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Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China

* Correspondence: zhangtao@yzu.edu.cn (T.Z.); wzhang25@njau.edu.cn (W.Z.)
† These authors contributed equally to this work.

Abstract: Background: Maize mesophyll (M) cells play important roles in various biological processes
such as photosynthesis II and secondary metabolism. Functional differentiation occurs during M-
cell development, but the underlying mechanisms for regulating M-cell development are largely
unknown. Results: We conducted single-cell RNA sequencing (scRNA-seq) to profile transcripts in
maize leaves. We then identified coregulated modules by analyzing the resulting pseudo-time-series
data through gene regulatory network analyses. WRKY, ERF, NAC, MYB and Heat stress transcription
factor (HSF) families were highly expressed in the early stage, whereas CONSTANS (CO)-like (COL)
and ERF families were highly expressed in the late stage of M-cell development. Construction of
regulatory networks revealed that these transcript factor (TF) families, especially HSF and COL,
were the major players in the early and later stages of M-cell development, respectively. Integration
of scRNA expression matrix with TF ChIP-seq and Hi-C further revealed regulatory interactions
between these TFs and their targets. HSF1 and COL8 were primarily expressed in the leaf bases and
tips, respectively, and their targets were validated with protoplast-based ChIP-qPCR, with the binding
sites of HSF1 being experimentally confirmed. Conclusions: Our study provides evidence that several
TF families, with the involvement of epigenetic regulation, play vital roles in the regulation of M-cell
development in maize.

Keywords: scRNA-seq; M-cell development; pseudo-time analysis; coexpression and regulatory
network; transcript factor; maize

1. Introduction

As a C4 plant species, maize plays an increasingly important role in global grain
production. Its high yield potential is rooted in its leaf structure and functional differentia-
tion of mesophyll (M) and bundle sheath (BS) cells. Maize leaves form a classical Kranz
leaf anatomy, which is featured by closely spaced parallel veins that are encompassed
by two morphologically distinct photosynthetic cell types: a ring of BS cells followed by
one or more concentric files of M cells. BS cells are characterized by thick cell walls and
centrifugally arranged chloroplasts with large starch granules and unstacked thylakoid
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membranes, whereas M cells are generally characterized by randomly arranged chloro-
plasts with stacked thylakoids and little or even no starch [1]. The anatomically distinct
chloroplasts in M and BS cells give them some distinct functions. For example, chloroplasts
in M cells contain grana thylakoids where both PSII and PSI systems perform linear elec-
tron transport, and photoreduction of NADP+ for fixing CO2. In contrast, BS cells have
agranal chloroplasts and lower PSII activity, and perform most of the reactions of the Calvin
cycle [2]. In addition, biochemical studies have revealed that the enzymes involved in lipid
biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferen-
tially located in M chloroplasts, while the enzymes involved in starch synthesis and sulfur
import preferentially accumulate in BS chloroplasts. The coordination of anatomical and
biochemical components makes the C4 plant species possess the most efficient photosyn-
thetic carbon assimilation system. To advance our understanding of highly photosynthetic
capacity for carbon assimilation in C4 plants, it is important to understand the regulatory
mechanisms underlying functional differentiation of M and BS cells.

The underlying mechanisms controlling functional differentiation between maize M
and BS cells have been intensively studied at the levels of biochemical rationales [3–5], gene
expression [6–8] and gene regulation [9–14]. Different soluble antioxidative compounds,
for example peroxiredoxins that can mitigate photo-oxidative stress and damage, have
been found to be accumulated at higher levels in the chloroplasts of mesophyll cells [4].
Several genes, such as PPDK, psa1 and psa2, with functions in chloroplast biogenesis, have
been genetically identified and experimentally verified in maize [15], though their roles
in regulating the M-cell development are largely unknown. These questions are difficult
to answer using the conventional bulk M-cell RNA-seq approach that neutralizes the
expression level of each gene from different M cells.

Here, we studied M-cell development and regulation by conducting a single maize-
leaf-cell RNA sequencing (scRNA-seq) followed by pseudo-time data analyses. We revealed
that WRKY, ERF, COL, NAC, MYB and HSF transcription factor (TF) families were involved
in functional differentiation of M cells during their development. Especially, COL and HSF
families functioned in the early and later stage of M-cell development, respectively. We
found that HSF1 and COL8 (a mesophyll cell-development regulator) functioned in base
and tip development, respectively, and some genes were coregulated by HSF1 and COL8
in the base but not regulated by COL8 in the tip. In addition, the binding sites of HSF1
were experimentally confirmed in maize. Thus, our study provides evidence showing that
M-cell development is regulated through a TF-related regulatory network in maize.

2. Materials and Methods
2.1. Plant Growth

Maize (Zea mays “B73”) seeds were germinated at room temperature (RT). The ger-
minated seeds were transferred to pots with soil and grown in a growth chamber with a
temperature between 25 ◦C and 28 ◦C and a 16 h/8 h light–dark cycle. The plants were
grown for 10 days for leaf collection. The collected 10-day-old leaves were used for prepa-
ration of mesophyll (M) and bundle sheath (BS) cells for single-cell (scRNA-seq) or bulk
RNA-seq experiments.

2.2. Preparation of M and BS Cells

Isolation of M or BS cells was conducted according to the published procedures with
some minor modifications [7]. Briefly, the intact 10-day-old second leaf from individual
trifolium-stage plant was cut into slices with the long axis to 0.5–1 mm using a single-edge
razor blade.

Isolation of M cells: The leaf slices were immediately placed into a Petri dish containing
an enzymatic digestive medium (0.6 M D-Mannitol, 1.5% (w/v) cellulose (Onozuka RS),
0.75% (w/v) macerozyme (Onozuka R-10), 0.1% BSA, 20 mM KCl, 10 mM CaCl2 and 10 mM
MES, pH 5.8), and vacuumed for 30–60 min. The digestion was completed under dark
condition on a shaker with speed of 55 rpm at 26 ◦C for 4 h. The digestive solution was
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diluted to release M cells, as many as possible, from the leaf slices, by adding 10 mL W5
buffer (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose and 0.03% MES, pH 5.8).
We then used a 35 µm nylon net to separate M cells from BS cells. After filtration, the filtrate
was pelleted by a centrifuge at 80× g for 5 min, and the pellet was then washed in the W5
buffer 3–4 times. The purity of M cells was checked under a bright-field microscope. The
purified M-cell pellet was quick-frozen in liquid nitrogen and stored at −80 ◦C for later
use. The isolated M cells were used for one replicate of scRNA-seq experiment using 10×
Genomics Chromium and the two biological replicates of bulk RNA-seq.

Mechanical isolation of BS cells: The leaf slices were immediately placed into a blender
containing 50 mL pre-cold BS cell-extraction buffer (0.6 M Sorbitol, 50 mM Tris-HCl pH 8.5,
5 mM EDTA, 0.5% PVP-10 and 0.01 M DTT). The leaf slices were homogenized three times,
each for 10 s with a high-speed setting. The homogenized mixture was sequentially filtered
through a 500 µm and then an 80 µm nylon mesh. BS cells retained on the mesh were then
transferred to the 50 mL corning tube using 10 mL W5 buffer. The pellet was washed in
the W5 buffer 3–4 times by repeating the above procedures of centrifuge (300× g for 5 min)
and resuspension. The purity of BS cells was examined under a bright-field microscope.
The purified BS cell pellet was quick-frozen in liquid nitrogen and stored at −80 ◦C until
they were used. Two biological replicates of BS cells were used for bulk RNA-seq.

2.3. Reverse Transcription and Quantitative RT-PCR (qRT-PCR) Assay

Total RNA was extracted from the base and the tip samples of 10-day-old maize leaves
using TRIzol (Invitrogen, Waltham, MA, USA). After completely removing genomic DNA
contamination using DNase I, DNA-free RNA was used for synthesis of the first-strand
cDNA using the 5ÍhiScript II qRT SuperMix II (Vazyme, R223-01-AC, Nanjing, China).
qRT-PCR was performed according to the published procedures [16] with the primers being
listed in Supplementary Table S1.

2.4. ChIP-qPCR Assays of Genes Regulated by the HSF1 and COL8 Transcription Factors

Genomic DNA sequences of the heat shock factor1 (HSF1) and CONSTANS-like 8 (COL8)
gene were inserted into pCAMBIA 1305 vector, where HSF1/COL8 fused with a GFP tag
under the control of CAMV 35S promoter. The tip and the base part of the second leaf
collected from 10-day-old maize plants with three-leaf stage was used for M-cell preparation
following the aforementioned procedures. The plasmid DNA vectors harboring HSF1
and COL8 genes fused with GFP were transiently expressed in the M cells generated
from the leaf bases and tips, respectively, using PEG-mediated transfection. Upon 24 h
incubation under dark condition at 26 ◦C, the transfected M cells were cross-linked using
1% formaldehyde and collected for anti-GFP antibody (ab290, abcam) ChIP assay following
the published procedures [16]. Biologically replicated ChIP-qPCR was performed according
to the published procedures [16] with the primers being listed in Supplementary Table S1.

2.5. Validation of the HSF1-Binding Motif

The HSF1-binding motif (AGAAnnTTCT) in maize was validated using HSF1-IP-PCR
assay and dual-luciferase reporter gene assay.

For HSF1-IP-PCR assay, HSF1 overexpression plasmid DNA and the plasmid contain-
ing promoter of NAC75 (PNAC75) with the HSF1-binding and corresponding scrambled
sequences were cotransformed into M cells using the same procedures as for the afore-
mentioned HSF1-ChIP-qPCR assay. Anti-GFP antibody was used to pull down the GFP
fused with HSF1. The resulting DNA was used for PCR assays with the primers listed in
Supplementary Table S1.

For dual-luciferase reporter gene assay, the coding sequences of HSF1 gene were used
for constructing the expression cassette containing 35S::HSF1; the promoter sequences and
the corresponding scrambled sequences of NAC75 were used for generating the expression
cassettes of PNAC75: LUC. The agrobacteria containing each reporter gene were coinfil-
trated into Nicotiana benthamiana leaves with combination of PNAC75: LUC with 35S::HSF1.
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LUC signal was recorded using a chemiluminescence imaging system named Tanon-5200
(Tanon Science).

2.6. Bulk RNA-Seq and Data Analyses

Bulk RNA-seq was carried out as previously described [17]. Bulk RNA-seq data for BS
and M cells were aligned to the Zea mays AGPv4 reference genome using HISAT2 v2.1.0 [18].
The maize ensemble version of B73v4.43 gene annotation was used for calculating gene
expression levels using StringTie 1.3.3b [19]. DESeq2 [20] was used to calculate differential
gene expression (fold change > 2, q < 0.01). The expected gene numbers for each transcript
factor (TF) family in the highly expressed genes were calculated using the highly expressed
TF numbers multiplied by the ratios of TF numbers accounting for all TFs in each family in
BS and M cells, respectively. Differentially enriched TF families between BS and M cells
beyond the cutoff threshold (p-value < 0.01, chi-squared test) were also detected.

2.7. ChIP-Seq and MH-Seq Data Analyses

ChIP for H3K27me3, H3K4me3 and H3K36me3 histone marks in M cells and MNase
hypersensitivity (MH) of whole-leaf assays and sequencing library construction were
performed following the published protocols [17,21]. All ChIP-seq and MH-seq libraries
were sequenced on the Illumina Hiseq 4000 platform. The published ChIP-seq data of the
H3K27ac mark (PRJNA391551) were obtained from Sequence Read Archive (SRA) and the
reads were trimmed using fastp (v0.19.4) [22]. Clean reads for ChIP-seq and MH-seq were
aligned to Zea mays AGPv4 reference genome using BOWTIE2 v2.3.2 [23]. The regions from
the upstream 1.5 kb to the downstream 1.5kb of TSSs were divided into bins with a size of
100 bp window, and the mean values of normalized read counts were calculated for each
bin. MH-seq peak calling was performed using MACS2 [24] with parameters as -f BAMPE
g 2.2e9 –nomodel -q 0.001 –fe-cutoff 5.

2.8. Single-Cell RNA-Seq (scRNA-Seq)

The maize leaf single cells (protoplasts) were prepared following exactly the same
procedures as for isolation of bulk M cells mentioned above. All isolated individual cells
were subjected to the quality control, which included the examination of cell integrity
under bright field microscope, and the staining of cells with Trypan blue for testing cell
viability. Cells were counted using the Countess II Automated Cell Counters (Thermo
Fisher Scientific, Waltham, MA, USA) and adjusted to a concentration of 100–500 cells/µL.
Actually, the viable cell concentration was about 300–1500 cells/µL due to underestimation
of viable cell numbers by Cell Counters, which was caused by dark staining of some viable
green M cells with Trypan blue staining. The cell counter-related underestimation of viable
green protoplasts with Trypan blue staining can be improved by using hematocytometer to
count cells manually under the microscope. Single intact cells with over 80% viability were
used to index single cells for 10× Single-Cell RNA-seq (scRNA-seq) library preparation
using the 10× scRNA-seq platform (10× Genomics, Pleasanton, CA, USA) following the
manufacture’s instruction. The barcoded scRNA-seq libraries were finally sequenced using
the Illumina NovaSeq platform. Both scRNA-seq library construction and sequencing were
performed by Berry Genomics (Beijing, China).

2.9. Preprocess of scRNA-Seq Data

The raw scRNA-seq data were aligned to the AGPv4 reference genome by Cell Ranger
(v3.0.2). The files in the dir filtered_feature_bc_matrix were imported into R for constructing
the expression matrix using the Seurat packages [25]. Cells with read numbers less than
10,000 and mitochondria ratio higher than 0.2 were considered as low-quality and were
filtered out. The FindVariableFeatures function in Seurat was employed to calculate the
average expression level and dispersion for each gene. The top 1500 dispersed genes
were used to perform PCA using the RunPCA function. To reduce the dimension, we
chose UMAP (Uniform Manifold Approximation and Projection), which has a similar
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visualization quality to the tSNE (t-Distributed Stochastic Neighbor Embedding) but may
preserve more of the global structure [26]. Through UMAP analyses, the dimension of
the first 25 principal components was reduced into 2 components using the RunUMAP
function with the parameters n.neighbors = 50 and min.dist = 0.1. All cells were clustered
based on the 2 UMAP dimensions with Louvain methods using the FindNeighbors function
with dims = 1:50 and the FindClusters function with resolution = 0.05. The published maize
M-cell-related scRNA-seq data (GSE157759) were preprocessed using the same workflow,
but the cutoff value related to the read number of cells were set to 3000.

2.10. Pseudo-Time Analyses

The cell-dataset (CDS) was generated from the M-cell Seurat object by using ‘as.CellDataSet’
functions in Seurat. Pseudo-time analyses were then performed with the dataset in the
CDS format using the Monocle 2 package [27]. The cell data sets were preprocessed
using ‘estimateSizeFactors’ and ‘estimateDispersions’ functions. Dispersion table was
calculated and genes with mean expression levels > 0.1 were considered as expressed genes
for the downstream analyses. The differentially expressed genes (DEGs) were detected
using ‘differentialGeneTest’ and the genes with vst.variable = True were then used to
perform dimension reduction using reduceDimension function with parameters set as
“max_components = 2, method = ’DDRTree”. Cells were ordered according to the pseudo-
time values by the function orderCells.

2.11. Motif Analyses

Transcription factor (TF)-binding motifs for WRKY, ERF, NAC, MYB and HSF families
were downloaded from C3C4 database (http://www.epigenome.cuhk.edu.hk/C3C4.html,
accessed on 3 January 2022). Enrichment analyses of the TF binding sites within MH
peaks were performed using Analysis of Motif Enrichment (AME) in the MEME motif
enrichment function.

2.12. Weighted Coexpression Network Analysis (WGCNA)

Cells were divided into 22 clusters using ‘FindClusters’ with the parameter resolution
being set to 0.5. RNA-seq reads from the cells in each cluster were pooled and considered
as an M-cell sample with pseudo-time, which was calculated as the mean value for all cells
in the same cluster. The expression levels were normalized to log2

(RPM values). The top 75%
dispersed genes were used to construct coexpression connections. Coexpressed analysis
was performed using the WGCNA package [28].

2.13. Construction of TF Regulatory Network Using SCODE

The pseudo-time for each cell was normalized from 0 to 1. The expression matrix for
TFs was extracted from Monocle CellDataSet. Gene regulatory network associated with
dynamic TFs was constructed using the SCODE [29] with the parameter z being set to 4.
Average results of 50 runs were used to acquire reliable connections between TFs. The
network was analyzed and visualized using the Cytoscape [30].

2.14. Construction of Gene Regulatory Network

Edges between the transcription factors and target genes were constructed with the
published ChIP-seq data of 104 transcription factors (PRJNA518749), which were also
generated from maize bulk M-cell-related protoplasts [31]. PPI (promoter–promoter inter-
action) was constructed when two genes showed spatial interactions through consecutive
H3K4me3 HiChIP loops. PDI (promoter–distal interaction) was constructed based on the
published dACR-gene interaction loops and ChIP-seq peaks of transcription factors when
the peaks of transcription factors overlap dACRs in the loops [32].

http://www.epigenome.cuhk.edu.hk/C3C4.html
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2.15. GO-Term Enrichment Analyses

GO enrichment analyses were performed using the online tools in plant regulomes
database (http://bioinfo.sibs.ac.cn/plant-regulomics, accessed on 3 January 2022) [33] with
Zea mays annotations. The redundant GO-term enrichments were removed using online
tools in REVIGO (http://www.incodom.kr/REVIGO, accessed on 3 January 2022) [34].

2.16. Visualization of H3K4me3 HiChIP Network

The H3K4me3 HiChIP loop tracks were downloaded from the published epi-genome
browser (http://epigenome.genetics.uga.edu/PlantEpigenome/, accessed on 3 January
2022) [32]. The Cytoscape was used to visualize the network [30].

2.17. General Bioinformatics Software

The Sra Toolkit was used to download next-generation sequencing data in the sra
format (.sra) from the Sequence Read Archive (SRA) database. Data were converted to
the compressed fastq format using the fastq-dump function in the Sra Toolkit. FastQC
was used to perform quality control for the ChIP-seq and RNA-seq dataset. Deeptools
was used to generate tracks in BigWig format (.bw) for ChIP-seq dataset. Samtools was
used to process alignment data in bam format. The Bedtools was used to analyze genomic
coordinate datasets such as peak files and gene annotation files. R was used to perform
some data analyses and for plotting the figures.

3. Results
3.1. Single-Cell RNA (scRNA) Sequencing of the Maize Leaf

We conducted single maize leaf-cell RNA sequencing (scRNA-seq) and obtained
656,666,388 scRNA-seq reads (Q30 base content: 93.1% for RNA reads, 95.7% for Barcode
and 95.1 for UMI). The estimated cell numbers were 14,656 with a mean of read numbers
equal to 44,805 per cell and 93.7% of them were mapped to the B73 reference genome
(v4, gene annotation ensemble 4.43) (Supplementary Dataset S1). Initially, we obtained
approximately 14,656 cells, 44,805 reads per cell, 2148 median genes, and detected more
than 28,765 total genes in the population. After quality control (see Section 2), we further
filtered out the cells with the low number of reads and the reads originating from mitochon-
drial genes. We finally obtained 7354 cells with more clean reads and few mitochondria
contaminations for analyses. We then used UMAP (Uniform Manifold Approximation and
Projection) to reduce the dimension and obtained eight major supervised cell clusters (C0–
C7, C is short for Cell) using a parameter setting of ‘n.neighbors = 50’ and ‘min.dist = 0.1’
(Figure 1A). Moreover, by using the average expression levels of several well-characterized
marker genes [7] between BS and M cells in maize (Figure 1B), we revealed that Cluster
C0–C4 (n = 2192, 1695, 1527, 1375 and 465, respectively) were M-cell clusters, whereas
Cluster C5 was BS-cell clusters (n = 38). To compare the homogeneity of our scRNA-seq
and the newly generated bulk RNA-seq using the plants grown in the same condition, the
Spearman rank correlation was applied to the mean RPM (Reads per million mapped reads)
values for M-cell bulk RNA-seq and the expression matrix of M cells from scRNA-seq
data, with all values being prenormalized before a log2 transformation. We found that
gene expression profiles between scRNA-seq and conventional bulk M-cell RNA-seq data
were highly correlated (Spearman, R = 0.87, p < 2.2 × 10−16) (Figure 1C). Moreover, we
also found that our scRNA-seq data exhibited a high correlation with the recently pub-
lished scRNA-seq data generated from M cells of maize seedlings that were preprocessed
in the same way [35] (Supplementary Figure S1). In addition, we found that epidermis-
related marker gene GPAT12 was highly expressed in Cluster C6 (n = 34) and vascular
sclerenchyma-related marker gene BM5 was highly expressed in C7 (n = 28), suggesting the
possible origin of both cell clusters. Since these two cell clusters showed large differences
in the UMAP component 1, it is also possible that they belong to variant M/BS cell types
or are likely a consequence of contamination of other specialized cell types during M/BS
cell preparation. Specifically expressed genes for Cluster C6 and C7 were identified using

http://bioinfo.sibs.ac.cn/plant-regulomics
http://www.incodom.kr/REVIGO
http://epigenome.genetics.uga.edu/PlantEpigenome/
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Seurat and are listed in Supplementary Table S2. Gene Ontology (GO) term enrichment
analysis of these genes showed that functions of specific genes in Cluster C6 were mainly
involved in the (sub) cellular membrane and transferase or catalytic activity, and the genes
in Cluster C7 were overrepresented in the cellular site of cytoplasm and a function of nu-
cleotide binding (Supplementary Figure S2). These results showed that the scRNA-seq data
we generated can reveal the expression levels of maize leaf single cells, thus can be used
for the downstream analyses, and analytic procedures and methods we performed were
sufficient in generating cell transcriptomes representing major cell tissue types. Thus, we
ultimately decided to use 7254 M cells for further characterization of M-cell development.
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size of the dot represents the ratio of cells with expressed genes out of all cells. Genes with higher
expression levels in the BS cells were displayed on a grey background. (C) Scatter plot showing the
log2

(mean RPM+1) for all genes in the bulk RNA-seq data (x axis) and scRNA-seq data (y axis). The
color of each dot represents the log2

(cell numbers with expressed genes in the scRNA-seq). The correlation test
was determined using Spearman correlation test.

3.2. Characterization of Developmental Stage of M Cells Using Pseudo-Time Trajectory Analyses

To assess development stage of individual single M cells, we conducted the pseudo-
time trajectory analyses using the Monocle 2 software package [27]. In brief, we specifically
annotated each single cell with a pseudo-time value, which was calculated based on the
expression matrix of genes within 7254 single M cells. We then obtained pseudo-time-based
expression profiles of all genes from all cells (see methods). Generally, lower pseudo-time
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values represent earlier developmental stages while higher pseudo-time values reflect later
developmental stages. The primary origin of the trajectory was determined by the five
marker genes, Aspartate transaminase (AspAT), NADP-malate dehydrogenase (NADP-MDH),
pyruvate, Pi dikinase (PPDK), carbonic anhydrase (CA), and phosphoenolpyruvate carboxylase
(PEPC), as shown in Figure 2A,B. It could be switched between the other ends of the trajec-
tory (Supplementary Figure S3). The origin of the trajectory was ultimately determined
based on some biological facts, especially the M-cell marker genes that are provided below.

To determine the origin of cell state of the pseudo-time analysis, we analyzed ex-
pression profiles of five M-cell-specific genes, including AspAT, NADP-MDH, PPDK, CA,
and PEPC which are primarily involved in photosynthesis [9]. Those genes have been
reported to show the lowest expression levels in leaf base [9]. It has been reported that
the leaf base corresponds to the young cell-development stage, while the leaf tip reflects
the old and mature cell stage [36]. We further profiled the expression levels of these five
genes in different sections of a single maize leaf using the published bulk M-cell-related
RNA-seq data, which were generated from five different sliced pieces of a single maize
leaf starting from the base to the tip [37]. We found that all of them manifested much
lower expression levels in the base slice compared with the rest of slices, indicating that the
spatially differential expression levels of these genes align well with the trend of M-cell
maturation (Figure 2A). Based on the expression profiles of the five genes, the origin was
adjusted to match the expression trend as shown in the previously published data. Finally,
we constructed a pseudo-time heatmap where these five genes were lowly expressed at the
low end of pseudo-time (left) but were highly expressed at the high end of pseudo-time
(right) (Figure 2B). As a result, the origin of the trajectory was determined based on the
expression profiles of the five M-cell-specifically expressed genes.

Transgenic studies of genes with loss of function or overexpression showed that
67 genes play vital roles in two distinct stages, proliferation and expansion, of leaf develop-
ment in various species [38]. They showed that 29 out of 67 genes decrease while 38 out of
67 genes increase during maize leaf development processes [38]. We then analyzed these
genes in our scRNA-seq and found that 24 out of 29 genes decreased while 32 out of the
38 genes increased throughout the pseudo-time expression profiles, indicating the validity
of the origin for generating the pseudo-time trajectory analysis (Supplementary Table S3).

2584 pseudo-time-related differentially expressed genes (DEGs) (see methods for
identification of DEGs) were further divided into six gene clusters, referred to as Cluster
G1-G6, according to differential profiles of gene expression (Figure 2C). The published
transcriptomic datasets of maize leaves from base to tip were also analyzed [6]. We found
that genes in G1 and G4 displayed inverse expression profiles. Genes in G1 and G4 were
highly expressed in the low and high pseudo-time, corresponding to the early (base) and
the late (tip) developmental stages of leaf tissues, respectively (Figure 2D). Pseudo-time
analyses were also performed using the public repository scRNA-seq data (GSE157759) [35],
we obtained 651 overlapping genes showing the same expression profile as genes in G1
and G3, which were illustrated in Figure 2C, and 149 overlapping genes showing the same
expression profile as genes in G4, which were illustrated in Figure 2C between two datasets.
(Supplementary Figure S4A). Furthermore, several genes were selected for qRT-PCR assays,
which confirmed that COL8, FDX2, PEPC, Photosystem I subunit O were highly expressed
in the tip and WIP1 and Phospholipase D were highly expressed in the base. (Figure 2E).
GO-term enrichment analyses using genes in G1 and G4, which had inverse pseudo-time
expression profiles, revealed distinctly prominent biological potential functions (Figure 2F).
Genes in G1 were mainly involved in biological processes such as nucleosome assembly,
tricarboxylic acid (TCA) cycle, and response to water deprivation, whereas genes in G4
were involved in photosynthesis, providing additional evidence that supports the accuracy
of the designated trajectory origin in the pseudo-time.
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Figure 2. Dynamic expression profiles across pseudo time. (A) Expression profiles for AspAT, NAPD-
MDH, PPDK, CA and PEPC genes in the bulk M-cell RNA-seq data generated from different dissected
parts of the single leaf starting from the base to the tip as shown in the diagram (top) and the image
form the real leaf (bottom). (B) Heatmap showing expression levels of AspAT, NAPD-MDH, PPDK,
CA and PEPC across the pseudo-time. (C) Expression levels for genes in Cluster G1 and Cluster G4
in the base and the tip from the published data sets. Boxplot showing expression levels for genes
in Cluster G1 and Cluster G4 in the base and the tip from the published data sets. Significance
test was determined using two-tailed Wilcoxon method (** indicates p < 0.01). (D) Expression
heatmap exhibiting 2584 highly dynamically expressed genes across the pseudo-time during M-cell
development. (E) RT-qPCR assays using genes selected from Cluster G1 and G3 and G4, respectively,
which were conducted using mRNA extracted from the leaf bases and the leaf tips, respectively. The
relative expression levels were presented as mean ±SD from three technical replicates. Significance
test was determined using one-sided t-test, * indicates p < 0.05, ** indicates p < 0.01. (F) Semantic
similarity-based scatterplot showing the enriched GO terms for Cluster G1 and Cluster G4 genes. The
color of each dot represents the log10

(p-value) for the significance of the GO-term enrichment; the size
of each dot represents the frequency of the GO term in the underlying GOA database (more general
terms exhibit larger bubbles).
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Collectively, these analyses indicate that pseudo-time trajectory analysis helps to dis-
sect transcriptomic heterogeneity in complex tissues and study transcriptomes of numerous
cell types simultaneously.

3.3. Epigenomic Signatures of Genes in G1 and G4

After scrutinizing the gene expression levels of several clusters, we found that the
expression levels of 25% quantile, median, and 75% quantile of the genes in G1 were higher
than those of the genes in G4 in the scRNAs-seq data, but were less than those of genes in
the G4 in the bulk RNA-seq (Figure 3A). To explore whether distinct epigenomic regulations
exist across different genes, we scrutinized epigenetic signatures upon integrating MNase
hypersensitive sequencing (MH-seq), which was generated from the 10-day-old maize
leaves, with our newly generated (H3K27me3, H3K4me3 and H3K36me3) or published
(H3K27ac) ChIP-seq data [39] that were generated from the bulk M cells. After dividing
all annotated maize genes into low, medium and high expression levels (FPKM values),
we plotted the normalized read counts from each epigenetic mark spanning ±1.5 kb of
the transcription start sites (TSSs) of all annotated genes. We observed that the active
marks, MNase hypersensitive sites (MHSs), H3K36me3, H3K4me3 and H3K27ac, were
positively correlated with gene expression levels, whereas the repressive mark, H3K27me3,
was largely anticorrelated with gene expression levels (Figure 3B). The mean values for
three random scRNA-seq gene sets with the equivalent numbers of genes (each containing
531 genes) to those in G1 (662 genes) and G4 (401 genes) displayed similar trends as all
scRNA-seq genes, indicating that the number of genes did not affect the overall enrichment
levels of histone marks examined (Figure 3C). We then performed similar analyses to in
Figure 3B for all scRNA-seq genes (genes identified from the scRNA-seq data), G1 and G4
scRNA-seq genes. We observed that the scRNA-seq genes in G4 were more enriched with
active marks, but less enriched with H3K27me3 compared with the scRNA-seq genes in
G1, whose expression levels of 25% quantile, median and 75% quantile were higher than
those of genes in G4 (Figure 3A,D). Compared with the scRNA-seq genes in G1 and G4,
scRNA-seq genes with the lowest median expression levels in the scRNA-seq and the bulk
RNA-seq manifested diverse enrichment profiles of these marks (Figure 3D). However, it is
still explicit that scRNA-seq genes had the highest enrichment of H3K27ac and H3K36me3,
and the lowest enrichment of H3K27me3 (Figure 3D). Unlike what we detected in Figure 3B,
active marks and H3K27me3 did not exhibit a positive and negative correlation with gene
expression levels of three types of scRNA-seq genes (all scRNA-seq genes, scRNA-seq
genes in Cluster G1 and G4). Thus, compared with all the genes in the maize genome,
scRNA-seq genes in Cluster G1 and G4 were differentially modified with histone marks.

Our analyses indicate that genes with distinctly prominent functions in leaf tissue,
such as those in G1 and G4, are tempo–spatially regulated, at least partially, through
epigenetic regulation during leaf development.

3.4. Construction of Transcription Factor (TF) Regulatory Network

Among a total of 217 TFs that showed dynamic pseudo-time expression profiles in
transcription factor Cluster TF1-TF5 extracted from G1–G5, which represent the expression
profiles of TFs in each cluster (Figure 4A), we found that WRKY, ERF, NAC, MYB and HSF
TF families were dominant in Cluster TF1, TF3 and TF4 (Figure 4B). Genes in Cluster TF1
and TF3 were highly expressed in the low pseudo-time stage, whereas genes in Cluster TF4
were highly expressed in the high pseudo-time stage (Figure 4A). Thus, Cluster TF1/TF3
and TF4 genes might function in the early and late stage of M-cell development, respectively.
To identify TF families preferentially expressed in BS and M cells, we compared ratios of
the actual and expected numbers of highly expressed TFs separately in BS and M cells for
each family using our newly generated bulk RNA-seq data (chi-squared test) (Figure 4C).
Our analyses revealed that WRKY and ERF families were expressed at significantly higher
levels in the M cells than those in the BS cells, which is in agreement with the previous
findings in maize [6,7]. Moreover, WRKY and ERF families are also mesophyll cell-specific
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TFs in Arabidopsis [40]. Therefore, these findings indicate that both TF families may be
essential in controlling M-cell development.
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Figure 3. Characterization of expressed genes in the scRNA-seq data. (A) The expression levels
(RPKM) of genes in different gene groups between the scRNA-seq and the bulk RNA-seq data sets.
Random gene numbers of all genes were determined using the mean value of the gene numbers
between Cluster G1 and Cluster G4 genes. (B) Normalized read counts for MHS and several histone
marks across ±1.5 kb regions of TSSs of all annotated genes with different expression levels (RPKM,
high, medium and low, each with the same number of genes) in the maize genome. Active marks
(MHS, H3K27ac, H3K36me3 and H3K4me3) display a positive correlation with the expression
levels of overlapping genes, while repressive mark, H3K27me3, is overall anticorrelated with the
expression levels of overlapping genes. (C) Normalized read counts for MHS and several histone
marks (H3K27ac, H3K36me3, H3K4me3 and H3K37me3) across ±1.5 kb regions of TSSs for the
scRNA-seq genes and the mean values for three random replicates, the grey point represents actual
values for the three replicates. (D) Normalized read counts for MHS and several histone marks
(H3K27ac, H3K27me3, H3K36me3 and H3K4me3) across ±1.5 kb regions of TSSs for genes in Cluster
G1 and Cluster G4, the scRNA-seq genes were used as control.
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Figure 4. Identification of key transcription factors in M-cell development. (A) Heatmap showing
the expression profiles of 217 highly dynamically expressed TFs ordered across pseudo-time in the
5 clusters. (B) Heatmap showing the number of TFs associated with different families in different
gene clusters, the annotation bar plots on the top and the right of the heatmap show the numbers of
TFs related to different families and clusters. (C) Bar plots showing the ratio of actual to expected
numbers of TFs related to different families in M and BS cells. Significance test was determined for the
ratios between M and BS cells (two-sided chi-squared test, ** indicates p < 0.01). (D) SCODE network
displaying 191 dynamically expressed TFs with a cutoff as 0.1 during M-cell development. (E) SCODE
network filtered with edge overlapping WGCNA network across M-cell development with a cutoff of
0.5, representing TFs involved in the early and the late stage of the leaf development. (F) Radar plot
showing the TF numbers related to different families in Cluster TF1 and TF3 and Cluster TF4 network.
(G) SCODE network filtered with edge overlapping WGCNA network across M-cell development
with a cutoff of 0.5, representing TFs involved in the early stage of leaf development. (H) SCODE
network filtered with edge overlapping WGCNA network across M-cell development with a cutoff
of 0.5, representing TFs involved in the late stage of leaf development. The size of the node in all
SCODE networks indicates the degree of the node.

To further comprehend M-cell development in the maize leaf tissue, we constructed
a gene regulatory network by using the linear Ordinary Differential Equations (ODE)
algorithm for our scRNA-seq (SCODE) (see methods) [29] (Figure 4D). To confirm the
accuracy of the edges in the network, we performed weighted gene coexpression network
analysis (WGCNA) on the expressed genes identified in our scRNA-seq. All M cells were
divided into 22 new cell clusters based on a higher-resolution parameter (Supplementary
Table S4). Reads for each cell cluster were pooled to represent an independent M-cell
sample using an average pseudo-time in the same cell cluster (Supplementary Table S4).
We performed a WGCNA analysis using 22 pooled M-cell samples to obtain coexpression
connections between genes pairs (Supplementary Table S5). Gene interactions overlapped
between the SCODE and the coexpression network were retained for further constructing of
condensed interaction networks. We obtained two small SCODE networks; one consisted of
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TF1 and TF3 TF genes, another had TF4 genes (Figure 4E). TF1- and TF3-dominant networks
comprised WRKY, ERF, NAC, MYB and HSF families, which were highly expressed at
the early stage during the development of M cells, whereas the TF4-dominant network
mainly consisted of ERF family that were highly expressed at the late stage of the M-cell
development (Figure 4F). Three C2C2-CO-like (COL3, 7 and 8) TFs also played important
roles in TF4-dominant network (Figure 4G), by contrast, HSF TFs were the core components
in Cluster TF1- and TF3-dominant networks (Figure 4H). After comparing the pseudo-time
trajectory of the published data, 21 of 25 (84%) key transcript factors from the networks of
Cluster TF1, TF3 and TF4 showed the same expression profile (Supplementary Table S6).
Consistently, the two hub genes from the online datasets, HSF1 and COL8, displayed the
same expression profiles across pseudo-time as our data (Supplementary Figure S4B).

3.5. Involvement of TF-Regulatory Network in the M-Cell Development

To confirm whether these TFs regulate other genes in the same pseudo-time cluster,
we identified MNase-hypersensitive sties (MHSs) located within 1 kb of G1, G3 and G4
cluster genes, and retrieved the corresponding DNA sequences. The MEME suite [41] was
then employed to search the TF binding motifs stored in the C3C4 database (http://www.
epigenome.cuhk.edu.hk/C3C4.html, accessed on 3 January 2022) in the retrieved DNA
sequences. The majority of motifs in the C3C4 database displayed a high similarity with
Arabidopsis motifs in the MEME database [42] (Supplementary Table S7). As anticipated,
we indeed found that the binding motifs for WRKY, NAC and MYB families were enriched
in the MHS peaks located within the promoters of 1838 genes in G1 and G3, and the motifs
for ERF family were enriched in the MHS peaks within the promoters of 401 genes in G4
(Supplementary Table S7). The binding sites of WRKY and ERF were located at the centers
of MNase cleavage regions (Figure 5A).

HiChIP data can be efficiently used to interrogate protein-centric spatial genomic locus
interactions [43]. To generate TF-centric regulatory networks for the two groups of genes,
we combined the published H3K4me3 HiChIP data [32] (Figure 5B) with 104 TF-related
ChIP seq data [31]. We found that 1269 of 1838 G1 and G3 cluster genes were included in
the regulatory network (Supplementary Figure S5). Notably, 17 genes for coding histones in
the network, which was associated with nucleosome assembly and chromosome GO terms,
were mostly regulated by homeobox (HB)70, and their counterparts AtHB7 and AtHB12
genes in Arabidopsis have a function in plant development [44]. The HB70 gene was linked
to 34 genes responsible for chloroplast development, which include DXS gene that encodes
1-deoxyxylulose 5-phosphate synthase activity essential for chloroplast development [45].
The HB70 gene was also linked to the PLL5 gene, which encodes phosphatase 2C-like protein
and regulates leaf development since its knockout mutants have abnormally shaped leaves
(Supplementary Table S8) [46]. The HSFB1 gene of the HSF1 genes in Arabidopsis play
essential roles in programmed cell death (PCD) during plant development [47]. Moreover,
477 of 1269 (ca. 38%) genes encode various enzymes in the network. In addition, 318 of
401 genes in G4 were included in the regulatory network (Figure 5C). Among them, 32
genes associated with thylakoid and photosynthesis GO terms were highlighted in the
network. PEPC, ferritin1 (fer1) and ferredoxin1 (fdx2) genes were directly regulated by COL8,
of which the PEPC gene is a photosynthetic gene specifically expressed in M cells [6] and
the fer1 gene is located in plastids which are the source of iron for de novo synthesis of the
cytochromes and FeS proteins during chloroplast development [48,49]. Arabidopsis plants
with gene fdx2 knockout exhibit lower growth rate and less chlorophyll [50], indicating the
importance of this gene for plant development. All genes or TFs potentially involved in
the base and tip differential developmental network are listed in Supplementary Table S8.
In particular, we detected several spatial interactions between either WRKY or ERF and
its corresponding coexpressed genes through analyzing the published H3K4me3 HiChIP
data [32] (Supplementary Figure S6), indicating that the existence of tightly coupled TF-
target pairs in stress response.

http://www.epigenome.cuhk.edu.hk/C3C4.html
http://www.epigenome.cuhk.edu.hk/C3C4.html
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edges indicate regulatory relationships between transcription factors confirmed by TF ChIP-seq. 
Grey edges indicate regulatory relationships between transcription factors and target genes. PDI 
and PPI mean promoter–distal interactions and promoter–promoter interactions generated from the 
chromatin interaction data, respectively. Genes related to photosynthesis are highlighted in the net-
work. (D) ChIP-qPCR assay showing the differential binding signal of HSF1 and COL8 between the 
leaf bases and the leaf tips, NAC75 and MYB-related24 were targeted by HSF1 and G2-like9 and Or-
phan179 were targeted by COL8. The ChIP enrichment levels for NAC75 and MYB-related24 were 

Figure 5. Construction of TF-regulatory network in M-cell development. (A) Footprints of WRKY and
ERF TFs detected within the MNase-hypersensitive sites (MHSs), which were located within 500 bp of
genes coexpressed with TFs. (B) Self-organized maps of chromatin interactions by H3K4me3-related
loops. (C) The regulatory network for transcription factors and genes in Cluster 4. Green edges
indicate predicted regulatory relationships between transcription factors. Orange edges indicate
regulatory relationships between transcription factors confirmed by TF ChIP-seq. Grey edges indicate
regulatory relationships between transcription factors and target genes. PDI and PPI mean promoter–
distal interactions and promoter–promoter interactions generated from the chromatin interaction
data, respectively. Genes related to photosynthesis are highlighted in the network. (D) ChIP-qPCR
assay showing the differential binding signal of HSF1 and COL8 between the leaf bases and the leaf
tips, NAC75 and MYB-related24 were targeted by HSF1 and G2-like9 and Orphan179 were targeted
by COL8. The ChIP enrichment levels for NAC75 and MYB-related24 were presented as mean ± SD
from two biological replicates, and for G2-like9 and Orphan179 were presented as mean ± SD from
three technical replicates. Significance test was determined using one-sided t-test, * indicates p < 0.05,
** indicates p < 0.01.
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To further verify whether these TFs are indeed functionally involved in M-cell devel-
opment, we further analyzed the published ChIP-seq data for 104 TFs [31]. An orthologous
gene Zm00001d012518 of ipgam1/2 gene (2,3-biphosphoglycerate-independent phospho-
glycerate mutase1/2) in maize displayed a declining trend in the expression levels across
pseudo-time. The ipgam 1/2 gene in rice functions in chlorophyll synthesis, photosynthesis,
and chloroplast development [51], whilst its double mutants display reticulated leaves
in Arabidopsis [52]. ChIP-seq peaks associated with the binding of MYB, ERF and WKRY
TF families in G1 and G3 were found to be located directly in the promoter region of
Zm00001d012518 containing an MHS. (Supplementary Table S9). It has been documented
that 62 genes with functional defects affect chloroplast biogenesis in maize, thereby reduc-
ing photosynthesis efficiency [15]. We found that 46 genes functioning in the chloroplast
biogenesis were expressed in our scRNA data (Supplementary Figure S7), 17 genes were
found to exhibit similar expression profiles to genes in G4 in Figure 2C [15]. ChIP-seq peaks
associated with the binding of C2C2-CO and ERF TFs were found to be frequently present
in the promoters of the 17 genes (Supplementary Table S9). Remarkably, C2C2-COL8, one
of the hub genes in the SCODE network, was frequently associated with the 17 genes
(Figure 4G and Supplementary Table S9). In addition, two target genes in the network for
HSF1 and COL8 gene were selected separately for protoplast-based ChIP-qPCR assay, and
HSF1 gene showed an approximately 5.7- and 13.2-fold (base/tip) higher ChIP signal in
the base within the promoters of NAC75 and MYB-related24, respectively, while COL8 gene
was about 1.4- and 0.7-fold (tip/base) higher in the tip within the promoters of G2-like9
and Orphan179, respectively. (Figure 5D).

Collectively, all above analyses show that two TF-centered regulatory networks differ-
entially function in M-cell development.

3.6. Functions of HSF1 and COL8 Alone or Coordinated with Each Other in Regulating
M-Cell Development

To assess how HSF1 regulates genes involved in the early development of M cells,
we integrated our MH-seq with all 473 HSF1-coexpressed genes. We identified 429/473
(ca. 91%) genes with proximal MHSs. We also detected a clear MHS-related footprint
corresponding to AGAAnnTTCT sites, which were identified from the HSF1-coexpressed
genes with MHSs (Figure 6A). The motif is known as a conserved repetitive pattern
of palindromic binding sequences for HSFs in the promoters of heat-shock-inducible
genes of all eukaryotes [53,54]. Moreover, evidence from HSF1 IP-PCR (Figure 6B and
Supplementary Figure S8) and dual-luciferase reporter gene assay (Figure 6C) further
verified that HSF1 binds to the promoter of NAC75 which contains a predictive HSF1
binding site (Figure 6D).

Interestingly, after searching MHS regions of HSF1-regulated genes in the network,
we found that ±1 kb of 115 genes also contained COL8 ChIP-seq peaks (Figure 6D). The
binding of COL8 to the promoter of NAC75 in the leaf base was confirmed by the ChIP-
qPCR assay (Figure 6E). These results indicated that some genes may be coregulated by
HSF1 and COL8 in the early developmental stages during maize leave development. Thus,
we classified the HSF1 binding genes into two subsets based on whether they were bound
by COL8. After conducting GO-term enrichment analyses, we observed distinct GO terms
for each subset of genes (Figure 6F). For example, the HSF1 binding genes with COL8
binding sites were mainly enriched with GO terms associated with oxidation–reduction
processes and regulation of transcription or DNA binding activity (Figure 6F, left). By
contrast, the HSF1 binding genes without COL8 binding were overrepresented in GO
terms representing the biological processes of chromosomes and response to salt and water
stresses (Figure 6F, right).

These analyses indicate HSF1 and COL8 may cooperate with each other in the leaf
development in maize.
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Figure 6. Validation of HSF1 binding motif. (A) Footprinting assay of the HSF1 binding motif. (B,C) 
HSF1 (B) IP-PCR or (C) IP-qPCR assays for assessing the binding of HSF1 with natural HSF1 binding 
sites and the corresponding scrambled sequences. (D) Dual-luciferase reporter assay using Nicotiana 
benthamiana leaves co-infiltrated with the combination of PNAC75: LUC with 35S::HSF1. (E) HSF1- and 
COL8-regulated network. (F) COL8 qPCR assays for assessing the binding of COL8 in NAC75 pro-
moter in leaf tip and base. (G) GO-term enrichment analyses for HSF1-targeted genes with or with-
out the COL8 binding sites. The ChIP signal were presented as mean ± SD from three technical 
replicates in (C,F). Significance test was determined using one-sided t-test, ** indicates p < 0.01. 

  

Figure 6. Validation of HSF1 binding motif. (A) Footprinting assay of the HSF1 binding motif.
(B,C) HSF1 (B) IP-PCR or (C) IP-qPCR assays for assessing the binding of HSF1 with natural HSF1
binding sites and the corresponding scrambled sequences. (D) Dual-luciferase reporter assay using
Nicotiana benthamiana leaves co-infiltrated with the combination of PNAC75: LUC with 35S::HSF1.
(E) HSF1- and COL8-regulated network. (F) COL8 qPCR assays for assessing the binding of COL8 in
NAC75 promoter in leaf tip and base. (G) GO-term enrichment analyses for HSF1-targeted genes with
or without the COL8 binding sites. The ChIP signal were presented as mean ± SD from three technical
replicates in (C,F). Significance test was determined using one-sided t-test, ** indicates p < 0.01.

4. Discussion
4.1. Subfunctional Differentiation among Functionally Specialized M Cells

The maize leaf contains two distinct cell types with specialized functions, M and BS
cells, to accommodate photosynthesis and metabolism [55]. M and BS cells are distinct in
physical organization, gene expression, metabolic pathways and enzyme activity, which
constitute an exquisite experimental system for interrogating the underlying mechanisms
controlling leaf cell differentiation in relation to some functionalities. The regulatory mech-



Genes 2022, 13, 374 17 of 22

anisms of functional differentiation between both cell types have been well-characterized
at the transcriptional [6,7,56], biochemical [4,57] and epigenetic [12,58–60] levels in maize.
In addition, developmental stage-related transcriptional and metabolic changes in maize
leaves have also been studied [6,9]. However, the development of either a specialized M or
BS cell is still under-researched, and is important to understanding chloroplast biogenesis,
differentiation and functions. In addition, the bulk RNA-seq or other omic approaches in
the previous studies primarily reflect the average levels of cell mixtures. It is almost impos-
sible to distinguish cells from different development stages and correlate the development
statuses of individual cells with functions. The advent of single-cell technology offers a
powerful technique to characterize complex tissues or cell subtypes to understand their
respective functions. In this study, due to failing to conduct BS single-cell RNA-seq, we
mainly conducted M-cell-related scRNA-seq in combination with pseudo-time analyses,
and identified six gene clusters based on the distinct gene expression profiles across them
(Figure 2C), reflecting instances of gene subfunctionalization in M cells. In particular, our
scRNA-seq showed at least two distinct gene subtypes (Cluster G1 and G4) with functional
differentiation. Genes in Cluster G1, which were highly expressed in the early stage of leaf
development, primarily functioned in some fundamental biological functions, whereas
genes in Cluster G4, with an inverse expression profile compared to the genes in Cluster G1,
peaked at the last stage of leaf development and primarily functioned in photosynthesis
(Figure 2E). These two gene clusters are in agreement with previous findings about the
developmental stages from the leaf base to the leaf tip [6,36]. scRNA-seq has been success-
fully applied to identify cell subpopulations, unveil regulatory relationships among genes,
and track cell spatiotemporal developmental trajectories in human stem cells and cardiac
progenitor cells [61,62] and Arabidopsis root tissue [63–65]. Our study provided evidence to
show the development of M cells in the green leaf tissue from the single-cell level, a major
place for photosynthesis and respiration, and some carbon assimilation pathways such
as starch biosynthesis, nitrogen and sulfur assimilation. However, very few BS cells were
obtained in our data, which is similar to the published data, indicating that capture of BS
cells for scRNA-seq may not be easy. Comprehensive characterizations of M- and BS-cell-
related scRNA-seq will provide more information about functional divergence between the
two cell types in maize. Additionally, gene loss of function-related experimental validation
needs to pinpoint functions of both gene clusters in leaf development in the future.

4.2. Key Transcriptional Factors in Regulation of M-Cell Development

Here, we found that some expression inconsistency of genes between Cluster G1
and G4 occurred between our scRNAs-seq and bulk RNA-seq (Figure 3A). The plausible
explanations for the inconsistency are as follows: One is the sequencing methodology, as
scRNA-seq technology barcoded each gene transcript in each single cell first, thus it only
detected 9299 expressed genes for total 7234 single cells, with an average of 3500 expressed
genes in each single cell. Among all 20,972 expressed genes identified by analyzing our
bulk RNA-seq, the genes identified by analyzing our scRNA-seq primarily represented
the top 17% of expressed genes in each single cell, thus the genes with medium and low
expression levels in each individual single cell cannot be fully detected in scRNA-seq. In
contrast, bulk RNA-seq pooled each RNA transcript from all cells followed by RNA-seq
library preparation, and therefore, it could detect more gene transcripts, especially for
those genes with medium and low expression levels; Another plausible explanation is that
there was a diverse variation in the leaf material for the bulk RNA-seq compared to the
protoplasts for scRNA-seq. Only 7254 single cells were analyzed in scRNA-seq, whereas
approximately 5–10 M or even more cells were used for extracting total RNA for the bulk
RNA-seq experiment.

Interactions between trans-acting factors and cis-acting elements are essential for the M-
or BS-cell-type-related gene differential expression or differential accumulation of enzyme
proteins for photosynthesis [13,59]. It is well-known that the M-cell-specific expression of
PEPC gene is fine-tuned by interactions between the unique cis-acting elements located
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in promoter region and the DNA binding with one finger (DOF) 1 transcription factor,
which is specifically expressed in M cells [66,67]. A few transcription factors, such as
DOF, Maize Nuclear Factors (MNFs), PEP-I, SCARECROW (SCR) and SHORTROOT (SHR)
have been proposed to be involved in differential gene expression between M and BS
cells in maize or other C4 plants [9,11,59,68]. However, the involvement of transcription
factors in subfunctional differentiation of M cells during maize leaf development is still
inadequately characterized. Our study revealed that WRKY and ERF TF genes were
preferentially expressed in M cells in the early and the late developmental stage of the
maize leaf, respectively (Figure 4C). In addition, our study showed that a spatiotemporal
regulation of differential leaf development was mediated by some key TFs through directly
interacting with target genes or indirectly interacting with genes through coexpression
networks. Furthermore, differential functions of HSF1 and COL8 TFs in the leaf base and tip
were experimentally validated using ChIP-qPCR assay (Figure 5D). Interestingly, some of
genes were coregulated by HSF1 and COL8 in the leaf base and tip, respectively, suggesting
that the weak expression level of COL8 in the base exhibits some biological relevance.
Accumulating evidence shows that HSFs are required for plant/leaf development. HSFs
can function in plant thermotolerance by regulating the expression of heat shock protein
(HSP) genes, and in other abiotic stresses, such as dehydration, salinity, low temperature,
H2O2, salicylic acid (SA) and abscisic acid (ABA) treatment, by regulating the expression
of stress-responsive genes [69–76]. Overexpression of the TaHsfA2-10 gene can increase
content of chlorophyll in Arabidopsis [70], indicating possible involvement of the HSF gene
in chloroplast development by activating HSP gene expression. Hsp100/101 genes have
been found to be essential for normal chloroplast development in Arabidopsis [77,78], while
overexpression of chloroplast-targeted gene Hsp101 homologue, APG6, resulted in pale-
green leaves [78], indicating that constitutive overexpression of APG6 cDNA had a negative
effect on chloroplast biogenesis. Moreover, changes in HsfB1 gene expression can reprogram
metabolic pathways in the tomato leaf [79]. Of course, the above TF-regulated target genes
and their contributions to photosynthesis and assimilation need further experimental
validations using the defective mutants of TFs or their targets in the future.

By focusing on leaf single cells of various developmental stages, our study revealed
some functionally distinct gene clusters with different expression patterns, and the key reg-
ulatory genes in M-cell development, thereby shedding some light on M-cell subfunctional
differentiation. Our study showed that functional differentiation of M cells was largely
spatiotemporally regulated at transcriptional levels with the involvement of epigenetic
regulation and interactions.

5. Conclusions

Through utilization of scRNA-seq in combination with pseudo-time and gene regu-
latory network analyses, our study reveals WRKY, ERF, NAC, MYB and HSF TF families,
especially WRKY and ERF families, are major determinants in the early and the late stages
of maize M-cell development. TF regulatory network and Hi-C analyses further display
occurrence of regulatory interactions between TFs and target genes. The interactions were
validated using protoplast-based ChIP-qPCR assay, in particular, the binding site of HSF1
was experimentally confirmed. Thus, our study provides evidence showing how TFs
function in M-cell development in maize.
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