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Abstract 
Specifically adsorbed ions, such as calcium and magnesium in iron ore flotation, are ions 
that can chemically bind with the mineral surfaces and alter the surface properties. 
Calcium and magnesium are unavoidable in process water and their concentrations are 
increasing due to water recirculation and reagent additions. These ions are detrimental to 
the flotation process. Calcium has always been the main focus in research, yet we found 
that magnesium is more detrimental in flotation due to its smaller atomic size. Starch 
adsorption in iron ore flotation is key for the effective depression of hematite. It has been 
determined by flotation, zeta potential, and settling tests, that increasing calcium 
concentrations promote starch adsorption and reduce entrainment of hematite, whereas 
increasing magnesium concentrations greatly reduce the selectivity overall by promoting 
the adsorption of starch to everything in the slurry and resulting in lower selectivity.  
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1 Introduction 
1.1 Ions Classification in Iron Ore Flotation 
1.1.1 Electrical Double Layer and Zeta Potential 
When a solid surface is immersed in water, it interacts with the charged ions and dipoles 
in the water. Even though solids are considered electrically neutral, at a microscopic level 
they do not behave as such. When immersed in water they form electrically active layers 
around them known as the electrical double layer which is composed of two layers of 
ions from solution that neutralize the surface charge (Carlson and Kawatra, 2013). Figure 
1.1 shows an example of these electrically active layers around a small hematite particle 
in water.   

As observed in Figure 1.1, at alkaline pH levels the surface of the hematite is negatively 
charged. The first layer of ions that are directly adsorbed to the surface is the stern layer. 
This layer is usually considered to be one layer of ions thick and composed of ions with 
an opposing charge to the surface, in this case positively charged (Carlson and Kawatra, 
2013). The next layer is called the diffuse layer. Some of the ions in the diffuse later will 
tend to move with the particle as the surface moves, and some will follow the bulk liquid. 
The shear plane is defined as the point at which the ions begin to move with the bulk 
liquid and not with the surface (Carlson and Kawatra, 2013). The zeta potential is the 
effective surface charge at the shear plane. Further away from the surface the ion 
concentrations go back to equilibrium, which marks the end of the electrical double layer. 

 

Figure 1.1: Representation of the electrical behavior of a hematite particle in water at 
alkaline pH levels. 
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1.1.2 Potential-Determining Ions, Indifferent Ions, and 
Specifically Adsorbed Ions 

Ions can be classified in many ways. The distinction between potential-determining ions, 
indifferent ions, and specifically adsorbed ions is particularly important. The 
concentration of potential-determining ions in the aqueous phase determines both the sign 
and magnitude of the zeta potential. In oxide minerals, H+ and OH- are the potential-
determining ions (Leja and Rao, 2004). This means that by changing the pH of the 
solution, the surface charge can be controlled. For instance, the quartz surface has a 
positive charge when the pH is less than 2.65 and a negative charge when the pH is 
greater than 2.65 (Zhang et al., 2019). Iron ore flotation is commonly performed at basic 
pH conditions where silica and hematite have negative surface charges.  

Indifferent ions can only adsorb by Coulombic forces. They are attracted to surfaces with 
opposite charges, repelled to surfaces with like charges, and do not adsorb to uncharged 
surfaces (Delgado et al., 2007). These ions are mainly monovalent ions that are not 
potential-determining, such as sodium (Na+), potassium (K+), and chloride (Cl-) for silica 
and hematite surfaces. On the contrary, specifically adsorbed ions can form chemical 
bonds with the surface regardless of the electrostatic charge (Delgado et al., 2007). 
Multivalent ions that are specifically adsorbed can reduce the magnitude of the zeta 
potential as well as change its sign. In iron ore flotation, calcium (Ca+2) and magnesium 
(Mg+2) are the principal specifically adsorbed ions. These ions are found within the stern 
layer (Delgado et al., 2007). 

When ions are attracted to the surface they can form inner-sphere or outer-sphere 
complexes at the surface. As shown in Figure 1.2, specifically adsorbed ions such as 
calcium (Ca+2) and magnesium (Mg+2) can form inner-sphere complexes at the stern layer 
as they can bind to the surface by single covalent bonds. On the contrary, indifferent ions 
such as sodium (Na+), potassium (K+), and chloride (Cl-) can only form outer-sphere 
complexes at the diffuse layer as they are only attracted by electrostatic forces and cannot 
bind chemically (Stumm et al., 1992). The point at which electrostatic forces can no 
longer hold outer-sphere complexes to the surface is defined as the shear plane. The 
surface charge at this location is known as the zeta potential (Carlson and Kawatra, 
2013).  
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Figure 1.2: Schematic of the electrical double layer of a hematite surface as it interacts 
with the solution. Calcium and Magnesium (specifically adsorbed ions) create inner-
sphere complexes located at the stern layer and can chemically bind with the hematite 
surface. Sodium (non-specifically adsorbed ion) can only create outer-sphere complexes 
at the diffuse layer due to electrostatic forces. (Based on Haselhuhn, 2012a) 
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1.2 Background on Iron ore Flotation 
1.2.1 Iron Ore Beneficiation Process Overview 
As high-grade iron ores become less available in the United States, the mining industry 
has had to create new technologies to concentrate low-grade iron ores. Magnetite (Fe3O4) 
and hematite (Fe2O3) are the main iron ore bodies concentrated in the United States 
(Haselhuhn and Kawatra, 2015). Unlike magnetite, the process of beneficiating the non-
magnetic hematite ore is very complex, especially as it is mainly available at very low 
grades (<40% Fe) and at a very fine liberation size (~25 µm at 80% passing) (Haselhuhn 
and Kawatra, 2015). The only economical method available for concentrating such an ore 
consists of selective flocculation and dispersion (desliming) followed by reverse cationic 
flotation (Mariani and Nelson, 1993; Keranen, 1986). Figure 1.3 shows a summarized 
flowsheet of this process.  

 

Figure 1.3: Fine and low-grade hematite ore beneficiation process flowsheet (Mariani and 
Nelson, 1993; Keranen, 1986; Haselhuhn and Kawatra, 2015). 

Initially, the ore is treated with sodium hydroxide (NaOH) and ground in a ball mill (semi 
autogenous) and pebble mill (autogenous) until the liberation size is reached (~25 µm at 
80% passing). The coarse material is separated from the fine material with a cyclone. 
While the coarse material returns to the grinding step, the fine material is sent to the 
selective or deslime thickeners where the ore is initially concentrated to ~40-50% Fe. The 
thickener’s overflow, mainly composed of very fine particles or slimes are sent to the 
tailings pile, whereas the thickener’s underflow is sent to flotation. The flotation circuit is 
composed of 10 rougher cells followed by 4 scavengers where the tailings are floated to 
improve recovery (Mariani and Nelson, 1993).  The concentrates from the 4 scavenging 
steps are combined and redirected to the rougher’s feed, while the froth is sent to the 
tailings pile. The final concentrate coming from the rougher cells continues to filtration, 
and pelletization stages. From there the pellets are sent for dry processing to a smelting 
plant.  
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1.2.2 Reverse Cationic Flotation of Hematite 
Froth flotation is a widely used process in mineral processing to concentrate ores. In 
flotation, air bubbles are used to selectively separate hydrophobic (non-polar) compounds 
from hydrophilic (polar) compounds. Air will selectively attach itself to the hydrophobic 
surfaces, while the hydrophilic surfaces will remain primarily in the aqueous phase. Due 
to the buoyancy of the air bubbles, the hydrophobic particles are forced upwards into the 
froth phase, achieving separation. (Kawatra, 2009) 

The most common method for concentrating iron ore is the reverse cationic flotation 
process (Lelis et al., 2019). Contrary to direct flotation, in reverse flotation the gangue 
material is floated and recovered in the froth product. In reverse flotation of hematite, the 
gangue silica particles are floated to the surface while the hematite is depressed and 
recovered in the “sinks” product (see Figure 1.4). The word “cationic” is included in the 
method’s name to specify the charge of the collector. In iron ore flotation the main 
collector used is ether amine which is a cationic collector that will only adsorb to 
negatively charged surfaces. 

 

Figure 1.4: Contrary to direct flotation, in reverse flotation the gangue material is floated 
and recovered in the froth product. 

Selective flocculation and dispersion, also called desliming, is a very important step in 
the beneficiation of low-grade and fine hematite ores. Very fine particles or slimes (<25 
µm) need to be removed from the slurry prior to flotation otherwise the performance of 
the process is affected. Clemmer (1947) discovered the importance of desliming prior to 
the reverse cationic flotation process, since a high content of fine particles lowers 
selectivity and increases the cationic collector dosage required to obtain desired results 
(Filippov et al., 2014).  



6 

As the slimes are removed from the slurry there is always the chance of losing hematite. 
The key to the process is to remove as much slimes with the lowest iron loss possible. 
Selective flocculation of hematite is generally achieved with the help of a flocculant. 
Corn starch is the most common reagent used for this purpose as it is very effective 
creating hematite flocs or larger molecules that settle faster. Additionally, for the 
desliming process to be effective, the fine particles need to be highly dispersed.  

Generally, the level of dispersion is achieved by maintaining alkaline levels of pH with 
the addition of sodium hydroxide (NaOH). Haselhuhn and Kawatra (2015) discovered 
that the optimal pH for the process is at 10.5. At this pH dispersion is favored and the 
maximum starch adsorption is achieved. Although the alkaline levels assist with 
dispersion, chemical reagents known as dispersants (sodium silicates, tripolyphosphates, 
among others) are needed to increase and maintain a high dispersion (Filippov et al., 
2014; Colombo and Frommer, 1976; Colombo, 1980).   

1.2.3 Reagents in Iron Ore Flotation 
Reagents in flotation can be divided in three types which are depicted in the “triangle of 
flotation reagents” as described by Nagaraj and Ravishankar (2007). As shown in Figure 
1.5 there are collectors, frothers, and modifiers. 

 

Figure 1.5: Triangle of flotation reagents: collectors, frothers, and modifiers.  

The main purpose of iron ore flotation is to remove silicates and in some cases alumina or 
phosphorus containing minerals to improve the grade of the iron concentrate. The degree 
to which a mineral is hydrophobic can be influenced by the solution pH and the addition 

E.g. Aliphatic alcohols, 
polyglycols, polypropylene 

glycos, etc. 

E.g. Starch, sodium 
silicate, sodium 
hydroxide, etc. 

E.g. Amines, quaternary 
ammonium salts, etc. 
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of collectors. Collectors generally function by influencing the surface chemistry of the 
mineral in question. (Nakhaei and Irannajad, 2018) 

Frothers are an essential part of flotation. Air bubbles are the main way of transporting 
the hydrophobic silica to the surface of the flotation cell and forming the froth phase, 
however, without the help of reagents, air bubbles will never be able to make it to the 
surface without collapsing. Frothers are reagents that help control bubble formation, size, 
and strength, as well as regulate froth stability and mobility (Bulatovic, 2007).  

Modifiers constitute a very broad selection of reagents. Basically, every reagent used in 
flotation that does not classify as a collector or frother is known as a modifier (Nagaraj 
and Ravishankar, 2007). This includes pH modifiers, activators, depressants, dispersants, 
flocculants, coagulants, among others. As mentioned in the previous section, dispersants 
and flocculants are used for the selective flocculation and dispersion process. In the 
cationic reverse flotation process, only depressants and pH modifiers are used.  

In iron ore flotation ether amine acts as both collector and frother, corn starch is used as a 
depressant, and sodium hydroxide (NaOH) is used as the pH modifier. The background 
and function of these three reagents in iron ore flotation is described below. 

1.2.3.1 Ether Amine (collector and frother) 
In the reverse flotation of hematite, amine collectors are used to make the silica particles 
hydrophobic so they can be rejected in the froth product. Amines are considered cationic 
collectors, which means that they are positively charged in an aqueous solution and can 
react with minerals with a negative surface charge (Nakhaei and Irannajad, 2018; Zhang 
et al., 2019). 

Fatty amines, such as dodecylamine, were the first amine collectors used in the cationic 
flotation process stablished by the U.S. Bureau of Mines (Ma, 2012). Later on, the use of 
fatty amines in iron ore flotation became less popular due to their low collection power at 
low temperatures, poor selectivity, and cohesive bubble formation (Zhang et al., 2019). 
Nowadays, more soluble amines, mainly ether amines, are used in iron ore flotation 
despite of poor selectivity (Nakhaei and Irannajad, 2018).  

There are records that state the use of specific frothers in iron ore flotation such as 
polypropylene glycols and alcohols, but in the United States the use of frothers is not 
common in the case of the reverse cationic flotation of hematite (Houot, 1983; Nakhaei 
and Irannajad, 2018). At the pH range that this process is performed (~10.5), the ether 
amine collector also acts as a frother. The fact that one reagent is used as both collector 
and frother makes it difficult to identify the individual impact of either function (Zhang et 
al., 2019). Hence, there is continuous research on partially substituting the ether amine 
with a frother so that by separating these effects, recovery and grade may be further 
optimized (Zhang et al., 2019). 
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1.2.3.2 Sodium Hydroxide (pH modifier) 
Sodium Hydroxide (NaOH) is the most common pH modifier used in hematite flotation. 
It is generally used to adjust the pH to alkaline conditions. Based on Keranen (1986), at 
the Tilden Plant in Michigan, caustic soda is added as a 25% solution to control the pH 
and the selectivity of the process. This reagent is added to the primary grinding mill and 
to the dilution spray water in two different points of the flotation circuit. The pH of the 
slurry is one of the factors that determines the zeta potential of minerals.  

1.2.3.3 Corn Starch (depressant) 
The depressant plays a very important role in reverse flotation. Depressants are used to 
either prevent the collector attachment, or to decrease the hydrophobicity of a mineral so 
it is less likely to appear in the froth product (Zhang et al. 2019). Since in iron ore 
flotation the focus is on floating the silica, the hematite needs to be depressed. The most 
common depressants in iron ore include starch, guar, carboxymethylcellulose, and dextrin 
(Nakhaei and Irannajad, 2018). In the reverse cationic flotation of hematite corn starch is 
the most widely used depressant due to its high availability, low cost, and good 
performance (Nakhaei and Irannajad, 2018). 

Starch is a natural polymer produced by green plants for the purpose of energy storage 
over long periods of time (Perez and Bertoft, 2010). Starches can be produced from 
various sources such as corn, rice, cassava, potato and others (Perez and Bertoft, 2010). 
Most starches used in industry contain 20-30% amylose, 70-80% amylopectin, and <1% 
lipids and proteins (Nakhaei and Irannajad, 2018). Amylose consists of a straight chain of 
glucose monomers while amylopectin is a branched polymer made up of amylose chains 
(Figure 1.6 and 1.7). In the starch molecules, both amylose and amylopectin are linked to 
each other by hydrogen bonds. These bonds form 3-100 µm starch granules which are 
insoluble in cold water. 

 

 

Figure 1.6: Amylose structure. Amylose consists of a straight chain of glucose 
monomers.  
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Figure 1.7: Amylopectin structure. Amylopectin is a branched polymer made up of 
amylose chains. 

In order for starch dissolution to occur a “cooking process” named gelatinization needs to 
take place. This process can be divided in three stages (Yang et al., 2017): 

1. Swelling: There is an increase in the diameter of the starch granules due to a raise 
in temperature up to 50°C. The water molecules bond to the hydroxyl groups of 
the amylose and amylopectin molecules that are exposed.  

2. Rupture: As soon as critical temperatures are reached, the starch molecules 
rupture and ultimately deconstruct.  

3. Starch molecules/ghosts: Once the rupture occurs the starch molecules inside the 
granule dissolve, leaving the empty shells (ghosts) intact. The starch ghosts do not 
have a significant impact in flotation.  

There are four critical factors involved in gelatinization. These are described in Table 1.1.   

Table 1.1: Critical factors that affect gelatinization (Based on Yang et al., 2017). 

 
Critical Factors Involved in 

Gelatinization Description 

Mass ratio (amylopectin: amylose) 

Amylopectin is harder to dissolve than 
amylose in basic solutions (>7pH), but 

amylose is harder dissolve at high 
temperatures. 

Temperature After the solution is cooled down, the 
dispersed starch molecules start a 
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reassociation process known as 
retrogradation. 

This process causes opalescence, 
turbidity, lower viscosity and 

precipitation. 

While amylopectin retrogrades very 
slowly, amylose retrogrades within a few 

hours. 

This is the reason why starch solutions are 
not stored for long periods of time. 

pH of the pulp 

In acidic conditions starches experience 
hydrolysis and turn into simpler sugars. 

However, the progress of starch 
gelatinization is accelerated at alkaline 

conditions. 

Size of the starch granules 

The size determines the duration of the 
gelatinization process as larger granules 

take longer. Typically, 30 minutes is 
enough for this process.  

 

1.2.4 Mechanisms of Solids Recovery in the Froth 
In reverse flotation, only silica particles are expected to be recovered in the froth, 
however, some hematite is always lost in the tailings by being transferred to the froth 
phase. To reduce the hematite loss in the tailings, it is important to understand the 
different mechanisms by which silica and hematite are recovered in the froth. There are 
three mechanisms of solids recovery in the froth (Figure 1.8): 

1. True flotation 
2. Entrapment 
3. Entrainment  
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True flotation corresponds to the selective attachment of hydrophobic particles to air 
bubbles, which are then recovered in the froth product, entrainment is where particles are 
trapped in between bubbles and recovered in the froth, and entrapment occurs when 
particles are trapped in between other particles and recovered in the froth (Nykänen et al., 
2020; Melo and Laskowski, 2005). 

Figure 1.8: Mechanisms of solid recovery in the froth. True flotation: hydrophobic 
particles attach to air bubbles. Entrapment: particles are trapped in between other 
particles. Entrainment: particles are trapped in between air bubbles. 

In general, silica is expected to be recovered in the froth by true flotation with the 
assistance of the collector. Hematite is not expected to be recovered in the froth at all, 
however, no system is ideal and some iron loss in the froth is always a possibility. 
Normally, the hematite that is recovered in the froth is recovered via entrainment. If the 
hematite appears to be recovering by true flotation, it typically means that the collector is 
adsorbing non-selectively to the silica and the hematite due to depression failure 
(Nykänen et al., 2020).   

Entrainment is one of the main causes of low performance in flotation as it is a non-
selective mechanism, which means that if it is not controlled, either the grade or recovery 
of the final product would be affected. In iron ore flotation, entrainment occurs when 
hematite and silica particles are trapped by bubbles and recovered in the froth phase. This 
mechanism can be divided into two key steps (Wang et al., 2015):  

• Both silica and hematite particles are suspended in water and then transferred 
from the pulp phase to the froth phase.  

• These entrained particles are transferred from the froth phase to the tailings 
product.  

There are three main theories that explain the mechanism by which particles are 
transferred from the pulp phase to the froth phase by entrainment. Wang et al., (2015) 
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describes these theories and concludes that all three mechanisms contribute to 
entrainment with the third theory being the dominant mechanism.  

1. The boundary layer theory: proposes that particles are transferred from one 
phase through the other in the bubble lamellae, which is the thin liquid film 
surrounding the bubbles. (Gaudin, 1975; Moys, 1978; Hemmings, 1981; 
Bascur and Herbst, 1982)  

2. Bubble wake theory: suggests that particles suspended in water are transferred 
to the froth due to the water being forced upwards by the wake of a bubble 
that is ascending. (Smith, 1984; Yianatos et al., 1988) 

3. Bubble swarm theory: as bubbles raise to the surface, they start accumulating 
in the region right below the froth/pulp interface. While some water and 
suspended particles drain back to the pulp, the rest is forced upwards due to 
bubbles buoyancy. The more particles are accumulating in the interface, the 
more water and suspended particles are entrained. (Smith and Warren, 1989) 

Based on these mechanisms it is clear that the more hematite particles accumulate right 
below the froth/pulp interface, the higher the chances of hematite being recovered in the 
froth via entrainment. There are many factors that affect the level of entrainment such as 
water recovery, percent solids, particle size and density, froth height, froth structure, 
depressant activity, among others (Wang et al., 2015). In this thesis the focus is on one of 
the most important factors which is the efficiency and selectivity of the starch depressant. 
If the starch does not depress the hematite properly, the hematite will disperse in the 
solution. Dispersed hematite is more easily suspended in the aqueous phase, likely 
leading to a higher degree of entrainment.  

In this research it has been found that calcium and magnesium affect the starch 
adsorption onto the hematite differently, thus, they have a different impact on the 
entrainment of hematite. The purpose of this project is to determine the differing effect of 
calcium and magnesium in starch adsorption in hematite flotation so that by knowing 
this, measures can be taken to promote flotation efficiency and reduce the entrainment of 
hematite. 
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2  Importance of Calcium and Magnesium in Flotation 
2.1 Calcium and Magnesium Characterization 

Table 2.1: Facts and Properties of Magnesium and Calcium. 

 
Chemical 

Characteristic Magnesium (Mg) Calcium (Ca) Reference 

Element Category Alkaline earth metal Alkaline earth metal 

Jahnen-
Dechent and 

Ketteler, 
2012 

Atomic number 12 20 Enghah, 
2004 

 

Atomic Weight 

 

24.30 g/mol 40.08 g/mol 

Jahnen-
Dechent and 

Ketteler, 
2012 

Ground State 
Electron 

Configuration 
[𝑁𝑁𝑁𝑁]3𝑠𝑠2 [𝐴𝐴𝐴𝐴]4𝑠𝑠2 Enghah, 

2004 

Valence 2 2 

Jahnen-
Dechent and 

Ketteler, 
2012 

Crystal Structure Hexagonal Faced-centered cubic 

Jahnen-
Dechent and 

Ketteler, 
2012 

Occurrence 

Most important 
minerals 

Magnesite (MgCO3), 
Dolomite 

(CaMg(CO3)2), 
Carnallite (KMgCl3∙ 

6H2O), Kieserite 
(MgSO4 ∙ 4H2O), 

Calcite (CaCO3), 
Dolomite 

(CaMg(CO3)2), 
Gypsum (CaSO4 ∙ 

2H2O), Apatite 
(Ca5[(F,Cl,OH)(PO4)3] 

Enghah, 
2004 
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Olivine ((Mg, 
Fe)2SiO4) 

Abundance in the 
earth’s crust 

7th most abundant 
element 

5th most abundant 
element 

Enghah, 
2004 

Mean content in 
earth’s crust 23,300 ppm 4.15 x 104 ppm Enghah, 

2004 

Mean content in 
oceans 1,290 ppm 412 ppm Enghah, 

2004 

Chemical Characterization 

Atomic radius 150 pm 180 pm Enghah, 
2004 

Covalent radius 130 pm 174 pm Enghah, 
2004 

 

2.2 Calcium and Magnesium in Flotation Process Water 
2.2.1 Calcium and Magnesium Variations in Feed Water at 

Processing Plants 
Because calcium and magnesium are two of the most abundant elements in the earth’s 
crust, they are unavoidable in process water. The term water hardness refers to the 
presence of multivalent metallic cations such as manganese, iron, calcium and 
magnesium, with the last two being the primary contributors to water hardness (Sepehr et 
al., 2013). There are many ways to classify water hardness but a common way is to 
express the concentration of calcium and magnesium ions as equivalent of calcium 
carbonate (CaCO3) denominated “total water hardness” (Hammer, 1986).  In general, 
waters with 0-50 mg/L of CaCO3 are considered soft, with 50-150 mg/L of CaCO3 are 
considered moderately hard, with 150-300 mg/L of CaCO3 are considered hard, and over 
300 mg/L of CaCO3 are considered very hard (Hammer, 1986).   

Nowadays there has been an increase in government and corporations demands for the 
mining industry to reduce freshwater extraction. Some of the motives for these demands 
include water resources becoming scarce, freshwater availability becoming more limited, 
water discharge triggering environmental pollution, competition for water resources by 
multiple industries, corporate policies for sustainability, and local community concerns 
regarding water safety and other cultural and spiritual concerns about water (Liu et al., 
2013; Peters and Meybeck, 2000; Ridoutt and Pfister, 2010; Carlson et al., 2002; Johnson 
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et al., 2002; Boulay et al., 2011; Rijsberman, 2006; Jenkins and Yokovleva, 2006; 
Kapelus, 2002; Amezaga et al., 2010; Moran, 2006). 

Flotation plants are starting to take measures to optimize the use of freshwater. Some of 
these measures include recirculating water and accessing multiple water sources which 
can cause great variations in water hardness and compromise flotation performance (Liu 
et al., 2013). Processing plants prefer more consistent water hardness ranges in the 
process because they are able to set standard reagent dosages and operation procedures 
(Liu et al., 2013). However, there are many factors that cause significant variations in 
water chemistry that require attention. Liu et al., (2013) classified these factors as internal 
and external.   

Internal factors include ore oxidation and dissolution, which might not be significant at 
first but as the water is reused, substances such as calcium and magnesium that dissolve 
in the water can build up and eventually be detrimental to the process (Liu et al., 2013; 
Johnson, 2003). Reagent addition can bring other undesirable substances. For instance, 
lime is added as a pH modifier in the flotation of molybdenite-copper ore, but aside of 
adjusting alkalinity it releases calcium ions into the solution (Liu et al., 2013; Raghavan 
and Hsu, 1984). Substances introduced by reagent addition can also accumulate as the 
water is recycled and impact flotation (Liu et al., 2013; Slatter et al., 2009).  

External factors include the use of multiple sources of raw water such as sea water which 
contains high levels of calcium, magnesium and iron salts (Levay et al., 2001), ground 
water, defined as water that is entrained in the minerals that are processed, surface water 
which includes rainfall reservoirs, rivers, and lakes, among other sources that all together 
cause a huge impact on the water chemistry that is later introduced in the flotation 
process (Liu et al., 2013). Another factor that is considered external is the use of water 
extracted from tailing ponds. The quality of this water varies significantly not only by the 
tailing’s composition but by the local climate as day/night temperature changes or 
seasonal changes can alter the concentration of the dissolved substances due to 
evaporation and variations in solubility (Liu et al., 2013; Levay et al., 2001). 

2.2.2 Calcium and Magnesium Variations during the Iron Ore 
Flotation Process 

In iron ore flotation plants, the processes heavily rely on water chemistry and chemical 
reagents. In addition, the water chemistry of the iron ore flotation process is directly 
affected by the addition of reagents and removal of tailings in desliming. Table 2.2 shows 
the variation in the concentration of important ionic species at three different locations of 
an iron ore concentration plant in the USA.  

Haselhuhn et al. (2012) determined that some of the most important ions present in the 
iron ore concentration plant in the USA are calcium, magnesium, sodium, potassium, 
chloride, and insoluble iron. The concentrations of sodium, potassium, and chloride are 
higher than those reached by calcium and magnesium in the three locations shown in 
Table 2.2. However, the magnesium and calcium concentrations are much more critical 
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to the process due to their divalent nature. Since they can chemically bind to the iron 
surface (specifically adsorbed), they have a much greater impact on the flotation process. 
As observed in Table 2.2, calcium concentrations are usually higher than magnesium, but 
as will be discussed later in Section 2.3 it is found that magnesium is far more 
detrimental to the flotation process.  

Table 2.2: Concentrations of important ionic species in process water at different 
locations in an iron ore concentration plant (Haselhuhn et al., 2012) 

 

 

Screen 
Underflow 

(before 
dispersant) 

Flotation 
Feed (after 

starch, 
before 
amine) 

Flotation 
Rougher 

Concentrate 
Discussion 

pH 10.59 10.67 10.59 

Maintained above 10.5 
where dispersion of 

silica and hematite is 
critical. 

Calcium 
(mg/L) 4.47 9.2 4.36 Divalent cations adsorb 

to negative surfaces and 
disrupt the sign and 

magnitude of the surface 
charge, affecting the 
surface properties of 

minerals and reagents. 
 

Magnesium 
(mg/L) 2.67 8.49 0.23 

Sodium 
(mg/L) 455 448 433 Monovalent ionic 

species are less likely to 
cause harmful effects in 

the process.  

These ions only affect 
the magnitude of the 
zeta potential. Their 

effects in flotation are 
self-limiting because 

they cannot cause sign 
reversals. 

 

Potassium 
(mg/L) 11.4 11.9 10.9 

Chloride 
(mg/L) 110 110 100 
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2.3 Why do Calcium and Magnesium have Different 

Impacts in Flotation? 
Both calcium and magnesium can alter the surface properties of minerals and reagents as 
they are specifically adsorbed ions. However, magnesium is more detrimental in the 
flotation process than calcium. The reason why magnesium results in a stronger 
interaction than calcium in flotation can be attributed to atomic size differences. Even 
though they have the same charge (+2), magnesium has a covalent diameter of 278 pm 
and calcium has a covalent diameter of 342 pm (Pyykkö and Atsumi, 2009).  

The smaller atomic size of magnesium allows it to penetrate the electric double layer 
faster than calcium. Site spacing and surface charge density are the main arguments used 
to validate this statement. Site spacing is defined as the distance between sites available 
for adsorption. To confirm that calcium and magnesium behave differently in flotation 
due to site spacing, strontium and barium were selected for comparison (Haselhuhn, 
2012a). Although strontium and barium are not commonly present in iron ore flotation in 
the USA, they were selected as they have the same charge as calcium and magnesium 
(+2) and have greater covalent diameters (370pm for strontium and 392pm for barium) 
(Pyykkö and Atsumi, 2009).   

As shown in Figure 2.1, the average distance between the hydroxyl groups in the [100] 
plane of hematite is 285 pm (Pradip, 1994). Because the covalent diameter of magnesium 
(278 pm) is smaller than the hydroxyl group spacing in the hematite, magnesium can 
form complexes at every hydroxyl group (Haselhuhn, 2012a). Meanwhile, the covalent 
diameter of calcium (342 pm), strontium (370 pm), and barium (392 pm) is greater than 
the hydroxyl group spacing in the hematite so these ions can only form at every other 
hydroxyl group (Haselhuhn, 2012a).  

Figure 2.2 shows that between the four ions, magnesium has the strongest impact in the 
zeta potential of hematite as it inverts the sign from negative to positive at very low 
concentrations. A much larger concentration of calcium, barium and strontium were 
required to invert the zeta potential from a negative to a positive charge. Based on site 
spacing, the maximum extent of adsorption appears to be the same for calcium, barium 
and strontium, but zeta potential results show that strontium and barium are much less 
impactful on the zeta potential than calcium. This means that site spacing is not the only 
reason why magnesium has a stronger interaction than calcium on flotation.  

Surface charge density is defined as the amount of electric charge at the surface of a 
particle per unit length, surface area, or volume (Lucas et al. 2007). Magnesium and 
calcium have the same charge but due to atomic size differences magnesium has a greater 
surface charge density than calcium. Similarly, calcium has a greater surface charge 
density than strontium and barium, hence the different impact in the zeta potential of 
hematite. Therefore, magnesium can penetrate the electric double layer faster than 
calcium due to its greater surface charge density and site spacing. 
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Figure 2.1: Magnesium, Calcium, Strontium and Barium complexes with the hydroxyl 
groups in the [100] plane of hematite. (Based on Haselhuhn, 2012a) 

 

Figure 2.2: Zeta Potential of a concentrated hematite ore at various concentrations of 
Magnesium, Calcium, Barium, and Strontium (Based on Haselhuhn, 2012a) 
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2.4 Literature Review on the Effect of Calcium and 
Magnesium in Flotation 

It is complicated to generalize the effect of cations in flotation since their effect depends 
on the characteristics of the ore, the type of reagents used in the process, the valence level 
and concentration of cations, among other factors (Tang and Wen, 2018). Research has 
shown that in iron ore flotation cations such as calcium and magnesium can promote 
flotation in some cases yet they can be detrimental to the process in other instances (Tang 
and Wen, 2018). Calcium and magnesium are beneficial primarily in the anionic reverse 
flotation of iron ore as they help activate the silica for the anionic collector adsorption 
(Cao et al., 2013; Ruan et al., 2018; Fuerstenau and Palmer, 1976). On the contrary, at 
high concentrations, calcium and magnesium are known to bring disadvantages in the 
reverse cationic flotation of iron ore. 

The effect of calcium and magnesium in the reverse cationic flotation of hematite is not 
fully understood. Fuerstenau and Palmer (1976) found that high concentrations of 
calcium and magnesium make the sign of the zeta potential of the silica reverse from 
negative to positive, preventing the adsorption of the cationic collector onto the silica. 
Similar findings by Lelis et al. (2019) and Lelis et al. (2020) show that silica recovery in 
the froth is decreased as calcium chloride and magnesium chloride concentrations 
increase over 10 mg/L, because Ca+2 and Mg+2 ions are attracted to the negatively 
charged silica, competing with the amine collector. This is a major problem because most 
cationic collectors (alkyl ether amines and dodecylamines) adsorb onto the surface of the 
silica by electrostatic interactions (Rao, 2004; Ren et al., 2018). 

Other researchers have found that divalent cations not only affect collector adsorption but 
can cause problems in the depression activity. Haselhuhn (2012a) mentions that at ion 
concentrations greater than 15 ppm, calcium and magnesium cause hetero-flocculation of 
silica and hematite in the selective flocculation and dispersion process, yielding low iron 
grades in the concentrate product. On a similar note, Ruan et al. (2018) also observed a 
depression effect in dolomite flotation attributed to the reaction of these cations with the 
fatty acid collector causing precipitation and lower concentrations of collector available 
for adsorption onto the surface of the dolomite. Shortridge et al. (1999) found that 
calcium and magnesium promote the depressive activity of long chain polysaccharide 
depressants such as carboxymethylcellulose (CMC) used in talc flotation.  

Recently, researchers have discovered that calcium and magnesium behave differently in 
flotation. Haselhuhn (2012b) determined that magnesium is more detrimental than 
calcium in the selective flocculation and dispersion process because of site spacing as 
mentioned in Section 2.3. Lelis et al. (2020) observed a stronger depression effect in the 
presence of magnesium attributed to the Mg(OH)2 species in solution precipitating on the 
particle and creating a slime coating around the surface. A similar conclusion was 
reached by Li et al. (2018) in chalcopyrite flotation, where magnesium lowered the 
chalcopyrite recovery more than calcium due to the precipitation of Mg(OH)2 at a pH of 
10. This precipitate adsorbed onto the surface of the chalcopyrite and lowered its 
hydrophobicity. Laskowski and Castro (2012) found similar results in the flotation of 
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molybdenite at pH levels greater than 10, where the MgOH+(aq) adsorbs onto the surface 
of molybdenite and then the precipitation of Mg(OH)2(s) forms a hydrophilic coating 
around the molybdenite and lowers its floatability.  

The objective of the present study is to understand more in depth the differing effects of 
calcium and magnesium in the reverse cationic flotation of iron ore. We have found that 
these ions, especially magnesium, are affecting the adsorption of starch onto the hematite 
causing low iron grades and recoveries. By understanding the mechanisms by which 
calcium and magnesium affect iron ore flotation, we can develop new strategies to 
control water quality in the process and improve process efficiency. 

2.5 Methods to Control Water Hardness in a Flotation 
Plant 

We have mentioned that in the iron ore industry the selective flocculation and dispersion 
process and the flotation process heavily rely on water chemistry. Because high 
concentrations of calcium and magnesium affect the efficiency of the process, different 
strategies are necessary to manage the water quality at processing plants. In general, 
flotation problems originated from water chemistry changes are dealt directly in the 
flotation process (Liu et al., 2013). The most common method followed in iron ore 
concentration plants is the addition of chemical reagents.  

Sequestering ions such as calcium and magnesium using chemical reagents is one of the 
most common methods used in industry. Examples of ion-sequestering chemicals include 
chelating agents like EDTA (ethylenediaminetetraacetic acid) and a variety of dispersants 
such as PAA (polyacrylic acid), SHMP (sodium hexametaphosphate), among others 
(Lelis et al., 2019; Lelis et al., 2020; Li et al., 2018; Rebolledo et al., 2017). All these 
reagents are very large compounds that can form complexes with ions such as calcium 
and magnesium so that they cannot adsorb to mineral surfaces or other reagents. Figure 
2.3 shows the Calcium-EDTA complexation as an example. Similar complexes are 
formed by the reagents mentioned above with both calcium and magnesium ions present 
in solution. 
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Figure 2.3: Calcium – EDTA (ethylenediaminetetraacetic acid) complexation (Based on 
Wu et al., 2015) 

In iron ore flotation, adjusting dispersant dosages is usually enough to control the calcium 
and magnesium concentrations in flotation, however this solution is time consuming and 
the labor involved is considerable. Selecting and controlling dispersant addition depends 
in a lot of factors, especially since aside of reducing water hardness the dispersant needs 
to disperse the silica properly for process efficiency.  

Another common method used to reduce water hardness in flotation is the ion exchange 
process (Williams and Phelan, 1985). In this process, calcium and magnesium dissolved 
in water are exchanged for sodium ions. As depicted in Figure 2.4, hard water passes over 
ion exchange resin beads which are negatively charged. At the base state the resin beads 
hold positively charged sodium ions. As calcium and magnesium contact the resin beads, 
they displace the sodium ions from the exchange sites (Millar et al., 2014). After the ion 
exchange takes place, the displaced sodium ions leave through the softener outlet, thus 
delivering “soft water” or water with low water hardness levels. The main drawbacks 
from this method are the high power consumption and the need of regular saturated resins 
regeneration (Sepehr et al., 2013). 

 



22 

 

Figure 2.4: Depiction of the Ion Exchange Process. As the calcium and magnesium come 
in contact with the resin beads, they displace the sodium ions from the exchange sites. 

Water hardness removal is also commonly performed by chemical precipitation by 
treatment with lime (calcium hydroxide, Ca(OH)2) and soda ash (sodium carbonate, 
Na2CO3). In this process the pH of the water is raised to exceed the solubility products of 
calcium carbonate (CaCO3) and magnesium hydroxide (Mg(OH)2) (Mercer et al., 2005).  
The traditional soda-ash treatment can be divided in three stages shown in Equations 1-3 
(Mohammadesmaeili et al., 2010).  

HCO3
− + Ca(OH)2 → CaCO3 + H2O + OH−  (Eq. 1) 

Mg+2 + Ca(OH)2 → Mg(OH)2 + Ca+2  (Eq. 2) 

Ca+2 + Na2CO3 → CaCO3 + 2Na+  (Eq. 3) 

As shown in Equations 1-3, calcium hardness precipitates as calcium carbonate (CaCO3) 
and magnesium hardness precipitates as magnesium hydroxides (Mg(OH)2). These 
precipitates are removed in a later step by various processes such as filtration, 
coagulation, flocculation, or sedimentation (Mercer et al., 2005). The main disadvantage 
of this technique is that it will change the pH of the solution. Because iron ore flotation 
relies so much in the pH of the solution, this method is not very popular. Additional 
drawbacks from this process include the liquid sludge waste and the need for re-
carbonation of the soft water (Sepehr et al., 2013).  

Other methods reported in literature to control water hardness include the 
electrodeionization, electromembrane, and capacitive deionization processes, as well as 
the membrane and fluidized pellet reactor (Sepehr et al., 2013; Fu and Wang, 2009; Park 
et al., 2007; Seo et al., 2010; Li et al, 2005). Most current techniques to manage water 
hardness levels in flotation do not individually control the levels of calcium and 
magnesium in solution. In this research we find that magnesium is more detrimental than 
calcium in the flotation process, however, further research is necessary to control these 
concentrations independently.  
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3 Experimental Work at Michigan Tech 
3.1 Research Objective 
Most of the hematite ore reserves found in the USA are low grade (~30% Fe) and very 
fine (25-37 µm at 80% passing) in comparison with hematite ore reserves found in Brazil, 
India, Australia, and other countries (Zhang et al., 2019). These characteristics make this 
ore very difficult to process. The only feasible method to concentrate this kind of ore is 
by selective flocculation and dispersion followed by reverse cationic flotation which 
heavily rely on water chemistry and chemical reagents (Haselhuhn and Kawatra, 2015).  

Calcium and magnesium are unavoidable in process water and because they are 
specifically adsorbed ions, they will affect the surface properties of minerals and reagents 
and cause problems in flotation. Previously, calcium had always been the main focus in 
research, but magnesium is far more detrimental in iron ore flotation. The objective of 
this project is to determine the differing effect of calcium and magnesium in the starch 
adsorption onto the hematite. We have discovered that in hematite flotation, magnesium 
affects the starch adsorption on the hematite much more than calcium, causing low iron 
grades and recoveries in the final product. 

3.2 Initial Tasks 
3.2.1 Sample Collection and Characterization 
The hematite ore used in these tests was sampled from an iron ore concentration facility 
in the Upper Peninsula of Michigan. As shown in Figure 3.1, the samples have been 
collected at two different locations in the processing plant. The first time that samples 
were collected was in Location #1 which is in the deslime thickener underflow right 
before the starch addition. Collecting the samples at this location was recommended by 
plant engineers since it is right before flotation which is the focus of this study. However, 
surface active reagents such as dispersants and flocculants have already been added at 
this point which can change the surface properties of the minerals and make it difficult to 
analyze flotation results accurately. Ever since, the samples have been collected in 
location #2 at the autogenous mill screen underflow right before dispersant addition. 
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Figure 3.1: Sampling locations at the iron ore concentrator plant. Location #1: Deslime 
thickener underflow, right before starch addition. Samples at this location had a 40.95 ± 
0.6% grade and a particle size of 12.09 µm at 80% passing. Location #2: Autogenous 
mill screen underflow, right before dispersant addition. Samples at this location had a 
32.32 ± 0.7% grade and a particle size of 0.8 mm at 80% passing. Collection dates 
included.   

The samples used in this investigation were collected in location #2 after primary 
grinding and right before dispersant addition. As Haselhuhn and Kawatra (2015) stated, 
this sample collection location is ideal since at this point surface active reagents have not 
been added to the slurry. Also, by sampling before secondary comminution, fresh surface 
sites can be achieved after grinding the ore in the lab prior to any experiments 
(Haselhuhn and Kawatra, 2015). The reason why samples were not collected earlier in 
the process is because before the ore goes thru primary comminution it is very difficult to 
obtain a representative sample (Haselhuhn and Kawatra, 2015). Figure 3.2 shows an X-
Ray Diffraction (XRD) of the ore used. Results showed a composition of 65.15% quartz, 
21.45% hematite, 7.7% magnesioferrite, and 5.7% goethite.  
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Figure 3.2: X-Ray diffraction results for the hematite ore used in this investigation. 
Quartz: 65.15%, Hematite: 21.45%, Magnesioferrite: 7.7%, Goethite: 5.7% 

3.2.2 Recreation of the Iron Ore Concentration Process in the 
Laboratory 

The focus of this research is flotation, but as the samples were collected so early in the 
process (Location #2 – Figure 3.1), it is necessary to recreate the iron ore concentration 
process in the laboratory, starting from secondary grinding up until flotation. As this 
process relies so much on water chemistry, it is important to recreate the process using 
feed water with similar water chemistry than the process water at the plant.  

Feed water used:  

To use similar water chemistry to the plant, ICP test were performed with the help of the 
Forestry Department at Michigan Tech to determine the calcium and magnesium 
concentrations in a sample of the city water available at MTU’s lab and in a sample of the 
flotation water at the plant. Similarly, titration tests were performed with both samples to 
compare their total water hardness (CaCO3 concentration). As shown in Table 3.1 the 
calcium and magnesium concentrations and the total water hardness for the city water 
sample is much greater than the concentrations at the flotation plant. Because the water 
chemistry can vary between days, this table cannot be used for direct comparison. 
Though it is useful to conclude that the city water available at MTU’s lab needs to be 
softened for use in flotation.  

The water used for the laboratory experiments consisted of a mixture of city water with 
deionized water to achieve lower calcium and magnesium concentrations comparable to 
the plant. The mixing ratio was determined every time a new batch of water was prepared 
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by performing titration tests on the city water sample to be used and using a simple 
dilution equation to reach a total water hardness concentration of approximately 16-18 
mg/L of CaCO3. Once the mixing was performed ICP test confirmed the exact calcium 
and magnesium concentrations that would be in the feed water added in grinding, 
desliming, and flotation.  

Table 3.1: Water chemistry comparison between Houghton’s city water, flotation process 
water at the plant, and the feed water used for recreating the flotation process at MTU. 

 

 
Houghton’s City 

Water 

(03-06-19) 

Plant’s Flotation 
Water 

(04-25-19) 

Feed Water used 
in MTU Lab 

(01-27-21) 

Calcium (mg/L) 63.4 3.2 7.5 

Magnesium (mg/L) 13.4 1.4 1.5 

Total Water 
Hardness (mg/L of 

CaCO3) 
298.9±5 18.7±0.02 16.6±0.0 

  
Grinding process: 

For the grinding process, 500 g samples of hematite ore were conditioned with feed 
water, sodium hydroxide (NaOH), and Cyquest 3223 antiprecipitant - anionic 
polyacrylamide dispersant (for desliming), to prepare a hematite slurry of  60% solids at a  
pH of 10.5. The grinding process was repeated at various grinding times to determine in 
how long the ore reaches approximately 25 µm at 80% passing which is the liberation 
size of this ore (Haselhuhn and Kawatra, 2015). Results showed that grinding for 50 
minutes in the lab rod mill produced a particle size distribution of 25.57 ± 0.3 µm at 80% 
passing. From this point on, prior to flotation, the ore is ground for 50 minutes. 

Selective flocculation and dispersion (desliming) process: 

As observed in Figure 3.3, the next step after grinding is selective flocculation and 
dispersion (also called desliming). To recreate this process in the laboratory a ten-litter 
transparent cell was used as shown in Figure 4.3. During this process the ground ore is 
added to the cell and conditioned with feed water (7% solids), sodium hydroxide (NaOH) 
to maintain the pH at 10.5, and causticized corn starch (0.3% solution) to flocculate the 
hematite. Once the solution was conditioned and let to settle for 30 seconds the ultra-fine 
silica particles (tailings) were siphoned out, while the settled hematite concentrate was 
filtered, dried, and taken to iron analysis to determine the iron grade and recovery using 
UV-VIS spectrometry at 510 nm. This procedure consisted of digestion of solids in 
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hydrochloric acid (HCl), dilution in distilled water, and addition of a neutral pH buffer, 
hydroxylamine hydrochloride reductant, and 1, 10-Phenanthroline indicator solutions. All 
Fe+3 ions are reduced to Fe+2 ions which turn orange when they react with the indicator. 
Following Beer-Lambert’s law, the absorbance of the solution is proportional to the 
concentration of iron in solution.  

The grade and recovery targets for the desliming process were communicated to us by the 
plant engineers during sample collection. These targets are 40-45% iron grade and 70-
80% iron recovery. The best results obtained in the lab yielded a grade of 40.2±0.5% and 
a recovery of 76.2±4.0% by adding 3 lb/ton of the Cyquest 3223 antiprecipitant - anionic 
polyacrylamide dispersant and 0.0625 lb/ton of the corn starch flocculant solution. 

 

Figure 3.3: Desliming set up in the MTU laboratory. Tailings were siphoned out onto the 
white bucket and the concentrate was flocculated to the bottom of the deslime cell.   

Reverse cationic flotation of hematite: 

Flotation tests at MTU are performed using a 2-L Denver flotation cell shown in Figure 
3.4. The feed for this process is the concentrate from the desliming stage. Once the slurry 
coming from desliming is added, more feed water is added (15% solids). The reagents 
added in this stage are sodium hydroxide (NaOH) for pH control (10.5), causticized corn 
starch (3% solution) as a depressant, and primary ether amine 30% neutralized with 
acetic acid (1% solution) as a collector/frother.  

The grade and recovery targets for a single-stage flotation process (not including 
scavenging stages) were also given to us by the plant engineers during sample collection. 
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These targets are 63-64% iron grade and 60% iron recovery. The best results obtained in 
the lab yielded a grade of 63.4±1.8% and a recovery of 56.7±2.8% by adding 1.5 lb/ton 
of the corn starch depressant solution and 1.5 lb/ton of the primary ether amine 
collector/frother. 

 

Figure 3.4: Flotation set up in the MTU laboratory. Tailings were recovered in the froth 
product and the concentrate was recovered at the bottom of the flotation cell.   

A brief summary of plant targets, MTU laboratory results, and important findings such as 
grinding time and optimum reagent dosage are shown in the table below (Table 3.2). 
Note that the grinding time and the optimum reagent dosages determined were kept 
constant for the rest of the experiments described in Section 3.3. 
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Table 3.2: Summary of results for the initial task of recreating grinding, desliming and 
flotation in the MTU laboratory 

3.3 Experimental Methods 
Flotation / Entrainment Analysis: 

Exactly as described in the previous section, the samples were ground and the slimes 
(ultrafine silica less than 25 µm) were removed during the selective flocculation and 
dispersion process using feed water with calcium and magnesium concentrations of 7.5 
ppm and 1.5 ppm respectively. Past this point, the flotation procedure was adjusted. One 
of the main changes to the flotation procedure was the water used. Instead of using the 
feed water used during grinding and desliming, a specific concentration of calcium 
chloride dihydrate (CaCl2 · 2H2O) or magnesium chloride hexahydrate (MgCl2 · 6H2O) 
were mixed with deionized water to prepare water solutions of 0, 45, 60, 100, and 200 
ppm of calcium and at 0, 7, 15, and 30 ppm of magnesium.  

For the flotation / entrainment tests, the 15% solids slurry composed of the concentrate 
from desliming and flotation water at specific concentrations of calcium or magnesium 
(depending on experimental desing) was adjusted to a pH of 10.5 with sodium hydroxide 
(NaOH) and conditioned for 3 minutes with 1.5 lb/ton of etheramine 30% neutralized. 
Then, the solution was conditioned for 1 more minute with 1.5 lb/ton of starch 
depressant. Once all the reagents were added, the air was turned on and the froth product 
was collected during 165 seconds swapping collection pans at intervals of 15, 30, 60, 
120, and 165 seconds. After flotation, all tailings and concentrate products were weighed 
for water recovery analysis, filtered, and dried. The dried weight of each product was 
recorded and all samples were analyzed for iron content by UV-VIS spectroscopy at 510 

 Plant 
Targets 

Michigan Tech 
Lab Results Method / Findings 

 
Grinding Process 
Initial size: 0.8 

mm 
  

25 µm at 80% 
passing  

 
25.57 ± 0.3 µm at 

80% passing 

Achieved by grinding 
for 50 minutes in the 

rod mill.  

 
Desliming 

Process 

 
Grade: 40-45% 
Recovery: 70-

80% 

 
Grade: 40.2 ± 0.5% 
Recovery: 76.2 ± 

4.0% 

Optimum dosages: 
3 lb/ton Dispersant 

(anionic 
polyacrylamide) 

0.0625 lb/ton Flocculant 
(corn starch) 

 
Single Stage – 

Flotation Process 

 
Grade: 63-64% 
Recovery: 60% 

 
Grade: 63.4 ± 1.8% 
Recovery: 56.7 ± 

2.8% 

Optimum dosages: 
1.5 lb/ton Depressant 

(corn starch) 
1.5 lb/ton Collector 
(Ether Monoamine) 
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nm following the same procedure described in Section 3.1.2. Each test was repeated 3 
times for reproducibility.    

Zeta Potential Analysis: 

The samples of freshly ground, filtered and dried ore were split into representative 
samples of approximately 1 gram. Each sample was hydrated with deionized water, 
adjusted to a pH of 10.5 with sodium hydroxide (NaOH), and sealed for 24 hours. Once 
hydrated, a 1-gram sample was placed in a 250 ml plastic beaker and 200 ml of deionized 
water adjusted to pH 10.5 was added. The particles were kept suspended in solution by a 
magnetic stirrer at 600 RPM. Only plastic instruments were used to prevent surface 
adsorption to laboratory equipment as described by Haselhuhn (2012b).  

A 1000 ppm solution of calcium and 1000 ppm solution of magnesium were prepared 
using calcium chloride dihydrate (CaCl2 · H4O2) and magnesium chloride hexahydrate 
(Cl2H12MgO6) respectively. Also, a 0.15% corn starch solution was prepared in a hot 
plate at 240℃ for 30 minutes and treated with 0.5 ml of a 10% NaOH solution.  

Zeta potential tests were performed at 25, 50, 100, and 200 ppm of calcium and 
magnesium both with and without starch. Depending on the calcium and magnesium 
concentrations desired a micropipette was used to add the predetermined dosage of 
calcium or magnesium chloride solution. For the test with starch, 1.5 lb/ton of cooked 
starch was then added and conditioned. The zeta potential was measured using a 
Zetasizer Nano ZS (Malvern) unit at the MTU lab. For reproducibility, each measurement 
was repeated 3 times.  

Settling Tests: 

Settling analysis helps indicate the dispersive stability of a slurry. Particles that are 
flocculated will settle much faster than particles that are highly dispersed. The method 
used monitors the total suspended solids (silica and hematite) concentration in solution 
over time using a Hach DR5000™ UV/VIS spectroscopy at 810 nm properly calibrated 
(Hach, 2010; Haselhuhn, 2013; Krawczyk and Gonglewski, 1959). The total suspended 
solids concentration will decrease as the solids settle.  

The slurry preparation was exactly the same as for the zeta potential tests described 
above. Tests were performed at 25, 50, 100, and 200 ppm of calcium and magnesium at a 
pH of 10.5 and 1.5 lb/ton of corn starch. Once prepared, the mixed slurry was carefully 
placed in a 10 mm light path cuvette design for the UV/VIS. The settling rate plots were 
determined by measuring the total suspended solids (silica and hematite) concentration in 
solution every 10 seconds for a total of 5 minutes with the UV/VIS measurement at 810 
nm. For accuracy, each measurement was repeated 3 times. The absorbance at 810 nm 
was calibrated by measuring the total suspended solids gravimetrically and using various 
concentrations of the iron ore samples in deionized water at 10.5 pH. 
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3.4 Results and Discussion 
Flotation / Entrainment Analysis: 

The main function of starch in flotation is to depress the hematite to inhibit collector 
adsorption and to flocculate the hematite so it settles faster. If magnesium is affecting 
starch adsorption, it means that the mechanisms of hematite recovery in the froth could 
be altered. Analyzing entrainment plots at different concentrations of calcium and 
magnesium in flotation can lead us to the different repercussions of high calcium and 
magnesium concentrations in the reverse cationic flotation of iron ore.  

The entrainment analysis method selected for this investigation is known as the simple 
correlation method (Lynch et al., 1981). It consists of plotting the cumulative water 
recovery percent in the froth against the cumulative iron recovery percent in the froth. A 
straight line in the plot indicates that the hematite is being recovered in the froth by 
entrainment. Any deviation from linearity indicates that some of the hematite particles 
are being recovered by true flotation.  

As observed in Figure 3.5, as the concentration of calcium increases, the level of 
entrainment decreases, represented as a decrease in the slope. This means that calcium is 
not only activating the starch adsorption, but it is promoting the flotation performance by 
improving the depression of hematite. In Figure 3.6, it also clear that the level of 
entrainment is decreasing as the magnesium concentrations increase. When the hematite 
depression is improved, it enhances collector selectivity and efficiency as the collector 
will adsorb less to the hematite and more to the silica which is the main purpose of the 
reverse cationic flotation of iron ore. Additionally, as the settling rate of hematite 
increases there are less hematite particles located at the pulp/froth interface and hence, 
less hematite particles will be recovered by entrainment.  
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Figure 3.5: Entrainment tests for hematite ore at various concentrations of calcium. Error 
bars are standard deviation over 3 replicates. 
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Figure 3.6: Entrainment tests for hematite ore at various concentrations of magnesium. 
Error bars are standard deviation over 3 replicates.  

Better hematite depression means higher iron recovery in the final product, however, to 
analyze the true flotation performance it is important to consider both the grade and 
recovery simultaneously. As it is well known a high recovery could mean a low grade 
and vice versa. Thus, the best flotation performance is found at a balance between grade 
and recovery. In a grade/recovery curve, points that are higher and towards the right have 
a better performance than points that are lower and towards the left (Kawatra, 2009). As 
observed in Figure 3.7, the best performance achieved in this experiment was at 45 ppm 
Ca which had a grade of 58.9 +/- 0.3% Fe and an iron recovery of 63.7 +/- 0.5%. 

The grade/recovery curve in Figure 3.8 shows that initially magnesium is promoting 
flotation, however after a very small increase in concentration it starts hurting the 
process. The best performance achieved in this experiment was at 7 ppm Mg which had a 
grade of 58.0 +/- 1% Fe and an iron recovery of 63.8 +/- 1%. These results prove how 
much stronger the interactions and repercussions of magnesium can be in flotation 
compared to calcium due to atomic size differences. Note that in both instances 
increasing past the optimal dosage decreases both recovery and grade. This is due to the 
calcium and magnesium decreasing the difference between hematite and silica.  
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Figure 3.7: Grade/Recovery curve at various concentrations of calcium. Error bars are 
standard deviation over 3 replicates.  

 

Figure 3.8: Grade/Recovery curve at various concentrations of magnesium. Error bars are 
standard deviation over 3 replicates.  
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Zeta Potential Analysis: 

Zeta potential tests were performed to determine if calcium and magnesium interact with 
starch during flotation. In Figure 3.9, it is clear that without starch, magnesium has a 
stronger impact than calcium in the zeta potential of the hematite ore. Both calcium and 
magnesium ions have a positive charge, which means that at a pH of 10.5 they can adsorb 
to the negative surface of the hematite and eventually change the sign of the zeta 
potential. Within the range of concentrations studied during these tests only magnesium 
caused a charge reversal from negative to positive around 90 ppm, whereas calcium did 
not cause a charge reversal at the concentrations analyzed. Figure 3.10 shows the same 
tests in the presence of starch. In this case magnesium did not cause a charge reversal on 
the surface of the hematite. By comparing Figure 3.9 and 3.10 it is clear that the starch is 
limiting the effect of magnesium on the hematite surface. The most probable mechanism 
is that the starch is capturing the magnesium. 

 

Figure 3.9: Zeta potential of hematite ore conditioned with various concentrations of 
magnesium or calcium at a pH of 10.5 (no starch added). Error bars are standard 
deviation over 3 replicates.  
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Figure 3.10: Zeta potential of hematite ore conditioned with various concentrations of 
magnesium or calcium, and 1.5 lb/ton of starch at a pH of 10.5. Error bars are standard 
deviation over 3 replicates.  

Settling Tests: 

Settling tests were performed to determine if calcium and magnesium affect the starch 
adsorption differently. As shown in Figure 3.11, the settling rate of solids (silica and 
hematite) does not vary significantly between 0 ppm calcium, 50 ppm calcium, and only 
starch when considering the error bars. Without starch, an increase in the calcium 
concentration seems to slightly improve the settling rate. This could be due to the 
addition of positively charged calcium ions to the negatively charged hydroxyl groups of 
hematite, causing flocculation of particles that were once suspended. The addition of 
sodium hydroxide (NaOH) increases the negativity of the mineral particles so the forces 
of repulsion acting between them prevent natural flocculation and settling (Green & 
Colombo, 1984). If the charge becomes less negative then the electrostatic repulsion is 
reduced, decreasing dispersion and provoking flocculation.  

In Figure 3.12, the settling rate of solids (silica and hematite) does not vary significantly 
between 0 ppm magnesium, 50 ppm magnesium, and only starch when considering the 
error bars. But contrary to calcium, an increase in the magnesium concentration seems to 
slightly reduce flocculation without the presence of starch, which means that magnesium 
is slightly dispersing the ore. This behavior could be explained by the changes in zeta 
potential as the magnesium concentration increases. Since magnesium is a specifically 
adsorbed ion, it is expected to continue adsorbing to the hematite even if the surface has 
started to carry a positive charge. Hence, at some point, magnesium should begin to lead 
towards the dispersion of hematite (Claremboux, 2020).   
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In the presence of starch and 50 ppm of either calcium or magnesium, these ions activate 
the starch and increase flocculation of particles (either silica or hematite) as observed in 
Figure 3.11 and 3.12. Modified corn starch is slightly negative due to the presence of the 
carboxylate group (Green and Colombo, 1984). Thus, starch will adsorb (perhaps non-
selectively) to the positively charge surface sites created by divalent ions. It is important 
to mention that due to site spacing and the surface degree of hydration, starch is more 
selective towards hematite surfaces than silica (Peçanha et al. 2019), but too high 
concentrations of calcium and magnesium may affect the selectivity (Haselhuhn and 
Kawatra, 2015). 

 

Figure 3.11: Settling tests for a fully hydrated iron ore at 10.5 pH with 0 ppm calcium, 50 
ppm calcium, only 1.5 lb/ton of starch, and both calcium and starch combined. Calcium 
activates the starch for adsorption and increases flocculation of particles. Error bars are 
standard deviation over 3 replicates.  
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Figure 3.12: Settling tests for a fully hydrated iron ore at 10.5 pH with 0 ppm 
magnesium, 50 ppm magnesium, only 1.5 lb/ton of starch, and both magnesium and 
starch combined. Magnesium activates the starch for adsorption and increases 
flocculation of particles. Error bars are standard deviation over 3 replicates.  

In Figure 3.13, the settling rate of solids is not significantly affected by an increase in the 
calcium concentration at a constant dosage of starch. The settling rate slightly increased 
as the calcium concentration went from 25 to 200 ppm. This can be attributed to the 
starch flocculating the ore even further as the calcium ions reduce repulsion or activate 
more sites for starch adsorption (either hematite or silica sites). On the contrary, an 
increase in the magnesium concentration at constant starch dosages cause the settling rate 
of solids to decreases (Figure 3.14), which tells us that magnesium is affecting the 
adsorption of starch to the ore. As the magnesium concentration continues increasing the 
settling rate decreases. This is likely due to the magnesium decreasing the amount of 
starch available by collecting it and causing it to precipitate as it was discussed in the zeta 
potential tests. Another possible mechanism is that the high concentrations of magnesium 
result in a positive charge being expressed on all of the available surfaces, resulting in 
dispersion. 
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Figure 3.13: Settling tests for a fully hydrated iron ore at 10.5 pH conditioned with 1.5 
lb/ton of starch and various concentrations of Calcium. An increase in calcium will not 
change the settling rate of solids significantly. Error bars are standard deviation over 3 
replicates.  
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Figure 3.14: Settling tests for a fully hydrated iron ore at 10.5 pH conditioned with 1.5 
lb/ton of starch and various concentrations of Magnesium. As magnesium increases, it 
affects the adsorption of starch to the ore. Error bars are standard deviation over 3 
replicates.  
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4 Conclusions 
Specifically adsorbed ions, such as calcium and magnesium in iron ore flotation, are ions 
that can chemically bind with the mineral surfaces and alter the surface properties. 
Calcium and magnesium are unavoidable in process water and as their concentrations 
increase due to water recirculation and reagent additions they are becoming detrimental 
to the flotation process. Calcium has always been the main focus in research yet 
magnesium has been found to be more detrimental in flotation due to its smaller atomic 
size and greater surface charge density.  

Starch adsorption in iron ore flotation is key for the effective depression of hematite. It 
has been determined by flotation, zeta potential, and settling tests, that increasing calcium 
concentrations promote starch adsorption and reduce entrainment of hematite. As 
positively charged calcium ions adsorb onto the hematite, they attract the slightly 
negative starch and promote hematite depression. The effect of magnesium appears to be 
mechanically very similar to calcium, but with much higher kinetic rates resulting in 
much lower selectivity. Calcium appears to preferentially promote the adsorption of 
starch to hematite. The addition of magnesium appears to promote the interaction of 
starch with everything in solution: hematite, silica, and even starch’s interactions with 
itself resulting in lower selectivity. This should be further tested by evaluating the 
interaction of magnesium with silica.  

Magnesium and calcium must be individually controlled in flotation. Current industry 
practice focuses heavily on calcium only. For this flotation setup the best performance 
achieved was at 45 ppm Calcium and 7 ppm Magnesium. Increasing past the optimal 
dosage decreases both recovery and grade as calcium and magnesium decrease the 
difference between hematite and silica. 
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