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RESEARCH ARTICLE

A computationally efficient clustering linear

combination approach to jointly analyze

multiple phenotypes for GWAS

Meida Wang, Shuanglin ZhangID, Qiuying ShaID*

Mathematical Sciences, Michigan Technological University, Houghton, MI, United States of America

* qsha@mtu.edu

Abstract

There has been an increasing interest in joint analysis of multiple phenotypes in genome-

wide association studies (GWAS) because jointly analyzing multiple phenotypes may

increase statistical power to detect genetic variants associated with complex diseases or

traits. Recently, many statistical methods have been developed for joint analysis of multiple

phenotypes in genetic association studies, including the Clustering Linear Combination

(CLC) method. The CLC method works particularly well with phenotypes that have natural

groupings, but due to the unknown number of clusters for a given data, the final test statistic

of CLC method is the minimum p-value among all p-values of the CLC test statistics

obtained from each possible number of clusters. Therefore, a simulation procedure needs to

be used to evaluate the p-value of the final test statistic. This makes the CLC method com-

putationally demanding. We develop a new method called computationally efficient CLC

(ceCLC) to test the association between multiple phenotypes and a genetic variant. Instead

of using the minimum p-value as the test statistic in the CLC method, ceCLC uses the Cau-

chy combination test to combine all p-values of the CLC test statistics obtained from each

possible number of clusters. The test statistic of ceCLC approximately follows a standard

Cauchy distribution, so the p-value can be obtained from the cumulative density function

without the need for the simulation procedure. Through extensive simulation studies and

application on the COPDGene data, the results demonstrate that the type I error rates of

ceCLC are effectively controlled in different simulation settings and ceCLC either outper-

forms all other methods or has statistical power that is very close to the most powerful

method with which it has been compared.

Introduction

Genome-wide association study (GWAS) has successfully identified a large number of genetic

variants that are associated with human complex diseases or phenotypes [1–4]. Among these

results, a phenomenon in which a genetic variant affects multiple phenotypes often occurs [5],

which is significant evidence to show that pleiotropic effects on human complex diseases are

universal [6–9]. Moreover, several disease-related phenotypes are usually measured
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simultaneously as a disorder or risk factors of a complex disease in GWAS. Therefore, consid-

ering the correlated structure of multiple phenotypes in genetic association studies can aggre-

gate multiple effects and increase the statistical power [10–15].

At present, a variety of approaches that focus on jointly analyzing multiple phenotypes have

been proposed. These statistical methods can be roughly divided into three categories, includ-

ing approaches based on regression models [16–19], combining the univariate analysis results

[20–23], and variable reduction techniques [24–27]. For example, MultiPhen [19] performs an

ordinal regression model, which uses an inverted model whereby the phenotypes are the pre-

dictor variables and the genotype is the dependent variable [28, 29]. In terms of the second cat-

egory, combining the univariate test statistics or integrating the p-values of univariate tests are

two basic methods. For instance, the O’Brien [20, 21] method constructs a test statistic for

pleiotropic effect by combining univariate test statistics of multiple phenotypes; the Trait-

based Association Test that uses the Extended Simes procedure (TATES) [23] integrates the p-

values from univariate tests to obtain an overall trait-based p-value. In addition, principal

components analysis of phenotypes (PCP) [24], principal component of heritability (PCH)

[25, 26], and canonical correlation analysis (CCA) [27] are three variable reduction methods

in the third category. Furthermore, with more and more GWAS summary statistics from uni-

variate phenotype analysis in the traditional GWAS being publicly available, many approaches,

such as MTAG [30], CPASSOC [31], and MPATs [32] that are only based on the GWAS sum-

mary statistics, were proposed.

In practice, multiple phenotypes considered may be in different clusters, but most methods

for detecting the association between multiple phenotypes and genetic variants either treat all

phenotypes as a group or treat each phenotype as one group and combine the results of univar-

iate analysis. Unlike these methods, the clustering linear combination (CLC) method [33]

works particularly well with phenotypes that have natural clusters. In the CLC method, indi-

vidual statistics from the association tests for each phenotype are clustered into positively cor-

related clusters using the hierarchical clustering method, then the CLC test statistic is used to

combine the individual test statistics linearly within each cluster and combine the between-

cluster terms in a quadratic form. It was theoretically proved that if the individual statistics can

be clustered correctly, the CLC test statistic is the most powerful test among all tests with cer-

tain quadratic forms [33]. Due to the unknown number of clusters for a given data, the final

test statistic of CLC method is the minimum p-value among all p-values of the CLC test statis-

tics obtained from each possible number of clusters. Therefore, a simulation procedure needs

to be used to evaluate the p-value of the final test statistic because it does not have an asymp-

totic distribution, and that makes the CLC method computationally demanding. If we can

construct a test statistic with an approximate distribution, the computational efficiency will be

greatly improved. In this paper, based on the Aggregated Cauchy Association Test (ACAT)

method [34], we develop a new method named computationally efficient CLC (ceCLC). In

ceCLC, the p-values of the CLC test statistics with L clusters are transformed to follow a stan-

dard Cauchy distribution, then the transformed p-values are combined linearly with equal

treatment to obtain the ceCLC test statistic. This test statistic of ceCLC has an approximately

standard Cauchy distribution even though there is a correlated structure between combined p-

values [35], so the p-value of the ceCLC test statistic can be calculated based on the cumulative

density function of standard Cauchy distribution. We perform extensive simulation studies

and apply ceCLC to the COPDGene real dataset. The results show that the ceCLC method has

correct type I error rates and either outperforms all other methods or has statistical power that

is very close to the most powerful method with which it has been compared.
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Materials and methods

Assume we consider N unrelated individuals with K correlated phenotypes, which can be

quantitative or qualitative (binary), and each individual has been genotyped at a genetic vari-

ant of interest. Let Yi = (Yi1,� � �,YiK)T represent K correlated phenotypes for the ith individual

(1 for cases and 0 for controls for a qualitative trait) with i = 1,2,� � �,N. Let Gi denote the geno-

type for the ith individual at the variant of interest, where Gi2{0, 1, 2} corresponds to the num-

ber of minor alleles. We suppose that there are no covariates. If there are p covariates zi1,. . .,zip,
we adjust both genotypes and phenotypes for the covariates [36, 37] using linear models Gi ¼

a0 þ a1zi1 þ � � � þ apzip þ εi and Yik ¼ a0k þ a1kzi1 þ � � � þ apkzip þ tik, and use the residuals of

the respective linear models to replace the original genotypes and phenotypes.

For each phenotype, we consider the following generalized linear model [38]:

gðEðYikjGiÞÞ ¼ b0k þ b1kGi;

where β1k is the genetic effect of the variant on the kth phenotype and g(�) is a monotone

“link” function. Two types of generalized linear model are commonly used: 1) linear model

with an identity link for quantitative phenotypes and 2) logistic regression model with a logit

link for qualitative phenotypes. We first conduct a univariate test to testH0: β1k = 0 for each

phenotype, k = 1,2,� � �,K, using the score test statistic [39]

Tk ¼ Uk=
ffiffiffiffiffi
Vk

p
;

where Uk ¼
PN

i¼1
YikðGi �

�GÞ and Vk ¼
1

N

PN
i¼1
ðYik � �YkÞ

2PN
i¼1
ðGi �

�GÞ2. Since the test sta-

tistic Tk has an approximate normal distribution with mean μk = E(Tk) and variance 1, we can

assume that T = (T1,� � �,TK)T approximately follows a multivariate normal distribution with

mean vector μ = (μ1,� � �,μK)T and covariance matrix S. Our objective is to test the association

between multiple phenotypes and a genetic variant, so the null hypothesis isH0: β11 = � � � = β1K

= 0. Sha et al. [33] showed that under the null hypothesis, S converges to P(Y) almost surely,

where P(Y) is the correlation matrix of Y = (Y1,� � �,YK)T. Therefore, we can use the sample cor-

relation matrix of Y, Ps(Y), to estimate S.

Based on the CLC [33] and ACAT methods [34], we propose a computational efficient CLC

(ceCLC) method in this paper. Same as the CLC method [33], we use the hierarchical cluster-

ing method with similarity matrix Ŝ ¼ PsðYÞ and dissimilarity matrix 1−Ps(Y) to cluster K
phenotypes. Suppose that the phenotypes are clustered into L clusters, considering L = 1,� � �,K,

and B is a K×Lmatrix with the (k, l)th element equals 1 if the kth phenotype belongs to the lth
cluster, otherwise it equals 0. The CLC test statistic [33] with L clusters is given by

TLCLC ¼ ðWTÞ
T
ðWSWTÞ

� 1
ðWTÞ;

whereW ¼ BTS� 1: TLCLC follows a w2
L distribution under the null hypothesis, therefore we can

obtain the p-value of TLCLC, represented by pL, for L = 1,� � �,K. Since for a given data set, the

number of clusters of the phenotypes is unknown, in the last step of the CLC method [33],

TCLC = min1�L�K pL is used as the final test statistic. Because TCLC does not have an asymptotic

distribution, a simulation procedure is needed to evaluate the p-value of TCLC. This makes the

CLC method computationally demanding. In this paper, instead of using the minimum p-

value as the test statistic in the CLC method, we use the Cauchy combination test [35] to com-

bine all p-values of the CLC test statistics obtained from each possible number of clusters. We

define the ceCLC test statistic as the linear combination of the transformed p-values over the
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number of K clusters, which is given by

TceCLC ¼
1

K

XK

L¼1
tanfð0:5 � pLÞpg

Under the null hypothesis, we know that pL is uniformly distributed between 0 and 1, there-

fore tan {(0.5−pL)π} follows a standard Cauchy distribution. If p1,� � �,pK are independent, the

test statistic TceCLC follows a standard Cauchy distribution under the null hypothesis. However,

most likely there exists a correlated structure between p1,� � �,pK. Liu. et. al [35] has proved that

a weighted sum of “correlated” standard Cauchy variables still has an approximately Cauchy

tail, and the influence of correlated structure on the tail is quite limited because of the heavi-

ness of the Cauchy tail. Therefore, TceCLC can be well approximated by a standard Cauchy dis-

tribution. According to the cumulative density distribution of standard Cauchy distribution,

the p-value of TceCLC can be approximated by 0.5−{arctan(TceCLC)/π}. The R code for the

implementation of ceCLC is available at github https://github.com/MeidaWang/ceCLC.

Results

Simulation design

In our simulation studies, we generate one common variant and K = 20 and 40 correlated

phenotypes for N individuals. Firstly, we generate the genotypes of the genetic variant

according to the minor allele frequency (MAF = 0.3) under Hardy Weinberg equilibrium.

Secondly, the K quantitative phenotypes are generated by the following factor model [22,

26, 28, 33]

Y ¼ lGþ cgf þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2
p

� ε:

where Y = (Y1,� � �,YK)T, G is the genotype at the variant of interest, λ = (λ1,� � �,λK)T is the

vector of genetic effect sizes on K phenotypes, c is a constant number, f is a vector of factors,

and f ¼ ðf1; � � � ; fRÞ
T
� MVNð0;SÞ, where R is the number of factors, S = (1−ρ)I+ρA, all ele-

ments of matrix A equals 1, I is an identity matrix, ρ is the correlation between factors; γ is a

K×R matrix, ε = (ε1,� � �,εK)T is a vector of residuals, and ε1,� � �,εK~i.i.d. N(0,1).

According to different number of factors affected by the genotypes and different effect

sizes, we consider the following four models. In each model, the within-factor correlation is c2

and the between-factor correlation is ρc2. We set c = 0.5 and ρ = 0.6.

Model 1: There is only one factor and genotypes influence all phenotypes. That is, R = 1, λ
= β(1,2,� � �,K)T and γ = (1,� � �,1)T.

Model 2: There are two factors and genotypes influence one factor. That is, R = 2,

l ¼ ð0; 0; � � � ; 0;
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K=2

b;b; � � � ; b
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

K=2

Þ
T
, and γ = Bdiag(D1, D2), where Di = 1K/2 for i = 1, 2.

Model 3: There are five factors and genotypes influence two factors. That is, R = 5,

l ¼ ðb11; � � � ; b1k; b21; � � � ; b2k; b31; � � � ; b3k; b41; � � � ; b4k; b51; � � � ; b5kÞ
T
, and γ = Bdiag(D1, D2,

D3, D4, D5), where Di = 1K/5 for i = 1,� � �,5, k = K/5, b11 ¼ � � � ¼ b1k ¼ b21 ¼ � � � ¼ b2k ¼ b31 ¼

� � � ¼ b3k ¼ 0; β41 = � � � = β4k = −β and ðb51; � � � ; b5kÞ ¼
2b

kþ1
1; � � � ; kð Þ.

Model 4: There are five factors and genotypes influence four factors. That is, R = 5,

l ¼ ðb11; � � � ; b1k; b21; � � � ; b2k; b31; � � � ; b3k; b41; � � � ; b4k; b51; � � � ; b5kÞ
T
, and γ = Bdiag(D1, D2,

D3, D4, D5), where Di = 1K/5 for i = 1,� � �,5, k = K/5. b11 ¼ � � � ¼ b1k ¼ 0; b21 ¼ � � � ¼ b2k ¼ b,

β31 = � � � = β3k = −β, ðb41; � � � ; b4kÞ ¼ �
2b

kþ1
1; � � � ; kð Þ, and ðb51; � � � ; b5kÞ ¼

2b

kþ1
1; � � � ; kð Þ.

We consider two types of multiple phenotypes. The first one is that all K phenotypes are

quantitative and the second one is that half phenotypes are quantitative and the other half are
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qualitative (binary). To generate a qualitative phenotype, we use a liability threshold model

based on a quantitative phenotype. A qualitative phenotype is defined to be affected if the cor-

responding quantitative phenotype is at least one standard deviation larger (smaller) than the

phenotypic mean.

In order to ensure the validity of the ceCLC method, we first evaluate the type I error rates

of this method. We simulate data under the null hypothesis, that is, λ = (0,� � �,0)T, and consider

three different sample sizes, N = 1000, 2000, and 3000, under four different models. The type I

error rates are evaluated by 106 replications and at the nominal significance levels of 0.001 and

0.0001, respectively. To evaluate power, we simulate data under the alternative hypothesis and

consider two different sample sizes, N = 3000 and 5000. The powers are evaluated by 1000 rep-

lications at the nominal significance levels of 0.05. To better demonstrate the advantages of the

ceCLC method, we compare ceCLC with other multiple-traits analysis methods: CLC [33],

MANOVA [40], MultiPhen [19], TATES [23], O’Brien [20], and Omnibus. Moreover, we also

compare ceCLC with CPASSOC [31], which is an approach that is based on GWAS summary

statistics and contains two different tests (Het and Hom). Based on our simulation setting on

individual-level data, we can obtain the corresponding summary statistics using linear model

for quantitative traits and logistic regression model for binary traits. Notably, the empirical dis-

tribution of the Het test statistic is approximated by a gamma distribution, whereas the gamma

distribution may not work well when the number of traits is large, in this case, a simulation

procedure needs to be used to construct the empirical distribution under the null hypothesis

[31]. Since CLC and Het need a simulation procedure to obtain the final p-values, we use 105

replications to evaluate Type I error rates for both of the methods.

Simulation results

(a) Evaluation of type I error rates. Table 1 presents the type I error rates of the ceCLC

method for K = 20 quantitative phenotypes, and the type I error rates of the other eight meth-

ods (CLC, MANOVA, MultiPhen, TATES, O’Brien, Omnibus, Het, Hom) are summarized in

S1 Table. The corresponding type I error rates for the case of half quantitative traits and half

qualitative phenotypes are recorded in Table 2 and S2 Table. In addition, the type I error rate

of the ceCLC method for K = 40 are listed in S3 and S4 Tables, and the type I error rates of the

other eight methods for K = 40 are summarized in S5 and S6 Tables. For 106 replications, the

95% confidence intervals of Type I error rates divided by nominal significance levels of 0.001

and 0.0001 are (0.9381, 1.0619) and (0.8040, 1.1960), respectively; for 105 replications, the cor-

responding confidence intervals are (0.8041, 1.1959) and (0.3802, 1.6198), respectively.

From Tables 1 and 2 (S3 and S4 Tables), we can see that ceCLC can control the Type I error

rate very well, therefore we can conclude that the ceCLC method is a valid test. From S1, S2

and S5, S6 Tables, in summary, we observe that CLC, MANOVA, TATES, O’Brien, Het, and

Hom can control type I error rates well, but some of the type I error rates of MultiPhen are

slightly inflated.

Table 1. The estimated type I error rates divided by the nominal significance levels of the ceCLC method for 20 quantitative phenotypes with 106 replications.

α Sample Model1 Model2 Model3 Model4

1000 0.97 0.97 0.92 0.96

0.001 2000 1.05 1.04 1.02 1.05

3000 0.99 1.03 1.06 0.99

1000 0.94 0.77 0.71 0.75

0.0001 2000 0.89 1.10 0.97 0.95

3000 0.78 0.86 0.97 0.81

https://doi.org/10.1371/journal.pone.0260911.t001

PLOS ONE A computationally efficient approach to jointly analyze multiple phenotypes for GWAS

PLOS ONE | https://doi.org/10.1371/journal.pone.0260911 April 28, 2022 5 / 13

https://doi.org/10.1371/journal.pone.0260911.t001
https://doi.org/10.1371/journal.pone.0260911


(b) Assessment of powers. Fig 1 shows the results of power comparisons for all the nine

tests with 20 quantitative phenotypes when the sample size is 5000. From Fig 1, we find that 1)

when the variant of interest affects phenotypes with groups (Models 2–4), the ceCLC and CLC

methods are more powerful than other methods; 2) the O’Brien and Hom methods are very

sensitive to the direction of the genetic effect on the phenotypes. Their powers will decrease

dramatically with different directions of the genetic effect on the phenotypes (Models 3 and 4);

3) MANOVA, Omnibus, and MultiPhen show the similar powers in most scenarios. 4) When

the effect is homogeneous (Models 1 and 2), Hom is more powerful than Het; when heteroge-

neity is present (Models 3 and 4), Het performs better than Hom. Fig 2 shows the results of

power comparisons for all the nine tests with 10 quantitative and 10 qualitative phenotypes

when the sample size is 5000. The general trend of Fig 2 is similar to Fig 1, but the powers of

MANOVA, Omnibus, MultiPhen, and Het are higher than those in Fig 1 for Models 3 and 4.

Table 2. The estimated type I error rates divided by the nominal significance levels of the ceCLC method for 10 quantitative and 10 qualitative phenotypes with 106

replications.

α Sample Model1 Model2 Model3 Model4

1000 0.99 0.95 0.93 0.98

0.001 2000 1.05 0.97 1.05 0.99

3000 1.05 1.06 1.03 1.06

1000 1.02 0.90 0.83 0.58

0.0001 2000 1.06 0.91 1.09 1.08

3000 1.10 0.95 1.08 1.04

https://doi.org/10.1371/journal.pone.0260911.t002

Fig 1. Power comparisons of the nine tests, CLC, ceCLC, MANOVA, MultiPhen, TATES, O’Brien, Omnibus, Het,

and Hom with 20 quantitative phenotypes for the sample size of 5000.

https://doi.org/10.1371/journal.pone.0260911.g001
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S1 and S2 Figs present the results of power comparisons with 40 phenotypes for the sample

size of 5000, and all the results of power comparisons for the sample size of 3000 are showed in

S3–S6 Figs. In summary, CLC and ceCLC are more powerful than the other methods under

most scenarios, and ceCLC is much more computationally efficient than CLC.

Application to the COPDGene study

Chronic obstructive pulmonary disease (COPD) is a common disease characterized by the

presence of expiratory dyspnea due to the excessive inflammatory reaction of harmful gases

and particles [41–43]. COPD causes a high mortality and has been reported to be potentially

affected by genetic factors [44, 45]. The COPDGene study is a representative multicenter

research to detect hereditary factors of this disease [46]. The corresponding dataset of this

study was introduced in our previous papers [22, 33], and we use the same processed data as

described in Sha et al. [33] for the COPDGene data analysis.

We consider seven quantitative COPD-related phenotypes, containing FEV1, Emphysema,

Emphysema Distribution, Gas Trapping, Airway Wall Area, Exacerbation frequency, and Six-

minute walk distance. We also consider four covariates which include BMI, Age, Pack-Years

and Sex. After removing the missing data, there are 5,430 subjects across 630,860 SNPs left for

the analysis. Same with the analysis in [22, 33], the signs of six-minute walk distance and FEV1

were changed, so that the correlations between the 7 phenotypes are all positive. MANOVA,

MultiPhen, TATES, and Omnibus are not affected by the sign alignment in phenotypes. CLC

and ceCLC are not affected much by the sign alignment. However, O’Brien and Hom are

affected very much by the sign alignment [33].

Fig 2. Power comparisons of the nine tests, CLC, ceCLC, MANOVA, MultiPhen, TATES, O’Brien, Omnibus, Het,

and Hom with 10 quantitative and 10 qualitative phenotypes for the sample size of 5000.

https://doi.org/10.1371/journal.pone.0260911.g002
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In our analysis, we choose the commonly used genome-wide significant level α = 5×10−8 to

identify SNPs significantly associated with the 7 COPDrelated phenotypes, Table 3 presents 14

SNPs that are detected by at least one method. All of these 14 SNPs have been reported to be

associated with COPD before [47–50]. From Table 3, we can see that MultiPhen detected 14

SNPs; ceCLC, CLC, MANOVA, Omnibus and Het detected 13 SNPs; TATES detected 9 SNPs;

O’Brien and Hom only detected 5 SNPs. In Sha et al. [33], single-trait analysis was also per-

formed between each of the seven phenotypes and each of the 14 SNPs. There are four SNPs

rs951266, rs8034191, rs2036527, and rs931794, identified by ceCLC, but not identified by any

of the single-trait tests. Therefore, these four SNPs are more likely to have pleiotropic effects.

Even though we performed the sign alignment, O’Brien and Hom only identified five SNPs.

TATES detected 9 SNPs because it mainly depends on the smallest P-value of the seven univar-

iate tests. In summary, the number of SNPs identified by ceCLC is comparable to the largest

number of SNPs identified by other tests, which is consistent with our simulation results.

Discussion

In the medical field, many human complex diseases are often accompanied by multiple corre-

lated phenotypes which are usually measured simultaneously, so jointly analyzing multiple

phenotypes in genetic association studies will very likely increase the statistical power to iden-

tify genetic variants that are associated with complex diseases. In this paper, based on the exist-

ing CLC method [33] and ACAT [34] strategy, we develop the ceCLC method to test

association between multiple phenotypes and a genetic variant. We perform a variety of simu-

lation studies, as well as an application to the COPDGene study to evaluate our new method.

The results suggest that the ceCLC method not only has the advantages of the CLC method

but is also computationally efficient. We compared the running time between ceCLC and CLC

in the power comparison. Both methods consider one genetic variant and 20 quantitative phe-

notypes for 5000 individuals. The running time of ceCLC with 1000 replications on a com-

puter with 4 Intel Cores @3.60 GHz and 16GB memory is about 25s, whereas CLC with 1000

replications and 1000 permutations is about 3min30s. The test statistic of the ceCLC method

Table 3. Significant SNPs and the corresponding p-values in the analysis of COPDGene study.

Chr Position Variant identifier CLC ceCLC MANOVA MultiPhen TATES O’Brien Omnibus Het Hom

4 14543149 rs1512282 10−9 5.70×10−11 1.69×10−9 1.03×10−9 5.77×10−9 7.69×10−9 1.82×10−9 7.98×10−10 7.38×10−9

4 14543474 rs1032297 10−9 2.39×10−15 6.52×10−14 7.69×10−14 6.22×10−13 3.35×10−10 7.73×10−14 2.34×10−13 2.95×10−10

4 14547447 rs1489759 10−9 3.30×10−17 1.11×10−16 1.22×10−16 2.52×10−16 2.61×10−11 1.11×10−16 1.51×10−15 2.24×10−11

4 14548573 rs1980057 10−9 3.29×10−17 6.68×10−17 8.14×10−17 9.35×10−17 3.04×10−11 1.11×10−16 7.52×10−16 2.61×10−11

4 14548591 rs7655625 10−9 3.30×10−17 7.12×10−17 9.13×10−17 1.64×10−16 3.08×10−11 1.11×10−16 1.38×10−15 2.64×10−11

15 78882925 rs16969968 10−9 4.91×10−11 1.32×10−11 7.84×10−12 2.98×10−8 9.75×10−6 1.26×10−11 1.37×10−11 9.40×10−6

15 78894339 rs1051730 10−9 4.74×10−11 1.41×10−11 8.16×10−12 2.63×10−8 8.99×10−6 1.35×10−11 1.14×10−11 8.67×10−6

15 78898723 rs12914385 10−9 2.57×10−12 1.76×10−12 1.48×10−12 5.14×10−10 6.12×10−8 1.66×10−12 6.26×10−14 5.80×10−8

15 78911181 rs8040868 10−9 5.08×10−12 2.74×10−12 2.59×10−12 2.40×10−9 1.53×10−7 2.50×10−16 1.90×10−13 1.46×10−7

15 78878541 rs951266 10−9 7.03×10−11 1.77×10−11 1.02×10−11 5.17×10−8 1.50×10−5 1.69×10−11 2.80×10−11 1.49×10−5

15 78806023 rs8034191 10−9 8.03×10−10 2.14×10−10 7.74×10−11 1.02×10−7 2.13×10−5 1.99×10−10 3.41×10−10 2.06×10−5

15 78851615 rs2036527 8.33×10−10 1.52×10−9 3.99×10−10 1.77×10−10 1.56×10−7 2.65×10−5 3.76×10−10 5.06×10−10 2.58×10−5

15 78826180 rs931794 10−9 1.18×10−9 2.35×10−10 9.09×10−11 1.18×10−7 2.33×10−5 2.19×10−10 1.07×10−9 2.27×10−5

15 78740964 rs2568494 3.98×10−7 5.02×10−7 1.05×10−7 4.23×10−8 2.88×10−5 2.38×10−3 9.73×10−8 1.26×10−6 2.36×10−3

The p-values of CLC are evaluated using 109 simulations. The p-values of ceCLC, O’Brien, Omnibus, TATES, MANOVA, MultiPhen, Hom, and Het are evaluated using

their asymptotic distributions. The graying out p-values indicate the p-values > 5×10−8.

https://doi.org/10.1371/journal.pone.0260911.t003
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can be well approximated by a standard Cauchy distribution, so the p-value can be obtained

from the cumulative density function without the need for the simulation procedure. There-

fore, the ceCLC method is computationally efficient.

In this paper, we apply ceCLC to the COPDGene with seven quantitative COPD-related

phenotypes. Recent studies indicate that the pleiotropic effects and genetic heterogeneity are

common in the COPD comorbid traits and other immune diseases. For example, Zhu et al.

[45] showed evidence of significant positive genetic correlations between COPD and cardio-

vascular disease-related traits (CVD); Zhu Z et al. [51–53] identified the shared genetic archi-

tecture between asthma and allergic diseases [51, 52] and between asthma and mental health

disorders [53]. Moreover, pleiotropic effects were found between eight psychiatric disorders

[54]. Therefore, ceCLC can also be applied to jointly analyze those phenotypes with shared

genetic architecture, thus making it possible to boost statistical power to identify SNPs that

were missed by the single-trait genome-wide association analysis. The SNP is more likely to

have pleiotropic effect if it was identified by the multiple-trait test but missed by the single-

trait test. The detection of SNPs with pleiotropic effects is helpful to promote understanding of

the molecular mechanism between co-morbid diseases.

Recent phenome-wide association studies (PheWAS) require more powerful and efficient

methods to identify significantly associated SNPs as a large number of phenotypes are col-

lected, the ceCLC method developed in this paper can be applied to PheWAS. However, one

limitation of the ceCLC method is that it requires individual-level phenotype data and GWAS

summary statistics, where the individual-level phenotypes are used to estimate the trait corre-

lation matrix. Because the individual-level data is often not easily accessible as a result of pri-

vacy concerns, we are currently considering a new strategy to extend the ceCLC method

applicable to GWAS summary statistics without the requirement for individual-level pheno-

type data.
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