FD atmospheric conditions are closely

monitored using an assortment of instrumentation. Rayleigh scattering and Mie scat-

tering of photons are influenced by the state of the atmosphere and the concentration

of aerosols.

4.4.1 The Central and eXtreme Laser Facilities

Two laser facilities are located in the center of the Pierre Auger Observatory. Both

the Central laser facility (CLF) and eXtreme Laser facility (XLF) shoot vertical laser

pulses into the air that are used to test the air conditions for the fluorescence detectors

[61]. The photons of the laser beams are scattered by Mie and Rayleigh scattering.

The percentage of these scattered photons reach the FD telescope photo-multiplier

tubes. A diagram of the scattering is shown in Figure 4.14. The lasers are pulsed

at 355 nm with energy of 7 mJ. Each shot pulse is 7 nanoseconds long with 50 shots

fired in 15 minute intervals. An example of a vertical laser shot from the CLF is

shown in Figure 4.15 The signal received by the FD during a CLF laser pulse is used

to calculate various quantities. One of those quantities is the aerosol optical depth
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Figure 4.14: Diagram of CLF laser light scattering from a point S to an
FD. Adapted from [62]

Figure 4.15: Right: The FD response to a CLF laser shot. Left: The flash
ADC response to the laser shot with the three pulses indicated by the pixels
with black dots in them. The reduction in signal is due to the change in
height which increases the amount of atmosphere the light travels through
to reach the detector. Adapted from [61].

τa. To solve for this quantity the total number of photons at the telescope is known

to be found by Equation 4.6 using the diagram from Figure 4.14.

Nγ = Nγ,0 · Tm,1Ta,1 · (Sm + Sa) · Tm,2Ta,2 (4.6)
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Where Nγ,0 is the number of photons in a laser pulse, the molecular and aerosol

scattering transmission factors are Tm,1 and Ta,1, and the scattering factors Sm and

Sa follow the same convention. The probability of transmission are designated by

Tm,2 and Ta,2.

Equation 4.6 simplified to Equation 4.7 for a perfectly clear night.

Nγ,m = Nγ,0 · Tm,1 · Sm · Tm,2 (4.7)

A ratio of the two cases is given by Equation 4.8.

Nγ

Nγ,m

= Ta,1Ta,2

(
1 +

Sa

Sm

)
(4.8)

The aerosol transmission under horizontal uniformity is written as Equation 4.9.

Ta = exp

(
− τa

sin(ϕ)

)
(4.9)

Where ϕ is the elevation angle shown in the CLF diagram. Substituting the aerosol

transmission function into Equation 4.8 results in Equation 4.10.

τa = −
sin(ϕ1)sin(ϕ2)

sin(ϕ1) + sin(ϕ2)
ln

[
Nγ

Nγ,m

−
(
1 +

Sa

Sm

)]
(4.10)

Sa is also dependent on aerosol concentration which we are trying to solve with this

formulation. We can neglect the aerosol factor in Sa because the aerosol scattering is

due to forward scattering. Therefore a simplification of 1+ Sa

Sm
= 0 is made. The fact

that we are using a vertical laser shot also lets sin(ϕ1) = 1 giving Equation 4.11.

τa ≈
sin(ϕ2)

1 + sin(ϕ2)
ln

(
Nγ

Nγ,m

)
(4.11)

τa is determined from the ratio of signal with an angle ϕ2 when compared with a purely
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molecular scattering. This measuring technique requires a clear reference night.

4.4.2 Lidars

The lidar stations of the Pierre Auger Observatory are located at every FD site. Each

lidar has a 351 nm UV-laser that is pulsed at 333 Hz [63]. Three mirrors of 80 cm

gather the light that is back-scattered from the lasers. Photo-multiplier tubes are

used to record the intensity of the back-scattered light as a function of time. The

lidar stations are mounted on top of a rotational platform that allows for a full-sky

scan. The lidar is used to determine the vertical aerosol attenuation depth, cloud

heights, cloud coverage, scattering, and absorption parameters.

4.4.3 Weather Stations

There are five weather stations located at each FD site and the CLF. The duty of these

detectors are to monitor the atmospheric conditions such as pressure, temperature,

humidity, and wind speed. Every five minutes these measurements are recorded. The

amount of air fluorescence created by air showers is dependent on these quantities.

4.4.4 Observatory based Cloud Monitoring

Cloud monitoring is one of the most important tasks to ensure accurate reconstruction

of air showers captured by the FD [64]. Therefore, more than one technique is used

to determine the cloud cover over the Pierre Auger Observatory. Each FD site has an

infrared camera installed that observes the sky above the observatory. The direction
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the cameras face coincide with the directions the FDs face. A one-to-one mapping of

IR-camera pixels and FD-pixels allows the exact PMT of the FD that is effected by

cloud cover to be determined. EAS that are effected by cloud cover are flagged. The

height of the cloud is a necessary variable to determine the impact the cloud may

have had on an air shower reconstruction. The height of the clouds, however, is not

possible to determine with the IR-cameras. To determine the heights the lidar system

in combination with the CLF data can determine the height a cloud is located at. To

acquire precise location information of clouds another method is employed that uses

satellites.

4.5 Satellite Cloud Monitoring Using GOES-16

Another method of cloud detection uses the GOES-R series satellites that are con-

trolled by the National Oceanographic and Atmospheric Administration. The GOES-

R series satellites are geostationary satellites that have instruments that are sensitive

to IR light [65]. In the past the GOES-11, GOES-12, and GOES-13 satellites had

been used to determine the approximate location of clouds over the Pierre Auger

Observatory in latitude and longitude [66]. After the retirement of these satellites a

more advanced instrument in GOES-16 took over the surveying location of the pre-

vious generation satellites. As a service project to the Pierre Auger Observatory, the

development of the GOES-16 cloud monitoring algorithm became part of this thesis.

4.5.1 Ground Truthing GOES-16

The new GOES-16 satellite is ground-truthed using the IR-camera on top of the Los

Leones FD. A 1-1 mapping is achieved of the satellite pixel above Los Leones with the
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Figure 4.16: The IR cloud camera at Los Leones compares cloud cover over
the Los Leones fluorescence detector to GOES-16 satellite pixel responses.
A typical image the camera produces is on the left. The camera on the right
is Gobi-384 radiometric microbolometer used at Los Leones.

position of the FD by a coordinate transformation. To perform the transformation a

pixel grid height above the ground camera is chosen to represent the cloud layer in the

atmosphere. The height of the pixel grid determines the shape and scale of the grid

as seen by the cloud camera. The height of the grid is chosen to match the typically

height of clouds which range from 1 to over 10 kilometers. Clouds that are higher

than this are indistinguishable from the background clear-sky, as they are too cold

to be seen with the infrared camera. Figure 4.17 shows the satellite pixel coordinate

transformation for a cloud layer of 1km. However, for our analysis a height of 5 km

is used. GOES-16 is equipped with the Advanced Baseline Imager (ABI) camera

which has 16 wavebands covering a range of wavelengths from infrared to near-IR

[67]. To investigate the ABI responses to clear, and cloudy pixels The Los Leones

IR-camera tagged the satellite pixel directly above the camera by cuts applied to

a histogram in a color gradient. Images exhibiting a large cumulative response in

color gradients beyond 75 are considered cloudy, see Figure 4.18. Tagging pixels as

clear or cloudy using the histogram method resulted in a group of 1104 pixels that

are ground-truthed to form a relationship with the satellite response. Plotting each
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Figure 4.17: The GOES-16 satellite pixel grid as imaged by the IR cloud
camera. The height above the camera in this version is 1km. The red
dots correspond to the pixel centers of the GOES-16 satellite. Identification
numbers were assigned to satellite pixels above the FD site. The GOES-16
satellite location is in black.

tagged pixel’s brightness temperature response in bands 7, 9, and 14 from the satellite

shows a relationship between brightness temperatures and cloudiness. Figure 4.19.

Using these tagged pixel we applied kernel density estimators (KDE) to the clear and

cloudy populations. Combining the value of the two KDEs, and the ratio of clear to

cloudy pixels, we use a form of Bayesian probability in Equation 4.12 to give our final

cloud probability. The likelihoods P (x|Clear) and P (x|Cloud) are the value from the

two normalized kernel density functions. The priors, P (Cloud) and P (Clear), are the

fraction of cloud-tagged and clear-tagged points in the 1104-point data-set. Plotting

points across the observed region, we obtain the cloud probability map shown in

Figure 4.19.

P (Cloud|x) = P (x|Cloud)P (Cloud)

P (x|Cloud)P (Cloud) + P (x|Clear)P (Clear)
(4.12)
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Figure 4.18: Top: The Los Leones camera response to a clear sky; the
color histogram next to the camera shows a large response below the color
number 75, which is highlighted in red. Bottom: The Los Leones camera
response to a cloudy sky; in a stark contrast to the clear image, nearly all
of the response is beyond the color number 75.

Figure 4.19: Right: Two KDE contours plotted over pixel scatter plot
data. Clear-tagged pixels are in blue, and cloudy in red. Left: The cloud
probability map that is produced from the Bayesian probability function.
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4.5.2 Comparison to Clear-Sky Mask and Readiness

To test the goodness of the Bayesian technique we compared it to the National

Oceanographic and Atmospheric Administration’s (NOAA) Clear-Sky Mask (CSM)

product. The CSM is an algorithm using GOES-16 that produces a binary response

for cloud coverage of each pixel in an image allowing for a direct comparison to the

Bayesian technique [68]. We chose not to use the CSM as our algorithm because the

87% pixel accuracy of the CSM is not guaranteed beyond 80◦ solar zenith angle [69].

The FD of the Pierre Auger Observatory operates only when the solar zenith angle

is beyond 70◦. Vertical laser shots from the XLF and the CLF are routinely recorded

by the FD. If a cloud is directly over the XLF or CLF the FD can detect scattered

laser light giving their location [70]. We were able to identify the GOES-16 pixels

that correspond to the locations of the CLF and XLF. Each image taken by the

GOES-16 satellite is matched to the timestamp of vertical laser shots within an eight

minute window and its pixel response is extracted. The response of the two satellite

techniques and the laser facilities are then compared. Table 4.1 shows the Bayesian

algorithm out performed the CSM by ∼10%, and agreeing with the XLF and CLF at

a rate of ∼90%.

Table 4.1
Ground truth of Bayesian and Clear-Sky Mask techniques with the XLF

and CLF.

XLF CLF
Bayesian Clear-Sky Mask Bayesian Clear-Sky Mask

Agree 677 258 387 156

Disagree 78 68 46 38

Total 755 326 433 194

Percent Agreement 89.7 79.1 89.4 80.4

False Positives 39 60 19 28

The new algorithm has been published in the most recent ICRC conference as of
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writing of this thesis [71]. This section elaborates on the paper, but also include are

sections directly taken from it. As of now the algorithm has been used to take cloud

measurement since 2019 and has populated a database for use in the Pierre Auger

Collaboration. The new algorithm using the GOES-16 IR instrument provides cloud

maps with twice the resolution of the previous satellites. Figure 4.20 displays a cloud

map using the GOES-16 resolution. Ideally, this cloud identification method could

Figure 4.20: Cloud cover over the Pierre Auger Observatory. The GOES-
16 algorithm provides a 2 by 2 km resolution of cloud coverage. Clear sky
is seen in black with the highest chance of cloud cover shown in white.

be integrated into the reconstruction of EAS. The ability to de-select FD eyes that
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are impacted by cloud cover would be a huge step in eliminating the impact of cloudy

showers adding to the false-positive rate for anomalous air shower detection.
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Chapter 5

Simulation of Extensive Air

Showers

Analysis of experimental data of EASs requires robust modeling of the particle cas-

cade when high-energy particles enter Earth’s atmosphere. The evolution of an EAS

produces billions of particles whose energy, probability of interaction, lifetimes, and

other variables must be tracked as they make their way to the ground. Each of these

processes competes with one another due to their probabilistic nature. To exacerbate

this problem, our understanding of particles interactions at the highest energies is

incomplete. We are only able to extrapolate particle interactions at the highest ener-

gies from lower energy collider experimental results. Our best efforts in simulations

are very precise; however, they should not be accepted with complete certainty.

With that in mind, the primary tool for simulations of EAS is Monte Carlo method

(MC). The inclusion of all known properties of high energy, strong, and electro-

magnetic interactions for each particle in an air shower make MC simulations com-

putationally intensive. The leading EAS simulation software is called Cosmic Ray
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Simulations for Kascade (CORSIKA) [72]. Initially developed for the Kascade exper-

iment, CORSIKA is now widely used in experiments that study EAS. CORSIKA can

track every particle in an EAS. It also has the option to stop particle tracking once

a secondary particle reaches a user-defined threshold energy, saving computational

time; this mode of operation is called thinning.

However, for this work, another software package is used named CONEX [73] [74].

CONEX is preferred for our study because we are concerned with just the longi-

tudinal development profile of EAS. CONEX simulations do not track the lateral

structures of EAS, saving even more computational resources than the CORSIKA

thinning mode. CONEX combines Monte-Carlo simulations of high energy hadronic

and electromagnetic showers with numerical solutions of cascade equations to provide

measurements of air showers faster than a full CORSIKA simulation could. CONEX

allows us to efficiently generate a large bank of simulated air showers commensurate

with our current computing resources.

We must specify a hadronic particle interaction model when running CONEX. There

are three main hadronic interaction models that are used to simulate EAS develop-

ment; EPOS-LHC, QGSJET-II, and Sibyll 2.3 [75] [76] [77]. The EPOS-LHC model

is calibrated with the latest LHC data. QGSJET-II utilizes enhanced Pomeron [78]

diagrams to allow for realistic parton momentum distribution functions. Sibyll is

based on the dual parton model [79] and the mini-jet model [80]. Longitudinal devel-

opment profiles generated by hadronic interaction model only differ slightly from one

another. Each of these three models is available within CONEX simulation package.
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5.1 Simulation of Typical Air Showers

To set all variables in an EAS, a steering file is used along with appropriate flags in the

terminal CONEX command. An example of a steering file using the QGSJET-II par-

ticle interaction model is shown in Appendix B.1. Steering files control variables such

as where Monte-Carlo simulations stop and cascade equations take control, starting

slant depth, and the observer’s altitude. Control of other variables like shower energy

ranges, spectrum, zenith angles, and primary particles are handled at the command

line. For this study, showers are generated with zenith angles of 45o − 80o, energies

between 1 · 1018.7 and 1 · 1020.1 eV, and with primary particle species of protons,

helium, carbon, oxygen, silicon, or iron. The zenith angle range is chosen to allow

ample time for anomalous features to develop in longitudinal profiles. The energy

range is chosen such that the Ecm is above LHC energies. Finally, the same primary

particle species are chosen over the range of energies to give an approximate cosmic

ray primary particle composition.

5.2 Simulation of Anomalous Air Showers

Simulations of exotic showers are performed similarly, with the exception that a

smaller sub-shower is added to the primary shower at a randomly chosen depth be-

tween 50-2500 g
cm2 . The energy of the secondary shower is also randomly selected

between 5-25% of the energy of the primary shower. The range of depths reflects the

uncertainty of what type of exotic particle generation could occur or at what depth a

deeply penetrating nucleon may finally interact. To illustrate the process of making

an anomalous air shower, Figure 5.1 shows a typical air shower of energy 1019.81 eV

and a smaller shower with energy 1019.02 added together. The showers are compatible
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Figure 5.1: The process of creating an anomalous air shower simulation in
CONEX given in three images. From top to bottom we have the original,
typical air shower of energy 1019.81 followed by an anomalous sub-shower of
1019.02. The two showers are added together creating the final shower.
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for addition because they share the same the same zenith angle of 75o. The shower

created by the addition is distinctly anomalous. At the deeper end of the range of

depths, there is a chance that the anomalous feature would manifest inside of Earth’s

surface. These features will be lost to the sight of the FD and will be ignored later

for the training of a machine learning algorithm.

5.3 Creation of CONEX EAS databases

To utilize machine learning algorithms, an extensive database of showers is neces-

sary to capture all fluctuations and variations of the longitudinal profiles. For each

hadronic interaction model approximately 200,000 typical air showers and 200,000

anomalous showers make up 400,000 simulations available for use in training and test-

ing our machine learning algorithms. Each data-base is composed of equal amounts

of proton, helium, carbon, oxygen, silicon, and iron induced air showers. To justify

the use of CONEX simulated showers for machine learning training purposes, a study

of the R and L parameters from the JCAP paper [35] shows agreement with the R

and L parameters from the simulated shower databases. The measured values and

simulated values from our data-set are compared in Figure 5.2.

The R and L parameters that we found in our study are listed in Table 5.1. Which

are within the measured errors from Table 3.1. The slight differences in the simulated

air showers is probably due to the composition of the databases not reflecting the true

composition of what nature impacts Earth’s atmosphere with.
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Figure 5.2: The average R and L parameters for 90 thousand of each Sibyll,
EPOS, and QGSJETII simulations. These are compared to the JCAP ex-
perimentally found quantities. Good agreement is seen within the statistical
uncertainty of the JCAP measurements across three log10[E] ranges.

Table 5.1
The simulated QGSJETII, Sibyll, and EPOS-LHC R and L values found

displayed in Figure 5.2.

Model R L

QGSJETII 228.64±6.11 0.231±0.026
Sibyll 231.81±6.24 0.247±0.028

EPOS-LHC 227.17±9.05 0.242±0.05

5.4 Reconstruction of EAS using the Offline

Framework

The Pierre Auger collaboration has created a software framework called Offline [81].

It is designed to provide accurate reconstructions of air showers from both surface and

fluorescence data. It reads both CONEX and CORSIKA simulation files. Offline can

generate a complete simulation of the response of the Pierre Auger Observatory from

these files. Offline has a modular design allowing collaborators to tailor simulations
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Figure 5.3: A flowchart of Offline communication. Detector description
are used only by Modules. Module sequences pull information and write
information to Events.

to their individual purposes. There are three main parts to an Offline simulation:

the detector description, the data processing, and the event data. A flowchart in

Figure 5.3 illustrates how each of these parts works together.

The detector description houses the information about each detector component

stored in XML files and MySQL databases. Positions of each detector, periods of

time where hardware wasn’t functional, and atmospheric conditions are examples of

these types of information. Event classes store data from detector components. This

would include data like the amount of light measured at each PMT of an FD, direction

of the shower front, or surface detector tank traces.

The next step is data processing. Here modules that process the raw data are

executed in a sequential order that is controlled by a steering file called the

ModuleSequence.xml. Modules contain algorithms that are custom made for spe-

cific tasks. Links to the module conifiguration files reside in the bootstrap.xml

file.

When an Offline simulation is completed the output is stored in an Advanced Data

Summary Tree (ADST) file. ADST files are based on the ROOT software developed

by CERN [82]. The ADST files provide a complete description of the detector, the
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event, and the settings used in Offline.

For this thesis, we will simulate EAS using CONEX and Offline. An example of the

ModuleSequence.xml file is used for air shower simulations given below in Figure 5.4.

There are only two variables not provided by the CONEX file: the core location, and

azimuth angle. These parameters are randomly chosen by the EventGenerator, and

GeometryGenerator modules respectively. To increase productivity reconstruction of

CONEX simulations was automated within a Bash Shell script.
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Figure 5.4: The ModuleSequence.xml file used in shower reconstruction
for this thesis.
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Chapter 6

Machine Learning and Binary

Classification

Machine learning is the term used to describe algorithms that gather experience from

data. Unlike logical systems, machine learning is able to adapt itself to solve many

tasks through the change of adaptive parameters that are adjusted during learning.

The adjustments made during this learning period is often referred to as training.

If new data becomes available, machine learning algorithms can be re-trained to use

the new information. After training machine learning algorithms are used to predict

outcomes based on the data it is given. Machine learning is used to predict things like

the likelihood that a person could become president of the United States, or future

stock market prices.

Classification is a subset of machine learning. Classification is the term given to the

separation of unique objects into groups. Humans are entirely capable of classifying

objects with our eyes, ears, taste, and touch. A human can quickly separate a bushel

of apples and oranges into two groups. However, if there are thousands of bushels of

79



objects to classify, human processing is far too slow. The field of machine learning

allows a quicker way of identifying key features of objects to use in classification. A

classification algorithm is binary when it deals with only two possible outcomes. To

aid in classifying air showers as anomalous or typical, employing a binary classifier is

an obvious choice. The rest of this chapter will cover the types of measurements we

need to make of a shower profile that will be inputs to machine learning algorithms,

how to select a machine learning algorithm, how to tune a machine learning algorithm,

and finally how to evaluate the machine learning algorithms effectiveness.

6.1 Extensive Air Shower Measurables

Machine learning algorithms require thousands of data points to achieve efficient

training. Each data point needs descriptive measurements to ensure the development

of effective machine learning algorithms. Every object that is in a machine learning

data-set has to contain the exact same set of measurements as to not confuse the

algorithm. In this first section we will describe measurements developed for use in

binary classification that describe the physical nature of extensive air showers. To

start with something familiar we will discuss zenith angle.

6.1.1 Zenith Angle

The zenith angle is the angle that a shower axis makes with respect to the vertical.

Thus vertical and horizontal shower have zenith angles of 00 and 90o, respectively.

Showers with large zenith angles provide a longer track length over which the shower

can develop. The deeper penetrating parts of an anomalous shower have a better

chance of manifesting with large zenith angles. A shower may have an anomalous
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feature occurring below ground, or that is partially cut off by Earth’s crust; resulting

in missing portions of the structures we are trying to measure. An allowed range of

zenith angles for anomalous feature detection is shown in Figure 6.1, as well as what

an anomalous EAS with a cut-off portion of its anomalous features looks like.

Figure 6.1: Left: An anomalous shower with a zenith angle that is to low
to fully capture the EAS structure. Right: EAS in the allowed region would
have adequate space to develop anomalous features. Showers that extend
beyond the dotted red line would finish development below Earth’s surface.

Continuing with the idea of familiar measurements,XMax may also distinguish anoma-

lous events from typical events.

6.1.2 XMax Location

XMax is the location in atmospheric depth of the largest amount of energy deposited

by an EAS. The quantity of XMax is known to be sensitive to both the energy and

species of cosmic ray primary. XMax can also be used to distinguish a typical EAS

from an anomalous one. Using the Gaisser-Hillas parameterization of a longitudinal

profile and fitting it to both typical and anomalous air showers, yields two distinct

XMax distributions. Histograms of the two XMax populations are shown in Figure 6.2.

The shift in XMax for anomalous air showers is due to the fit of the Gaisser-Hillas
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Figure 6.2: XMax distributions of typical and anomalous EAS simulated
using the EPOS-LHC particle interaction model.

function accommodating the excess energy deposition of the anomalous feature. The

excess energy within anomalous air showers causes a shift to the right of the Gaisser-

Hillar fit, an example is provided in Figure 6.3. In this case a typical air shower of

1 · 1019.82 is fitted with a Gaisser-Hillas function. We then add an anomalous feature

with energy 1 · 1018.19 to it beginning at a depth of 290 g
cm2 . The new anomalous

shower, shown in red is once again fit with a GH function. The XMax location is

displaced 20 g
cm2 to the right. Even this modest anomalous feature of 2% of the main

shower energy impacts the location of XMax.

6.1.3 Residual Shower Energy

Anomalous air showers have features in their shower development profiles that are not

present in the universal air shower profile described in Chapter 3.2. The additional

features in anomalous air shower are excess amounts of energy deposit. To determine

how much excess energy is in an EAS a subtraction between the universal air shower

longitudinal profile, and a given shower profile results in a residual energy shower
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Figure 6.3: An illustration of the effect of anomalous features on XMax

location. Here we see a shift of the anomalous air shower GH fit XMax

location of 20 g
cm2 . The black and red vertical lines represent the old and

new XMax locations of the typical and anomalous air showers respectively.

profile. Equation 6.1 gives the functional form of a residual energy. Where Dmax is

the maximum depth of a given EAS.

Eresidual =
Dmax∑
d=0

(
EShower

d − EUniversal
d

)
(6.1)

The Ed values represent the energy deposit at a given depth of d for an air shower that

has undergone the reduced Gaisser-Hillas transformation. Where in the air shower

the residual energy is deposited varies across anomalous air showers. However, after

simulating thousands of anomalous air showers, there are two main types of events.

The first is an anomalous air shower with a widening of the primary shower. The

second type has well separated additional peaks. The residual energy of these two

categories of anomalous air showers manifests differently in the shower profile. The

two types of anomalous energy deposit are a distinguished by whether the residual

energy is deposited in the main longitudinal profile, or outside the main shower profile.

An example of each type is shown in Figure 6.4.

For the case of a widening shower profile the residual is near the primary air shower.
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Figure 6.4: Top: An example of an inner residual shower. Bottom: An ex-
ample of an outer residual shower. The universal shower profile is subtracted
from the anomalous shower; the residual energy left from this subtraction is
in orange.

For a shower with a well separated anomalous feature the residual is all is deposited

in a second peak along the longitudinal development profile.

Typical and anomalous air showers do not share the same distribution of residual

energies. Typical air shower residuals are commonly at the tails of the asymmetric

Gaussian shower shape. Anomalous air shower residuals are highly variable in our

anomalous air shower model. The larger the residual energy the more the air shower
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deviates in shower profile development from typical air showers. Examples of typi-

cal air shower and anomalous air shower residuals with histograms of their residual

energies across many simulated air showers are shown in Figures 6.5 and 6.6. The

Figure 6.5: Top: The universal shower plotted in red with ten thousand
residual deposits shown in green. Residual deposit behavior of typical show-
ers tend to one side of the universal shape. Bottom: A histogram of residual
energy deposit as a fraction of primary energy.

anomalous air shower residual distribution has two peaks, signaling two overlapping

distributions. The two distributions in the anomalous shower histogram result from a

portion of anomalous air showers that develops beyond the detector aperture. Anoma-

lous showers that are produced in this way are invisible to the FD; appearing to look
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Figure 6.6: Top: The universal shower plotted in teal with ten thousand
residuals energy deposits of anomalous showers shown in green. Bottom: A
histogram of residual energy as a percentage of primary energy for anomalous
showers. Two distributions are apparent.

like a normal air shower. During the training of our machine learning model these

showers are carefully removed as they are indistinguishable from typical air showers.

To ensure that only a small fraction of anomalous air showers will enter the training

data with residual energy that overlaps with typical air showers, we studied where the

2σ tail of the residual air shower spectrum is for typical air showers. With a 2σ cut-

off we ensure that only 5% of typical air showers may be mistaken for an anomalous

air shower. For our anomalous air shower training data we will remove anomalous
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Figure 6.7: 60,000 air shower residuals are histogramed with the 2σ tail
shown in red and marked with the dashed line. The distribution contains
equal parts of iron, silicon, oxygen, carbon, helium, and protons from ener-
gies of 18.7-20.1 log[E].

showers with less than 5% residual energy. The 2σ cut-off for residual energies of

typical showers is 5.0900± 0.0003 E −Euni. Figure 6.7 shows the locations of the 2σ

values with respect to the anomalous and typical shower residual distributions.

Not only is knowing the total amount of residual important, but where in the depth

space the residual is concentrated in indicates where in our atmosphere the most en-

ergy is deposited. The location of the residual gives clues into what type of anomalous

event occurred in the EAS. To better understand the location of the residual, we made

a binned residual measurement by splitting the EAS depth into four bins by simply

dividing the total track length into quarters. The distribution of quarter residuals

is shown in Figure 6.8 and 6.9. Across all quarters, the residual energy distribution

for anomalous air showers has a larger range of possible residuals than typical air

showers. Typical air showers have a much narrower range of possible residuals at the

third and fourth quarter depths.
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Figure 6.8: Histograms of residual energy by which quarter in track length
they were accumulated in. The first quarter and second quarters are shown
here. Anomalous showers have a larger range of fractional residual energy
possibilities.

6.1.4 Longitudinal Profile Width

Another measurement to include as an observable is the width of the EAS. The

full-width half-maximum of a shower is the distance between the left and right of

a shower’s peak at half of the normalized height. Measuring the full-width half-

maximum allows us to probe for showers with internal excess energy that widens the

shower profile. Decay of an exotic particle within the shower’s development profile
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Figure 6.9: The third quarter and fourth quarters residual energies for
both anomalous and typical air showers.

will widen the full-width half-maximum beyond typical showers. We will modify this

definition to instead use the first instance of height from the left and right of an

air shower; finding the depth interval between these two instances. Repeating this

measurement across multiple fractional heights of the maximum: such as third and

fifth maximums, as shown in Figure 6.10, gives an indication of what height the

widening may have occurred in the EAS. Typical showers fluctuate less in width than

anomalous showers do however, as the height of the maximum decreases, a significant

difference in the distributions is apparent.
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Figure 6.10: An example of an inner shower with its full-width half, third,
and fifth max displayed. The universal shower profile is shown in blue for
comparison.

We studied the distribution of full-width: half, third, fifth maximums across ten thou-

sand simulations for both typical and anomalous showers using the EPOS hadronic

interaction by creating histograms of these measurements. Across all width mea-

surements, Figure 6.11 shows that anomalous showers have distributions with long

tails that cover larger ranges of width values. Typical shower widths have tighter

distributions.

These measurements will provide our machine learning classification model with the

tools it needs to find distinction between anomalous and typical EAS profiles.

6.2 Selecting a Classification Model

There are two main types of classification algorithms; supervised learning and un-

supervised learning. Supervised learning requires labeled data that has a known

classification. For example: if you were to train a model on pictures of dogs and

cats, each image would be classified as containing a dog or a cat before the machine

learning algorithm received the data. Supervised learning maps inputs x to outputs
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Figure 6.11: Top to Bottom: Histograms of half, third, and fifth shower
maximums of anomalous and typical showers. The distribution of possible
widths for anomalous showers vary more than typical showers.
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y by a labeled set of input-output pairings. A mathematical expression for this is

given by Equation 6.2.

D = (xi, yi)
N
i=1 (6.2)

Where D is the training data-set, and N is the number of samples in the data-set. For

unsupervised learning we are only given inputs so Equation 6.2 becomes Equation 6.3

D = (xi)
N
i=1 (6.3)

Unsupervised learning will place a picture of a dog or cat into groups based on mea-

surements made on each picture without ever knowing if the picture contained a

dog or a cat in the first place. Data sets without a known pattern but have many

measured values are often referred to as unlabeled. These types of unlabeled data

are commonly found in cases like credit card usage, or social media. Examples of

supervised machine learning algorithms are K Nearest Neighbors, Decision Trees,

Linear Regression, Neural Networks, Random Forests, and Naive Bayes. Examples

of unsupervised methods are clustering algorithms, k-means, Gaussian mixtures, and

isolation forests.

For our study, it is best to use supervised learning models. We are able to simulate

both typical and anomalous air showers and classify them during their creation mak-

ing supervised learning the natural choice. Our goal is to map the set of measurables

defined in this chapter to one of two cases; typical and anomalous air showers. In

binary classification you can think of this as y = 0, 1, where the 0 or 1 indicate which

label y has. In our case we defined a set of ten measureables for each shower, i, in our

data-set. We can write x as a vector with a set of 10 measurables, x[0...9]. Mapping

x to y is then given by Equation 6.4.

D = (xi[0..9], yi)
N
i=1 (6.4)
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To determine which supervised model is best for our study, we subjected a three

sets of 400,000 air showers comprised of typical and anomalous showers to various

classification algorithms. Each of the three sets of data is comprised entirely of air

showers from one hadronic model. The hadronic models used to create input data-sets

are EPOS-LHC, QGSJET-II, and Sibyll 2.3. The ten measurements discussed earlier

are obtained from every shower in the 400,000 training sets. To determine quickly

which model is the most appropriate to classifying air showers a test varying zenith

angle is shown in Fig 6.12. Each model was trained, optimized, and cross-validated

during this test which we will discuss the process of later in this chapter.

Figure 6.12: Accuracy curves of various machine learning classification
techniques. Accuracy is shown to improve with Zenith angle, however Ran-
dom Forest dominates all other classifiers.

Fig 6.12 indicates that the random forest model is the best preforming classifier. The

rest of the section will focus on training, optimization, and the performance of a

random forest binary classification model.

93



6.3 Decision Trees

The main component of a random forest is a decision tree [83]. A decision tree is

a series of branching questions that is used to separate data into unique groups.

Each question shrinks the data-set into smaller sub-sets, further separating unique

instances. The first splitting of data a decision tree makes is called the root node.

The root node in decision trees is usually a question that maximizes the separation

of objects. Think of a 50/50 split as being a perfect root node. Each further split in

a decision tree is a child node to the root node. For a given node n, all successive

nodes linked to n by one edge are children of n. n is also called the parent of its child

nodes. After a child node is resolved it moves to the next node, becoming a parent

node itself. Each node can have two or more branching paths that lead to the next

series of nodes.

The effectiveness of a node is determined with a gini score. A gini score measures the

impurity of a node: nodes with gini scores of zero are “pure” nodes. A gini score of

zero means that after leaving that node, objects will be completely isolated from the

rest of the data-set. In other-words, the object will have been classified. Sort of like

studying your whole life to be a computer scientist when suddenly you realise that

the only people you know anymore are computer scientists; each object that passes a

node with a gini score of zero will have the same classification. Gini impurity score

is calculated with Equation 6.5.

Gi = 1−
n∑

k=1

pi,k2 (6.5)

Where pi,k2 is the ratio of k classification instances in the ith node. The final node

in a decision tree that classifies an object is called the leaf node. Now that all parts
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of decision trees are defined, an example decision tree structure that classifies dogs

and cats is shown in Figure 6.13. In this example there are 3 nodes, two of which

Figure 6.13: A possible decision tree structure for classifying dogs and
cats.

are leaf nodes that classify the object as a dog or a cat. None of the nodes in this

example have a gini score of zero; which is typical for a tree structure with such a

small number of nodes.

Figure 6.14 is an example of a decision tree for classifying anomalous air showers. The

decision tree is too complicated to properly fit into a figure because of its 40 node

depth and many branches. In practice decision trees are even more complicated, but

the main structure is the same as the dog and cat example. Figure 6.15 zooms in for a

closer view of the start of the decision tree. A zoomed in view of the decision tree gives

a familiar view similar to the cat and dog example. Starting at the root node, the first

value is a measured value of the data. In the case of Figure 6.15, we see “third” which

is the short name for full-width third maximum of the data. The next value is the gini

score, and for the root node it is roughly 50% which is as expected. The next value

is called samples; samples is the total percentage of the data that reaches that node.

The final value in each node box is called “value”, and it is the percentage of data

in the node that has a certain classification. The first index in values is percentage
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Figure 6.14: The much more complex decision tree structure for classifying
anomalous air showers.

of typical air showers and the second index is percentage of anomalous air showers

out of all samples at the node. In the 3rd row of nodes and second box, the data is

almost entirely classified as anomalous with a near gini impurity score near zero.

Decision trees are wonderful at classifying objects; however, they work even better in

groups.

6.4 The Random Forest Classifier

Decision trees are the fundamental components of random forests. Random forests use

multiple decision trees to create a “forest” of classifiers. Random forests are thought

of as ensembles of decision trees. Using ensembles of machine learning algorithms is a

common technique for increasing accuracy of machine learning models. Ensembles of
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Figure 6.15: The first and second depth nodes of a single decision tree
in the random forest binary classifier algorithm. The measured values go as
follows: residual energy in the 3rd quarter of the shower profile, total residual
energy, residual energy beyond Xmax, residual energy in the 4th quarter of
the longitudinal profile, total residual energy again, residual energy in 2nd
quarter, and residual energy beyond Xmax again.

classifiers reduce the variance of a single classifier estimate by taking many estimates

and using the average of them as the final classification value. Each decision tree

in the forest can be considered as a vote for a data points classification. The ratio

of all votes determines the final classification, and accuracy of that classification. If

there are j trees in a forest and we train each tree on a unique subset of data chosen

randomly with replacement we can write a functional form of a forest as Equation 6.6.

f(x) =
1

j

j∑
j=1

fN(x) (6.6)

Where fN is a tree with N training examples. If we examine the simplest case where

the output is Y {1, 0} and we want to know if the current sample is a 1 or a 0 f(x) is
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written as Equation 6.7.

f(x) =

1, 1
j

∑j
j=1 fN(x) ≥ 1/2

0, otherwise

(6.7)

Since we are only using a binary classifier this formulation suits our needs, however

random forests can also be used when the output has more than two possible out-

comes. Continuing with the example of classifying dogs and cats, A diagram of a

random forest that has three decision trees is shown in Figure 6.16. In this example

Figure 6.16: An example of a three decision tree random forest with tree
depths of two.

the final determination of an object being classified as a dog or cat will come from

the combined ratio of outcomes of the three decision trees. Lets define cats as an

output of 1 and dogs as an output of 0; and lets use Equation 6.7 and Figure 6.16 as

a reference. Here j = 3 and if two decision trees report a cat and one tree reports

a dog the final classification, f(x) = 2
3
, and since f(x) is a piece-wise function and

2
3
> 1

2
then f(x) = 1.
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6.5 Tuning Hyper-Parameters of a Random Forest

Classifier

Optimization of a random forest requires determination of the number of decision

trees, depth of each tree, maximum number of leaf nodes, and the number of samples

of data required to create a node. Recall a node is a point where data is separated,

and a leaf is the classifying node. The depth of a tree is the maximum number of a

nodes a decision tree may have. Each of these values plays a role in how accurate our

random forest model will be at classifying air showers.

In Figure 6.17 a visualization of tuning the maximum depth of decision trees is shown.

A steep increase in accuracy score occurs over the range of 1 to 5 tree depths which

then slows to a plateau around 20 depths. Marginal increases continue to be made

past 20 depths; however, after a depth of approximately 25 the gain in accuracy begins

to flat-line. To avoid over-fitting and wasting computational resources a maximum

depth of 30 is chosen.

Figure 6.17: A visualization of tuning the tree depth hyper-parameter.
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To tune all of the possible combinations of parameters a grid search method is the

most appropriate tool. A grid search creates a matrix that holds a range of values for

each hyper-parameter. Each combination of hyper-parameters is trained and tested to

determine the optimal random forest model. To find the best combination of hyper-

parameters for searching for anomalous showers using a random forest, we used the

Scikit-Learn model selection.GridSearchCV grid search tool.

6.6 Pre-Processing and Model Training

Pre-processing is defined by cleaning data-sets of entries that have some error, are

outliers, or do not fit the scope of the problem. If not addressed these entries will

give unwanted classifications or cause the machine learning model to crash.

An example of an entry in a data-set that has an error would be values like NaN,

infinity, or nonsense numbers. In the case of air shower measurements, if a resid-

ual energy is greater than 1 the reconstruction of the air shower must have failed.

Residual energies should never exceed the primary particles energy, as it would break

conservation laws. Scenarios like these are physically impossible and are a case of a

nonsense value. In Chapter 6.1.1 we took another pre-processing step by removing all

double showers with residual energies less than 5% because we can’t distinguish them

from typical air showers. A few more examples of pre-processing are only using air

showers with primary energies between 18.7-20.1 log(E), accepting air showers with

zenith angles between 45o−80o, and removing any showers where measurements such

as full-width half-maximum could not be made. After removal of all of these cases

our Random Forest model is ready to train on the cleaned data.
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6.7 Training a Random Forest Classifier

Python is the programming language synonymous with machine learning [84]. For this

study, the Scikit-Learn API is used [85] and its ensemble.RandmForestClassifier is

chosen as our model. To train the random forest binary classifier we will use the data

bases described in Chapter 5. The databases contain each air shower measurement

organized into columnated text files. The columns are ordered as shown in Table 6.1.

Not shown is the tag for an air shower being anomalous or typical, and the E
2/4
Res−E

4/4
Res

values.

Table 6.1
A representation of column formatting for the air shower measurement

input files. Where ETotal
Res is the total residual energy in the shower and the

E
1/4
Res − E

4/4
Res are the residual energy in the first quarter of air shower depth

to the last quarter of the shower depth; FWHM, FWTM, and FWFM are
the full-width half, third, and fifth max. The use of 1 denotes a unitless

quantity. Several columns are omitted to fit the page width.

ETotal
Res Zenith Angle FWHM FWTM FWFM Xmax E

1/4
Res ...

1 o g
cm2

g
cm2

g
cm2

g
cm2 1 ...

.016 67.54 200 320 421 300 .001 ...
...

...
...

...
...

...
... ...

Many machine learning algorithms struggle to perform well when input values are

numerically far apart. In our case, we will have data that is often three orders of

magnitude apart (like residual energy and Xmax). To fix this problem, a transforma-

tion of all input data is the best solution. For the data-sets in our study they are

transformed so that all values lay between -1 and 1 using Scikit-Learn’s preprocessing

API preprocessing.MinMaxScaler.
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Table 6.2
The trained QGSJET-II, Sibyll, and EPOS-LHC random forest binary

classifier model accuracy scores.

Model 5-fold Accuracy Scores Median St. Dev.

QGSJET-II 0.9868 0.9878 0.9868 0.9867 0.9874 0.9871 0.0004
Sibyll 0.9906 0.9907 0.9903 0.9902 0.9903 0.9904 0.0002

EPOS-LHC 0.9912 0.9910 0.9911 0.9921 0.9913 0.9914 0.0004

We will use a stratified k-fold to train miniature versions of our data sets. The

stratified k-fold approach randomly splits data into a defined number of sub-sets

which are called folds. Each fold is trained on the other subsets and evaluates its

accuracy on itself. For training the random forest classifier, 5-folds are used to find

an average evaluation score. Each fold is trained and evaluated against the other four-

folds, generating an array of five evaluation scores. The average score is calculated

from the array of the 5-folds. The final evaluation score is discussed along with more

metrics in Section 6.8.

6.8 Model Evaluation

The results of the 5-fold cross-validation for the random forest binary classification

model are in Table 6.2.

The training of a random forest binary classifier, on CONEX data, for identifying

anomalous air showers proves to be a powerful method. The random forest binary

classifier performs similarly across each hadronic interaction model with hardly any

variance. The small standard deviations are due to the large size of the data-sets with

the smallest of them, Sibyll 2.3, coming in at over 360,000 entrees. Examples of the

databases used for training the random forest models are provided in Appendices A.
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The result also proves that machine learning is an invariant tool for shower classifica-

tion amongst the most popular hadronic particle interaction models. However, these

results, although excellent, may not be good enough to definitively discover such an

anomalous air shower. We must be careful, because even the rate of 1 out of 100

miss identified showers that our random forest achieved it could provide a false iden-

tification when considering a phenomenon with an occurrence of roughly 1 of 1000

showers. To increase the confidence in this classifier further, installing a confidence

interval for shower acceptance is useful.

Machine learning algorithms are capable of providing not only a raw classification,

but the classifier’s confidence in the prediction. The test in Table 6.2 accepts clas-

sifications that are above a 50% confidence level. If the threshold is increased the

false positive rate (and false negative rate) drop dramatically. Figure 6.18 explores

what happens to each classifier as the confidence threshold increases. It is entirely

Figure 6.18: Three particle interaction models false positive rate plotted
versus confidence interval. The two horizontal lines represent cut-offs for
false positive rates. The desired false positive rate lies between the red and
orange lines.

possible to lower the false positive rate to below 1/1000 showers using a confidence

interval. Once again we note that each hadronic interaction model behaves similarly,
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with Sibyll 2.3 lagging slightly behind EPOS-LHC and QGSJET-II. The introduc-

tion of a confidence interval comes at a cost; showers that do not pass our random

forest model’s confidence threshold are rejected. As confidence level increases the

number of lost showers also increases. The act of balancing between the number of

lost showers and the accuracy of our classifier is somewhat subjective. Figure 6.19

attempts to make loss a tangible value and set a confidence band which benefits not

only the accuracy rate, but retains as much data as possible. A gradual increase in

Figure 6.19: Three particle interaction models loss rate plotted versus
confidence interval. The black line is the average loss value of the three
interaction models.

the percent of data loss as a function of confidence interval is seen across all hadronic

interaction models. EPOS-LHC experience the most loss of data with Sibyll 2.3 and

QGSJET-II having similar loss values. Sibyll 2.3 preforms better at lower confidence

intervals with QGSJET-II overtaking it as confidence increases. To mitigate data loss

and maximize accuracy score the sweet spot is between 75 − 95% confidence. Here

data loss is minimized to between 8 − 12.5% and the occurrence of false positives is

below 1 in 1000 air showers.
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Chapter 6 has demonstrated the effectiveness of random forests for classifying anoma-

lous air showers with CONEX data. The data captured by instruments in the field

is unfortunately not as clear, or continuous as CONEX simulations. Chapter 7 fo-

cuses on a non-parametric method to smooth away the noise that field instruments

introduce into cosmic ray air shower longitudinal profiles.
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Chapter 7

Smoothing Offline Data

Figure 7.1: A comparison between a perfectly smooth CONEX simulation
and the reconstructed air shower in Offline. This simulation was created
with the EPOS-LHC particle interaction model.

To be useful, the machine learning model must be trained on showers that have been

detected by the observatory and reconstructed using the Offline software framework.

For this study CONEX generates a simulated shower, Offline simulates the observa-

tory response, and ultimately, Offline produces a reconstructed shower profile. As

expected, the Offline profiles are jagged, noisy, and generally not suiable for direct
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insertion into the machine learning routines. Figure 7.1 shows the stark difference

between a CONEX longitudinal profile and a reconstructed profile from Pierre Auger

FD data. It is easy to see that the machine learning model from Chatper ‘6 would

fail spectacularly if it were to use un-prepared Offline reconstructed profiles. The

FD Offline reconstructions must be smoothed before applying the measurement tech-

niques developed in Chapter 6.1. In order to test the effectiveness of the smoothing

algorithm we compare CONEX generated profiles with their smoothed Offline coun-

terparts.

7.1 Profile Histogram

A profile histogram is a smoothing technique available in the ROOT data processing

framework. Profile histograms achieve smoothing by finding a mean value across all

values in a defined histogram width, or bin. The mean value error is found by the

standard error on the mean. The mean value for a bin size is given by Equation 7.1

Hi =

∑Y
n=0 f(xn)

Y
(7.1)

Where Y is the total number of points in the bin, f(xn) is the value of a function

evaluated at xn. and Hi is the mean value of the ith bin. The error for each Hi

is computed through the use of Equation 7.2 which is easily recognized as the root-

mean-square error of Hi.

Herror
i =

√√√√ 1

Y

Y∑
n=0

f(xn)2 (7.2)

Once all mean H values are computed a curve is fit to them taking their error into

account.
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To use profile histograms to smooth Offline data it is necessary to define an appro-

priate bin size that matches the observed resolution of the CONEX profiles. CONEX

simulations have maximum resolution in depth space of 10 g
cm2 . The size of each bin

is chosen as 10 g
cm2 so as not to exceed the resolution of CONEX and to allow for an

adequate number of Offline simulation data-points to lay within each bin. The num-

ber of bins, Bn, for a given zenith angle is found by converting the zenith angle to air

shower track length, and dividing by the bin size. Equation 7.3 is the mathematical

representation of the number of bins.

Bn = 100 · sec(θ) + 1 (7.3)

The additional bin added to the end is to ensure the profile histogram goes to zero

at the end of the track. For a zenith angle of θ = 75o this formula gives us 262

bins. The profile histogram range is set from zero to the maximum depth given by

the zenith angle. An example showing how the number of bins in a profile histogram

affects the smoothness of a curve is shown in Figure 7.2. Even though the smaller

Figure 7.2: A comparison of the smoothness of profile histogram with
different bin numbers. The smart curve has 262 bins and is generated using
the algorithm from Equation 7.3. The original curve is the same one from
Figure 7.1.
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number of bins appear to provide a closer signal to the original CONEX file, they do

not match CONEX file resolution. The smoothing routine must preserve the number

of data-points in an air shower profile. To smooth out the rest of the high frequency

noise left after the profile histogram a second technique is applied.

7.2 LOWESS Curve Smoothing

Once a profile histogram of an air shower is completed the bin centers and their

associated errors are smoothed further by a modified LOcally WEighted Scatter-

plot Smoothing routine (LOWESS) [86]. The LOWESS routine provides is a way to

fit a curve to data that has no functional form. Due to non-parametric nature of

anomalous air showers, functional forms, like the Gaisser-Hillas function, can not be

used to smooth these profiles. The LOWESS function allows us a way to preserve

the number of points, and the error in the y-axis of each data point without the

need of a functional forms. Lets take two vectors of length n with the form given in

Equation 7.4.

x = {x1, x2, ......xn}

y = {y1, y2, ......yn}
(7.4)

The LOWESS formulation requires that we know each distance between all values of

x. So we create a distance vector for each xi that describes the distance of each xn

from xi by Equation 7.5. Here each x value is scaled to be between 0 and 1.

di = {(xi − xj), (xi − xk), .....(xi − xn)} (7.5)

Using the distance vector the next step is to apply a weight, w, which depends on

their proximity to the point of estimation. The further a point is from the local spot
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of interest the less its value matters in the final ysmooth calculation. The values of w

are determined by a tri-cube weight function given in Equation 7.6.

wi =
(
1− |di|3

)3
(7.6)

The weight vector wi represents the weights of all other data points in relationship

to the current data point. With wi we are now able to write a weighted least squares

matrix given by Equation 7.7.

β = (XTWX)−1XTY (7.7)

Where the vectors X and W take the form of Equation 7.8.

X =


1 xi

1 xi
2 . . . xi

n−1

1 xj
1 xj

2 . . . xj
n−1

...
...

...
...

...

1 xm
1 xm

2 . . . xm
n−1

 , W =


wi 0 0 0

0 wj 0 0

0 0
. . . 0

0 0 0 wm

 (7.8)

Here X is a first order, linear model that has an intercept of 1 and a slope. X contains

all observations in x. In this case, X has n dimensions with m observations. β is

a vector of linear parameters. When the system is solved a slope, and intercept are

found and the LOWESS smoothed ysmooth is predicted from the row of the system

corresponding to the ith term. Equation 7.9 gives the value of ysmooth
i for the ith term.

ysmooth
i = Xiβ

T (7.9)

The final values given by this formulation are used to calculate the measurements

of the air shower that are used in the machine learning step. A further smoothing

of the profile histogram curves from Figure 7.2 using the LOWESS function with a

smoothing factor, f = 0.05, is done in Figure 7.3. The smoothing factor limits the

range of x values that the distance equation is allowed to use. In this case f = 0.05
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means that only 5% of the curve is used to fit the localized point. The LOWESS

function provides a notable improvement to the smoothness of each curve across

depths. The error of the LOWESS smoothed data-points is found using Equation 7.10

Figure 7.3: The result of further smoothing done by the LOWESS function
on the profile histogram data points from Figure 7.2.

and is represented by a colored band in Figure 7.4.

yerror = XT
i σ

2(XTX)−1Xi (7.10)

7.3 Residual Fit Evaluation

To ensure the quality of air showers used in a study of the fit algorithm a series of

cuts applied to Offline reconstructions had to be developed. The full discussion of the

cuts is in Chapter 8.3. With the removal of troublesome showers, the precision of the

LOWESS smoothed shower profile will not be a question of the shower reconstruc-

tion, but of the power of the algorithm itself. To test the effectiveness of the profile
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Figure 7.4: A thin uncertainty band is shown around the smoothed Offline
reconstructed data in blue. The bin size is calculated by the “smart” method
described in Equation 7.3.

histogram and LOWESS smoothing pipeline, we subjected a series of air showers to

the smoothing routine.

A subtraction between the CONEX simulation and each data-point of the smoothing

pipeline gives a residual to the fit point, and summing them provides a total residual

for that shower. Keep in mind this is a different residual than the residual energy

discussed in Chapter 6. A positive or negative value of the summed residuals left

after the subtraction is an indication of systematic over-fitting, or under-fitting, of the

CONEX file. Figure 7.5 displays a 1·1019 eV shower reconstructed in Offline data from

CONEX data; the result of the smoothing algorithm is also included. A visualization

of residuals accompanies the shower profiles. In this example, the LOWESS algorithm

fit the data extremely well across all depths. Several more examples of showers that

did not fair as well with the smoothing pipeline are displayed in Appendix C. A data-

set of 18,000 Sibyll CONEX showers with log energies from 18.7−20.1 eV, and zenith

angles 45−80o, underwent reconstruction in Offline and smoothing by pipeline. Each

smoothed showers residual energy is calculated and an average residual energy of the

18,000 air showers is 0.025%±3.1%. Ideally, the average residual energy should be zero
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Figure 7.5: Left: A display of the residuals the LOWESS smoothing
pipeline (blue) has compared with the (black) original CONEX file. Right:
The original Sibyll CONEX file shower profile is displayed on top of the
Offline simulation. The LOWESS smoothing algorithm is in blue. Smoothed
residual values are uniformly distributed on either side of the zero line, in-
dicating a good agreement with the CONEX simulation.

with fluctuations having equal representations on either side of zero. Here the average

value of 0.025% means typically a showers energy deposit will be over-fit by 1/4 of

1/10th of a percent. The algorithm tends to slightly favor over-fitting. The result

of the residual tests verifies the smoothing algorithm pipeline doesn’t systematically

over-fit or under-fit the air showers. Offline reconstructed showers smoothed in this

way will have profiles as close to CONEX like as they can get.
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Chapter 8

A Fluorescence Detector Study:

Constraints on yearly anomaly

detection

To demonstrate the effectiveness of the machine learning technique for anomalous

shower detection constraints placed on a yearly detection rate using the Pierre Auger

Observatory FDs are defined in this chapter. We must first understand the yearly

distributions of air showers that are observed by the FD of the Pierre Auger Obser-

vatory. We will sample the zenith angle distribution of observed showers to produce

many pseudo years worth of air showers. The sampled years are used to test the

machine learning algorithm.
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8.1 Fluorescence Detector Distributions

The Pierre Auger Observatory has been taking data with FD detectors since 2004.

The most recent FD data release is for the 2019 International Cosmic Ray Conference

which we will use for this analysis. The total number of years of available data is 15.51.

For our study we have to know the distributions of primary energy, zenith angle, and

azimuth angle. To sample the FD data we must first zoom in on high energies between

log energies 18.7− 20.1 eV. CONEX shower energies are distributed in accordance

with a falling power-law spectrum with spectral index γ = 2.7 in order to reflect the

expected frequency of experimental data. Figure 8.1 displays all air shower primary

energies observed by the Pierre Auger Observatory FD detectors over the 15.51 years

of operational time.

Figure 8.1: The distribution of primary energies measured by the Pierre
Auger FD.

The zenith angle distribution for all FD showers collected in this energy range are

shown in Figure 8.2. A zoomed in view of the 45o − 80o range is useful as we are

making a cut on showers below 45o and above 80o zenith angle. The distribution of

zenith angles in this range will be sampled for testing.

116



Figure 8.2: Top: The distribution of zenith angles measured by the Pierre
Auger FDs from the years 2004 to 2019. The average yearly zenith angle
distribution is in yellow. Bottom: A zoomed in view of the angles between
45 and 80 degrees where our search for anomalous showers is conducted.

Finally, the azimuth distribution for all FD shower events in our energy range of

interest is shown in Figure 8.3. As expected the distribution for azimuth angles is

uniform over all possible angles. For a proper simulation our air showers will have a

random azimuth angle with all possible angles having the same chance of occurrence.

The core location will also be chosen randomly with the only requirement that it

must impact within the area of the ground array. In Offline we use the virtual tank

method to achieve the core randomization.
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Figure 8.3: The distribution of azimuth angles measured by the Pierre
Auger FD. A uniform distribution is expected here.

8.2 Simulations of Yearly Typical Air Showers

The number of air showers that fall within the target energy range of log energies

18.7-20.1 eV that Pierre Auger Observatory has collected over the 15.5 years of data

that will is used in this experiment is 15,786. Dividing this number by 15.51 years

we get a yearly rate of 1000 ± 90. The range of accepted values for zenith angle is

between 45− 80o which further reduces the sample size to an average of 450± 40. A

note on these values is that during the early years of Auger FD data collection not

all FD eyes had been installed. The real flux of showers may be slightly higher and

have less variance due to the first 3 years of operation skewing the data.

The zenith angle distribution of the Pierre Auger Observatory is sampled at the

defined yearly rate and each shower is simulated using a bank of CONEX input files.

CONEX files are selected based on the closest matching file to the sampled zenith

angle. The bank of CONEX files primary energies are chosen to follow the same

distribution as the observed energy spectrum.
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Thinking optimistically, if the Pierre Auger Observatory FDs operate for 100 years

there will be a sizeable number of UHE cosmic ray shower events to analyze. Since

the Pierre Auger Observatory hasn’t run for that long, we simply can sample the

15.51 year distributions of showers 100 times, creating a 100 year simulation. The

yearly lists of CONEX files are then fed into the Offline framework for complete

reconstruction.

8.3 Shower Selection and Cuts

After air showers have completed reconstruction in Offline, the showers under go qual-

ity cuts. Showers that survive these cuts are chosen for analysis by machine learning.

Each file is put through a series of cuts using the collaboration’s selectADSTEvent

program. The selectADSTEvent program sequentially executes cuts on air showers,

rejecting a shower once it first fails a cut. Surviving showers are saved for the ma-

chine learning pre-processing step of smoothing using the LOWESS function defined

in Chapter 7. In Figure 8.4 the selectADSTEvent steering file we use is shown. Each

cut provides an important rejection of showers that would fail the smoothing step of

our analysis, or fail to yield accurate measurements for us in our machine learning

classifier.

Figure 8.4: The selectADSTEvent steering file used in our analysis.

The first cut in Figure 8.4, minxFOV, sets a minimum depth value that the FD must

have a data-point collected by an FD eye. Similarly, the second cut maxXFOV sets
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an upper limit in depth at which the shower has to have been seen. Showers that

start earlier or end later than these cuts will also pass the selection. These two cuts

are critical as the entire shower profile is used for making measurements like residual

energy, and full-width-fifth-maximum.

The third cut, xMaxInFOV, ensures that Xmax is visible within the field of view of the

FD. TheXmax value is a direct input into the classification machine learning algorithm

and needs to be measurable for every air shower that is used in our analysis. The

error in the measured Xmax values should also have a small range. In Chapter 6,

histograms that display the distributions of Xmax values for anomalous and typical

air showers differ. The success of the machine learning algorithm rests on our ability

to locate, and cut events with poorly measured values of Xmax.

Another issue to address is the resolution of the shower profile by applying a cut to

the total light seen at the instrument. The cut, minTotalLight removes showers that

have photon counts below the set value. FD telescopes that are far away from the

shower axis will gather fewer photons, limiting the statistical significance of the profile

measurement. When the LOWESS smoothing algorithm is applied to a sparsely

populated shower profile, high frequencies will fail to be removed from the data.

Features of the shower profile could also be entirely missed if there isn’t sufficient

data for the LOWESS smoothing algorithm, like a second or third bump. Finally,

the amount of direct Cherekov light received by the FD must also be limited for

good reconstruction of the shower profile. The residual shower energy is sensitive

to any excess energy in the shower profile. If excess energy is coming from the

Cherenkov radiation we once again would be giving the machine learning algorithm

bad information. We apply the cut, maxCFrac, to curb this problem.
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8.4 Processing Simulated Offline Showers

All showers that pass the SelectADSTEvents cut program undergo the smoothing

process from Chapter 7. The shower profile depth, energy deposit, and the error in

energy are read from Offline ADST files and used to construct a profile histogram.

The number of data-points the profile histogram yield is determined by Equation 7.3

in Chapter 7; which reflects the resolution of CONEX files. After the profile histogram

shower profile is generated it is smoothed by the LOWESS algorithm. The LOWESS

algorithm removes all of the high-frequency noise remaining from the profile histogram

steps; converting the Offline shower data to as close of a form to a CONEX shower

profile that an Offline simulation can get. The smoothed shower profiles go through

the series of measurements described in Chapter 6 to prepare it for the random forest

classifier model that we created in Chapter 6. Once each measurement is taken and

stored into a data-base we import them into a Python code that classifies each shower.

Figure 8.5 represents the entire process from start to finish.

8.5 Yearly Rate of False-Positive Identification

For this first test, only typical air showers were passed through the process of simula-

tion, selection, and measurement. The processed showers contained no unusual profile

features. Running a test in this way provides an exact rate of how often the random

forest binary classifier labels a typical air shower as anomalous. Misclassification

of typical air showers results in a false-positive identification of an anomalous event

which must remain below the expected value of 1/1000 air shower events containing

anomalous features. Only two of the three particle interaction models completed the

test, EPOS-LHC and QGSJET-II, due to the length of time Offline simulations take.
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Figure 8.5: The entire workflow for testing the Random Forest model for
classifying air showers using the Pierre Auger Observatory.

Out of 44,237 EPOS-LHC Offline reconstructed showers 7536 EPOS-LHC showers

passed selection cuts. Out of 43,900 QGSJET-II Offline reconstructed showers 5,910

QGSJET-II showers passed the selection cut for the 100 year test. Figure 8.6 shows

both models require a confidence band increase to achieve the desired false positive

rate of less than 1/1000. The EPOS-LHC model achieves it between the 90 and

95% confidence band with the QGSJET-II model out preforming it with a thresh-

old between 75% and 85%. If we more closely examine the false positive rate we

see in Table 8.1 that the EPOS-LHC model achieves the desired false-positive rate

between 85 and 95 % confidence, which causes additional loss of data. Figure 8.7

takes a closer look at the average loss of these classifiers as the confidence interval is

increased. Here the EPOS-LHC model has a reduced amount of loss compared to the

QGSJET-II model over all band values. Both models behave similarly to the pure

CONEX test done in Chapter 6; however, both models experience a faster increase in
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Figure 8.6: EPOS-LHC and QGSJET confidence level cut off for the 100
years test.

Table 8.1
Confidence bands of the QGSJET-II and EPOS-LHC random forest binary
classifiers with their false-positive and loss rates over a 100-year simulation
period. The Loss columns are the number of showers lost to the confidence

band used by the random forest classifier.

Model Data False-Positive Loss Count Loss %

QGSJET-II 75% 5910 7 825 15.9

QGSJET-II 85% 5910 3 1134 19.2
EPOS-LHC 90% 7536 10 1417 18.8
EPOS-LHC 95% 7536 1 2396 31.8

loss with confidence interval. The decline in model accuracy is most likely due to the

imperfect nature of the longitudinal shower profiles from Offline reconstruction and

smoothing pipeline. The results show that it is achievable to reduce the false-positive

identification of typical air showers below the expected flux of deeply penetrating

nucleons.
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Figure 8.7: EPOS-LHC and QGSJET-II loss values as confidence level
increases. The average of the two classifier is plotted in black.

8.6 Anomaly Detection Performance

Not only does the binary classification algorithm need to distinguish typical air show-

ers, it must also efficiently identify anomalous air showers. In order to test the random

forest models ability to find anomalous air showers, a similar process is followed as

the typical air shower study. The only difference is that the flux of anomalous air

showers is not well known; so this study is simply meant to determine the accuracy

of the model. The flux of anomalous air showers will be addressed in the final results

section.

Thousands of anomalous air showers are reconstructed in Offline for both the EPOS-

LHC and QGSJET-II hadronic interaction models. The selection cuts described in

Chapter 8.3, as well as the cut on residual shower energy that is described in Chap-

ter 6.1.3 are applied to all showers. After the selection cuts are made, each shower

undergoes the measurement procedure and is classified with the random forest model.

Table 8.2 contains the results of the study.
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Table 8.2
Confidence bands of the QGSJET-II and EPOS-LHC random forest binary
classifiers with their false-positive and loss rates for anomalous air showers.
The data column represents the total number of simulated Offline showers.
The cuts column are the number of showers that passed selection cuts.
Finally the Loss column represents the percentage of showers lost when

confidence bands are applied to the data.

Model Data Cuts Acc. [%] False-Neg. Loss [%]

EPOS-LHC 51% 51,445 3,384 99.5 15 0.059
EPOS-LHC 75% 51,445 3,384 100 0 5.73
QGSJET-II 51% 34,635 2,124 98.6 22 0.188
QGSJET-II 75% 34,635 2,124 99.9 2 12.2

Nearly all anomalous air showers that pass selection cuts are identified correctly. A

high degree of accuracy is even achieved at the low confidence band of 51%. In

the study of typical air showers in the previous section, we found a higher confidence

band is required to achieve a false-positive rate that is below the threshold required to

confidently claim an anomalous event discovery. The inclusion of the 75% confidence

band is used to compare with the previous sections analysis. At 75% confidence

nearly all false-negatives are removed from both interaction models with 2 surviving

in the QGSJET-II test. A False-negative is defined as an anomalous air shower that

is classified as typical. False-negatives are of less concern for this analysis as they

would not result in a false claim of an anomalous event discovery; merely a missed

opportunity.

During the creation of anomalous air showers two parameters were varied: the energy

of the anomalous feature given as a fraction of the primary energy, and the depth of

where the anomalous event is injected into the shower profile. Figure 8.8, and 8.9

give a view into how these two parameters affect the accuracy score of the random

forest classifier. It is apparent that the amount of energy given to the anomalous

feature does not significantly impact the models’ accuracy. However, the depth of the

anomalous feature’s injection into the shower does have a large effect on accuracy.
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Figure 8.8: EPOS-LHC and QGSJET-II anomalous feature energy distri-
bution. A four parameter polynomial is fit to both hadronic models and a
slight linear dependency is seen.

Figure 8.9: EPOS-LHC and QGSJET-II anomalous feature injection loca-
tion plotted versus the accuracy score. Both models have a four parameter
polynomial fit to better see a functional form. The model is fit by using a
profile histogram to generate local points with errors that the polynomial is
then fit too.

A four-parameter polynomial is fit to each hadronic interaction models’ data. The

polynomial gives a simple representation of the weak dependency on the depth of

injection. Anomalous features that are injected early, as well as late, in the shower

profiles development have lower accuracy scores. Anomalous air shower identification

is most effective when an anomalous feature is injected at depths between 500 and

126



1500 g/cm2. At these depths the anomalous feature peaks near the end of the typical

air shower profile, leaving an extra lump of energy at its end. Overall, the EPOS-

LHC model has higher prediction probabilities across all injection depths than the

QGSJET-II model. More simulations are need to truly explore this relationship.

8.7 100 Year Detection Rate of Anomalous Air

Showers

With the results of the previous two sections it is possible to write a Bayesian [87]

formulation for calculating the probability of identifying an anomalous event in 1000

events. The form of Bayesian inference used is similar to the second form in this

article [88], but with an additional term in the denominator. Equation 8.1 gives the

probability of an anomalous air shower detection.

P (A|X) =
P (A) · P (X|A)

P (A) · P (X|A) + P (A) · P (X|FN) + P (T ) · P (X|FP )
(8.1)

Where P (A|X) is the probability of seeing an anomalous event given an anomalous

event, P (A) is the prior probability of an anomalous event occurring in 1000 air

showers, P (X|A) is the accuracy of the random forest model at identifying anomalous

events, P (X|FN) is false-negative rate of identifying an anomalous air shower as

typical, P(T) is the prior probability of a typical air shower occurring in 1000 showers,

and finally P (X|FP ) is the probability that a typical air shower is labelled as an

anomalous air shower by the random forest model. Equation 8.1 takes into account

not only the ability of the random forest model to correctly identify an anomalous

air shower, but also its ability to falsely identify a typical air shower as anomalous.

The P (A|X) value is entirely dependent on the confidence band set by the classifier.

Building on previous work, the priors: P (A), and P (T ) are taken as 1
1000

and 999
1000

;
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however, this is a pessimistic view of the number of anomalous events that are possible

as it does not take into account any hidden sector particle events that could decay

into standard model particles.

Once the probability of finding an anomalous event in 1000 showers is known a simple

multiplication of the flux of air showers per year that satisfy the cuts developed in

previous chapters is used. The probability of seeing a shower in 100 years of data

depends not only on the false-positive, false-negatives rates, but also upon the number

of showers the confidence band accepts. A balancing act between the number of

showers that pass the confidence band and the false rates is explored in Figure 8.10.

After an initial rise with confidence band, the probability of finding an anomalous

shower begins to decrease as we approach 100% confidence. The decrease is due to

the reduction in the number of showers that are possible to analyze. In this 100

year study only a small fraction of showers survive the cuts at the 99% and 99.5%

confidence band. Both interaction models produce similar results and an average

Figure 8.10: The expected number of anomalous showers as confidence
interval of the random forest classifier is increased. The behavior of the
Bayesian probability function is illustrated in this graph. As P (X|FN) and
P (X|FP ) decrease, an increase in the number of showers expected occurs
until a tipping point is reached where there are so few showers left to analyze
from the confidence interval cut that the function starts to approach zero.
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expected yield is plotted in black. If the Pierre Auger Observatory operates for 100

years, the random forest binary classifier may produce up to 4 anomalous events

that could undergo further analysis to uncover new Physics. The 100 year study is

also pessimistic. The 1/1000 expectation of deeply penetrating nucleons generating

an anomalous event only takes into account our current understanding of particle

physics. If new physics beyond the standard model occurs in UHE collisions, this

rate of anomalous events is too low.

To explore higher rates of anomalous occurrences a plot of Equation 8.1 in Figure 8.11

has additional lines that represent higher anomalous shower fluxes. Even these minor

Figure 8.11: The expected number of anomalous showers at various anoma-
lous shower flux rates and confidence bands.

increases in anomalous shower flux dramatically improve the amount of anomalous

showers that would be detected by the random forest classifier model. The current

number of years that the Pierre Auger Observatories FD have operated for is 15.51

years. A simple multiplication of these rates by .1551 gives the expected yield for

the most current data releases. Dozens of scenarios where new Physics increases the

yield of anomalous events above 1/1000 showers would mean one or more anomalous

showers detected in current FD data. Even in the worst case scenario of only stan-

dard model physics occurring at these high energies there would be a 62% chance of
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an anomalous shower detection by a deeply penetrating nucleon. All combinations

of expected anomalous shower yields for the 15.51 years of the Pierre Auger Collab-

oration FD operations are displayed in Tables D.1 and D.2 in Appendix D. These

numbers may seem bleak, but the longer data is collected and if a larger detector is

ever constructed this methods chance of detection can only improve.

8.8 Future Work

The only true test left is applying the random forest technique to real cosmic ray

data. An evaluation of the 15.5 years of FD data available at the time of this writing

would yield roughly 1500 showers that would pass the selection cuts. To increase the

number of showers to examine, an appeal to other cosmic ray observatories would be

necessary. The search for anomalous air showers is only restricted by the ability to use

the fluorescence technique so other cosmic ray observatories, like the Telescope Array

(TA), can also use it. A joint search between TA and the Pierre Auger Collaboration

is entirely possible. If an anomalous event is detected in observed data a rigorous

study of the shower should be conducted to determine if it is a spectator nucleon

event, an exotic particle decaying into standard model particles, a software issue

causing an abnormal reconstruction, or simply a cloud that has distorted the shower

into an unusual shape.

This thesis does not take into account the need for a robust cloud rejection technique.

Currently, the cut selection tools available in the Pierre Auger collaboration do not

take into account the location of the cloud on the detector array. At high energies,

multiple FD eyes bare witness to the air shower; some of which may have clouds

within their field of view during the time of the air shower. To eliminate all cloud-

influenced showers from the data, a smart reconstruction tool could be devised that
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would de-select FD eyes that have clouds in-front of them prior to reconstruction

of the air shower. Such a tool would save additional air showers from having to be

rejected in analysis. Chapter 4.5 discusses a new cloud monitoring technique that

could be used to provide this information to Offline. In Figure 8.12 a scenario where

the Los Marados FD should be removed from reconstruction is shown. An algorithm

Figure 8.12: A platinum event air shower is incident in the center of the
Pierre Auger Observatory. In platinum events, all four FD sites are all able
to witness the event; however, the LM (Los Marados) FD has cloud present
in its field of view in-front of the air shower.

that uses some simple geometric cuts could de-select the Los Marados eye in this case

giving Offline the chance to correctly reconstruct the air shower.

If time permitted, working on a Sibyll 2.3 test using the same methods earlier in 8

could show a third model invariance. Once all models are shown to be invariant a

combination of the three models can be used to improve the accuracy of the individual

models. This new model would be an ensemble model where each models output

is weighted based on their false-positive rate. A weighted average of each models

prediction would provide a final prediction of the ensemble classifier. The attraction

of an ensemble model is that the confidence intervals of each individual model could

be lowered to reduce the total loss of data. When looking for such a rare phenomenon

each data-point that is saved is important.
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A retooling of this method to train on Offline reconstructed showers would provide

a Auger-centric classifier that maybe more accurate than training on CONEX air

showers. The problem with this method is the enormous amount of computational

resources required to produce sufficient numbers of Offline reconstructions. A clever

individual could, perhaps, apply some translations and noise to existing Offline lon-

gitudinal profiles to expedite the creation of new showers; however, careful consider-

ations would have to be made to keep intact the physical properties of air showers.

Finally, a distinction between deeply penetrating nucleon induced anomalous air

showers and anomalous air showers produced by the decay of exotic particles may

be possible. The likelihood of a deeply penetrating nucleon interacting very deeply

is extremely low. Nearly all deeply penetrating nucleons will result in excess energy

deposit within the primary showers longitudinal profile. Exotic phenomenon are more

likely to create well- separated excess energy deposits from the primary longitudinal

profile. If multiple anomalous shower with a very deep anomalous features are found

a study should be conducted to try and eliminate the possibility of these types of

anomalous showers being produced from spectator nucleons.
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ray showers,” Rev. Mod. Phys., vol. 11, pp. 288–291, 1939.

[5] K.-H. Kampert and A. A. Watson, “Extensive air showers and ultra high-energy

cosmic rays: a historical review,” The European Physical Journal H, vol. 37,

p. 359–412, 2012.

[6] J. Linsley, “Evidence for a primary cosmic-ray particle with energy 1020 ev,”

Physical Review Letters, vol. 10, pp. 146–148, 1963.

[7] Anatoly, Ivanov, “The yakutsk array experiment: Main results and future direc-

tions,” EPJ Web of Conferences, vol. 53, p. 04003, 2013.

134



[8] e. a. N. Chiba, “Akeno giant air shower array (agasa) covering 100 km2 area,”

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 311, no. 1, pp. 338–349,

1992.

[9] R. M. Tennent, “The haverah park extensive air shower array,” Proceedings of

the Physical Society, vol. 92, no. 3, p. 622, 1967.

[10] D. J. e. Bird, “Detection of a cosmic ray with measured energy well beyond the

expected spectral cutoff due to cosmic microwave radiation,” The Astrophysical

Journal, vol. 441, p. 144, 1995.
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Appendix A

Data-Set Distributions

Appendix A provides examples of the CONEX air shower data bases used to train the

machine learning classifying algorithms. Each particle interaction model zenith angle

distributions and primary particle energy distributions are shown in Figues A.1, A.2,

and A.3. The zenith angle distribution is uniformly distributed between 45 − 80o.

Energy distribution follows the γ = −2.7 power law for UHECR. The QGSJET-II

has some inconsistencies with the other two distributions; a dip in frequency for the

zenith angles and a small second peak in the energy distribution. These both seem

quite minor issues for the overall training of the random forests as the performance of

the three algorithms is nearly indistinguishable. The total number of entrees in each

database is broken down into typical and anomalous events in Table A.1.

A.1 Anomalous Showers Features Distributions

Anomalous features used to create anomalous showers are added to typical air show-

ers randomly with energy values between 2.5− 30% of primary energy and at depths
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Table A.1
The total number of typical and anomalous events in each interaction

models training data base.

Model Typical Anomalous Total Events

EPOS-LHC 209650 209650 419300
QGSJET-II 203270 203270 406540

Sibyll 2.3 182005 182005 364010

Figure A.1: EPOS-LHC CONEX simulation database zenith angle and
energy distributions.

Figure A.2: QGSJET-II CONEX simulation database zenith angle and
energy distributions.
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Figure A.3: Sibyll 2.3 CONEX simulation database zenith angle and en-
ergy distributions.

Figure A.4: EPOS-LHC anomalous CONEX simulation database feature
depths, and energy.

of 50 − 2500 g
cm2 . Distributions of each are shown below for the three particle inter-

action models. The decline in anomalous features present beyond 1500 g
cm2 is due to

anomalous features being added to air showers without sufficient zenith angle to see

them. These showers have anomalous features that would be below ground and are

rejected. Each interaction model follows this same trend. Histograms were made with

bins number set to ‘auto’.
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Figure A.5: QGSJET-II anomalous CONEX simulation database feature
depths, and energy.

Figure A.6: Sibyll 2.3 anomalous CONEX simulation database feature
depths, and energy.

A.2 Primary Composition

The next three graphs are related to the primary composition of the data bases.

Here the title of the graph corresponds to the atomic number of the species by the

equation 2 · A · 100. Protons are given a values of 100. The X axis are zenith angle

with Y being frequency. In Figure A.8, QGSJET-II has a notable lack of protons in
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its composition.

Figure A.7: EPOS-LHC CONEX simulation database primary composi-
tion distribution.

Figure A.8: QGSJET-II CONEX simulation database primary composi-
tion distribution.
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Figure A.9: Sibyll 2.3 CONEX simulation database primary composition
distribution.
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Appendix B

Simulation Examples

B.1 CONEX Steering File

An example of a CONEX steering file where the shower start depth is set to 1000

g
cm2 . The zshmin parameter controls the shower start depth. This type of CONEX

steering file was used to create anomalous features that are later added to typical air

showers to create anomalous air showers.

model IIqgsjet

lemodel urqmd

# First block of code will be file path information

# I have skipped it here.

output none all ! do not change

set ixmax 1 ! fit profile with G.H.

set hground 0. ! height of the observer in meter

set fehcut 0.05 ! relative threshold MC->CE for ←↩
hadronic particle

set feecut 0.005 ! relative threshold MC ->CE for e/m ←↩
particles
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set femcut 0.0005 ! relative threshold MC->CE for muons

!other possible options (uncomment by removing "!")

set zshmin 1000. !starting point in slant depth

!input blabla.txt !input file for list of particle

!first line = number of particles ←↩
in the list

! and starting slant depth

!following lines : id(PDG) px py pz ←↩
E

!where momentum is in GeV/c in the ←↩
shower frame

!set xminslant 2000. !option to have at least a profile←↩
up to xminslant

!set xmaxp 2000 !max slant depth

!set altitude 0. !altitude above hground of the (x=0,y←↩
=0) point (useful for horizontal showers)

!set enymin 0.3 !minimum hadronic low energy with ←↩
UrQMD (default = 1 GeV)

set hacut1 1. ! cut for hadrons and muons main ←↩
profiles in GeV (not less than 0.3 GeV)

set hacut2 1. ! cut for muon plots in GeV (should be←↩
>= hacut1)

set hacut3 1. ! cut for hadrons plots in GeV (should←↩
be >= hacut1)

set emcut1 0.001 ! cut for leptons in GeV (not less ←↩
than 0.001)

set emcut2 0.001 ! cut for photon profile in GeV (←↩
should be >= emcut1)

set emcut3 0.001 ! cut for electron profile in GeV (←↩
should be >= emcut1)
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Appendix C

LOWESS Smoothing Over and

Under Fits

The smoothing process used to make Offline reconstructed air showers as CONEX

like as possible is far from perfect in all cases. Below are some examples where the

smoothing process failed to adequately capture the shower profile.

Figure C.1: An example of the LOWESS algorithm over-fitting part of a
shower profile.
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Figure C.2: A clear example of Offline data that is under-fit due to the
reconstruction.

Figure C.3: An example of the LOWESS algorithm introducing an oscilla-
tion into the shower profile. This is most likely due to the smoothing factor
not being large enough for the sparser amount of data in this shower profile.
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Appendix D

Pierre Auger Anomalous Flux

The expected number of true anomalous air shower detections, N15.51, with in the

latest FD data release is examined across different flux rates and machine learning

confidence intervals. All values in this table are calculated using the form of the

Bayesian equation in Equation D.1.

N15.51 =

(
P (A) · P (X|A)

P (A) · P (X|A) + P (A) · P (X|FN) + P (T ) · P (X|FP )

)
(D.1)

·
(
NS ·NA1000

1000

)
· 0.1551 (D.2)

Where the first term is identical to Equation 8.1. The new terms NS is the number

of air showers available for analysis at the confidence interval of the machine learning

classifier, and NA1000 is the number of anomalous air showers in 1000 air showers.
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Table D.1
The total number of anomalous air showers expected using multiple

combinations of parameters for the EPOS-LHC model. Where Anom
1000 is the

number of anomalous showers in 1000 showers, and Bayes
1000 is the value of the

Bayesian probability of seeing an anomalous air shower in 1000 air showers.

Model Anom
1000

Bayes
1000

Y ield
15.51Y

EPOS-LHC 51% 1 .13 0
EPOS-LHC 51% 2 .23 1
EPOS-LHC 51% 5 .43 3
EPOS-LHC 51% 10 .61 7

EPOS-LHC 55% 1 .14 0
EPOS-LHC 55% 2 .25 1
EPOS-LHC 55% 5 .45 3
EPOS-LHC 55% 10 .63 7

EPOS-LHC 65% 1 .16 0
EPOS-LHC 65% 2 .27 1
EPOS-LHC 65% 5 .49 3
EPOS-LHC 65% 10 .66 7

EPOS-LHC 75% 1 .22 0
EPOS-LHC 75% 2 .36 1
EPOS-LHC 75% 5 .58 3
EPOS-LHC 75% 10 .74 8

EPOS-LHC 85% 1 .37 0
EPOS-LHC 85% 2 .54 1
EPOS-LHC 85% 5 .75 4
EPOS-LHC 85% 10 .86 9

EPOS-LHC 90% 1 .40 0
EPOS-LHC 90% 2 .58 1
EPOS-LHC 90% 5 .77 4
EPOS-LHC 90% 10 .87 8

EPOS-LHC 95% 1 .83 1
EPOS-LHC 95% 2 .91 1
EPOS-LHC 95% 5 .96 4
EPOS-LHC 95% 10 .98 8

EPOS-LHC 99% 1 1 1
EPOS-LHC 99% 2 1 1
EPOS-LHC 99% 5 1 3
EPOS-LHC 99% 10 1 5
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Table D.2
The total number of anomalous air showers expected using multiple

combinations of parameters for the QGSJET-II model. Where Anom
1000 is the

number of anomalous showers in 1000 showers, and Bayes
1000 is the value of the

Bayesian probability of seeing an anomalous air shower in 1000 air showers.

Model Anom
1000

Bayes
1000

Y ield
15.51Y

QGSJET-II 51% 1 .03 0
QGSJET-II 51% 2 .06 0
QGSJET-II 51% 5 .12 0
QGSJET-II 51% 10 .22 1

QGSJET-II 55% 1 .05 0
QGSJET-II 55% 2 .09 0
QGSJET-II 55% 5 .2 0
QGSJET-II 55% 10 .32 1

QGSJET-II 65% 1 .19 0
QGSJET-II 65% 2 .32 0
QGSJET-II 65% 5 .54 1
QGSJET-II 65% 10 .71 2

QGSJET-II 75% 1 .42 0
QGSJET-II 75% 2 .60 0
QGSJET-II 75% 5 .79 1
QGSJET-II 75% 10 .88 3

QGSJET-II 85% 1 .68 0
QGSJET-II 85% 2 .81 0
QGSJET-II 85% 5 .91 1
QGSJET-II 85% 10 .95 3

QGSJET-II 90% 1 .67 0
QGSJET-II 90% 2 .80 0
QGSJET-II 90% 5 .91 1
QGSJET-II 90% 10 .95 3

QGSJET-II 95% 1 1 0
QGSJET-II 95% 2 1 0
QGSJET-II 95% 5 1 1
QGSJET-II 95% 10 1 3

QGSJET-II 99% 1 1 0
QGSJET-II 99% 2 1 1
QGSJET-II 99% 5 1 1
QGSJET-II 99% 10 1 3
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Appendix E

Legal: Permission to use

Copyrighted Materials

The use of previously published material from the Pierre Auger Collaboration is

permitted only of members of the Pierre Auger collaboration without explicit consent

from a spokesperson. At the writing of this thesis I certify that I, Andrew Puyleart,

am a member of the Pierre Auger Collaboration.

The details of this agreement are found at the web address:

https://www.auger.org/legal.
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