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Abstract

HAWC J2031+415 is a probable pulsar wind nebula (PWN) located in the Cygnus

Cocoon region near a complex OB star cluster. First observed by the High-Energy-

Gamma-Ray Astronomy (HEGRA) observatory in the TeV energy regime, the source

had no apparent counterpart in lower energy ranges. Previous work using 1343 days

of data from the High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory

has determined that three sources are present in the Region of Interest (ROI): HAWC

J2031+415, HAWC J2030+409 (also known as the Cocoon), and 3HWC J2020+403

(associated with the Gamma Cygni supernova remnant) [14, 15].

In this work, I use the newest data set containing 2000 days of data from HAWC

to analyze the region. I apply a systematic source searching method to determine

the number of sources, their locations, and spectra. Three estimators are used to

determine the spectral energy distribution for HAWC J2031+415 and the best fit is

found to be a power law with an exponential cut-off. I then isolate HAWC J2031+415

and perform an energy-dependent morphology study of the source. No measurable

energy dependence of the morphology was found. Additional data will allow for more

detailed studies of the region.

xxi





Chapter 1

An Introduction to High Energy

Astrophysics

The field of astrophysics is defined as the study of extraterrestrial bodies and phe-

nomena by observing and modelling their emission regions to discover the engines

powering these regions[17]. The primary interface used to analyze these sources is

the particles they emit, these being primarily hydrogen and helium, with heavier nu-

clei being more rare. These particles have a special name: cosmic rays (CR’s), and

they will be discussed further in Section 1.1. Section 1.2 will delve into the acceler-

ation of CR’s, Section 1.3 will discuss gamma ray production, and Section 1.4 will

discuss the emission regions where these particles and gamma rays are emitted from.
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1.1 High-Energy Astrophysics and Cosmic Rays

In order to discuss any in-depth analysis of HAWC J2031+415, an understanding of

both CR’s and their main acceleration mechanism at high energies is required. The

exact origin of individual CR’s is unknown except it is believed that they come from

some of the most extreme and energetic phenomena in the universe. As CR’s are

the nuclei of atoms, they are deflected by nearby magnetic fields and hit Earth from

all directions. It is estimated that approximately 1000 CR’s per meter per second

hit Earth’s atmosphere and while most have energies comparable to their rest mass,

approximately 108 electron volt (eV), some have energies up to 1020 and beyond [18].

It is from these very high energy (VHE) CR’s that produce 0.1-100 tera-electronvolt

(TeV) gamma rays. As seen in Figure 1.1, gamma rays have energies of 106 eV

and gamma rays with E > 1011 eV are what the High-Altitude Water Cherenkov

Gamma-Ray Observatory (henceforth referred to as ”HAWC”) detects.

1.2 Cosmic Ray Acceleration

There are certain mechanisms that allow CR’s to be accelerated to the VHE regime.

The primary method that will be addressed here is First Order Fermi Acceleration.

It is currently believed that this acceleration process is responsible for most cosmic
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Figure 1.1: The energy spectrum. Used with permission from [1].

ray acceleration [19]

1.2.1 Fermi Acceleration

First Order Fermi Acceleration (referred to henceforth as ”Fermi acceleration”) is an

efficient acceleration method for cosmic rays refers to particle acceleration in shock

fronts. This acceleration method functions by having a particle travelling at relativis-

tic speeds enter a shock wave. The origins of these shock waves will be discussed in

more detail in Section 1.4.

The process for Fermi acceleration is visualized in Figure 1.2. The shock front travels

with velocity U and the surrounding gas ”flows” into the shock front with the same

velocity and then flows out of the front with velocity U/4. From the frame of the
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Figure 1.2: First order Fermi Acceleration. Used with permission from [2].

unshocked gas, the shocked material moves with velocity 3U/4. Consider a fast

particle in the unshocked frame entering the shocked frame with momentum p = E/c.

It interacts with magnetic eddies generated by plasma interactions with shocked and

unshocked material. The particle gains energy by reaching equilibrium with the

surrounding material. Assuming a Lorentz factor of 1 (nonrelativistic shock), the fast

particle’s change of energy is given in terms of the constant β:

E = βEo (1.1)

Whenever a particle crosses the shock front it experiences this same fractional increase
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and, given the complex nature of the magnetic fields and macro structure of the shock

fronts, this particle has the potential to repeatedly cross this front and obtain very

high energies. The question now is what kind of energy spectrum is produced from

this acceleration?

Considering Equation 1.1, after the particle has j crossings it’s energy is

E = Eoβ
j (1.2)

Now, a particle also has the probability P of staying in the shock region. The total

number of particles left in the region after j crossings is

N = NoP
j (1.3)

Taking the ratio of N and E and taking the log to remove the j exponential yields

logN/No

logE/Eo

=
logP

log β
(1.4)

Solving Equation 1.4 for N/No givens our final expression for our energy spectrum:
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N

No

= (
E

Eo

)
logP
log β (1.5)

It is convenient to write Equation 1.5 in differential form and for now consider the

proportional relationship between N and E

N(E)dE ∝ ElogP/ log β−1 ∝ E−kdN (1.6)

where k is defined as the power law index of this energy spectrum. As this is a non-

thermal distribution, there is no exponential drop-off. The specifics of k’s derivation

can be found in [2, 19, 20] while a brief explanation of the process is provided. While

the shock is assumed to be non-relativistic, the particles contained within the shock

fronts are not. From one complete trip (upstream to downstream and back), a given

particle has an average energy increase of 2 ∗ (2V )/(3c) [20]. Therefore, β is given by

β =
E

Eo

= 1 +
4V

3c
= 1 +

U

c
(1.7)

And probability that the particle returns to the upstream region is given by P =

1− U/c. Solving for logP and log β gives

6



logP = log(1− U

c
) = −U

c
and log β = log(1 +

4V

3c
) =

U

c
(1.8)

Substituting into Equation 1.6 gives the final result

N(E)dE ∝ E−2dE (1.9)

When compared to experimental observations, k trends towards a softer (faster decay

of high energy events) 2.7 [21]. This can partially be corrected by relaxing assumptions

made in the derivation [2]. This acceleration method is responsible for the vast

majority of accelerated cosmic rays.

1.3 Gamma Ray Production Mechanisms

There are 2 production mechanism classes considered here: hadronic (protons) and

leptonic (electrons). One mechanism from each dominants in the production of TeV

gamma-rays and their basic mechanisms will be introduced in the following sections.

Additionally, a lower energy (MeV, GeV) production method for leptonic particles is

introduced and will be used in further discussion in Chapter 3
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Figure 1.3: Pion decay resulting in 2 gamma rays

1.3.1 Neutral Pion Decay

The main hadronic gamma ray production method is called neutral pion decay (π0

decay) and its process can be seen in Figure 1.3. The pions are produced from protons

or nuclei inelastically colliding with surrounding medium and have a mean lifetime of

the order of 10−16 seconds, after which they decay into two gamma rays. Given the

threshold energy needed to produce neutral pions (280 MeV) and the large amount

being produced, this production mechanism can form a ”pion bump” in the GeV-TeV

spectrum range [9, 22].
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Figure 1.4: Inverse Compton scattering. The angles are relevant for the
derivation and are beyond the scope of this thesis. Used with permission
from [3].

1.3.2 Inverse Compton Scattering

Inverse Compton (IC) scattering is the process in which an ultra relativistic electron

collides with a low energy photon and increases the photon’s energy to the gamma ray

regime. The specific process is shown in Figure 1.4. It is effective for a wide variety

of emission regions and is highly efficient in low magnetic fields and gas densities in

the interstellar medium (ISM) [9]. The scattering cross-section of the IC process can

be expressed as a function of the electron energy Ee and the photon’s initial energy

wo = hν with the term ϵo = wo/Ee. This equation is called the Klein-Nishina (KN)

equation [9, 22],

σIC =
3σT

8ϵo
[(1− 2

ϵo
− 2

ϵ2o
) ln (1 + 2ϵo) +

1

2
+

4

ϵo
− 1

2(1 + 2ϵo)2
] (1.10)

Where σT is the Thomson scattering cross-section and is given by σT = (8π/3)r2e and
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re is the radius of an electron. This expression can yield two different differential cross

sections depending on the frequency of light emitted. At lower frequencies (visible

light), ϵ0 ≪ 1 and non-relativistic electrons produce Thomson scattering while at

higher frequencies, ϵo ≫ 1 and relativistic electrons produce Compton scattering.

The latter is also known and the KN regime [23].

In addition to the cross section, the energy loss rate for both Thomson and KN

regimes can be found and these are shown in Equations 1.11 and 1.12 respectively

[9].

−dEe

dt
=

4

3
σT cωonphE

2
e , b ≪ 1 (1.11)

−dEe

dt
=

3

8

σT cnph

ωo

(ln b− 11/6), b ≫ 1 (1.12)

Where nph is the number density of photons and b = 4ϵo. From Equations 1.11 and

1.12 it can be seen that while in the Thomson regime the energy loss is proportional

to E2
e , for the KN regime it is almost energy independent. These expressions imply

that for the Thomson regime the steady-state electron spectrum becomes steeper

while for the KN regime emitted photons suffer a very sharp cutoff. One final note is

that while protons go through the IC process as well, the rate of proton interaction

is proportional to (me/mp)
4 and so is not significant enough to consider [22].
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1.3.3 Synchrotron Emission

There is a second leptonic emission method that will be briefly introduced here:

synchrotron emission. When an electron moves through a magnetic field, it gets

accelerated and follows a spiral trajectory. When this happens, the electrons emit

low energy gamma rays (MeV, GeV) through synchrotron radiation, so-called named

because of the path taken. If the electrons travel along curves in the magnetic field

rather than spirals, curvature radiation is produced instead. This emission is too low

energy for HAWC to see but it is important to pulsar wind nebulae, as discussed in

Chapter 4.

1.4 Emission Regions

This last section will consider galactic gamma ray emission regions only. While there

are many known extra-galactic sources, few are visible to HAWC and my analysis

on HAWC J2031+415 is strictly galactic in nature. There are 3 relevant gamma ray

source classes for this analysis and they are introduced here.
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1.4.1 Supernova Remnants (SNRs)

A SNR is what remains after a star M > 8Mo experiences total core collapse when it

runs out of fusion material (hydrogen, then helium and heavier elements). These are

among the most energetic phenomena currently know and can outshine entire galaxies.

When a star goes supernova, it ejects vast amounts of material that sweeps up the

surrounding ISM. This creates the SNR and this region will continue expanding until

it fully merges with the ISM. A more complete discussion on the steps this process

follows can be found here [24]. As the SNR expands, the ejected material compacts

the ISM, generating shock fronts and allowing Fermi acceleration to occur.

1.4.2 Pulsar Wind Nebulae (PWN)

When a SNR is created, it has the possibility to become a Pulsar Wind Nebula

(PWN). A PWN is an SNR that is powered by a pulsar, a special case of a neutron star

that has a rapid rotation period and strong magnetic fields. PWN can be modelled

as non-aligned magnets with very large magnet moments that is surrounded by a

magnetosphere [9]. The pulsar generates a wind that contains electrons and positrons

emitted from the pulsar and contribute to its slowing rotation. The power emitted

from a pulsar is given by [2]
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dErot

dt
= Iωω̇ (1.13)

Where I is the moment of inertia of the pulsar, ω is the angular frequency, and ω̇ is

the deceleration rate. The pulsar’s characteristic or dipole age can be determined by

τdipole =
P

Ṗ
(1.14)

Where P is the rotational period of the pulsar and Ṗ is the change in that rotation.

When the high energy electrons reach the shock front termination and enter into the

ISM they inverse Compton scatter with the ambient photons and produce gamma

rays [9]. PWNs will be discussed in more detail in Chapter 3

1.4.3 Star Birthing Regions

Star birthing regions have also been theorized to produce gamma ray emission [25].

These structures produce gamma rays using several different methods. The relevant

for the Cygnus region relies on the acceleration of particles to relativistic energies

through stellar winds being combined from the stars and SNRs within the region

[25, 26]. These particles then interact with the ISM or the surrounding star birthing
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region, causing a wide region to emit gamma rays. One key aspect of this emission

region is that it can suppress emission at low energies, resulting in TeV sources with

no lower energy counterpart [25].

These three source types are present in my analysis of HAWC J2031+415 and the

specific sources will be discussed more in Chapter 5.
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Chapter 2

Gamma Ray Observatories

Observed gamma rays are spread across 9 decades, from MeV (106eV) to recently

observed PeV (1015eV) events from the Large High Altitude Air Shower Observatory

(LHAASO) [27, 28]. To observe this wide energy spectrum, both space and ground-

based observatories are used. This chapter will focus on ground-based observatories

and introduce the HAWC array along with its basic analysis framework.
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Figure 2.1: An example of an EAS. Used with permission from [4].

2.1 Extensive Air Showers

When primary particles (gamma rays, hadrons, etc.) enter Earth’s atmosphere, they

interact with atmospheric molecules, creating an electron-positron pair. These sec-

ondary particles produce gamma rays via bremsstrahlung and these new gamma rays

continue the interaction chain [28]. This process, called an Extensive Air Shower

(EAS), can be seen in Figure 2.1.

As it can been seen, after first contact with the atmosphere, a cascade of particles

(mostly nuclear fragments) and photons (gamma rays) shower down onto Earth’s

surface. Depending on the primary particle, two different shower types are produced:
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electromagnetic and hadronic showers. Electromagnetic EAS’s are formed when a

high energy electron, positron (positively charged electron), or photon enters the

atmosphere. When this happens, an electron-positron pair is produced and cascades

through the upper atmosphere, interacting with matter and producing more electron-

positron pairs until a critical energy threshold is reached. When the electron-positron

energy reaches 80 MeV, the cascade stops expanding and the secondary particles

produced rapidly drops due to ionization losses [15, 28]. This point is called the

shower maximum. Once the shower hits gamma ray observatories like HAWC they

reconstruct the shower and allows the analysis of the parent sources.

By contrast the hadronic shower is caused when a hadron (typically protons or neu-

trons) encounters the upper atmosphere. Approximately half the hadron’s energy

is transferred to secondary particles produced by collisions while the other half is

consumed by particle production of slow pions. Some of the produced pions are π0

which decay into two gamma rays (as discussed in Chapter 1) and produce electro-

magnetic EAS’s. Hadronic showers develop slower than electromagnetic showers and

the distinction between gamma and hadron showers is key for HAWC’s data collection

process.

There are 2 kinds of observatories that observe these showers: Imaging Atmospheric

Cherenkov Telescopes (IACTs) and Air Shower Particle Detectors (ASPDs). Some

IACTs and ASPDs use a special property of light: Cherenkov radiation and, given
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Figure 2.2: Propagation of Cherenkov radiation through a medium. Used
with permission from [3].

its importance, it will discussed in Section 2.1.1.

2.1.1 Cherenkov Radiation

Cherenkov radiation is emitted when a charged particle (neutral particles do not

experience this phenomenon) passes through a medium at a velocity greater than the

phase velocity of light in that medium. When Cherenkov radiation is emitted, it forms

a cone of radiation emitted from the particle as it passes through the medium, as seen

in Figure 2.2. Cherenkov radiation is primarily used by ASPDs to record EAS’s while

IACTs focus on Cherenkov light emitted by showers to collect data. Additionally,

ASPDs use other detection methods besides Cherenkov radiation to detect and are

discussed in Section 2.3.

Cherenkov radiation detection is dependent on the half angle made by the cone of
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light produced by the travelling particle. The angle θ is given by:

cos θ =
1

βn
(2.1)

Where β is the particle’s velocity as a fraction of the speed of light and n is the

refractive index of the interface. For water, n = 1.33 and the emission angle is

≤ 42◦ [29]. This angle is crucial in designing water tanks to ensure that the light is

accurately detected.

2.2 Imaging Atmospheric Cherenkov Telescopes

IACTs function by detecting Cherenkov radiation with a large mirror array (similar

to a refracting telescope). They use high speed cameras to photograph the EAS as it

travels through the atmosphere. They have the ability to aim across a wide range of

the sky, though it is important to acknowledge that they do not see the entire view-

able sky simultaneously. An example of an IACT is the Very Energetic Radiation

Imaging Telescope Array System (VERITAS), see Figure 2.3. VERITAS is composed

of four 12 meter IACT telescopes that combined have an effective area of .1 km2 at

1 TeV [30]. It also has very good angular resolution at ≤ 0.05◦ for photons.
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Figure 2.3: The VERITAS observatory. Used with permission from the
Smithsonian Astrophysical Observatory [5].

The advantage of IACTs is their smaller angular resolution but they suffer by having

a small field of view. In VERITAS’ case its field of view is 3.5◦. Additionally, they

also can only collect data under clear skies and mostly moonless nights.

Another example for an IACT relevant for the work presented in this thesis is the

Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) system located

on La Palma, one of the Canary Islands. MAGIC consists of two 17 meter diame-

ter IACTs with an energy range of 50 GeV to > 30 TeV. The first telescope was

constructed in 2003 with the second operational in 2009 [31, 32].

Finally, the first IACT conducting a deep gamma ray survey of the Cygnus constella-

tion is the High-Energy-Gamma-Ray Astronomy (HEGRA) telescope array. HEGRA

was located on the same island as MAGIC and was MAGIC’s predecessor, operating

from 1997 to 2002. This array was composed of 5 Cherenkov telescopes with 8.5

m2 surface area. This gave HEGRA an effective energy range of 0.5 to > 50 TeV.
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HEGRA is notable for being the first to discover TeV J2032+4130, a TeV source that

had no clear association in lower energy regimes at the time [10].

2.3 Air Shower Particle Detectors

By contrast, ASPDs require air showers to reach the ground where the detectors are

installed to be detected and so are built at higher elevations. The shower maximum

depends on the initiating particle and occurs on average at or above 5000 meters [15].

ASPDs have an angular resolution that is worse than IACTs (≈ 0.1◦) and cannot

distinguish point sources as well as IACTs. However, the advantage of ASPDs is that

they have much higher up time because they do not rely as much on atmospheric

conditions to collect data. Additionally, they have much larger fields of view than

IACTs.

There are several ways that ASPDs collect data. The first method, scintillation

counters, is used by the Tibet Air Shower Gamma Experiment (Tibet AS). Located

in Yangbajing, China, this array has been operational using scintillation counters

since 1990 [33]. Scintillation is a process in which light is emitted when a particle

interacts with a medium and the counter component detects this flash. Usually the

detector component is a photomultiplier tube (PMT) to boost the signal [34].
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A second method is Resistive Plate Chambers (RPCs) and is used by the Astrophysi-

cal Radiation with Ground-based Observatory (ARGO) in Yangbajing, China. RPCs

consist of two parallel plates, a positive anode plate and negative cathode plate. These

plates are separated by a gas and, when a muon passes through the gas, electrons get

knocked out of orbit. This in turn creates a cascade of electrons that are transparent

to the electrodes, allowing them to pass through and be measured by a series of de-

tector strips that collect the relevant data about the muon and corresponding shower

[35, 36].

The third detection mechanism is Water Cherenkov (WC) detectors. The general

principle of WC arrays is that the detectors are submerged in water and detects

Cherenkov radiation. The water and WC detectors can either be in self-contained

tanks like with HAWC, the WC detectors can be placed in a large pond like with

HAWC’s predecessor MILAGRO [37], or a combination of the two with LHAASO.

The functionality of HAWC will be discussed in further below. It should be noted

that LHAASO is a hybrid array with both WC and IACT-style detectors.

2.4 HAWC Array

The HAWC array is located Sierra Negra, Mexico at an altitude of 4100 meters. The

main array is composed of 345 tanks and can be seen in Figure 2.4. Each of these
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Figure 2.4: An aerial shot of the HAWC array. The large tanks are the
main array while the smaller tanks are part of the outrigger array. The off-
center building at the array’s core is the counting house. The outriggers are
currently not considered for data collection. Photo courtesy of Dr. Jordan
Goodman of the HAWC collaboration.

tanks has a 7.3 meter diameter with a depth of 4.5 meters. The individual tank

volume is approximately 200,000 liters filled with purified water. Inside each tank are

four PMTs, three of which are 8-inch Hamamatsu R5912 models that are placed in a

triangular formation around the single high-quantum efficiency 10-inch Hamamatsu

R7081-MOD [38]. This configuration can be seen in Figure 2.5

Additionally, Figure 2.5 also details the process of how events are detected with
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Figure 2.5: The layout of each WC detector. The red line indicates
a charged muon and the green cascade is the Cherenkov light that par-
ticle emits when interacting with the water. Photo from https://www.

hawc-observatory.org/observatory/tanks.php

HAWC. When a suitably high enough energy particle enters the WC tanks, the re-

sulting cascade of Cherenkov light is detected by the PMT’s present. When the

PMT’s detect this light, it converts it to photoelectrons in accordance with the pho-

toelectric effect. This signal is then greatly amplified by a factor of ≈ 107 and sent

through to the counting house seen at the center of the main array in Figure 2.4 and

analyzed.
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Chapter 3

Pulsar Wind Nebulae and HAWC

J2031+415

This chapter will discuss the formation process and characteristic modelling of pulsars

and their surrounding nebulae, as well as considering the gamma ray emission related

to these objects. Additionally, PSR J2032+4127, the pulsar believed to be associated

with HAWC J2031+415, will be introduced.
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3.1 Stellar Death

Stars prevent gravitational collapse by compressing their cores to the point that nu-

clear fusion becomes possible. Hydrogen gas is fused to produce helium and this

process produces enough thermal energy to reach an equilibrium point with the grav-

itational force. As a star nears the end of its hydrogen supply, the fusion rate slows

and its core contracts. Due to the increased pressure, conditions for helium fusion

becomes favorable. What happens next is dependant on the star’s mass, the amount

of hydrogen in the outer layers, and the amount of helium in the star’s core.

If a star has a massM < 10Mo (Mo is the mass of the sun), its most probable fate is to

become a planetary nebula. This is where the star expands into a red giant and loses

its shells in a series of shell flashes, throwing them out around the star core. The core

collapses until electron degeneracy pressure halts the collapse and a white dwarf is

created [39]. For stars with masses 10Mo < M < 26Mo electron degeneracy pressure

is not sufficient to overcome the gravitational pressure and electrons are forced into

protons, creating neutrons. Neutron degeneracy pressure is now the dominating force

and counteracts gravitational pressure, creating a neutron star [6, 39]. Stars with mass

M > 25Mo have gravitational forces so strong that neutron degeneracy is not enough

to stop further core collapse and a black hole is created. The different progressions

are summarized in Figure 3.1.
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Figure 3.1: Diagram displaying the fate of stars from their mass [6].

3.2 Pulsar characteristics

Pulsars are a subclass of neutron stars that are characterized by their rapid, consistent

rotation and the jets of radiation they give off at the magnetic poles. When a neutron

star is formed, the angular momentum and magnetic flux of the parent star are

preserved. While these characteristics are maintained, the radius of the parent star

falls from hundreds of thousands of kilometers to tens of kilometers, causing a massive

increase in the rotation period of the neutron star. The currently fastest rotating
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pulsar known is PSR J1748−2446ad with a rotation rate of 716 Hz [40].

3.2.1 Spin-Down Luminosity and Pulsar Age

As shown in Equation 1.13, the spin-down luminosity of the pulsar is characterized

by the energy-loss rate that the pulsar experiences. The energy loss Ė is on the order

of 1028 to 1039 erg/s, though isolated PWN are only created with Ė > 1036 erg/s.

If the pulsar is in a binary system then Ė can be as low at ≈ 1034 erg/s [41]. The

parameters used to calculated the spin-down luminosity can also be used to determine

the pulsar’s age as shown in Equation 1.14 [2].

3.2.2 Surface Magnetic Field Strength

The magnetic field of a pulsar at its surface can be estimated using the rotation period

and spin down rate P , Ṗ parameters and is given by:

B ≈ 3.2 ∗ 1019(PṖ

1s
)1/2, (3.1)

Where the momentum product has been normalized to 1 second. The range of mag-

netic field values for pulsars is approximately 108 to 1015 Gauss.
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3.3 Gamma Ray Emission and Pulsars

As discussed in Section 3.2.2, pulsars have very strong magnetic fields that in turn

generate strong electric fields. These electric fields are capable of pulling charged

particles off the surface of the neutron star, specifically at the magnetic poles [9, 42].

It is believed that these charged particles are what cause electron-positron cascades

which, in turn, form a particle plasma along the magnetic field lines and create the

magnetosphere. The magnetosphere extends until the particles obtain a maximum

speed (near the speed of light), forming a light cylinder that can be seen in Figure

3.1 [7, 9].

There are three models that model gamma ray emission from the magnetosphere and

they all argue that the acceleration of electrons and positrons occur where the charged

particle density, given by Equation 3.2, drops [43].

ρGJ =
ΩB

2πc
(3.2)

Here Ω is the angular momentum and B is the magnetic field. These emissions

regions are the polar cap, slot gap, and outer gap regions [7, 9]. Both the polar cap

and slot gap rely on strong acceleration near the poles to produce gamma rays via
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Figure 3.2: Outline of a pulsar and its magnetic field. Note the mis-aligned
axes of rotation and magnetic field as this is what causes the ”lighthouse”
effect associated with pulsars. Additionally the polar cap, slot gap, and
outer gap regions are highlighted. Photo taken from [7].

curvature radiation of electron-positron pairs [44, 45]. The polar cap model predicts

this acceleration to be near the pole (≈30 km) while the slot gap model predicts

acceleration on the closed magnetic field lines near the pulsar but away from the poles

[9]. By contrast, the outer band gap acceleration occurs away from the pulsar where

the magnetic field intensity has dropped by several orders of magnitude. Gamma rays

here are produced either by IC scattering or curvature radiation [9, 22].

All gamma ray emission from the pulsar proper is produced in these three regions
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and, as the pulsar rotates, is viewed as pulsed emission from Earth. This was first

observed in the TeV energy range in 2008 with MAGIC [7] and, while internal studies

with HAWC have been attempted, pulsation was not detected and therefore is not

considered in this analysis.

3.4 Pulsar Wind Nebulae

PWNe are another by-product of SNRs. In this section both their formation and

multi-wavelength emission will be explored.

3.4.1 Formation and Development

A PWN is part of a composite system, as shown in Figure 3.3, where the PWN

is enveloped by the surrounding SNR. Though part of an SNR, a PWN does not

significantly affect the total energy output of an SNR (primarily kinetic energy from

the shock expansion phase) as a PWN’s energy output is generally on the order

of 100 times smaller than the SNR [46]. Given that energy disparity, an SNR is not

significantly affected by the PWN’s evolution but rather the PWN is highly dependent

on the SNR’s development.

After the initial supernova explosion, the SN enters a phase of free expansion that
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Figure 3.3: The general size comparison for an SNR vs a PWN. The SNR
envelopes the PWN and constrains its growth through the SNR’s devel-
opment phases. TeV halos are an additional component of emission from
SNR’s and will not be discussed in this thesis. DOI:10.1103/PhysRevD.
100.043016. [8]

lasts from 500-3000 years. The SNR expands with a velocity of ≈ 5 ∗ 103 km/s while

the pulsar receives a significantly smaller kick velocity of ≈ 400 km/s. This kick

velocity is caused by asymmetries in the supernova explosion. Therefore, for young

SNRs, the pulsar remains near the center of the SNR. The PWN expands rapidly

and, in the case of spherically symmetric expansion, the radius can be given by [46]:
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RPWN ≈ 1.5Ė1/5
o E

3/10
SN M

−1/2
ej t6/5, (3.3)

where Ė is the initial spin-down luminosity of the pulsar and ESN and Mej are the

energy and mass ejected by the supernova.

After the free expansion phase, material that was initially accelerated by the super-

nova sweeps up the surrounds ISM and begins to decelerate. This deceleration causes

shocks to form both on the expansion edge as well as inside the expanding material.

These reverse shocks are caused by the more rapidly expanding material inside the

SNR to collide with the slowing outer shells. This is the Sedov phase (also known as

the Sedov-Taylor phase) and lasts for ≈ 104 years. It is characterized by total energy

being conserved and equally split by kinetic and thermal contributions [2, 46]. These

reverse shocks eventually travel to the SNR center given by time tSedov [47]:

tSedov ≈ 7

(
Mej

10Mo

)5/6(
ESN

1051ergs

)−1/2 ( no

1cm−3

)−1/3

kyr, (3.4)

where no is the number density of the ambient gas. If there is a pulsar at the center

of the SNR, the collapsing reverse shock collides with the PWN’s forward moving

shock and compresses the PWN. This greatly increases pressure within the PWN

and the compression rebounds with sudden expansion. The system oscillates for a
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few thousands years and also results in significantly stronger magnetic fields being

produced. After the oscillation subsides, the PWN reforms a steadily expanding

bubble around the pulsar. It should be noted that this is the ideal case; if the

pulsar is not at or near the center of the SNR then the reverse shock front collides

asymmetrically with the PWN’s expanding shock front and creating a complex 3D

system [48].

After the oscillation phase, the pulsar may have travelled beyond its initial expanding

shock and forms a new PWN. This is called a ”relic PWN” and is characterized by a

heavily distorted radio emission morphology with reduced X-ray emission. Generally

speaking, IC still occurs at both the pulsar’s initial PWN and the newly formed

PWN, resulting in a larger TeV gamma ray emission region. As the system ages, IC

from the original PWN begins to diminish and the large emission region reduces to a

highly asymmetric PWN in the TeV regime [49].

3.4.2 Multi-wavelength emission from PWNe

When the PWN interacts with the ISM, a termination shock front forms and particles

can be accelerated to higher energies. Once these particles have been accelerated,

they emit radiation in one of two ways: synchrotron radiation and IC. Synchrotron

radiation from PWNe is responsible for radio and low energy gamma rays, whose
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Figure 3.4: Three regions for nonthermal radiation associated with a PWN.
The diagram is from [9]

modelling is not considered for this analysis. A discussion of IC can be found in 1.3.2

IC continues the emission from low energy to multi-TeV gamma rays and the different

regions where this radiation mechanisms dominate is seen in Figure 3.4.

Due to lower energy requirements, IC emission from a PWN is much larger than that

from synchrotron radiation. IC needs low energy photons to produce gamma rays,
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and these low energy photons can be found near shock fronts as the PWN transitions

to the ISM. This means that IC emission can occur across a large region. The first

PWN to be discovered in the TeV regime was the Crab nebula [50] and numerous

other PWN have been discovered since. A possible new candidate may be pulsar

(PSR) J2032+4127, the hypothesized pulsar powering HAWC J2031+415.

3.5 PSR J2032+4127 and HAWC J2031+415

Gamma ray emission was observed in the Cygnus Cocoon when HEGRA discovered

TeV J2032+4130, a TeV gamma ray source with no lower energy counterpart [10].

The excess map can be seen in Figure 3.5. Follow up measurements from Milagro in

200 and 2012 measured small and large extended sources respectfully. The meaning

of extended sources will be discuss in Chapter 4 but in short the source extent is

correlated to the observed size of gamma ray emission. The 2007 study measured a

0.08◦ source while the 2012 study found a large 1.8◦ source [37]. Later in 2014, VER-

ITAS performed a spectral and energy morphological study and they hypothesized

that PSR J2032+4127 powered TeV J2032+4130 [12]. PSR J2032+4127 is located at

RA=308.04◦, DEC=41.46◦, where RA (right ascension) and DEC (declination) are

defined by the longitudinal and latitudinal lines on Earth. Table 3.1 gives several

locations that TeV J2032+4130 has been detected at.
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Figure 3.5: First discovery of TeV J2032+4127. Note the Cyg-OB2 region
as this will be discussed in Section 5.1. Taken from [10].
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Now that the TeV component has been introduced, let us consider the pulsar itself.

PSR J2032+4127 was discovered by the Fermi-LAT, a space-based gamma ray tele-

scope, in 2009 as a 143 ms pulsar [51] and has a spin-down luminosity of ≈ 4 ∗ 1034

erg/s [52]. This pulsar was discovered in close proximity to MT91 213, a V = 11.95

Be star [52]. Be stars are classified as being non-giant phase stars that emit at least

one Balmer series line. MT91 213 was estimated to have a mass of 15± 2.8M0 which

gives it a relatively short life span of a few million years [53]. Recent observations

with Fermi [52] have determined that PSR J2032+4127 and MT 91 213 form a bi-

nary pair with an extended orbital period of 50 years. It is believed that, after

PSR J2032+4127’s parent star went supernova, the kick velocity was not sufficient

to escape the gravitational well of MT 91 213, forming this long period system. Ad-

ditionally, it is a highly elliptical orbit with the orbital velocities ranging from few

km/s at apastron (furthermost point) to > 100 km/s at periastron (nearest point)

[52].

On the concept of periastron, the binary system was predicted by Fermi to occur

in 2017 and this was observed by a joint MAGIC-VERITAS collaboration. The

joint observations confirmed the binary nature of PSR J2032+4127 but note that the

measured size and luminosity of the TeV gamma ray emission is significantly smaller

than predicted. Given the complex nature of the binary pair and, combined with the

large eccentricity and orbital period, PSR J2032+4127 may yet be the power source

for TeV J2032+4130 [54]. In this work I investigate this claim with HAWC.
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Chapter 4

Analysis Methodology

This chapter will discuss the analysis method that a HAWC analysis goes through

and how a final model is determined. Additionally a new systematic source search

method is introduced in Section 4.4.

4.1 Likelihood Method

The core framework that HAWC utilizes to analyze high-level data like gamma ray

sky maps is the Multi-Mission Maximum Likelihood framework (3ML) and the full

framework is discussed further in [55]. The likelihood analysis technique determines

the probability of observed data xi, ..., xn given the probability function P (xi, ...xn; θ⃗)
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given by [56].

L(θ⃗|x1, ..., xn) =
n∏

i=1

P (xi|θ⃗) (4.1)

The maximum likelihood method determines the parameters θ⃗ that maximizes the

probability of the data given the model. The data is then reconstructed events using

the 3 energy estimators that HAWC uses: fhit, ρ40, and a neural network, and are

discussed further in Section 4.3. The next step is to construct a model that will be

fitted to the data.

4.1.1 Model Parameters

A HAWC analysis fits both the morphology (emission shape in the sky maps) and the

spectra of gamma ray sources. There are two morphologies considered: a point-like

source and an extended source. The morphology is considered ”point-like” or point

source if the extension of the source is equal to or smaller than HAWC’s angular

resolution. HAWC’s angular resolution is a function of energy and ranges from > 0.1◦

for > 56 TeV to > 1◦for ≈ 1TeV high energy events and may not be a point source

for other arrays. There are several models available in 3ML and three relevant ones

for this analysis are disk, symmetric Gaussian, diffuse background emission (DBE)
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models. The DBE model handles both galactic background emission and emission

from unresolved sources in a given Region of Interest (ROI). The spectral component

of these models is initially discussed and then morphology functions are discussed

afterwards.

All morphologies (point-like and extended sources) have a spectral component as well

and the relevant models are introduced here. The simplest is a basic normalized

power law spectrum shown given by

dN

dE
= No

E

Ep

−α

, (4.2)

Where No is the flux normalization, Ep is the pivot energy, and α is the spectral

index. The pivot energy is used to de-correlate the flux normalization and index,

forcing the correlation between the two to zero. Ep has no impact on the numerical

value of the fitting results.

Another spectral model considered is the power law with an exponential cutoff:

dN

dE
= No

E

Ep

−α

exp
E

Ec

. (4.3)

The additional parameter Ec is the cutoff parameter and determines how quickly the
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spectrum decays with increasing energy.

The last model considered in this analysis is the log-parabola model, given by

dN

dE
= No

E

Ep

−α−β lnE/Ep

. (4.4)

The log-parabola model is characterized as being a parabola in log-log space where

β is the curvature parameter. One characteristic of HAWC is using a multi-source

fitting process, meaning there can be multiple source models added to the ROI and

all freed parameters are fitted simultaneously.

Now a discussion on the morphologies available for these sources. A point source

is treated as an extend source that has a fixed width and is the smallest source

HAWC can resolve. This width is a function of the resolution of the detector and

reconstructed data. For the 2D Gaussian model, the flux normalization is modelled

as a Gaussian and tapers off the further from the source center. The expression for

this model is given as [57]

f(x⃗) = (
180◦

π
)2

1

2π
√
detΣ

exp

(
−1

2
(x⃗− x⃗o)

⊺Σ−1(x⃗− x⃗o

)
, (4.5)

Where x⃗o is the (RAo, Deco) and Σ is the covariance matrix such that, for Λ and U
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Λ =

σ2 0

0 σ2(1− e2)



U =

cos θ − sin θ

sin θ cos θ



the covariance matrix is Σ = UΛU⊺ where σ is the standard deviation of the Gaussian

and e is the eccentricity of the Gaussian (for symmetric models e = 0).

For a disk model, the flux normalization is held constant across the desired radius r

and is zero elsewhere:

f(x⃗) = (
180◦

π
)2

1

π(radius)2


1 if |x⃗− x⃗o| ≤ radius

0 if |x⃗− x⃗o| > radius

. (4.6)

The last model discussed in this thesis is the DBE model and is given by

f(x⃗) = K exp
−b2

2σ2
b

, (4.7)

where K is a normalization factor, b is the galactic longitude range being considered,

and σb is the radius of the model along the galactic plane. The radius was determined
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by a galactic diffuse emission study by the High Energy Stereoscopic System (HESS)

and determined the radius to be 1◦ [58].

4.1.2 Fitting the Model

Once the model has been constructed, it is time to fit the model to the data. The

observed events in each pixel of data is given by the Poisson distribution shown as

Pi =
θni
i e−θi

ni!
, (4.8)

where ni is the number of observed events in a pixel and θi is the expected number

of events given the assumed galactic background. The likelihood L is the product of

probabilities of observing the number of detected events

L =
N∏
i=1

Pi, (4.9)

The log of the likelihood function below is considered.

logL =
∑

ni log θi −
∑

θi −
∑

log ni! (4.10)
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The final model is what combination of θi parameter values minimizes the negative

log(likelihood).

4.2 Model Comparison

Once a fit has been completed with a certain model, the next step is to compare

that fit result to a new model and determine which better represents the emission

observed. This is done by a likelihood ratio test [55]

TS = 2 ln
Lalt

Lnull

, (4.11)

where Lalt is the alternate hypothesis, typically the model used for observed gamma

ray emission, and Lnull is generally the background-only model. This approach is

based on Wilks’ Theorem and, for nested models, the TS distribution follows a χ2

distribution with degrees of freedom equal to the number of free parameters [59]. For

one free parameter, the significance is given by

σ =
√
TS. (4.12)
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It should be noted that σ in this context is the significance of a parameter, not the

width of a Gaussian as used in Section 4.1. This σ parameter is relevant to the data

maps that HAWC generates as the model parameter difference is 1: the background

only assumption and a source + background with the flux normalization being fit.

Previous studies with HAWC have determined that a > 5σ indicates a source present

in the significance map. Examples of these maps will be shown in Chapter 5.

4.2.1 ∆TS comparison

Models can be compared by considering the difference in TS or ∆TS between them.

Consider 2 models, one with Equation 4.2’s spectral model and the other using Equa-

tion 4.3’s. The ∆TS of the two models is found and, given that the -log(likelihood)

is found in the fitting process, the final result is given by

∆TS = 2(log (Model 1)− log (Model 2)). (4.13)

If ∆TS < 16, then the simpler model is preferred. It should be noted that a ∆TS

value of 16 is an a priori threshold for model comparison. The HAWC group at

Michigan Technological University is currently performing studies to verify the cor-

responding probability value. Based off current results, 16 is currently believed to be
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Table 4.1
∆BIC comparison [16]

∆BIC Evidence against higher BIC model
0 to 2 no evidence
2 to 6 Positive
6 to 10 strong
>10 very strong

the optimum value.

4.2.2 Bayesian Information Criterion

Another metric, the Bayesian Information Criterion (BIC), can be used to confirm

the ∆TS result. It is defined as

BIC = − logL− k log n, (4.14)

where k is the number of free parameters, n is the data set size, and the − logL

term is the usual log(likelihood) function. The additional term k log n term serves

as a penalty for models involving more parameters. It should be noted that BIC

comparison is not valid when k and n are comparable. The meaning of different

∆BIC values is given in Table 4.1 [16].
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4.3 Map files

Now that the model is constructed and they can adequately be compared, now we

need the data sets to model. HAWC uses three energy estimators: Fractional Hit

(fhit), Neural Network (NN), and Ground parameter (GP) or ρ40 and each will be

discussed here.

4.3.1 Fractional Hit

The fhit array is the first and most basic energy estimator. It functions by binning

the events into separate bins depending on how much of the array was triggered by

an EAS. Each bin consists of a percentage range of the array triggered and the data

set is divided into eleven bins. The fhit binning scheme can be seen in Table 4.2.

This estimator stores hits and can be used to perform analyzes but is inadequate for

energy reconstruction as a >10 TeV event will trigger the entire array.

4.3.2 Neural Network Estimator

The NN estimator uses the Toolkit for Multivariate Analysis neural network imple-

mentation [60]. There are 3 characteristics of the EAS that are chosen: the energy
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Table 4.2
Pass 5 fhit binning scheme

Bin Low fraction hit High fraction hit
0 0.027 0.047
1 0.047 0.07
2 0.07 0.11
3 0.11 0.16
4 0.16 0.25
5 0.25 0.37
6 0.37 0.51
7 0.51 0.66
8 0.66 0.78
9 0.78 0.88
10 0.88 1.0

amount saturating the detector, the extent that the shower footprint is contained

by the array, and the degree of attenuation of the shower from the atmosphere. A

more in-depth discussion for the NN implementation can be found in [38]. Due to

the increase in energy sensitivity due do the reconstruction process, both the NN and

ρ40 can sub-divide each fhit bin into 12 sub-bins. The energy range for each sub-bin

can be seen in Table 4.3. The binning syntax is as follows: for bin 0 sub-bin a the

name for pass 5 data bins is B0C0Ea where C0 indicates on-array (directly impacts

the HAWC array) event.
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Table 4.3
Quarter decade energy bins for ρ40 and NN maps

Bin Energy Range (TeV)
a 0.316 - 0.562
b 0.562 - 1.0
c 1.0 - 1.78
d 1.78 - 3.16
e 3.16 - 5.62
f 5.62 - 10.0
g 10.0 - 17.8
h 17.8 - 31.6
i 31.6 - 56.2
j 56.2 - 100
k 100 - 177
l 177 - 316

4.3.3 ρ40 Estimator

The ρ40 estimator (also referred to as ”ground parameter” in published HAWC ana-

lyzes) functions by estimating the charge density at a fixed optimal distance from the

shower core. The global estimate for the optimum radius was determined to be 40

meters and a further discussion for the derivation of this value can be found in [38].

The charge density can be related to the gamma ray energy by

log10E = m(θ) log10 ρ40 + c(θ), (4.15)

where m(θ) and c(θ) are linear and quadratic piecewise functions with respect to the
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zenith angle and ρ40 is the charge density at 40 meters. All three estimators are used

in this analysis and is discussed further in Chapter 5.

4.4 Systematic Source Search

The final step to analyze an emission region is to determine how many sources are

present, what their morphologies are, and what spectral model each source has. Pre-

vious studies proceeded with a non-robust search method to determine the best model

selection but for this study a systematic approach is taken. The method is a variation

of a source search method performed by the Fermi LAT collaboration and is discussed

in detail in [61]. The key difference between Fermi’s method and this study is in the

method that sources are added to the ROI.

The first step is to model the diffuse background emission (DBE) that handles both

background and emission from unresolved sources. Once fitted, a point source (PS)

is added near the highest residual significance and has the location and spectral

components fitted. After a PS is added to the ROI and fitted, the next step is to

determine which model is preferred, the one with the additional PS or without it.

For this study, a ∆TS of 16 or greater results in the additional PS to be kept in

the model. Additionally, if the individual TS of any source drops below 16, they

are excluded from the model. This is due to the possibility of the PS being a high
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Figure 4.1: Systematic source study.

fluctuation in the background data set. If the PS model is preferred, then the next

step is to test the extension of the source.

The extension test is as follows: the added PS is made into an extended source (2D

symmetric Gaussian) and the fit is re-done. If the ∆TS is greater than 16, the

extension is kept. It should be noted that during this process the source location

remains free as the best fit location of an extended source may differ from a PS.

If ∆TS < 16, then the extension test is rejected and the source is kept as a point

source. Then a new PS is added at the next highest residual significance and the

process repeats. The study is concluded when the ∆TS from adding a new PS is less

than 16, then the final source model has been found. This process is shown in 4.1.

Once the number of sources has been identified, the next step is to determine the

spectrum of each source. This is done by taking one source and performing three fits,

one for each spectrum discussed in Section 4.1.1. As an additional checks, BIC is
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used in addition to ∆TS. The threshold for a preferred model is given by ∆TS > 16

or ∆BIC > 2. Once that source’s spectrum has been identified, it is kept in the

model and the test proceeds to the next source. In the case of a tie in BIC or ∆TS

between models, the simpler model is preferred. One additional check that can be

done is to observe a 1D significance histogram of the data distribution. If there is

only background emission and no source, the expected outcome of the histogram is a

Gaussian shape with a mean of 0 and a width of 1. This study is done using the fhit

estimator and a selection of steps is given in Chapter 5.
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Chapter 5

HAWC Analysis of HAWC

J2031+415

This chapter will discuss the systematic source search results with all three estimators

as well as the spectral fitting results of these sources. Additionally I will also discuss

the energy morphology study of HAWC J2031+415 with the ρ40 and NN estimators.

5.1 Sources Considered

The data maps considered for each estimator are as follows: for fhit the bins used

are B2C0 B3C0 B4C0 B5C0 B6C0 B7C0 B8C0 B9C0 B10C0, where the C0 indicates
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on-array hits and the NN and ρ40 bin lists can be found in Appendices B and C

respectfully. These bins are selected based on 2 key requirements: having a Point

Spread Function (PSF) fit of less than one degree and having data at a declination

of 40 degrees. The PSF is related to the extent that a PS can be resolved with

the HAWC detector and is discussed in more detail later. An example for the fhit

estimator and the ROI considered for this analysis can be seen in Figure 5.1. The

additional initial data maps for ρ40 and NN are found in C and B respectfully.

The ROI used has a mask on 3HWC J2019+367, the brightest source in the Cygnus

region to HAWC, to prevent potential bleed-over emission that could affect results.

Additionally, previous work with HAWC [14, 15] has observed a large extended source

with width greater than two degrees, so the ROI needs to be large enough to ensure

no emission is lost. The modified systematic source search method is applied to these

three maps with this ROI.

5.1.1 Systematic Source Search Results

The fhit map was used for the systematic source search method. The initial map is

seen in Figure 5.1. The first step is to fit the DBE model and examine the results.

The results from this fit can be seen in Figure 5.2.

Now that this model has been fit, the extension test is applied. The relevant plots
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Figure 5.1: The fhit map. The coordinates are given as galactic longitude l
(distance from the galactic center) and galactic declination b (distance from
galactic plane).

for each step can be found in Appendix A while the final model can be seen in Figure

5.3.
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(a) DBE only model significance map. (b) The residual map after subtraction of the
best fit DBE model.

(c) The residual 1D histogram after subtrac-
tion of the best fit DBE model.

Figure 5.2: Results of DBE only model. Figure 5.2(a) has been smoothed
with a 0.5 degree extension to more easily observe extended sources. Figure
5.2(b) is made with a point source assumption (no additional smoothing
applied). The 1D histogram of the residual data map is shown in Figure
5.2(c). As the fitting process proceeds, the histogram trends towards a
normal Gaussian shape.

One note is the remaining negative shoulder in the adjusted 1D histogram in Figure

5.3(c). This is present in all current HAWC pass 5 data maps. This is believed to

be an artifact of new background calculations and is still being investigated. It has

been verified that it does not affect the fit results. Additionally the negative excess
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(a) Final model significance map. (b) The residual map after subtraction of the
best fit model.

(c) The residual 1D histogram after subtraction of
the best fit model.

Figure 5.3: Results of the final model. The green contours in both Figures
5.3(a) and 5.3(b) indicate the extent of each extended source. The new
source location would be at (307.72 42.61) with a significance of 3.44. The
next step, DBE + 3 EXT + 2 PS had a ∆TS = 2 and was rejected.

past -5 in Figure 5.3(c) is caused by a small discrepancy from data to model where

the model has emission but the data map does not. This is not considered in this

analysis but more work is needed to resolve this discrepancy.

The final model results for the fhit modified extension systematic study method is

61



Table 5.1
fhit sources and extensions

Source R.A (◦) Decl (◦) Extension (◦) TS
Source 1 307.95± 0.05 41.48± 0.01 0.21± 0.01 130.17
Source 2 305.13± 0.06 40.53± 0.04 0.28± 0.04 120.79
Source 3 307.34± 0.02 40.90± 0.17 2.06± 0.12 130.15
Source 4 308.01± 0.05 42.19± 0.02 – 23.27

given Table 5.1.

Sources 1, 2, and 3 all correspond to observed HAWC sources [14, 15] but source 4 is

a newly discovered source with no association in TeVCat1, a data base that collects

information on astrophysical sources. It should be noted that it is standard practice

for HAWC to require a source to have a TS of greater than 25 for new sources. Source

4 is kept as it passes the TS=16 requirement from the source search study but further

studies and additional are required to determine whether source four is a new source

or a background fluctuation in the fhit data map. For this analysis it is kept as it

passed the source study criteria while for NN and ρ40 source four’s TS< 16 and was

dropped.

Once the number of sources has been determined, next comes the morphology and

spectrum curvature tests. In previous works [14, 15], not all sources in the ROI were

symmetric Gaussians. In particular, source two was modelled as a disk (see Section

4.1.1) with a fixed radius of 0.63◦. There was no significant ∆TS meaning the simpler

1http://tevcat.uchicago.edu/
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disk model was preferred over the Gaussian model (one less free parameter). The other

two extended sources preferred symmetric Gaussians to disk models.

For the curvature tests, both ∆TS and ∆BIC are considered. The model with the

smallest ∆BIC is taken unless ∆BIC ≤ 2, in which case the simpler model is taken.

A curvature study could not be completed for source four as its low significance

hindered fits from converging. Tables 5.2 5.3, and 5.4 show the preferred spectral

models for sources one, two, and three respectively.

Table 5.2
fhit Curvature test for Source 1. The preferred model for source 1 is a

power law with an exponential cutoff.

Model -log(likelihood ∆BIC
4 PL 136145 272519

3 PL 1 LP 136111 272384
3 PL 1 PLC 136109 272381

Table 5.3
fhit Curvature test for source 2. The preferred model for source 2 is a

power law.

Model -log(likelihood ∆BIC
1 PLC, 3 PL 136109 272381

1 PLC, 2 PL, 1 LP 136109 272392
1 PLC, 2 PL, 1 PLC 136109 272393

Once the study is concluded, the astrophysical objects associated with each source

are considered. Source one’s location correlates to HAWC J2031+415, source two’s

location is coincident with the SNR Gamma Cygni, source three is associated with

63



Table 5.4
fhit Curvature test for source 3. The preferred model for source 3 is a log

parabola.

Model -log(likelihood ∆BIC
1 PLC, 3 PL 136109 272381

1 PLC, 2 PL, 1 LP 136093 272362
1 PLC, 2 PL, 1 PLC 136095 272365

the Fermi-LAT Cocoon, and source four has no currently known counterpart. The

curvature and location tests for the NN and ρ40 maps returned the same results as the

fhit estimator and all three are shown in Table 5.5. The pivot energy Eo for sources

one, two, and three are set to 4.9, 1.1, and 4.2 TeV respectively from [62].

5.2 Isolating the PWN

Now that a model has been found, it is time to isolate the source of interest HAWC

J2031+415. To disentangle J2031+415, the other sources are fixed to their best fit

values and are subtracted out of the ROI. Due to the lack of sensitivity above 10 TeV,

only the ρ40 and NN data maps will be considered hence forth. The model (excluding

the PWN contribution) and the data map after subtraction are shown in Figure 5.4.
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(a) Model significance map without PWN. (b) Residual significance map.

(c) Residual 1D histogram.

Figure 5.4: The isolating process for the ρ40 data map. Figure 5.4(a) is
made with a 0.5◦ extension to properly show the > 2◦ extent of the Cocoon.
Figure 5.4(b) is made with a PS assumption.

Once J2031+415 has been isolated, two additional studies are performed to test the

PWN assumption. The first is to confirm the best fit spectral model (power law with

exponential cut-off) and this is shown in Figure 5.5. The second study is an energy
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morphology study and is discussed in Section 5.3.

(a) Model significance map of PWN. (b) Residual significance map.

(c) Residual 1D histogram.

Figure 5.5: The final result after the PWN is subtracted. This uses the
proper model for the PWN (power law with exponential cut-off) and the
residual data map shown in Figure 5.4(b)
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5.2.1 Energy Limits

To determine the energy range over which the spectrum is measured for each source,

a study similar to the one in [63] is done for all three sources in both the NN and

ρ40 data maps. The lower and upper thresholds of the energy spectra are determined

by multiplying each spectral model (power law, log parabola, and power law with

exponential cut-off) by a step function that models an abrupt spectral cutoff. The

only free parameters are the upper and lower cut-off values, all other parameters

are fixed at their best fit values. These energy boundaries are varied until the fit

significance drops by 1 σ. Where the -log(likelihood) crosses the 1σ threshold of the

upper energy cut-off, the lower limit to the gamma ray energy is found. Likewise,

when the -log(likelihood) crosses the 1σ for he lower energy cut-off, the upper limit

for the minimum gamma ray energy detected is found. The results for the ρ40 data

map can be seen in Figure 5.6 while the NN results can be found in Appendix B.

Table 5.6
NN 1σ energy limits in TeV units

Source Lower Limit Upper Limit
J2031+415 0.7 76
Cocoon 0.5 127

Gamma Cygni 0 77

With these energy limits accounted for, the spectrum of each source can be properly

interpreted. The energy ranges for each source is given in Table 5.6. The spectrum
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(a) J2031+415 lower bound. (b) J2031+415 upper bound

(c) Cocoon lower bound (d) Cocoon upper bound

(e) Gamma Cygni lower bound (f) Gamma Cygni upper bound

Figure 5.6: The energy range study of the three sources using the ρ40 data
map. The NN study is shown in Appendix B. The dashed lines represent
the 1, 2, and 3 σ thresholds. Figure 5.6(e) has no 1 σ due to a divide by
zero error encountered when 0 TeV was selected. Its 2 σ is selected for its
lower energy bound.
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Figure 5.7: The spectrum of HAWC J2031+415 compared with selected
observations. The VERITAS observation is scaled due to the difference inte-
gration angles and is scaled with a factor of 1.49 (see [11] for more details).
Additionally, the upper limits belong to energy bins k and l, and occur out-
side of the determined 1σ energy ranges.

and flux points of J2031+415 are shown in Figure 5.7. The flux points are calculated

after the fitting process and fix each parameter to their best fit values except for the

flux. Then each energy bin group (a, b, etc) are collected and the flux is fitted to

that data map. The flux calculation is independent of the other sources; i.e., it is

calculated for one source at a time.
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5.3 Energy Morphology Study of HAWC

J2031+415

This section will explore the energy morphology of HAWC J2031+415. To do this,

a slicing profile tool described below is utilized and the isolated PWN data map is

used. Additionally, this data is separated into discrete energy bands

5.3.1 Slicing Profile Tool

Performing direct fits in each band may not result in well constrained fits, especially

around the cut-off point (≈ 20 TeV). Therefore an alternative method is used. Similar

to the energy morphology studies done by VERITAS [5], a tool was designed by Vikas

Joshi, a fellow HAWC member, that allows such a study to be completed [22]. An

example of this tool being used on the Crab Nebula (henceforth Crab) can be seen

in Figure 5.8.

The tool functions by first slicing a region into a rectangle. The dimensions and angle

of this rectangle are user defined and, unless otherwise specified, are a 6x1 degree

large region rotated 16.7◦. The rotational angle was determined from the positions

of HAWC J2031+415 and PSR J2032+4127. For point sources the rotational angle
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(a) (b)

Figure 5.8: Example of the slicing profile tool. The left figure shows the
counts (or event number) map where the red rectangle represents the region
selected for the slicing analysis. The excess count profile in this bin can be
see on the right where a 1D Gaussian is fitted to the data. The plotted bin
is B6C0Ef

is irrelevant but for extended sources the angle can determine whether emission is

missed or not.

With this rectangle defined, it is then sliced into rectangular sub-bins (henceforth

bins) that are summed to create the excess count profile shown in Figure 5.8(b). For

this analysis 50 bins are used, each with a width of 0.12◦. It should be noted that, for

the maps shown in this analysis, the pixel width is 0.05◦ and the bin size should be

significantly greater than that to prevent slicing each pixel. Lastly, for point sources

the Gaussian fitted to the excess count profile can be treated as an analog to PSF

and is denoted as PSF’. As a reminder, PSF is the smallest source that HAWC can

resolve in a 3ML fit while the point source PSF’ is the smallest source the excess
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count profile can resolve. These two values are not the same but follow the same

trend (larger for lower energy bins, smaller for higher energy). This effect will be

accounted for in Equation 5.2 in Section 5.3.4.

5.3.2 Systematic Studies

Theoretically, the slicing tool could be used on every bin used in the initial fit. How-

ever, there are two key factors preventing this:

■ The PSF quality of each bin varies greatly with the shower size.

■ Not all bins contribute equally to a source’s significance.

To perform a morphology study, the best possible PSF is required without signifi-

cantly reducing the available data. Therefore, studies must be done to remove bins

that detract from this PSF. To do this, a bright source, like the Crab, is needed.

However, HAWC’s PSF changes with declination and, given that the Crab’s declina-

tion is at 22◦ and J2031+415 is at 41.5◦, simulations must be done to determine the

proper bins at J2031+415’s declination. This study can be split into two focuses:

■ Check the consistency of data vs simulation at different declinations.

■ Verify the bin selection is valid at different declinations.
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5.3.2.1 Data and Simulation Comparison

To test the consistency of the PSF at different declinations, 2 bright points source,

Crab and Markerian 421 (Mrk 421) are considered. Crab is selected because it is the

brightest source visible to HAWC (> 150σ) and passes almost directly overhead the

array and Mrk 421 is used because it is a bright source (≈ 80σ) near J2031+415’s

declination at 38◦. To simulate these sources, both are fit with a simple power law

model and then simulated at their respective positions. This study is done with both

NN and ρ40 maps. The NN maps are shown below in Figure 5.9 and the ρ40 are shown

in Appendix C.

In addition to the PSF’ of data and simulation comparison, there is also a normalized

plot that is used to show any systematic difference between the two. This plot used

the normalization factor given by

Data− Sim√
Sim

. (5.1)

If the PSF’ distribution is centered around 0, then there is no systematic offset.

However, if it deviates then there is a systematic offset that must be accounted for

in the final morphology result.
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(a) First band. (b) Second band.

(c) Third band (d) Fourth band.

Figure 5.9: The PSF’ as a function of NN bins. Each plot has three of
the decade bins a-l and in the top plot the comparison between data and
simulated PSF’ is shown. Note that not all data bins have a PSF’ as not
all bins have enough data to perform a fit, even with the Crab. The lower
plot is the normalized difference between data and simulation to determine
if there is a systematic difference between data and simulation.

It can be seen from Figure 5.9 that there is a systematic difference between data and

simulation. This is graphically seen in Figure 5.10. The large uncertainty in band 4’s
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Figure 5.10: Systematic normalized difference between Crab data and
simulation.

value is a result of low data counts in the highest energy bins for the Crab.

The comparison for Mrk 421 can be seen in Figure 5.11. Given the nature of Mrk

421 as an extra-galactic source, HAWC only has data in the lower 6 energy bins but

it can be seen that the systematic offset found in the Crab example is present in Mrk

421 as well.

5.3.2.2 Simulation Declination Dependence

Lastly, to determine whether there is a systematic offset caused by simulating PS

at different declinations, J2031+415 is simulated as a simple power law using the

isolated data map. The comparison is shown in Figure 5.12.

For which the systematic difference can be seen in Figure 5.13. Unlike with the data

and simulation comparisons, the offset caused by declination is negligible. Therefore,
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(a) First band. (b) Second band.

(c) Systematic offset.

Figure 5.11: The PSF’ as a function of fhit bins. For Mrk 421, only the
first 6 energy bins (a-f) contained significant excess. Figure 5.11(c) shows
the systematic offset between data and simulation. It is in rough agreement
with the Crab simulation vs data comparison.

the only systematic effect considered is the difference between data and simulated

PSF’.
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(a) First band. (b) Second band.

(c) Third band (d) Fourth band.

Figure 5.12: The declination comparison of simulated PSF’ between
J2031+415 and Crab.
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Figure 5.13: Systematic normalized difference between simulated
J2031+415 and Crab.

5.3.3 Energy Bands

It is clear from Figure 5.9 that, even for HAWC’s brightest source, there is not enough

data to perform a bin by bin morphology study. Therefore, energy bands are defined

to combine data from a range of energies to allow analysis of dimmer sources. The

energy bands are defined in Table 5.7.

Table 5.7
Definition of energy bands with their respective energy ranges

Energy Band Energy Bins Energy range (TeV)
1 a, b, c 0.316 - 1.77
2 d, e, f 1.77 - 10
3 g, h, i, 10 - 56.2
4 j, k, l 56.2 - 316

These bands can be divided into two categories: soft and hard bands. Bands 1 and 2

are soft bands where sources with soft (steep) spectra have data while bands 3 and 4
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(a) Band PSF’. (b) Band Signal/Noise Ratio.

Figure 5.14: Simulated PSF’ and signal/noise ratio for each energy band.
This is done by combining each fhit bin (an example would be bins B1C0Ea,
B1C0Eb, and B1C0Ec in band 1) and performing a slice analysis on the new
combined bin. This is to determine what bins contribute consistent statistics
to the analysis.

are hard bands where only hard (flat) spectra have events.

The next step is to select the bins that minimize the PSF’ while still retaining or

not significantly reducing the significance of each band. As simulated sources are not

limited by events, the simulated Crab is used for bin selection. As it can be seen

in Figure 5.14, the PSF’ of each fhit bin decreases but the significance (signal/noise

ratio) reaches a peak at a certain bin and then decreases. To retain the best possible

PSF’ and signal/noise ratio, the following criteria are used: the bin with the highest

signal/noise ratio is selected and all following (after the highest signal/noise ratio one)

are kept. For bins preceding the selected bin, they are selected if their PSF’ is roughly

within 25% of the selected bin. This criteria is used for bands 1 and 2 where there

is an up-down trend but for band 3 the 25% threshold is expanded slightly and for
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(a) Band PSF’. (b) Band Signal/Noise Ratio.

Figure 5.15: Simulated PSF’ and signal/noise ratio comparison for the full
and reduced data along with simulated data. It can be seen that significant
improvements are gained in both band PSF’ and signal/noise, especially in
the lower energy bands.

band 4 all bins are kept to maximize the amount of data. The bin selection for NN is

given in Table 5.8 and the band comparison of the simulated Crab is given in Figure

5.15. With these studies completed, an energy morphology study of J2031+415 can

be undertaken.

Table 5.8
Final bins selected for NN energy morphology study based off the Crab
simulation results. The energy estimator sub-bins are given for reference.

Energy Band Selected fhit Bins
1 (a, b, c) 3, 4, 5
2 (d, e, f) 6, 7, 8, 9
3 (g, h, i) 8, 9, 10
4 (j, k, l) 8, 9, 10
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5.3.4 Results of Energy Morphology Study

As the binning for HAWC is declination dependent, the bins used for Crab and

J2031+415 analyzes differ. Therefore, the selected bins used for J2031+415 are based

off the reduced bin list for the Crab given in Table 5.8 and include all bins shared

between the two sources. The final bins for this analysis are given as follows: Band

1: B3C0Eb B3C0Ec B4C0Ec B5C0Ec, Band 2: B6C0Ed B6C0Ee B6C0Ef B7C0Ee

B7C0Ef, Band 3: B8C0Eg B8C0Eh B8C0Ei B9C0Eg B9C0Eh B9C0Ei B10C0Eh

B10C0Ei, and Band 4: B8C0Ej B9C0Ej B9C0Ek B10C0Ej B10C0Ek B10C0El. The

slicing region is selected by the angle that PSR J2032+4127 and J2031+415’s best

fit location makes and is determined to be 16.7◦. The selected region in the isolated

data map is shown in Figure 5.16.

The significance and excess count plots for each band are given in Figures 5.17 and

5.18. One note is that the slicing tool will fit a Gaussian to any data map so a

visual inspection of the fit is required to determine the validity of the fit. It can be

seen that only Bands 2 and 3 return a valid fit from the slicing form of the energy

morphology analysis. This corresponds to emission from the 1.77-56.2 TeV range,

which is confirmed by the energy range study performed in Section 5.2.1.

Now that the raw Gaussian width for each band (if a valid fit result was given) has
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Figure 5.16: The data map and slicing region used for this analysis. The
Cocoon (J2030+409) and Gamma Cygni (J2020+403) labels are kept for
reference to the full 3 source model

been determined, the final step of the morphology study can be taken. It was seen

from the systematic studies that even a point source like the Crab has some intrinsic

width like with the PSF definition and leads to a smearing effect that applies to any

analysis using this slicing method. Therefore, to determine the true PSF’ width of

the emission region, the observed width of the source is subtracted in quadrature by

the systematic effect caused by the smearing and what the difference between data
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(a) First band significance map. (b) Second band significance map.

(c) Third band significance map. (d) Fourth band significance map.

Figure 5.17: Significance maps of the region in each reduced energy band.
Bands 1 and 4 have insufficient data while there is a significant excess in
Bands 2 and 3. This is reflected in the energy range study from Section
5.2.1. Additionally, Band 4’s different background is due to the extremely
low probability of a background event at energies > 56 TeV.
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(a) First band excess count map. (b) Second band excess count map.

(c) Third band excess count map. (d) Fourth band excess count map.

Figure 5.18: The excess count profiles corresponding to the significance
maps shown above. As visually noted, Bands 1 and 4 are confirmed to have
insufficient data to determine a emission region width.

and simulation was determined to be. This is given as

σtrue =
√
(σfit)2 − (σPS + σoffset)2 (5.2)

where σfit is the raw PSF’ fit found in the excess count profile (if valid), σsim is the

simulated PS for that band’s PSF’, and σoffset is the systematic difference shown and

is unique to each band. It was found that for σoffset the only contributing offset was
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(a) NN emission width. (b) ρ40 emission width.

(c) NN location shift. (d) ρ40 location shift.

Figure 5.19: The final morphological results for J2031+415. It should be
noted that while the ρ40 estimator has a fit for band 4, it is a very noisy
result (see Figure C.10) and is on the threshold of ρ40’s energy range of 55
TeV.

the data - simulation study done on the Crab and so is the sole contributor to σoffset.

Error propagation for this process follows the rules outlined in [64]. The final width

and distance from PSR J2032+4127 for both NN and ρ40 are given in Figure 5.19. The

differences between the two estimators will contribute to the systematic uncertainties

when those are properly determined. From Figure 5.19 it can be seen that there is

no decisive energy morphology of J2031+415. Likewise, there is no clear tread with

the positional shift of the emission.
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Chapter 6

Conclusions and Future Work

In this thesis an analysis of HAWC J2031+415 in the 1-100 TeV energy range was pre-

sented. The three sources considered: HAWC J2031+415 (PWN), HAWC J2030+409

(Cocoon), and HAWC J2020+403 (Gamma Cygni), were modelled using both sys-

tematic source search and spectral modelling studies. HAWC J2031+415’s best fit

spectral fit was found to be a power law with an exponential cut-off with a cut-off

of 2424−13TeV, confirming VERITAS’ prediction of a cut-off in the 10’s of TeV and

hinting at a PWN.

Once the region was modelled, HAWC J2031+415 was isolated by subtracting out

the emission from the other sources and an energy morphology study was performed.

This study counted the excess events measured by HAWC in 4 distinct energy bands:
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0.316 - 1.78 TeV, 1.78 - 10 TeV, 10 - 56.2 TeV, and 56.2 - 316 TeV. The results of the

study are inconclusive where only bands 2 and 3 had valid fits for the NN and bands

2, 3, and 4 (weak fit) for ρ40. Additionally the positional shift of the emission region

center was inconclusive. Therefore there is not confirmation of HAWC J2031+415

being a PWN and more data is needed to confirm the PWN hypothesis.

88



References

[1] MicroWorlds. Electromagnetic spectrum. https://www2.lbl.gov/

MicroWorlds/ALSTool/EMSpec/EMSpec2.html.
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Appendix A

Systematic Source Search using

the fhit Estimator

This section shows the process used in determining the final model of the region. The

plots shown are the model, residual, and 1D histogram of each step taken. Addition-

ally, the new source location and significance are also given. The study concludes

when the ∆TS < 16 threshold is reached. One note is that while DBE + 3 EXT + 2

PS was tested, the fit only partially converged and gave a ∆TS = 2. This was most

likely due to the dim nature of the new PS location at σ = 3.44.
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.1: DBE only model. New source is at 307.92, 41.51 and signifi-
cance is 29.00. ∆TS = 0 (initial model
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.2: DBE + 1 PS model. New source is at 305.16, 40.57 and
significance is 11.72. ∆TS = 930
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.3: DBE + 1 EXT model. New source is at 305.16, 40.57 and
significance is 11.78. ∆TS = 357
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.4: DBE + 1 EXT + 1 PS model. New source is at 304.94, 40.92
and significance is 5.72. ∆TS = 199
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.5: DBE + 2 EXT model. New source is at 305.16, 40.57 and
significance is 6.74. ∆TS = 197
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.6: DBE + 2 EXT + 1 PS model. New source is at 305.16, 40.57
and is 7.38. ∆TS = 26
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.7: DBE + 3 EXT model. New source is at 308.05, 42.21 and is
4.35. ∆TS = 107
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.8: DBE + 3 EXT + 1 PS model. New source is at 307.72, 42.61
and is 3.48. ∆TS = 23
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(a) Model significance map. (b) Residual significance map.

(c) The residual 1D histogram.

Figure A.9: DBE + 4 EXT model. New source is at 310.61, 43.85 and is
3.44. ∆TS = 4. Rejected
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Appendix B

NN plots

This brief section shows the initial significance map present in the NN estimator

as well as the results of the NN energy range study. Additionally, the bins used

are B2C0Ea B2C0Eb B2C0Ec B2C0Ed B2C0Ee B3C0Eb B3C0Ec B3C0Ed B3C0Ee

B3C0Ef B4C0Ec B4C0Ed B4C0Ee B4C0Ef B4C0Eg B5C0Ec B5C0Ed B5C0Ee

B5C0Ef B5C0Eg B5C0Eh B6C0Ed B6C0Ee B6C0Ef B6C0Eg B6C0Eh B6C0Ei

B7C0Ee B7C0Ef B7C0Eg B7C0Eh B7C0Ei B8C0Eg B8C0Eh B8C0Ei B8C0Ej

B9C0Eg B9C0Eh B9C0Ei B9C0Ej B9C0Ek B10C0Eh B10C0Ei B10C0Ej B10C0Ek

B10C0El.
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Figure B.1: The data set available in the NN map.
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(a) J2031+415 lower bound. (b) J2031+415 upper bound

(c) Cocoon lower bound (d) Cocoon upper bound

(e) Gamma Cygni lower bound (f) Gamma Cygni upper bound

Figure B.2: The energy range study of the three sources using the NN
data set
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Appendix C

Systematic PSF’ studies with ρ40

Estimator

The morphology study steps as done with the ρ40 map. Also included is the initial

significance of the region. The morphology study steps are the same ones discussed in

Chapter 5. Additionally, the bins used for ρ40 are B2C0Eb B2C0Ec B2C0Ed B3C0Eb

B3C0Ec B3C0Ed B3C0Ee B3C0Ef B3C0Eg B4C0Ec B4C0Ed B4C0Ee B4C0Ef

B4C0Eg B5C0Ec B5C0Ed B5C0Ee B5C0Ef B5C0Eg B5C0Eh B6C0Ed B6C0Ee

B6C0Ef B6C0Eg B6C0Eh B7C0Ef B7C0Eg B7C0Eh B7C0Ei B8C0Ef B8C0Eg

B8C0Eh B8C0Ei B8C0Ej B9C0Eg B9C0Eh B9C0Ei B9C0Ej B9C0Ek B10C0Eg

B10C0Eh B10C0Ei B10C0Ej B10C0Ek B10C0El
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Figure C.1: The data set available in the ρ40 map.
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(a) First band. (b) Second band.

(c) Third band (d) Fourth band.

Figure C.2: The PSF’ as a function of fhit bins. Each plot has three of
the decade bins a-l and in the top plot the comparison between data and
simulated PSF’ is shown. Note that not all data bins have a PSF’. The lower
plot is the normalized difference between data and simulation to determine
if there is a systematic difference between data and simulation.
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Figure C.3: Systematic normalized difference between Crab data and sim-
ulation.

Table C.1
Final bins selected for ρ40 energy morphology study based off the Crab
simulation results. The energy estimator sub-bins is given for reference.

Energy Band Selected fhit Bins
1 (a, b, c) 3, 4, 5
2 (d, e, f) 5, 6, 7, 8
3 (g, h, i) 8, 9, 10
4 (j, k, l) 8, 9, 10

116



(a) First band. (b) Second band.

(c) Systematic offset.

Figure C.4: The PSF’ as a function of fhit bins. For Mrk 421, only the
first 6 energy bins (a-f) contained significant excess. Figure 5.11(c) shows
the systematic offset between data and simulation. It is in rough agreement
with the Crab simulation vs data comparison.
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(a) First band. (b) Second band.

(c) Third band (d) Fourth band.

Figure C.5: The declination comparison of simulated PSF’ between
J2031+415 and Crab.
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Figure C.6: Systematic normalized difference between simulated
J2031+415 and Crab.

(a) Band PSF’. (b) Band Signal/Noise Ratio.

Figure C.7: Simulated PSF’ and signal/noise ratio for each energy band.
This is done by combining each fhit bin (an example would be bins B1C0Ea,
B1C0Eb, and B1C0Ec in band 1) and performing a slice analysis on the new
combined bin. This is to determine what bins contribute consistent statistics
to the analysis.
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(a) Band PSF’. (b) Band Signal/Noise Ratio.

Figure C.8: Simulated PSF’ and signal/noise ratio comparison for the full
and reduced data along with simulated data. It can be seen that significant
improvements are gained in both band PSF’ and signal/noise, especially in
the lower energy bands.
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(a) First band significance map. (b) Second band significance map.

(c) Third band significance map. (d) Fourth band significance map.

Figure C.9: The significance maps for the ρ40 data set energy bands.
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(a) First band excess count map. (b) Second band excess count map.

(c) Third band excess count map. (d) Fourth band excess count map.

Figure C.10: Final excess count maps for the ρ40 isolated data set. Note
the poor excess count profile for band 4. This is most probably due to
the small overlap in the energy band definition and the energy range of
J2031+415.
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