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Simian Immunodeficiency Virus
Infection Mediated Changes
in Jejunum and Peripheral
SARS-CoV-2 Receptor ACE2
and Associated Proteins or
Genes in Rhesus Macaques
Nongthombam Boby1†, Xuewei Cao2†, Kelsey Williams1, Shiva Kumar Goud Gadila3,
Monica N. Shroyer4, Peter J. Didier1, Sudesh K. Srivastav5, Arpita Das6, Kate Baker4,
Qiuying Sha2 and Bapi Pahar1,7,8*

1 Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States, 2 Department
of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States, 3 Division of Immunology, Tulane
National Primate Research Center, Covington, LA, United States, 4 Division of Veterinary Medicine, Tulane National Primate
Research Center, Covington, LA, United States, 5 Department of Biostatistics, Tulane University, New Orleans, LA, United States,
6 Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States, 7 Department of Microbiology
and Immunology, Tulane University School of Medicine, New Orleans, LA, United States, 8 Department of Tropical Medicine,
Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States

Angiotensin converting enzyme-2 (ACE2) and associated proteins play a pivotal role in
various physiological and pathological events, such as immune activation, inflammation,
gut barrier maintenance, intestinal stem cell proliferation, and apoptosis. Although many of
these clinical events are quite significant in SIV/HIV infection, expression profiling of these
proteins has not been well reported. Considering the different pathological consequences
in the gut after HIV infection, we hypothesized that the expression of ACE2 and associated
proteins of the Renin-angiotensin system (RAS) could be compromised after SIV/HIV
infection. We quantified the gene expression of ACE2 as well as AGTR1/2, ADAM17, and
TMPRSS2, and compared between SIV infected and uninfected rhesus macaques
(Macaca mulatta; hereafter abbreviated RMs). The gene expression analysis revealed
significant downregulation of ACE2 and upregulation of AGTR2 and inflammatory cytokine
IL-6 in the gut of infected RMs. Protein expression profiling also revealed significant
upregulation of AGTR2 after infection. The expression of ACE2 in protein level was also
decreased, but not significantly, after infection. To understand the entirety of the process
in newly regenerated epithelial cells, a global transcriptomic study of enteroids raised from
intestinal stem cells was performed. Interestingly, most of the genes associated with the
RAS, such as DPP4, MME, ANPEP, ACE2, ENPEP, were found to be downregulated in
SIV infection. HNFA1 was found to be a key regulator of ACE2 and related protein
expression. Jejunum CD4+ T cell depletion and increased IL-6 mRNA, MCP-1 and
AGTR2 expression may signal inflammation, monocyte/macrophage accumulation and
epithelial apoptosis in accelerating SIV pathogenesis. Overall, the findings in the study
suggested a possible impact of SIV/HIV infection on expression of ACE2 and
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RAS-associated proteins resulting in the loss of gut homeostasis. In the context of the
current COVID-19 pandemic, the outcome of SARS-CoV-2 and HIV co-infection remains
uncertain and needs further investigation as the significance profile of ACE2, a viral entry
receptor for SARS-CoV-2, and its expression in mRNA and protein varied in the current
study. There is a concern of aggravated SARS-CoV-2 outcomes due to possible serious
pathological events in the gut resulting from compromised expression of RAS- associated
proteins in SIV/HIV infection.

Keywords: ACE2 regulation, AGTR2, enteroids/organoids, MIP-1, mucosal immunity, rhesus macaque, SIV/
HIV, transcriptomics

INTRODUCTION

The renin-angiotensin system (RAS) initiates with the
conversion of Angiotensin I (Ang I) to Angiotensin II (Ang II)
by Angiotensin-converting enzyme (ACE). Ang II activates Ang
II receptors 1 (AGTR1) and 2 (AGTR2) to exhibit its biological
functions (1, 2). The effect of Angiotensin converting enzyme 2
(ACE2) as a critical regulator in the RAS has been extensively
investigated. ACE2 is a transmembrane monopeptidyl
carboxypeptidase enzyme distributed in multiple tissues across
the intestines, heart, reproductive organs, kidney, brain, liver,
adipose tissue, and respiratory tract. ACE2 hydrolyzes Ang I and
Ang II into Ang 1-9 and Ang 1-7, respectively (3, 4). The failure
of ACE2 to do so allows ACE to act on the Ang I and release Ang
II which, after binding with AGTR1, induces various deleterious
effects including apoptosis, inflammation, vasoconstriction,
hypertension, cardiac hypertrophy, collagen production,
reactive oxygen species by overproduction of TGF-b, and
expression of ICAM-1, VCAM-1, and MCP-1 (2). Unlike Ang
II, Ang 1-9 and Ang 1-7 protect against effects of Ang II
with different mechanisms after binding with AGTR2 and
Mas1 receptors, respectively (5–7). This clearly indicates the
important role of ACE2 in maintaining the normal physiological
state by counteracting the adverse effects of Ang II.

The role of ACE2, ACE and their peptides has been well
recognized in different inflammatory conditions including acute
pancreatitis, lung injury, pulmonary hypertension, cardiac
hypertrophy, sepsis, and glomerulonephritis (8–11). Recent
reports have also demonstrated that ACE2 is highly expressed
in differentiated enterocytes targeted by severe acute respiratory
syndrome corona virus-2 (SARS-CoV-2) in inducing a generic
viral response program including type III interferon responses
(12, 13). ACE2 is highly expressed in the small intestine
compared to all other tissues, based on mRNA expression
levels in different human tissues (14). Unlike in other organs,
ACE2 in the gut has a completely different RAS-independent
function maintaining a variety of cellular processes including
intestinal amino acid homeostasis, antimicrobial peptide
expression, gut microbiome modulation, immune activation,
inflammation, dysbiosis, gut barrier maintenance, and even
intestinal stem cell proliferation and differentiation (15–18).
ACE2 is necessary for the expression of neutral amino acid
transporters, such as B°AT1, and regulates uptake of neutral

amino acids, like tryptophan, in the intestine (19, 20).
Tryptophan is well known for its function in defense
mechanisms, including lymphoid pro-inflammatory cytokine
downregulation, tight junction formation, release of
antimicrobial peptides, and modulation of mucosal cell
autophagy (17, 21). Impaired ACE2 expression in the intestine
could lead to microbial dysbiosis, leaky gut, and inflammation.
Loss of intestinal barrier function and subsequent translocation
of luminal bacteria is now thought to be the major cause of the
chronic systemic immune activation that perpetuates HIV
replication and progression to AIDS (22–26). Therefore, ACE2
could be an important player in modulating intestinal
homeostasis during HIV/SIV infection, however, its role in
regulating mucosal barrier function and disease pathogenesis is
not well understood.

Besides ACE2, the other RAS components also play a key
role in regulating gut physiological events. It is believed that
while AGTR1 causes harmful effects after being activated by
Ang II, AGTR2 counteracts the function of AGTR1 (15).
However, there is evidence that AGTR2 promotes intestinal
cell apoptosis in the presence of increased Ang II expression in
an in vitro cell culture system (27). Therefore, it is critically
important to understand the expression profile of AGTR2 in
HIV/SIV infection and its impact in SIV mediated
gut homeostasis.

ACE2 expression could also be affected by disintegrin and
metalloproteinase domain 17 (ADAM17) and Transmembrane
serine protease 2 (TMPRSS2) enzymes, which cleave and
process ACE2 (28). ADAM17 promoted shedding of ACE2
into the extracellular environment after SARS-CoV spike
protein bound to ACE2 (29, 30). TMPRSS2, which is highly
expressed in several cell types including intestinal epithelium,
lung alveolar cells, and vascular endothelium, plays an
indispensable role in cellular uptake of SARS-CoV after
ACE2 proteolysis (28). TMPRSS2 has also been demonstrated
to accelerate influenza virus infection by cleaving the
hemagglutinin receptor (31).

Due to the current COVID-19 (Coronavirus Disease 2019)
pandemic, research on ACE2 expression and its role in the
pathogenesis of intestinal inflammatory diseases is rising at a
rapid pace (32–36). In SIV/HIV mediated intestinal enteropathy,
the impact of ACE2 expression or its associated proteins AGTR1,
AGTR2, ADAM17, and TMPRSS2 is not well understood.
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Moreover, the dynamics of lung ACE2 expression and molecular
changes in enteroids grown from infected and uninfected rhesus
macaques (Macaca mulatta; hereafter abbreviated RMs) have not
been well described. The SIV infected RM model is a well-
accepted model for the study of HIV-associated enteropathy and
pathogenesis. Recent study also suggest that RM can be used as a
preferred study species that can represent mild to moderate form
of COVID-19 as observed in majority of human population (37).
Bulk RNA-seq analysis of heart, lung, liver and kidney tissues
from human and RM tissues also showed high level of inter-
species conservation in the expression of SARS-CoV-2 and
coronavirus-associated receptors and factors (SCARFs), which
also suggested that RM can be used as an animal model to study
COVID-19 pathogenesis (38). Hence, understanding the relative
expression of these proteins and genes in HIV infected patients
will be extremely valuable to evaluate its impact on gut
pathogenesis as well as the mucosal CD4+ T cell population.
In the present study, we used a RM model to determine the
expression profiles of ACE2 and its associated proteins in the
jejunum and/or lung of SIV infected RMs. We also analyzed
expression of important inflammatory cytokines to understand
the impact of inflammation on ACE2 expression. A global
transcriptomic study on enteroids from SIV infected and
uninfected jejunum crypts was performed to assess any
difference in the expression of these proteins in newly
regenerated cells. In the present scenario of the COVID-19
pandemic, this study will provide insight into the risk of
SARS-CoV-2 infection among HIV patients.

MATERIALS AND METHODS

Animals, Inoculation, and
Tissues Collection
The study was performed using 22 Indian RMs of both sexes
between 2.5 and 12.3 years of age (Table 1). All animals were
socially housed at the Biosafety level 2 facility in the Tulane
National Primate Research Center (TNPRC) in accordance with
the standards incorporated in the Guide for the Care and Use of
Laboratory Animals (36). All subjects were negative for HIV-2,
SIV, type-D retrovirus, and simian T-cell leukemia virus type 1
infection at the beginning of this study. The Tulane Institutional
Animal Care and Use Committee (IACUC) approved all animal
procedures related to this study. The TNPRC is fully accredited
by the Association for the Assessment and Accreditation of
Laboratory Animal Care (Animal Welfare Assurance A-
4499-01).

Blood and jejunum collected from 10 RMs were studied
longitudinally for several cellular and molecular assays. Lung
tissue collected from three cohorts of RMs (uninfected, acutely
infected, and chronically infected; 6 per group) was used for
measuring ACE2 expression (Table 1). All acutely and
chronically infected subjects were inoculated with 100 or 500
TCID50 pathogenic SIVMAC251 using either intravenous (IV) or
intravaginal (IVAG) routes (Table 1) to mimic the major routes
of HIV transmission in humans. For analysis of plasma/serum,
samples were collected from various time points, including pre
infection, 14-, 21-, 40-, 60-, 90-, 112-, 145-, and 180-day post

TABLE 1 | List of Indian rhesus macaques examined.

Disease
Category

Animal Number Age (Year) Sexa Virus Dosage (TCID50) Routeb Terminal Plasma Viral Load
(RNA copies/ml)

Tissue tested

Normal, uninfected FF25 3.2 F – – – – Lung
GJ06 4.9 F – – – – Lung
FF15 6.9 F – – – – Lung
DJ78 8.1 F – – – – Lung
AG71 11.1 F – – – – Lung
IK15 8.5 M – – – – Lung

Acute SIV GI28 5.9 F SIVMAC251 500 IVAG 5830000 Lung
FT35 6.7 F SIVMAC251 500 IVAG 3540000 Lung
EK98 8.7 F SIVMAC251 500 IVAG 26800000 Lung
EM64 8.9 F SIVMAC251 500 IVAG 3840000 Lung
CF65 12.3 F SIVMAC251 500 IVAG 10100000 Lung
HV53 2.5 M SIVMAC251 100 IV 340000 Lung

Pre, SIV infected KP54 6.3 F SIVMAC251 100 IV 3060000 Blood, Lung, Jejunum
KM05 6.4 F SIVMAC251 100 IV 108000 Blood, Lung, Jejunum
KA42 7.3 F SIVMAC251 100 IV 23800000 Blood
KA76 7.4 F SIVMAC251 100 IV 39100000 Blood, Lung, Jejunum
KP60 6.4 M SIVMAC251 100 IV 28400000 Blood, Lung, Jejunum
KH79 7.2 M SIVMAC251 100 IV 138000000 Blood, Jejunum
KA78 7.3 M SIVMAC251 100 IV 5510000 Blood, Jejunum
KE75 7.3 M SIVMAC251 100 IV 2280000 Blood
JV97 7.4 M SIVMAC251 100 IV 190000 Blood, Lung, Jejunum
JK56 8.3 M SIVMAC251 100 IV 6480000 Blood, Lung, Jejunum

aF and M denote female and male, respectively.
bIV and IVAG denote intravenous and intravaginal route, respectively.
TCID50 represents tissue culture infectivity dose at 50%.
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infection (dpi). On the other hand, for tissues collected by
resection surgery or necropsy, only three time points were
used, namely pre infection, acute infection (21 dpi) and
chronic infection (180 dpi). In addition, both pre infection and
at 180 dpi, jejunum crypts were isolated from animals, enteroids
were grown from crypts, and RNA-seq was performed for
transcriptomics analysis. Small pieces of freshly collected
jejunum tissues were preserved in Buffer RLT (Qiagen,
Germany) and used for real-t ime PCR for relative
quantification of differential gene expression. Freshly collected
jejunum and lung tissues were fixed in zinc formalin (Anatech,
Ltd., USA), processed for paraffin embedding, and used for
immunohistochemistry (IHC) assays. Viral inoculation and
sample collection were performed under the direction of
veterinarians. All analyses except those in the lung were
presented based on the longitudinal study. Due to infeasibility
of sample collection, lung tissues representing each cohort of
infection were obtained from different animals, and thus could
not be used for the longitudinal study. In our earlier studies we
did not detect any association between viral dosage, CD4
depletion, and viral loads in RMs (25, 39–41).

Every effort was made to avoid discomfort and pain to animals.
At the TNPRC, animal care staff and veterinarians observed
animals several times daily for signs of pain, distress, and
disease, and animal discomfort and pain were alleviated by
appropriate use of anesthetics and analgesics. Subjects were
anesthetized intramuscularly (IM) with ketamine hydrochloride
(10 mg/kg bw) or tiletamine hydrochloride/zolazepam (Telazol®,
Zoetis, USA) (5-8mg/kg bw) when removed from their home cage
for blood collection, physical exams, and other surgical
procedures. If necessary, for clinical diagnostic procedures or if
major surgery was required, isoflurane gas inhalation anesthesia
was used after induction with ketamine hydrochloride.
Buprenorphine hydrochloride (0.01 mg/kg IM) or sustained
release Buprenorphine hydrochloride (0.2 mg/kg subcutaneously)
was used for post-procedural analgesia. At the end of the study,
subjects were humanely euthanized using methods consistent with
recommendations of the American Veterinary Medical Association
(AVMA) Panel on Euthanasia.

Quantification of Plasma Viral Load
Plasma viral RNA was measured by quantitative reverse
transcription-PCR (qRT-PCR) at the Wisconsin National
Primate Research Center with a lower detection limit of 60 SIV
RNA copies/mL of plasma (25).

Isolation of Lamina Propria Lymphocytes
(LPL) From Jejunum
The jejunum LPL was isolated by collagenase treatment followed
by Percoll (Sigma-Aldrich, USA) density gradient centrifugation
as described earlier (25, 39, 42). Briefly, a jejunum section of 2-4
cm length was collected, washed with chilled sterile PBS, and
minced into small pieces. The minced tissue was treated with 1
mMEDTA in HBSS and shaken for 30 min at 300 rpm, 37°C. The
epithelial cells were removed by filtration through a screen cup
strainer with mesh size 50 (0.229 mm, Sigma-Aldrich).

The tissues on the strainer were scraped off, minced, and
further digested with type II collagenase (60 U/mL) (Sigma-
Aldrich). After washing, the cells were passed through a 16-
gauge feeding needle for better separation of any clumps. The
larger clumps were filtered out using a nylon biopsy bag (Fisher
Scientific, USA). The isolated LPL was enriched by centrifugation
over the prepared 60% and 35% isotonic Percoll layers at 1900
rpm for 30 min at 4°C. The enriched LPL was collected, washed,
and resuspended with complete RPMI-1640media with 10% FBS,
then used for flow cytometry staining. These enriched LPLs may
contain trace amounts of epithelial and other leukocyte positive
cells as reported in our earlier study (43).

Flow Cytometry
The frequency of CD4+ and CD8+ T cell populations were
quantified in jejunum LPL using flow cytometry staining and
analysis as done previously (39, 44). Briefly, one million isolated
LPL were first stained with Live/Dead fixable aqua dead cell stain
(1:100 dilution, Thermo Fisher Scientific, USA) at 37°C for 10
min. This was followed by surface staining using fluorochrome
conjugated anti-CD3, anti-CD4 and anti-CD8 monoclonal
antibodies (Supplementary Table 1), then incubation at room
temperature (RT) for 25 min. After staining, cells were washed
and stored at 4°C in BD stabilizing and fixative buffer. At least
50,000 events were acquired from each sample, and analyzed
with FlowJo software (version 10.7.2., FLowJo LLC, USA) the
next day. Only singlets and live cell populations were considered
for sequential identification and frequency determination of
different T cell populations.

Immunofluorescence (IF) Staining
in Jejunum
Jejunum tissue sections were processed for IF staining as
described earlier (39, 41, 44). Tissue sections of 5 mM thickness
were stained by incubating for 1h with rabbit polyclonal anti-
ACE2 antibodies (Sino Biologicals, USA), then washed and
stained for 40 min with Alexa Flour 568-conjugated secondary
antibodies (Life Technologies, USA) (Supplementary Table 1).
Negative control slides were incorporated in each experiment
either by omitting the primary antibody or using isotype IgG
(H+L) controls (39, 43, 45). The nuclear staining was performed
with diluted DAPI (Millipore Sigma, USA) and incubated for 10
min at RT (Supplementary Table 1). The stained tissue sections
were mounted with the Prolong Gold antifade reagent
(Invitrogen, USA). For cytokeratin and ACE2 dual staining,
tissues were first stained with rabbit anti-cow cytokeratin wide
spectrum polyclonal antibody (Dako, USA) diluted in serum-free
blocking buffer, then incubated at RT for 1h as we reported
earlier (45). After washing twice in TBS buffer, the slides were
incubated with the MACH3 rabbit probe (BioCare Medical,
USA) followed by MACH3 AP-polymer (BioCare Medical) for
20 min each. The sections were monitored under a microscope
and allowed to develop color using permanent red chromogen
(Dako) at 1:100 dilution. To visualize the coexpression of ACE2
and cytokeratin proteins, the tissue sections were further stained
sequentially with ACE2 antibodies, followed by Alexa 488
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conjugated anti-Rabbit secondary antibodies (Invitrogen), and
finally with DAPI as described above.

Imaging was performed with a Ti2-E motorized fluorescence
microscope (Nikon,USA) using a 20x objective,with a resolutionof
2048 × 2044 pixels. Control and experimental slides were imaged
during the same session with identical acquisition parameters.
Fluorescence intensity was optimized on isotype control tissues to
eliminate tissue autofluorescence and remained constant for all the
experimental slides. To quantify the mean fluorescence intensity
(MFI), regions of interests (ROI) were manually drawn
(Supplementary Figure 1A) on the epithelial regions of 20-23
randomly selected villi. Nikon NIS Elements software was used to
measure MFI.

IHC Staining in Jejunum and Lung
IHC assays were performed to quantify the expression of different
proteins of interest in jejunum and lung tissues (Table 1) using the
Mach3 Rabbit AP-polymer Detection Kit (Biocare Medical) as
described previously (45). Five mM paraffin-embedded tissue
sections were deparaffinized by being placed at 60°C overnight
and sequentially treated with xylene and ethanol. Epitope retrieval
was achieved by heating tissues stored in a citrate buffer (Vector
Laboratories, USA). After blocking with a serum-free protein
blocker (Vector laboratories), the tissues were incubated for 1h
at RT with antibodies against either anti-ACE2, anti-AGTR2, or
anti-TMPRSS2 proteins (Supplementary Table 1). Since lung
tissue usually produces strong autofluorescence, expression of
ACE2 in the lung was quantified by IHC. A negative control
sample treated with rabbit IgG fractions was also included in every
experiment. The tissues were incubated with the kit’s probe and
polymer as directed, and finally developed using permanent red
chromogen for lung ACE2 staining and BCIP/NBT chromogen
system (Abcam, USA) for the detection of AGTR2 and TMPRSS2
proteins in jejunum. Slides were mounted using Vecta Mount AQ
(Vector Laboratories).

The whole stained tissue were scanned at 20x objective using
Axio slide scanner (Zeiss, Germany). For quantification of
AGTR2+ cell density (counts/mm2), 20 equal size ROIs were
manually drawn in the lamina propria region and analyzed with
multiplex IHCmodule (v3.0.4) of the Halo software (Indica Labs,
USA). For lung ACE2, ROIs were manually drawn on the
epithelium of every bronchiole in the tissue section, and the
area of ACE2 positive tissue was calculated per total ROI and
expressed as a percentage using Indica Labs’ area quantification
module (v2.1.11) as described earlier (46). TMPRSS2 expression
in the villi epithelium was quantified by gating ROI in the
epithelium of 20 randomly selected villi using a similar analysis
module as with the lung ACE2 (Supplementary Figures 1B, C).
As the crypt epithelium also showed TMPRSS2 expression, we
performed a separate analysis of TMPRSS2 expression in this
region by selecting 30 random crypts.

Isolation of Jejunum Crypts and
Generation of Enteroid Culture
Jejunal crypts were isolated using the low-temperature method
with modification, as described previously (26, 47). Briefly, a
piece of jejunum (3-5 cm) was collected and thoroughly cleaned

with sterile PBS. The tissue was minced into small pieces, treated
with 5 mM EDTA (Thermo Fisher Scientific) prepared with
1mM Dithiothreitol (DTT, Thermo Fisher Scientific) in 1x
HBSS, kept on ice, and constantly stirred at 200 rpm for 5
min. The undigested tissue pieces were allowed to settle down
and the supernatant was discarded. The undigested tissues were
treated with a pH 7.3 chelating buffer containing 27 mM
Na3C6H5O7 (G-Biosciences, USA), 5 mM Na2HPO4 (USB
corporation, USA), 96 mM NaCl (Sigma-Aldrich), 8 mM
KH2PO4 (VWR, USA), 1.5 mM KCl (Thermo Fisher
Scientific), 0.5 mM DTT, 55 mM D-sorbitol (VWR), and 44
mM sucrose (VWR). Tissues were treated alternatively with
EDTA and chelating buffer for a total of four times. The crypts
were isolated by tapping or shaking vigorously in the fresh
chelating buffer, then filtered through a 100 mM cell strainer,
suspended with 1 volume of DMEM (Thermo Fisher Scientific)
supplemented with 1% BSA (Sigma-Aldrich), and centrifuged at
4°C and 200 g for 10 min. The isolated crypts were resuspended
in DMEM with 1% BSA, and the number of viable crypts
was counted.

Enteroids were grown from the isolated crypts following the
protocol for human intestinal stem cells (ISC) with modification
(26, 48, 49). Briefly, crypts resuspended in DMEM with 1% BSA
were mixed with an equal volume of BD Matrigel basement
membrane to make a cell concentration of 1000 crypts/50 mL. 50
ml of the crypt suspension was loaded onto each well of a pre-
warmed 24-well cell culture plate (Corning, USA) and kept at 37°C
for 10 min. After the gel was solidified, 750 mL of pre-warmed
complete seeding media was added to each well, then incubated at
37°C in a 5% CO2 for a total duration of 13 days. The complete
seedingmediumcontained2mMglutamine (LifeTechnologies), 10
mM HEPES (Life Technologies), 100 U/mL penicillin (Life
Technologies), 100 mg/mL streptomycin (Life Technologies), 1x
N2 supplement (Life Technologies), 1x B27 supplement (Life
Technologies), 1% BSA (Sigma-Aldrich), 50% WNT-3A-
conditioned medium prepared in-house using L WNT-3A cell
line (ATCC, USA), 1 mg/mL R-Spondin 1 (R&D Systems, USA),
1 mM N-acetylcysteine (Sigma-Aldrich), 500nM A-83-01
(Peprotech, USA), 10 nM [Leu]15-Gastrin (Sigma-Aldrich), 10
mM Nicotinamide (Peprotech), 50 ng/mL EGF (Sigma-Aldrich),
100ng/mLNoggin1 (R&DSystems), and10mMSB202190 (Sigma-
Aldrich) in an advanced DMEM/F12medium (Life Technologies).
During the first two days of culture, the culture medium was
supplemented with 2.5 mM thiazovivin (Stemgent, USA) and 2.5
mM CHIR99021 (Stemgent). The seeding medium was replaced
with 750 mL of fresh pre-warmed complete medium every 2 days.
Fully grownenteroidswereharvestedusinga gentle cell dissociation
agent (Stemcell Technologies Inc., USA), usually on 13th day of
culture. The dissociated cells were spun down at 290 x g for 5min at
4°C after 2-3 washes with DMEM (1% BSA). The cell pellet was
resuspended in Buffer RLT and stored at –80°C until used for
RNA isolation.

RNA Isolation, cDNA Preparation and
Real-Time PCR
The frozen jejunum tissues stored in Buffer RLT were thawed at
RT, minced, and vortexed at high speed for 1-2 min. The lysate
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was homogenized by spinning at 11,000 rpm for 2 min using a
QIAshredder spin-column (Qiagen). The supernatant was
collected and mixed with an equal volume of 70% ethanol. The
lysate was subsequently used for RNA isolation using the RNeasy
mini kit (Qiagen) following the manufacturer’s instruction. The
quality and quantity of the isolated total RNA were assessed in a
Bioanalyzer 2100 system using the RNA 6000 Pico kit (Agilent
Technologies, USA). cDNA from the isolated RNA was prepared
following the protocol of the Superscript IV first-strand synthesis
protocol (Thermo Fisher Scientific). The RNA in the final cDNA
product was removed by adding 1 mL of RNase H/20 mL of
reaction mixture, and incubated at 37°C for 20 min. The cDNA
was then stored at -20°C until used.

qRT-PCR was performed to determine mRNA abundance of
different proteins and cytokines. Relative abundance of each
mRNA type was quantified using a set of gene specific primers
(Supplementary Table 2) developed using an online primer
designing tool (Integrated DNA Technologies, USA). qRT-PCR
was performed using PowerUp SYBR green master mix (Applied
Biosystems, USA) in a 7900-HT fast real-time PCR system
(Applied Biosystems). The thermal cycling comprised a single
step of 50°C for 2 min; 95°C for 2 min; 40 cycles of 95°C for 15
sec; and 60°C for 1 min. Before comparing between samples,
each gene expression in every sample was normalized against
that of an internal control GAPDH to account for any variations.
Relative gene expression was determined from the means of
change in threshold cycle (2-DCt) as described earlier (50).

RNA Isolation From Enteroid and
Generation of RNA-Seq Data
Total RNA from enteroids was isolated and quantified as
mentioned previously (26). A cDNA library from the enteroid
RNA was constructed at Novogene using a NEBNext® Ultra
RNA Library Prep Kit for Illumina® (cat# E7420S, New England
Biolabs, USA) following manufacturer protocol. This included
enrichment of mRNA through ribosomal RNA removal, random
mRNA fragmentation using divalent cation at elevated
temperature, first cDNA strand synthesis using random
hexamers, and second cDNA strand synthesis using dNTPs,
DNA polymerase I and RNase H. Finally, the double stranded
cDNA library was constructed after a series of terminal repair
and ligation processes. cDNA libraries of 250-350 bp were
preferentially selected and enriched with Phusion High-Fidelity
DNA polymerase-based PCR. The quantity and quality of the
resulting cDNA was determined by a Qubit fluorometer
(Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer
(Agilent Technologies), respectively. The cDNA libraries were
finally sequenced on an Illumina Nova Seq 6000 platform
(Illumina, USA). Forty million raw reads were generated from
each library and stored in the FASTQ format using (bcl2fastq2)
conversion software (v2.17).

Transcriptome Assembly
The quality of raw reads in FASTQ format was checked using
FastQC (v0.11.9 released: http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). FastQC showed few overrepresented
sequences for each library and a high per base/tile sequence

quality, exceeding 34 on the Phred scale (less than 1/2000 chance
of a base being wrong). The raw reads were mapped to the
reference sequences and annotation of the RM (https://support.
illumina.com/sequencing/sequencing_software/igenome.html)
using TopHat2. Reads with multiple alignments were discarded,
and gene expression counts were calculated using htseq-count in
Galaxy platform (https://usegalaxy.org/).

Differential Gene Expression Analysis
To determine differentially expressed genes (DEGs) between
enteroids from infected and uninfected RMs, transcriptomic
profiling and data analysis were performed using DESeq2 in R/
Bioconductor software (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html). First, genes with read counts
smaller than 10 were excluded from further analysis. We then
transformed the read counts to log2 scale using regularized-
logarithm transformation (rlog). Principal component analysis
(PCA) was then applied to provide insight into associations
between samples, and to identify subgroups (in our case, infected
and uninfected) and outliers. A differentially expressed gene was
identified if the gene expression in the enteroid from infection
with false discovery rate (FDR) < 0.05 and the absolute value of
log2 fold-change > 1 when compared with that of uninfected
control. The FDR referred to the adjusted p value obtained by
applying Benjamin and Hochberg’s (BH) correction on the
original p value; the fold-change indicated the degree of change
of gene expression. A heat map depicting only the proteins of
interest and their associated proteins was generated using the
“pHeatmap” R package (https://cran.r-project.org/web/
packages/pheatmap/index.html), enabling the detection of
patterns of differential gene expression in the enteroids from
infected and uninfected.

Pathway Enrichment Analysis
To better understand the involvement of any biological functions
or pathways during infection, a pathway enrichment analysis was
performed based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. All DEGs were mapped to the
KEGG pathways using a functional annotation tool named
Database for Annotation, Visualization, and Integrated
Discovery Bioinformatics Resource (DAVID: https://david.
ncifcrf.gov/). Significantly enriched pathways were identified by
DEGs if FDR < 0.05. Moreover, genes weighted by length and
categories with FDR < 0.05 were identified as being significantly
enriched in the corresponding pathways.

Ingenuity Upstream Regulator Analysis
DEGs were further analyzed using QIAGEN’s Ingenuity® Pathway
Analysis software (IPA®, https://www.qiagenbioinformatics.com/
products/ingenuitypathway-analysis). Its novel upstream regulator
analysis (URA) tool can identify potential transcriptional regulators
(49, 50), determine how many known targets or regulators are
contained within the dataset and compare each differentially
expressed molecule to the reported relationship in the literature.
The URA tool is based on prior knowledge of expected effects
between transcriptional regulators and their target genes as stored
in the Ingenuity® Knowledge Base. Two statistical measures,
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an overlap p-value and an activation z-score, were computed for
each potential transcriptional regulator. Activation z-scores
indicate the activation states of the regulators; a score >2.0
indicates that a target molecule in the dataset is activated,
whereas a score of <−2.0 indicates that it is inhibited. The
overlap p-value measures whether there is a statistically
significant overlap between the dataset molecules and those
regulated by an upstream regulator. It was calculated using
Fisher’s Exact Test and significance is attributed to values < 0.05.

Quantification of Soluble CD14 Marker
for Monocyte Activation and
Microbial Translocation
Plasma CD14 levels at pre, acute and chronic time points from 10
RMs were measured using a quantitative Human CD14
sandwich ELISA (Human CD14, Duoset ELISA, R&D Systems)
in duplicates following the manufacturer’s recommendation. The
detection limit of this assay was from 62.5-4000 pg/mL. Each
sample was diluted 2000 fold prior to run this assay. The
absorbance was recorded using the Synergy H4 microplate
reader (Biotek Instrument, Inc., USA).

ACE2 Quantification in Plasma
Measurement of total circulating ACE2 levels from frozen
plasma samples was performed by ELISA using an ACE2
ELISA kit (R&D Systems) fol lowing manufacturer
instruction with minor modification. Briefly, the microtiter
plates were coated with goat anti-human ACE2 capture
antibodies overnight. After washing, the plasma samples
were added at serial two-fold dilutions and incubated at RT
for 2h followed by overnight incubation at 4°C. The wells were
washed, and the plates were developed by consecutive
treatment with biotin-conjugated goat anti-human ACE2,
streptavidin conjugated horseradish peroxidase, and TMB
substrate. The reaction was then stopped, and the
absorbance was recorded at 450 nm using the Synergy H4
microplate reader (Biotek Instrument, Inc.). All samples were
assayed in duplicate with appropriate positive and negative
controls. For quantification of total ACE2 plasma level, a
standard curve with known ACE2 concentrations was
generated. Nonlinear regression using a sigmoidal dose-
response variable slope model was used to interpolate
concentrations from the standard curve.

Angiotensin II (Ang II) Quantification
in Plasma
An Angiotensin II competitive ELISA kit (Enzo Life Sciences
Inc., USA) was used to measure the concentration of plasma Ang
II following manufacturer instruction. Briefly, frozen plasma
samples were thawed and used in duplicate. Plasma samples
were added to the respective wells coated with goat anti-rabbit
IgG antibody and incubated with polyclonal anti-Ang II
antibody on a shaker at RT for 1h. After washing, biotin-
conjugated Ang II was added and incubated on a shaker at RT
for 1h. The wells were washed, treated with streptavidin
conjugated horseradish peroxidase, and shaken for 1h at RT.

Finally, the plate was washed and developed with TMB substrate
for 30 min. The reaction was then stopped, and the wells were
read at 450 nm optical density where the intensity of signal is
inversely proportional to the level of Ang II. Nonlinear
regression using a sigmoidal dose-response variable slope
model was used to interpolate concentrations from the known
standard curve.

Quantification of AGTR1in Plasma
AGTR1 plasma concentration was measured using an AGTR1
sandwich ELISA kit (LSBio, USA) following manufacturer
instruction. The plate was developed with TMB substrate. The
wells were read at 450 nm optical density where the amount of
signal is inversely proportional to the level of AGTR1. Nonlinear
regression using a sigmoidal dose-response variable slope model
was used to interpolate concentrations from the known
standard curve.

Quantitative Determination of Serum
Lactate Dehydrogenase (LDH) Activity
Serum collected from serum clot tubes was analyzed using a
Beckman Coulter AU 480 analyzer. Reagents containing lactate
and NAD+ were added to the sample to measure NADH
production by quantifying absorbance of light at 340 nm. The
rate of change of absorbance at 340 nm is directly proportional to
the LDH activity in the sample.

Quantification of Inflammatory Cytokines
and Chemokine in Plasma
Inflammatory cytokines (IL-1b, IL-6, and TNF-a) and MCP-1
chemokine (monocyte chemoattractant protein-1) in plasma
were quantified using a U-plex biomarker NHP multiplex
assay (Meso Scale Diagnostics, USA) following manufacturer
instruction with minor modification. Firstly, the wells in the U-
plex plate were coated with biotinylated capture antibody and
incubated overnight at 4°C. After washing the plate, calibrator
standards and samples were added to the wells and incubated
overnight at 4°C. After three washes, detection antibody was
added to each well and incubated on a shaker at RT for 1h.
Finally, the plate was washed, read buffer was added to each well,
and the plate was read immediately on an MSD microplate
reader (Meso Scale Diagnostics). The concentration of each
cytokine was determined based on the standard curve plotted
between the known concentration of calibration standards and
their respective signal.

Statistical Analysis
All statistical analyses and graphical representations in the
present study were performed using GraphPad Prism version 9
(GraphPad Software, USA). One-way ANOVA was used to
observe any statistically significant differences between three or
more groups. Bonferroni and Tukey-Kramer’s multiple
comparison tests were applied for equal and unequal sample
size, respectively, to identify statistically significant differences
between the groups. A student T-test was applied to examine any
statistical differences between two groups. Correlation analysis
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between different parameters was performed with a two-tailed
Spearman’s correlation method. A p-value of < 0.05 was
considered statistically significant in all analyses.

RESULTS

Plasma Viral Loads in Infected RMs
All the infected subjects had detectable plasma viral loads.
During acute infection the plasma viral load ranged from 3.4 X
105 to 3.4 X 107 copies of RNA/mL of plasma, with a mean of 1 X
107 copies (n=16). The plasma viral load increased during
chronic infection, ranging from 1 X 105 to 1.4 X 108 copies of
RNA/mL of plasma, with a mean of 2.5 X 107 copies (n=10).
However, the difference in mean plasma viral load between
acutely and chronically infected RMs was not statistically
significant (p = 0.193).

Dynamics of Gene Expression of Jejunal
ACE2, TMPRSS2, ADAM17, AGTR1 and
AGTR2 After Infection
Differential expression of ACE2 as well as associated genes were
examined at their transcriptional level by qRT-PCR both pre and
post infection. The basal mRNA levels of these proteins were first
compared with an internal control GAPDH to understand their
expression levels in jejunum tissue. The differences between Ct of
each gene and GAPDH were calculated, and expression was
considered high if DCt < 5 cycles, moderate if 5 < DCt < 15
cycles, and low if DCt > 15 cycles (51). The expression of ACE2
(mean ± SE: 1.4 ± 0.2 cycles) and TMPRSS2 transcripts (4 ± 0.1
cycles) were identified as high, while ADAM17 (8.1 ± 0.6 cycles),
AGTR1 (11.8 ± 0.9 cycles) and AGTR2 transcripts (14.4 ± 1.2
cycles) were moderately expressed in the jejunum
(Supplementary Figure 2). Next, we analyzed the relative
mRNA expression of each gene and compared between pre and
post infection. Notably, compared with pre infection (0.39 ± 0.05),
expression of ACE2 mRNA transcripts was significantly
downregulated during acute infection (0.26 ± 0.04, p = 0.04)
and chronic infection (0.17 ± 0.04, p = 0.002) by 1.5 and 2.3-fold,
respectively (Figure 1). There was no statistically significant
difference in TMPRSS2, AGTR1, and ADAM17 mRNA
expression after infection (Figure 1). In contrast, compared to
pre infection (0.00016 ± 0.00005, p = 0.002) and acute infection
(0.0003 ± 0.00008, p = 0.01), AGTR2 transcripts were significantly
increased during chronic infection (0.0014 ± 0.0004) by 8.8 and
4.7-fold, respectively (Figure 1). We did not observe any
significant differences in ACE2 mRNA expression between male
and female RMs (Supplementary Figure 3).

Increased Inflammatory IL-6 Negatively
Correlates With ACE2 Gene Expression
To determine whether the changes in ACE2 and AGTR2 gene
expression detected in jejunum during infection were also linked
with mucosal inflammatory cytokines, we quantified mRNA
expression of three important inflammatory cytokines (IL-1b,
IL-6, and TNF-a) from total RNA isolated from jejunum (n=6-8)

by qRT-PCR. We first determined the expression of each gene in
the jejunum tissue by calculating DCt between the gene of interest
and the internal control GAPDH. The calculated DCt ranged
between 5 and 15 for all the genes (mean ± SE: IL-1b = 8.9 ±
0.3 cycles, IL-6 = 15 ± 0.4, and TNF-a = 10.5 ± 0.5), indicating
moderate expression of these genes in jejunum (Supplementary
Figure 4). Expression analysis of IL-1b transcripts at different
infection time points showed the lowest expression during acute
infection (0.0016 ± 0.0003) where the values were nearly the same
as in pre infection (0.0025 ± 0.0004). However, IL-1b mRNA
expression was significantly increased during chronic infection
(0.0029 ± 0.0004, p = 0.01) only compared to acute infection
(Figure 1). Expression of IL-6mRNA transcripts was significantly
upregulated during acute (5-fold; mean ± SE: 0.0002 ± 0.00005,
p = 0.03) and chronic (2.5-fold; 0.0001 ± 0.00003, p = 0.006)
compared to pre infection (0.00004 ± 0.000006) (Figure 1). We
were unable to detect any change in TNF-a mRNA transcript
expression level during pre (0.0009 ± 0.0002), acute (0.0009 ±
0.0002), and chronic infection (0.0006 ± 0.0001) (Figure 1). Since
IL-6mRNA expression was significantly upregulated during acute
and chronic infection, we performed a correlation analysis
between IL-6 and ACE2 as well as IL-6 and AGTR2 mRNA
expressions. A two-tailed Spearman’s rank correlation coefficient
analysis between IL-6 and ACE2 mRNA expressions indicated a
highly significant negative correlation between the changes
observed in IL-6 and ACE2 expression level during pre and
acute infection (p = 0.017, Figure 2A) as well as during pre and
chronic infection (p= 0.007, Figure 2B). However, we did not see
any significant correlation between IL-6 and AGTR2 at any time
point (data not shown).

Decreased DPP4, MME, ANPEP, ACE2,
ENPEP, and SOX9 Gene Expression in
Enteroids From Infected RMs
The impact of SIV infection on the expression of ACE2,
TMPRSS2, AGTR1, and AGTR2 genes in regenerated epithelial
cells remained unclear. To determine whether the reduction of
ACE2 expression detected during chronic infection in jejunum
tissues was also a failure of intestinal homeostasis and intestinal
regeneration, we studied the whole transcriptomic profiles of
enteroids from 5 uninfected control and 5 chronic infected. Total
RNA from enteroids was isolated and transcriptomic analysis
was performed to identify DEGs between these two groups. PCA
analysis revealed a clear separation between infected RMs and
uninfected controls along with the first principal component
(PC1), with 43% of the total variance, and the second principal
component (PC2), with 25% of the total variance (Figure 3A).

A heat map was generated showing the expression of
important genes involved in the RAS, including those which
were not differentially expressed (AGTR1, AGTR2, and AGT) in
the enteroids from infected RMs compared to enteroids from
uninfected (Figure 3B). Analysis of DEGs revealed
downregulation of ACE2 mRNA in the enteroids from infected
RMs compared to enteroids from uninfected controls (Log2 fold-
change= -1.91, p = 0.0000158, adjusted p = 0.00147), which was
consistent with our qRT-PCR analysis. We also detected
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FIGURE 1 | mRNA expression of ACE2 associated proteins and inflammatory cytokines during pre and post infection. mRNA expression of protein of interest
(ACE2, TMPRSS2, AGTR1, AGTR2, and ADAM17) and inflammatory cytokines (IL-1b, IL-6, and TNF-a) in whole jejunum tissue were quantified. mRNA expression
for each gene was quantified relative to the internal control GAPDH (n=6-8). The error bars represent the mean of relative fold-change for each group ± SE.
*p < 0.05, **p < 0.01 as determined by the unpaired T-test. The green, blue, and red bar graphs represent pre, acute and chronic infection time points, respectively.
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downregulation of genes such as MME (Membrane
Metalloendopeptidase, Log2 fold-change= -1.69, p = 0.0000017,
adjusted p = 0.00027), ANPEP (Alanine aminopeptidase, Log2
fold-change= -2.34, p = 0.0000081, adjusted p = 0.00091), and
ENPEP (Glutamyl aminopeptidase, Log2 fold-change= -2.47, p =
0.0002332, adjusted p = 0.0002332), all of which are part of the
RAS pathway (Figure 3B). The KEGG pathway analysis revealed
a RAS pathway where all 4 genes (ACE2, MME, ANPEP, and
ENPEP) were significantly enriched (p = 0.037).

DPP4 (Dipeptidyl Peptidase 4), a receptor for Middle East
respiratory syndrome-CoV, had also been suggested as an
alternative receptor for SARS-CoV-2 (52). We observed a
significant downregulation of DPP4 expression in enteroids
from infected RMs compared to uninfected controls (Log2
fold-change= -1.86, p = 0.0000009, adjusted p = 0.00018) using
rlog transformed gene expression values (Figure 3B). As
depicted in the heat map, three genes, namely AGT, AGTR1
and AGTR2 (p = 0.9779, p = 0.9292, p = 0.9552, respectively),
demonstrated no significant changes in expression level between
enteroids from infected RMs and uninfected controls
(Figure 3B). Similarly, we were unable to detect any significant

changes in TMPRSS2 expression (Log2 fold-change= -0.040, p =
0.91599, adjusted p = 0.97548). Using raw gene counts,
nonparametric Spearman correlation coefficient analysis
showed a strong positive correlation between gene expression
of ACE2 and DPP4 (r= 0.867, p = 0.0022, Figure 3C), ACE2 and
ENPEP (r = 0.806, p = 0.0072, Figure 3D) and ACE2 and ANPEP
(r = 0.867, p = 0.0022, Figure 3E) but there was no statistically
significant correlation detected between ACE2 and MME
gene expression using raw read counts (r = 0.612, p =
0.0667, Figure 3F).

SOX9 has been shown to inhibit ISC proliferation by
regulating the WNT signaling pathway (53). We also observed
a very significant upregulation of SOX9 (Log2 fold-change = 1.88,
p = 9.20E-10) in enteroids from chronically infected RMs
compared to uninfected controls. Since ACE2 seemed to act
against SOX9 during ISC proliferation, we examined the
relationship between the expression of ACE2 and SOX9, which
found a significant negative correlation (r= -0.73, p = 0.020;
Figure 4). We have also detected negative correlation between
gene expression of SOX9 and DPP4 and ANPEP and ENPEP (p <
0.05) (Figure 4).

Neuropilin-1 (NRP-1), a cell surface receptor for vascular
endothelial growth factor (VEGF) and the class III Semaphorin
family has been shown to facilitate SARS-CoV-2 cell entry and
infectivity in different in vitro cell lines in the presence of ACE2
and TMPRSS2 receptor expression (54). NRP-1 is expressed by
different immune cells including nonlymphoid cells like
epithelial cells from the upper and lower intestines (55).
Downregulation of NRP-1 gene expression was detected
following chronic SIV infection in jejunum enteroids
compared to uninfected normal enteroids (Log2 fold-change =
-1.83). However, the downregulated NRP-1 expression in
enteroids from chronically SIV infected RMs was not
statistically significant (adjusted p = 0.139694) when compared
to uninfected control enteroids.

HNF1A Is a Key Inhibitor Regulator
Based on Pathway and Upstream
Regulator Analyses
IPA upstream regulator analysis identified 26 significant
upstream regulators (p < 0.05) for ACE2 based on all species
(Supplementary Table 3). Among those upstream regulators,
HNF1A was marked as a key inhibitory regulator (z-score =
-4.271). Meanwhile, marked as activating regulators were
miR-4658 (and other miRNAs w/seed UGAGUGU, z-scores =
2.111), miR-4760-5p (and other miRNAs w/seed UUAGAUU, z-
scores = 2.887), and miR-136-3p (miRNAs w/seed AUCAUCG,
z-scores = 2.887) (Figure 5A) (Supplementary Table 3). There
were 12 significant upstream regulators in our data set, such as
HNF1A, AGT, SMARCA4, etc. In particular, the significant
upstream regulator MEF2C was also identified as a significantly
downregulated DEG (log2 fold-change = -4.223, FDR = 0.0387)
in RNA-seq data obtained from enteroids grown during pre and
chronic infection (n=5). Upstream regulators LEPR, MYOCD,
and TBX5 were also downregulated (log2 fold-change = -3.152,
-1.882, and -2.031, respectively). Meanwhile, upstream regulator

A

B

FIGURE 2 | IL-6 mRNA expression negatively correlated with jejunum ACE2
expression during infection. mRNA expression of ACE2 and IL-6 in the jejunum
were measured by qRT-PCR, and correlations between these two genes at
different infection stages were analyzed. (A) Spearman’s rank correlation analysis
between ACE and IL-6 during pre (green circles) and acute (blue circles) infection
showed a significant negative correlation (r = -0.685, p = 0.017) with the increase
in IL-6 and the reduction of ACE2 expression (n=6). (B) Similarly, a significant
negative correlation was detected between IL-6 and ACE2 mRNA expression
during pre infection (green circles) and chronic infection (red circles) (r= -0.720, p
= 0.007) (n=6-8).
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FIGURE 3 | Global transcriptomic profiling of enteroids from infected and uninfected RMs. Enteroids were grown after isolating crypts from the jejunum and total
RNA was isolated for the RNA-seq analysis. (A) PCA plot of enteroids from 5 uninfected (JK56, KA42, KA76, KA78, and KP54) and 5 chronically infected RMs
(KA42, KA78, KP54, KH79, and KM05) revealed a clear separation between infected RMs and uninfected controls, along with the first principal component (PC1)
with 43% of the total variance and the second principal component (PC2) with 25%. (B) Heatmap of differentially expressed genes (DEGs) from enteroids which
encode RAS-related proteins, arranged from smallest to largest adjusted p-values. Note that there were no significant differences in TMPRSS2, AGTR1, AGTR2, and
AGT gene expression between infected and uninfected enteroids. P- and C-suffix of animal numbers at the bottom of Heatmap denote pre and chronic infection
time points, respectively. Spearman’s rank correlation coefficient of determination between ACE2 and DPP4 gene expression (C), ACE2 and MME gene expression
(D), ACE2 and ANPEP gene expression (E), and ACE2 and ENPEP gene expression (F) is shown for all 5 uninfected and 5 infected macaques. Strong significantly
positive correlations were detected between decreased ACE gene expression and reduction of DPP4, ANPEP, or ENPEP expression in enteroids. A positive
correlation was also detected between ACE2 and MME gene expression, but it was not statistically significant. (C-F) Green and red circles represent pre and chronic
infection timepoints, respectively.
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KCNE3 was upregulated in our data set. We also checked for any
common upstream regulators and as expected, the transcription
factor HNF1A was found to regulate transcription of all
genes except MME, as analyzed in IPA (Figure 5B). This
upstream regulation supported our correlation data, where all
the DEGs except MME showed strong correlation with
ACE2 expression.

No Significant Jejunum ACE2 Protein
Expression Detected in SIV Infection
Significantly decreased ACE2 gene expression in infected RMs
compared to uninfected controls underscores the importance of
ACE2 protein expression in jejunum tissues during SIV infection.
Jejunal tissue from 6 subjects (3 male and 3 female) were collected
at three longitudinal data points (pre, acute, and chronic infection)
(Table 1). ACE2 staining in the jejunum tissues revealed robust
expression as well as localization at the brush border of the entire
surface of each intestinal villus (Figures 6A–D). The tissue
sections were also stained with both ACE2 and cytokeratin
antibodies, which showed that the ACE2 expression was actually
present in epithelium (Figure 6E). To determine the impact of
infection on ACE2 expression, we analyzed the expression of
ACE2 from each individual and calculated the mean fluorescence

intensity. We noted reduced fluorescence intensity during acute
(mean ± SE: 1257 ± 160.1) and chronic (1331 ± 155.8) compared
to pre infection (1545 ± 118.3) (Figure 6F). However, these
changes were statistically insignificant between any of the time
points, as well as the comparison of ACE2 protein expression
between male and female RMs was not statistically significant
(Supplementary Figure 5).

Significantly Increased AGTR2 Expression
in Jejunum During Chronic Infection
Jejunum tissue sections from 6 subjects (3 male and 3 female)
were stained for IHC to detect AGTR2+ cells during pre, acute,
and chronic SIV infection. The majority of AGTR2+ cells were
localized in the lamina propria region (Figures 7A–D). A small
number of AGTR2+ cells were also detected in epithelial cells
(Supplementary Figure 6A, B). To determine the impact of SIV
infection on AGTR2 expression, AGTR2+ cells were quantified
in jejunum. A significant increase in AGTR2+ cells was detected
during chronic (mean ± SE: 632 ± 90, p = 0.015) compared to pre
infection (395 ± 69) (Figure 7E). There was no significant
difference in the number of AGTR2+ cells between acute
(379 ± 54) and pre infection time points nor between male
and female RMs (Supplementary Figure 6C).

A B

C D

FIGURE 4 | Negative correlation between the expression of SOX9 and other important DEGs in the enteroid. The two-tailed Spearman’s correlation coefficient
analyses between the expression of SOX9 and ACE2 (A), SOX9 and DPP4 (B), SOX9 and ANPEP (C), and SOX9 and ENPEP (D) were performed using read
counts obtained after transcriptomic analysis of the enteroids at pre (0 dpi) and chronic (180 dpi) infection for 5 subjects. SOX9 expression was upregulated in SIV
infection compared to pre infection. The correlation and significant values are shown for each plot. Green and red open circles represent pre (0 dpi) and chronic (180
dpi) infection time points, respectively. P value <0.05 is considered statistically significant. Significant negative correlation was detected between SOX9 and other
important DEGs.
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Decreased Jejunum Villi TMPRSS2 Protein
Expression Detected During SIV Infection
Similar to earlier analyses, 6 individuals were selected to quantify
TMPRSS2 protein expression in jejunum tissues using IHC
staining during pre, acute, and chronic infection. Expression of
TMPRSS2 protein was more pronounced at the tip of the villi
and gradually reduced toward the base (Figures 8A–D). Since
TMPRSS2 is a transmembrane protein, it was localized just
below the epithelial outer membrane (Figure 8C). Expression
patterns during pre and post infection varied between villi
(Figures 8A–E) and crypt regions (Figures 8F–I). Hence,
TMPRSS2 expression was quantified separately for each region.
In villi, a significant decrease in TMPRSS2 expression was
observed during chronic infection (mean ± SE: 0.22 ± 0.09%)
compared to pre (2.79 ± 0.28%, p = 0.001) and acute (2.17 ±
0.34%, p = 0.010) (Figure 8J). In crypts, which are less exposed,
no significant change in TMPRSS2 expression was observed
during infection compared to pre infection time points (pre:
7.35 ± 0.90%; acute: 5.78 ± 0.73; and chronic: 8.14 ± 0.56)
(Figure 8K). TMPRSS2 expression in jejunum villi epithelium

between male and female RMs was not statistically significant
either (Supplementary Figure 7).

Loss of Jejunum CD4+ T-Cells Correlates
With Increased AGTR2 and Decreased
TMPRSS2 Expression During Infection
Depletion of early CD4+ T cells in SIV/HIV infection contributes to
disease pathogenesis and accelerates mucosal inflammation and
subsequent microbial translocation. A significant loss of jejunum
CD4+ T cells was detected in infected RMs where CD4+ population
decreased more than 6-fold during acute infection and remained
low during chronic infection (Table 1 and Figure 9A). In summary,
there was a significant decrease in CD4+ T cell population during
acute (mean ± SE: 11.5 ± 1.8%; p < 0.0001) and chronic (1.4 ± 0.6%;
p < 0.0001) compared to pre infection (45.2 ± 2.3%) (Figure 9B).
The reduction in jejunum CD4+ T cells from the acute to chronic
stage was also statistically significant (p = 0.0007) (Figure 9B).

Using data from 6 subjects, two-tailed Spearman’s correlation
coefficient analyses were performed at pre, acute, and chronic
infection time points for a series of pairwise comparisons

A

B

FIGURE 5 | Upstream regulator analysis predicts key regulators for gene expression. (A) Upstream regulators for the gene ACE2 as analyzed by IPA. A total of 26
predicted upstream regulators were identified as possible contributors to the change in ACE2 mRNA expression after infection. Known links between ACE2 and the
predicted upstream regulators are indicated. Different colors indicate the predicted relationships between the regulators and ACE2 gene expression. (B) HNF1A was
found to be a common upstream inhibitory regulator for ACE2, DPP4, ENPEP, and ANPEP gene expression.
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between jejunum CD4+ T cell percentages and jejunum ACE2
intensity, jejunum CD4+ frequency and area of TMPRSS2+
epithelium, and jejunum CD4+ frequency and AGTR2+ cells.
Jejunum CD4+ T cell percentages showed no significant
correlation with ACE2 expression (r = 0.214, p = 0.395)
(Figure 9C). However, a significant negative correlation was
shown between CD4 and AGTR2+ cells in jejunum (r = -0.519,
p = 0.027) (Figure 9D). Jejunal CD4+ T cell percentages showed
a significant positive correlation with TMPRSS2 expression in
villi epithelium (r = 0.738, p = 0.0005) (Figure 9E). Unlike at the
surface, TMPRSS2 expression in crypts had no significant
correlation with that of jejunal CD4+ T cell percentages (r =
0.247, p = 0.324) (Figure 9F).

Plasma MCP-1 Expression Is Negatively
Correlated With Jejunum LPL CD4+ and
Villi TMPRSS2 Expression
Soluble CD14 (sCD14) is an indirect measurement of monocyte
activation and microbial translocation as has been demonstrated
in earlier HIV studies (56, 57). Plasma sCD14 levels did not

change significantly during SIV infection in our longitudinal study
with 10 RMs (Figure 10A, mean ± SE ranged from 8802 ± 1206,
7142 ± 877, and 6589 ± 845 ng/ml for pre, acute and chronic time
points, respectively). Two-tailed Spearman’s correlation coefficient
analyses between sCD14 plasma levels and % of TMPRSS2+ tissue
in villi (Figure 10B), sCD14 concentration and AGTR2+ cells
(Figure 10C), and plasma sCD14 level and CD4+ T cells
(Figure 10D) at pre, acute, and chronic infection time points
indicated no significant correlation between sCD14 and AGTR2
+/TMPRSS2+/CD4+ T cells. Monocyte chemoattractant protein-1
(MCP-1) is one of the key chemokines that plays an important
role in regulating migration and infiltration of monocytes/
macrophages (58) and was quantified in the longitudinal study
using 10 subjects infected with SIV. A significant upregulation of
plasma MCP-1 concentration was detected during chronic stage
(mean ± SE, 257 ± 53 pg/mL) compared to pre (mean ± SE, 81 ± 5
pg/mL; p < 0.001) and acute infection (mean ± SE, 119 ± 6 pg/mL;
p < 0.01) time points (Figure 10E). Two-tailed Spearman’s
correlation analyses demonstrated a significant negative
correlation between plasma MCP-1 levels and TMPRSS2

FIGURE 6 | No significant changes in ACE2 protein expression detected in jejunum during SIV infection. Representative isotype control for ACE2 showing the
absence of nonspecific background staining (A, KM05). Representative immunofluorescence images of ACE2 expression detected in RM KM05 during pre (B), acute
(21 dpi, C), and chronic (180 dpi, D) infection. Expressions of ACE2 proteins in the jejunum epithelium are shown by yellow arrows. (E) Co-localization of ACE2
(green) and cytokeratin (red), indicated by orange arrow at the epithelial barrier, showed ACE2 expression only at the intestinal brush border. DAPI stains the cell
nucleus. (F) Scatter plots (indicating mean ± SE) of ACE2 immunofluorescence pixel values for pre, acute (21 dpi), and chronic (180 dpi) infection (n=6). An average
of 20-23 regions of interest (20X objective) was randomly selected from villi from each animal to quantify ACE2 expression, and the mean intensity of these regions
for each individual is represented by each point on the scatter plot. Each animal represents a different shape.
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FIGURE 7 | Chronic infection induces significant increase in jejunum AGTR2 expression. Representative Isotype control for AGTR2 showing the absence of nonspecific
background staining (A, KP54). Representative immunofluorescence images of AGTR2 expression detected in a RM (KP54) pre (0 dpi, B), acute (21 dpi, C), and chronic
(180 dpi, D) infection. Expressions of AGTR2 proteins in the lamina propria region of the jejunum are shown by red arrows. Note there was a significant number of AGTR2+
cells detected during chronic infection in this animal. (E) A scatter dot plot representing the mean frequency of AGTR2+ cells/mm2 of jejunum tissue in 6 individuals is shown
at pre, acute, and chronic infection time points. The horizontal line denotes the mean frequencies (± SE) of each group. Twenty equal-size regions of interest were manually
drawn in the lamina propria and analyzed with the multiplex IHC module of the Halo software. The mean cell counts of these regions for each individual is represented by
each point on the scatter plot. Statistically significant differences between groups as calculated by Bonferroni analysis are indicated with asterisks (*p < 0.05). Each animal
represents a different shape.
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FIGURE 8 | SIV infection significantly downregulates jejunum villi TMPRSS2 expression. Representative isotype control for TMPRSS2 showing the absence of
nonspecific background staining in jejunum villi (A, RM JK56). Representative immunohistochemistry (IHC) images of TMPRSS2+ epithelium are shown for JK56
during pre infection (B, 10x objective; C, 20x objective), acute (21 dpi, and D), chronic (180 dpi, E). (C) Jejunum villi at 20x objective magnification shows the
expression of TMPRSS2 as a transmembrane protein just beneath the epithelial brush border. (F) Representative isotype control for TMPRSS2 showing the absence
of nonspecific background staining in jejunum crypts (KA76). Representative IHC images of TMPRSS2+ epithelium during pre (G), acute (H) and chronic (I) infection
are shown in jejunum crypts for RM KA76. Note, unlike in villi, TMPRSS2 is strongly expressed in the jejunum crypts during chronic infection (E, I). The red arrows
depict localization of TMPRSS2. Scatter plots showing percentage area of TMPRSS2+ epithelium in villi (J) and crypts (K) during pre, acute, and chronically
infection. The larger horizontal line denotes mean frequencies (± SE) for each category (n=6). TMPRSS2 expression in the villi epithelium and crypts was quantified by
gating ROI. An average of 20 and 30 fields (10x objective) for villi and crypts, respectively, was used to quantify TMPRSS2+ epithelium from each animal. Each point
on the scattered plot represents mean TMPRSS2+ area for each individual. Each symbol represents individual macaque in each plot. Asterisks indicate statistical
differences between stages of infection as calculated by Bonferroni analysis (*p < 0.05; **p < 0.01).
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FIGURE 9 | Loss of jejunum lamina propria CD4+ T-cells correlates with increased AGTR2 and decreased TMPRSS2 expression during infection. (A) Representative
contour plots showing loss of jejunum lamina propria CD4+ T cells during acute (21 dpi) and chronic (180 dpi) compared to pre (0 dpi) infection time point. In each plot,
the percentage of CD4 and CD8+ T cells are shown in the top left and lower right position, respectively. (B) Scatter plots showing percentages of CD4+ T cells (mean ±
SE) from jejunum LPL with significant loss of CD4+ T cells during acute and chronic infection compared to pre time points (n=10). Each animal is symbolized by a
different shape. Asterisks indicate statistical differences between stages of infection as calculated by Bonferroni analysis (***p < 0.001 and ****p < 0.0001). A two-tailed
Spearman’s correlation coefficient analysis between percentages of CD4+ and ACE2 mean fluorescence intensity (C), percentage of CD4+ and AGTR2+ cells (D), CD4+
and TMPRSS2+ in villi (E), and CD4+ and TMPRSS2+ in crypts (F) is shown for 6 individuals at pre, acute, and chronic infection. Green, blue, and red open circles
denote pre, acute, and chronic infection time points, respectively. Significant negative and positive correlation was detected between percentages of CD4+ T cells and
AGTR2+, and TMPRSS2+ in villi, respectively.
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expression in villi epithelium (r = 0.542, p = 0.020, Figure 10F)
and between plasma MCP-1 levels and the CD4+ T cell
percentages from jejunum LPL (r = 0.792, p < 0.001,
Figure 10H). No statistically significant correlation was detected
between plasma MCP-1 level and the frequency of AGTR2+ cells
in jejunum (r = 0.342, p = 0.165) (Figure 10G)

Dynamics of Plasma ACE2 Level
Circulatory plasma ACE2 protein levels from 10 subjects at pre and
post infection time points were quantified by ELISA to determine
whether changes in ACE2 expression were tissue specific. The
ACE2 concentration during pre infection ranged from 0.17 ng/
mL to the highest 1.79 ng/mL (mean ± SE: 0.77 ± 0.15 ng/mL). After
infection, the ACE2 level went down as low as 0.39 ± 0.11 ng/mL at
90 dpi. ACE2 level reverted after 90 dpi, reaching an almost normal
concentration of 0.70 ± 0.09 ng/mL at 180 dpi. Plasma ACE2
concentrations remained low during most of the post infection time
points compared to pre infection (Figure 11A), but ACE2 levels at
post infection time points were not statistically significant except at
112 dpi (p = 0.003).

Dynamics of Plasma Ang II Quantification
Circulatory plasma Ang II levels in 10 subjects during pre and post
infection were measured by ELISA. Ang II plasma concentration
during pre infection ranged from 59.7 to 921.3 pg/mL (mean ± SE:
365.3 ± 89.6 pg/mL). After infection, Ang II concentration varied
widely at 14 dpi (ranging from 33.5 to 1543.7 pg/mL) (Figure 11B).
No significant changes in Ang II concentration were detected
between pre and any of the post infection time points. Ang II
levels remained higher at most of the post infection time points,
except at 112 and 145 dpi, compared to pre infection (Figure 11B).
The highest and lowest plasma Ang II levels were detected at 90 dpi
(mean ± SE: 614.9 ± 114.3 pg/mL) and 145 dpi (mean ± SE: 54.9 ±
5.9 pg/mL), respectively (Figure 11B). Though we detected a
negative correlation between ACE2 and Ang II plasma
concentration in infected RMs, it was not statistically significant.

Significant Changes in Plasma AGTR1
Concentrations During SIV Infection
Plasma AGTR1 concentrations were measured in 10 subjects at
pre and post infection time points. Before infection, AGTR1
levels ranged from 232.1 to 336.2 ng/mL of plasma (mean ± SE:
298.6 ± 11.5 ng/mL). AGTR1 level reduced during infection with
the lowest at 180 dpi (mean ± SE: 227.3 ± 8.8 ng/mL)
(Figure 11C). We also observed a significantly reduced
AGTR1 plasma level compared with pre infection at 21 dpi
(p = 0.0006), 40 dpi (p = 0.0086), 90 dpi (p = 0.0220), 112 dpi (p =
0.0021), and 180 dpi (p < 0.0001).

No Significant Changes in Serum LDH
Activity During SIV Infection
A significantly higher level of serum LDH has been found to be
correlated with HIV progression and the prevalence of
opportunistic infections in HIV infected patients (59, 60). We
therefore wanted to study the dynamics of LDH level in infected
RMs, as well as determine its association with ACE2 level. LDH

concentration was measured in serum during SIV infection in our
longitudinal study with 10 RMs. Serum LDH concentration from
uninfected RMs was 602.9 ± 89.2 U/L (mean ± SE) and it remained
stable throughout the period of the study with highest concentration
at 14 dpi (mean ± SE: 923.5 ± 197.0 U/L) and lowest at 180 dpi
(mean ± SE: 423.0 ± 70.3 U/L) (Figure 11D). No significant
difference in LDH level was observed between any of the time
points in the study. A correlation analysis between serumACE2 and
LDH levels detected a negative correlation, however it was not
statistically significant.

No Significant Changes in Plasma
Inflammatory Cytokines Level
Plasma IL-6, IL-1b, and TNF-a concentration was measured
during pre, acute (21 dpi), and chronic infection (180 dpi). Mean
concentrations of IL-6, IL-1b, and TNF-a pre infection were 0.69
± 0.27 pg/mL, 0.07 ± 0.03 pg/mL, and 0.32 ± 0.06 pg/mL (mean ±
SE), respectively (Figures 11E–G). IL-1b concentration reduced
slightly during acute (0.04 ± 0.01 pg/mL) and reverted back to
normal during chronic infection (0.07 ± 0.03 pg/mL)
(Figure 11F). Similar to IL-1b, TNF-a level was reduced
during acute (0.17 ± 0.05 pg/mL) and reverted back to normal
during chronic infection (0.44 ± 0.12 pg/mL) (Figure 11G). In
contrast, compared to pre infection, IL-6 concentration gradually
increased during acute (1.08 ± 0.34 pg/mL) and chronic infection
(3.59 ± 1.42 pg/mL) (Figure 11E). However, no significant
differences in cytokine levels were detected among different
time points. The correlation analysis between inflammatory
cytokines and ACE2, TMPRSS2 and AGTR2 revealed no
significant correlation.

No Significant Changes in Lung ACE2
Expression After Infection
Considering the importance of the COVID-19 pandemic, we
extended our study to examine levels of ACE2 protein expression
in lung tissue to understand the degree of risk to HIV patients in
acquiring SARS-CoV-2 infection. ACE2 expression was determined
by IHC in cohorts of uninfected, acutely infected (21 dpi), and
chronically infected subjects (180 dpi) (n=6). A clear and distinct
ACE2 distribution in the bronchiole epithelium was observed
(Figure 12). Therefore, the bronchiole epithelium was designated
as our ROI for determining ACE2 expression in every bronchiole in
each tissue section. ACE2 expression in acutely (mean ± SE, 1.19 ±
0.33%, p = 0.415) and chronically infected RMs (mean ± SE: 3.75 ±
0.93%, p = 0.142) was not statistically significant compared to pre
infection (mean ± SE: 3.05 ± 1.07%) (Figure 12F). Overall, ACE2
expression at 21 dpi decreased in both lung and jejunal tissues
(Figures 6, 12) and reverted back to normal during chronic
infection in lung tissues.

DISCUSSION

The role of different RAS components is well-established in many
physiological disease conditions such as hypertension, congestive
heart failure, obesity, hepatic complications, kidney disease,
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FIGURE 10 | Plasma sCD14 and MCP-1 concentration and its correlation with jejunum CD4+, AGTR2+, and TMPRSS2+ expression in jejunum tissue. (A) Scatter
plots showing plasma concentration of sCD14 (ng/mL) at pre (0 dpi), acute (21 dpi), and chronic (180 dpi) SIV infection. The error bars represent the mean ± SE for
each time point (n=10). A two-tailed Spearman’s correlation coefficient analysis between plasma sCD14 concentration and TMPRSS2+ in villi (B), plasma sCD14
level and AGTR2+ cells (C), and plasma sCD14 level and percentages of CD4+ in jejunum LPL (D) is shown for 6 subjects at pre, acute, and chronic infection.
(E) Scatter plots showing plasma concentration of MCP-1 (pg/mL) at pre, acute, and chronic SIV infection. The error bars represent the mean ± SE for each time
point (n=10). Asterisks indicate statistical differences between stages of infection as calculated by Bonferroni analysis (*p < 0.05 and **p < 0.005). A two-tailed
Spearman’s correlation coefficient analysis between plasma MCP-1 concentration and TMPRSS2+ in villi (F), plasma MCP-1 level and AGTR2+ cells (G), and plasma
MCP-1 level and percentages of CD4+ in jejunum LPL (H) is shown for 6 subjects at pre, acute, and chronic infection. Significant negative correlations were
detected between MCP-1 levels and TMPRSS2+ in villi and percentages of CD4+ T cells. Each symbol represents individual macaque. Green, blue, and red open
circles denote pre, acute, and chronic infection time points, respectively.
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diabetes, ocular diseases, and neurological disorders including
Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis
(1). Emerging evidence from the COVID-19 pandemic suggests
that ACE2 and TMPRSS2, key players in RAS, are major receptors
for SARS-CoV-2 spike proteins (61, 62). ACE2 is highly expressed
in the intestinal epithelium where SARS-CoV-2 infection induces
increased production of intestinal proinflammatory cytokines,
intestinal infection, and the release of viral RNA through feces
(61). HIV associated gastroenteropathy is initiated by early loss of
CD4 T cells, loss of mucosal barrier, lack of anti-inflammatory
response, increased microbial translocation, and chronic immune
activation. Recent studies demonstrated a 1.5 to 3-fold increase in
mortality in HIV patients with COVID-19 coinfection compared to
HIV infection alone (63–65). Out of 38 million HIV infected living

people, 73% of them have access to antiretroviral therapy (ART).
The majority of those HIV patients not receiving ART reside in the
Sub-Saharan Africa (66). Recent studies suggest that SARS-CoV-2
infection inHIV infected patients, those are not treated with ART or
has low CD4 count, have increased severity of COVID-19
compared to those who are negative for HIV (67–69). Moreover,
COVID-19 outbreak has also disrupted the ongoing HIV treatment
and prevention program worldwide, which may eventually increase
the percentage of HIV infected people without ART. Currently
several antiretroviral drugs including tenofovir, darunavir, and
maraviroc are being investigated for their potential usage for the
prevention of SARS-COV-2 replication (70). Therefore, it’s
important to understand the effect of HIV infection on ACE2
receptors expression as well as the expression of different RAS
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FIGURE 11 | Dynamics of different renin angiotensin system proteins, lactate dehydrogenase, and cytokine production in plasma/serum. (A) Plasma concentration
of ACE2 (ng/mL) at different time points of infection. The plasma ACE2 gradually decreased from acute to chronic infection with the lowest concentration at 90 dpi,
then recovered during the late chronic stage of infection. (B) Plasma concentration of Angiotensin II (Ang II, pg/mL) at different time points. Though not significant,
post infection showed a slight increase of Ang II compared to the pre infection time point, except at 112 and 145 dpi. (C) Plasma concentration of angiotensin II
receptor 1 (AGTR1) (ng/mL) during infection. A gradual decrease of plasma AGTR1 was detected from 14 dpi onward. (D) Serum LDH activity (U/L) in infected RMs
and uninfected controls were evaluated using a Beckman Coulter AU 480 analyzer. No significant changes in serum LDH activity were detected across the different
time points. Plasma IL-6 (E), IL-1b (F), and TNF-a (G) concentrations (pg/mL) at pre and post infection time points were evaluated by U-plex biomarker NHP
multiplex assay. No significant changes were detected at any time points for any of the proinflammatory cytokines tested. The error bars represent the mean ± SE for
each time point (n=10). Each symbol represents individual macaque in each plot. Asterisks indicate statistical differences between time points, as calculated by
Bonferroni for ACE2 and Ang II and Tukey-Kramer for AGTR1 (*p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001).
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proteins and genes in jejunum tissue and peripheral circulation,
which might have a major impact on COVID-19 transmission and
pathogenesis. In this study we have used RM-SIV model to address
some of these questions which is practically impossible to answer in
HIV infected subjects without ART during acute and chronic
infection. We studied the expression pattern of ACE2, TMPRSS2,
and other RAS related proteins and genes in blood, lung, and
jejunum tissues to understand their role in HIV/SIV pathogenesis
and possible impact on SARS-CoV-2 coinfection. This study was
subject to some limitations. The animal sample size was modest;
some of the data variation could have been avoided by increasing it.
However, this study has longitudinal strength, using jejunum and
plasma samples obtained throughout the course of SIV infection.

Under homeostatic conditions, we observed a very strong
expression of ACE2 in the jejunum epithelium, as reported
elsewhere (71). As in intestinal inflammatory diseases, gut
inflammation is one of the most important clinical manifestations
of SIV/HIV infection. Consistent with various gut inflammatory
conditions (32, 33, 35), ACE2 mRNA expression was significantly

downregulated during SIV infection. The negative correlation
detected between ACE2 and IL-6 gene expression in the jejunum
suggested a negative impact of inflammation on ACE2 expression,
or vice-versa. This may induce gut inflammation directly or
indirectly, as reported for other intestinal inflammatory diseases
(33, 51, 72, 73). Earlier studies using ACE2 knockout mice have
addressed the supplementary role of ACE2 in regulating gut
microbiome ecology, intestinal inflammation, innate immunity,
and amino acid homeostasis (16, 74). ACE2 downregulation due
to SARS-CoV-2 infection enhances systemic inflammation in
COVID-19 patients (15). Decreased ACE2 has been shown to
impede metabolism of Ang II into the beneficial peptide Ang 1-7,
resulting in luminal AGTR1 activation and enhanced permeability,
and in turn led to leaky gut syndrome (17). Themechanisms behind
the loss of ACE2 in SIV infection could be different from those of
SARS-CoV-2 infection. However, downregulation of ACE2
during SIV infection could also account for similar downstream
clinical sequelae such as leaky gut, dysbiosis, and loss of
epithelial homeostasis.

FIGURE 12 | Reduced ACE2 expression detected in lung during acute infection. Representative isotype control for ACE2 showing the absence of nonspecific
background staining in lung (A, RM FF25, 10x objective). Representative immunofluorescence images of ACE2 expression detected during pre (B, RM FF25), acute
(21 dpi in EM64, C), chronic (D, 180 dpi in KP54, 10x objective), and chronic (E, 180 dpi in KP54, 20x objective) SIV infection. Expressions of ACE2 proteins in the
bronchiole epithelium are shown by black arrows. (F) Scatter plots (with means ± SE) showing percentages of ACE2 positive tissue per total ROI in the bronchiole
epithelium. Each point represents the average percentage of ACE2 positive tissue area from different bronchioles of each individual. ACE2 expression was reduced
during acute infection, but the values were not statistically significant. ACE2 expression reverted to normal levels in chronic infection and remained higher compared
to acute infection (n=6).

Boby et al. RAS in SIV Infection

Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 83568621

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Reduced ACE2 expression in enteroids grown from
chronically infected RMs also suggests that SIV infection
negatively impacts ACE2 gene expression in newly generated
epithelial cells. ACE2 associated genes like ANPEP and DPP4,
which were reported as markers of differentiated intestinal
epithelial cells (75, 76), were significantly downregulated in
enteroids from infected RMs compared to uninfected controls.
This suggests that SIV infection contributes to the reduction of
ACE2, which in turn reduces the expression of genes responsible
for epithelial differentiation. A recent finding using ACE knock
out (ACE2-/-) mice also suggests that ACE2-/- enteroids have
fewer LGR5+ cells and markedly increased permeability
compared to ACE2+/+ enteroids (18). Our observation also
supports a recent finding in which DPP4, ANPEP, and ENPEP
were reported to be the top three genes correlated with ACE2
expression via single cell RNA-seq analysis (77). SOX9 is a
transcription factor that suppresses and accelerates ISC
proliferation and differentiation, respectively (53). Negative
correlation between ANPEP and SOX9 as well as DPP4 and
SOX9 suggests that impairment of ISC proliferation and
differentiation was also regulated by SOX9 expression. HNF1A,
a transcriptional regulator, regulates the expression of various
important genes including those associated with intestinal cell
differentiation and cadherin expression (78, 79). Our IPA
analysis revealed various upstream regulators, among which
HNF1A was found to be the most likely upstream negative
regulator of ACE2 and associated proteins ’ mRNA
transcription. Therefore, HNF1A may be a major regulator in
intestinal ACE2, ANPEP, and DPP4 expression, with a significant
role in regulating intestinal homeostasis in SIV infection.
HNF4A, a family member of HNF1A, was also identified as an
upstream regulator of ACE2 and DPP4 gene expression in
patients with inflammatory bowel disease (33). Our data from
enteroids also suggest that SIV infection has minimal role in
regulating NRP-1 gene expression in intestinal epithelial cells.
Further studies are needed to determine the protective role of
ACE2 and its associated genes/proteins in regulating intestinal
homeostasis during SIV infection and pathogenesis.

ACE2, ANPEP, DPP4, and ENPEP have been well documented
as potential receptors for human coronaviruses (77, 80). Multiple
clinical and experimental studies have concluded that a deficiency of
ACE2, induced by inhibition or deletion, may cause hypertension
and even heart failure (6, 81, 82). Therefore, it is tempting to
contemplate that SARS-CoV-2 mediated inflammation and
pathogenesis may be exacerbated by the significant reduction in
ACE2 expression in jejunum in the presence of intestinal
inflammation (25, 83) and lack of intestinal homeostasis (39)
during SIV/HIV infection. The concept of reduced ACE2 receptor
expression on the cell surface leading to less SARS-CoV-2 infection
does not seem to be supported, however, as no direct correlation
was detected between ACE2 expression and the susceptibility and
severity of SARS-CoV-2 infection.

Since earlier studies have presented mostly transcriptomic data,
we expanded our study to include protein expression level in order
to have a better understanding of the role of ACE2. Though the
expression of ACE2 protein was shown to be in the same direction

as mRNA expression in jejunum tissue and enteroids, the changes
in ACE2 protein expression were statistically insignificant. This
variation in the significance profile between mRNA and protein
expression could be explained by various possible molecular and
cellular events (84). It was reported that the protein levels were more
conserved than the mRNA levels. Hence, differentially expressed
mRNA had more fold-change than that of its protein counterpart,
though both the expression profiles were in the same direction (85).
Increased cellular proliferation and stress responses detected in
epithelial cells during SIV infection (26) may also lead to the
stronger differences from an ideal correlation between mRNA and
protein expression (84). This variation could be avoided to some
extent by increasing the sample size and performing single cell
RNA-seq to precisely analyze ACE2 expression in the epithelial
cells; further studymay confirmACE2 expression levels in the gut of
SIV/HIV infection and intestinal inflammatory diseases.

TMPRSS2 cleaves the S protein and promotes SARS-CoV-2
entry in gut epithelial cells (86). TMPRSS2 was highly expressed
in both villi and crypt epithelium in jejunum tissue. During
chronic infection, TMPRSS2 expression was highly affected at
the villi surface epithelium, but not in the crypt epithelium.
Unlike protein expression, mRNA expression analysis from both
enteroids and whole jejunal tissue has shown no difference in
TMPRSS2 gene expression during infection. TMPRSS2
regulation and its biological function in jejunum tissues is not
well defined. The presence of a significant, positive correlation
between the frequency of jejunal CD4+ T cells and the expression
of villi surface epithelium TMPRSS2 possibly indicates that
during infection, loss of jejunal CD4 T cells and increased
proinflammatory IL-6 cytokines have a major impact on the
loss of surface epithelial TMPRSS2 protein compared to
TMPRSS2 expressed in crypts. The impact on TMPRSS2
expression of the pathological tissue environment, but not the
molecular event, is well supported by our transcriptomic
analysis, where no changes in TMPRSS2 mRNA expression
were noted in either jejunum tissue or enteroids. We were
unable to detect any upregulation of plasma sCD14 during the
course of chronic SIV infection nor any correlation between
sCD14 plasma level and CD4 depletion, TMPRSS2 villi
expression, or AGTR2+ cell frequency in jejunum tissue.
However, a significant increase in plasma MCP-1 level during
chronic infection might promote chronic proinflammatory
responses and the accumulation and activation of monocytes/
macrophages in the inflamed gastrointestinal tissue (87–91). The
negative correlation of plasma MCP-1 concentration with
TMPRSS2+ expression in jejunum villi as well as the loss of
jejunum CD4+ lamina propria cells suggests a possible role of
MCP-1 as a biomarker for the loss of jejunum CD4+ and
TMPRSS2+ cells in villi epithelium as well as a marker of
disease progression.

Ang II induces apoptosis through either AGTR1 or AGTR2 in
a cell-type dependent signaling pathway. AGTR1 mediated
apoptosis has been reported in coronary artery endothelial cells
and transformed epithelial cells (92–94). AGTR2 activation
induced apoptosis in some cells or cell lines, such as neurons,
bladder cancer cells, and PC12W cells (95–97). Unlike other cells,
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AGTR2+ cells were also expressed in the majority of jejunum
lamina propria cells. The strong and significant increase in
AGTR2+ cells during chronic infection may contribute to
disease progression by inducing intestinal epithelial cell
apoptosis. Our assumption of apoptosis due to increased
percentage of AGTR2+ cells is supported by an earlier study
on an intestinal epithelial cell line (Caco-2) where the induction
of epithelial cell apoptosis could be triggered by the activation
of AGTR2 through GATA-6 and the Bax signaling pathway
(27). AGTR2 has also recently been shown to be a potential
coreceptor for SARS-CoV-2 entry in various human cells,
including those of the central nervous system (98, 99).
Therefore, an increased expression of AGTR2+ cells in gut
tissues during infection may promote increased susceptibility to
SARS-CoV-2 infection.

CONCLUSION

Increased COVID-19 mediated mortality has been documented
in immunosuppressed patients, yet HIV infection has yet to be
identified as a potential comorbid condition in studies of
hospitalized patients. There are conflicting reports on the
relationship between HIV and SARS-CoV-2 infections with
respect to mortality. We observed a significant downregulation

of ACE2, ANPEP, DPP4, and ENPEP gene expression following
SIV infection, though confirmation is required for ACE2
expression in protein level, suggesting that ACE2 mediated
pathological changes may interfere with gut homeostasis along
with loss of mucosal CD4+ T cells. A significantly decreased
jejunal villi surface TMPRSS2 expression was also observed
during SIV infection. In addition to the CD4+ T cell depletion,
increased IL-6 mRNA, MCP-1 and AGTR2 expression may
signal inflammation, monocyte/macrophage accumulation and
epithelial apoptosis in accelerating SIV pathogenesis. HNF1A
transcription factor was predicted to be a key upstream negative
regulator of ACE2 and other gene expressions. Increased
expression of AGTR2+ cells in jejunal tissue may act as a
coreceptor in accelerating SARS-CoV-2 coinfection. A
schematic diagram presenting the overall expression of major
RAS associated proteins/genes during SIV infection is shown in
Figure 13. Further studies are needed to understand the role of
these RAS proteins in regulating different viral pathogenesis in
the HIV and SARS-CoV-2 coinfection model.
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Supplementary Figure 1 | The representative figures depict the gating strategy
for region of interest (ROI) for ACE2 (A), TMPRSS2 staining in villi (B) and crypts (C).
ROIs were manually drawn (in yellow or red lines) in the epithelium of randomly
selected villi/crypts for the quantification of ACE2/TMPRSS2 intensity in epithelial
cells.

Supplementary Figure 2 | Bar plots of ACE2 and associated genes expression
in the jejunum tissue of uninfected RM as determined by qRT-PCR. mRNA
expression level of ACE2, TMPRSS2, AGTR1, AGTR2, and ADAM17 was
determined in relation to expression of internal control GAPDH mRNA by
subtracting Ct of gene of interest (GOI) from GAPDH. The bar graphs represent
mean ± SE from 6-8 healthy RM.

Supplementary Figure 3 | Bar plots of jejunum ACE2 gene expression are
shown in male (n=3) and female (n=3) SIV-uninfected RMs at their pre infection time
point. No statistically significant differences of ACE2mRNA expression among male
and female macaques were detected with paired T-test.

Supplementary Figure 4 | Expression of cytokines in the jejunum tissue of
uninfected RM as determined by qRT-PCR. mRNA expression of IL-1b, IL-6, and
TNF-a. mRNA expression level was determined in relation to expression of internal
controlGAPDHmRNA by subtracting Ct of gene of interest (GOI) fromGAPDH. The
bar graphs represent mean ± SE from 6-8 healthy RM.

Supplementary Figure 5 | Bar plots of jejunum ACE2 protein expression are
shown in male (n=3) and female (n=3) SIV-uninfected RMs at their pre infection time
point. No statistically significant differences of ACE2 protein mean fluorescent
intensity (MFI) values among male and female macaques were detected with
paired T-test.

Supplementary Figure 6 | (A, B) Representative immunohistochemistry images
of AGTR2 expression detected in a RM (KP54) during pre infection. (B) The inset in
(A) shows AGTR2+ cells in the epithelial region of the jejunum crypts (green arrows).
(C) Bar plots of jejunum AGTR2+ cells/mm2 are shown in male (n=3) and female
(n=3) SIV-uninfected RMs at their pre infection time point. No statistically significant
differences in the jejunum AGTR2+ cells/mm2 among male and female macaques
were detected with paired T-test.

Supplementary Figure 7 | Bar plots of jejunum TMPRSS2 protein expression in
villi epithelium are shown in male (n=3) and female (n=3) SIV-uninfected RMs at their
pre infection time point. No statistically significant differences in the area of
TMPRSS2+ tissue in villi epithelium among male and female macaques were
detected with paired T-test.
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