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Abstract 

Eco Approach and Departure (Eco-AnD) is a Connected and Automated Vehicle 

(CAV) technology developed to reduce energy for crossing a signalized intersection or 

set of intersections in a corridor that features vehicle to infrastructure (V2I) 

communication capability. Eco-AnD technology uses the information of the signal 

phase and timings (SPaT) received from the V2I communication to optimize the 

vehicle’s speed profile and produce an energy-efficient maneuver to cross the 

intersection. 

The energy-reduction potential of the Eco-AnD is examined by developing baseline 

models that represent real-life human driver behaviors. The developed baseline models 

were validated for a corridor comprised of six intersections around a real-world drive 

cycle (MTU Drive Cycle) to verify average energy prediction accuracy of about 95 %. 

The Eco-AnD algorithm is devised for two vehicles (GM-Volt Gen II & GM-Bolt), 

both with different powertrain architectures but capable of working in electric-only 

mode. In simulations, the developed algorithm showed an energy-saving potential of 

70-90 kJ per intersection around the corridor of the MTU drive cycle for both vehicles. 

For the RSU loop (a subset of MTU drive cycle) up to 8 % of energy reduction is 

observed. Vehicle level testing of the optimized speed profiles was carried out at the 

American Center of Mobility (ACM) on GM-Volt Gen II to demonstrate an energy-

saving of 40-50 kJ per intersection on real road conditions. 
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1 Introduction 

1.1 Connected and Automated Vehicle Technologies - 

Background 

As it is a widely known notion that access to sufficient information about a problem 

leads to better decision making. A Connected Automated Vehicle (CAV) works on a 

similar principle and possesses the capability of receiving and using information from 

various sources in the surroundings to improve driving in terms of energy, time, and 

safety. In the work by Islam, et al. [1], the communications with surroundings are 

classified as V2I, V2V, V2C, V2P, V2X where V stands for a vehicle, I stands for 

infrastructure, C stands for cloud, P stands for pedestrian and X stands for anything in 

surrounding capable of communicating. From the information broadcasted by these 

sources, intelligent vehicle controllers can be developed to make the vehicle’s motion 

safe and efficient. 

Extensive research focus has been conducted on CAV technologies in the last decade. 

The U.S. Department of Energy (DOE) has played a key role in the advancement of 

these technologies by supporting multiple projects. The ARPA-E NEXTCAR (Next-

generation energy technologies for connected and automated on-road vehicles) was 

launched by DOE ARPA-E to develop 20-30 % energy savings by use of CAV 

technologies [2]. To bring this project to fruition, DOE created a team of several 

institutions including General Motors (GM), Michigan Technological University 

(MTU), Pennsylvania State University (Penn State), Purdue University, Southwest 
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Research Institute (SwRI), The Ohio State University, University of California 

(Berkeley), University of California (Riverside), University of Delaware, University of 

Michigan, and the University of Minnesota.  

As a part of the NEXTCAR project, MTU and GM partnered to develop advanced 

CAV technologies including eco-routing, speed harmonization, in-situ vehicle 

parameter characterization, cooperative driving between multiple vehicles, intelligent 

PHEV mode blending, and eco approach and departure. Details of each technology and 

its energy benefits can be found in [3]. The aim was to develop, validate and 

demonstrate these technologies for a fleet of eight GM-Volt Gen II and show a 

cumulative energy-saving of 20 % and an increased range of 6 %. MTU team has 

demonstrated the energy-saving capabilities of individual technologies as well as with 

the combination of them to meet the NEXTCAR’s objectives. These energy-saving 

demonstrations were conducted around the Michigan Technological University 

including a loop of five signalized intersections. 

1.2 Research goals and objectives 

This research expands the work done at MTU by Brandon Narodzonek on developing 

Eco Approach and departure algorithm for PHEV (Chevrolet Volt Gen II) [4]. In that 

study, a dynamic programming (DP) based algorithm was developed for six different 

intersections around the MTU drive cycle corridor and the energy reduction benefits of 

the algorithm were determined by comparing the simulation results to human driver 

maneuvers. On an experimental level, 2-4 % of energy savings around the MTU drive 
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cycle were demonstrated by providing the driver/vehicle with prior knowledge of 

traffic light phase timings. A detailed explanation of his work has been presented in 

section 2.3. 

The goals of this research are to expand the existing work on Eco Approach and 

Departure algorithm developed by Narodzonek. The research begins by continuing the 

development of an existing dynamic programming-based algorithm and validating the 

optimized speed profiles at simulation as well as at the vehicular level. In addition, the 

focus is placed on developing baseline speed profiles for the various intersections 

around the MTU drive cycle to compare and therefore prove the energy-saving 

potential of the developed Eco-AnD algorithm. The validity of baseline speed profiles 

was checked by comparing the energy consumption against on-road human driver 

maneuvers at the intersections. Further, to extend the scope of the Eco-AnD algorithm, 

a similar algorithm was developed for the fully electric vehicle, the GM-Bolt.  

Several objectives were identified and achieved during the progression of research to 

meet the research goal. The primary objectives of this research are: 

1. Extend the existing dynamic programming algorithm to generate the optimized 

speed profiles for all possible traffic light phase scenarios by introducing 

additional constraints on DP.  

2. Develop baseline speed profiles to simulate normal and aggressive human 

driving behaviors and perform the energy consumption comparison between 

optimized and baseline driving scenarios. This will provide the basis for the 
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determination of energy savings by the devised Eco-AnD algorithm in 

simulations before experimenting on roads and proving grounds.   

3. Perform the on-road data collection to calibrate the baseline human driver 

models for the intersections around a corridor of the MTU drive cycle and 

ACM proving grounds.  

4. Perform the on-road and closed-course track testing of the optimized speed 

profiles to demonstrate the energy savings by the optimized speed profiles 

against human driving under given similar conditions.  

5. Design and develop a reduced-order energy model for the fully electric vehicle 

(BEV - GM Bolt), that can be used in determining the energy consumption by 

the cost function of DP. As a part of this, the brake blending strategy for the 

vehicle is to be determined to account for the distribution of braking torque 

between friction brake and regenerative braking. 

While developing the Eco-AnD algorithm several assumptions were made. It was 

assumed that the information required from the DSRC communication such as phase 

timings, cycle timing, current phase information, and intersection location was 

available 300 m before the intersection. Then it is assumed that there is a 300 m of 

departure distance available for the vehicle post crossing the intersection. For 

simplicity, it is assumed that there was no traffic while approaching the intersection 

and the signal phase timings/durations were certain and deterministic. 
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1.3 Thesis Layout 

This thesis is organized as follows. Chapter 2 describes what Eco-AnD is and the state 

of the art. A detailed literature review is presented to show the relevant work that has 

been accomplished outside MTU and explains the potential room for advancements. 

Details of relevant research conducted at MTU have been laid out explaining the 

published results and Narodzonek’s research. Chapter 3 of the thesis describes the 

details of the research environment explaining the vehicles used for research, the drive 

cycles for on-road testing, and intersections at the American Center of Mobility (ACM) 

proving grounds used for data collection. In chapter 4, details of the model 

development and been laid out for both the vehicles under consideration for this 

research. Chapter 5 focuses on the validation results for both the baseline human driver 

model and the optimized speed profiles. Lastly, Chapter 6 provides a summary and 

conclusion from the work along with potential future work. 
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2 Eco Approach and Departure 

Eco approach and departure is a CAV technology that lets the vehicle cross the 

signalized intersection efficiently both in terms of energy and time. The aim is to 

provide the vehicle controller the information via V2I communication that is necessary 

for generating an optimized velocity profile. The communication from the intersection 

contains information such as time to next phase, current phase, GPS coordinates of 

intersection and some intersection can also broadcast the information about speed 

advisory that can aid vehicle controllers. An illustration of the vehicle to infrastructure 

communication is shown in Figure 1. The vehicle controller uses the information from 

the V2I communication and develops the speed profile such that the intersection is 

crossed during the green phase while running at the optimal point of the propulsion 

system.  

 

Figure 1 Illustration of DSRC communication between vehicle and signalized 

intersection 
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2.1 Intelligent Signalized Intersections 

Intelligent signalized intersections refer to those intersections that can broadcast 

various intersection-related information via the DSRC [5]. DSRC has a typical range of 

about 250-300 m and can go up to 1000 m, so a vehicle with the capability of 

communicating with the infrastructure can receive the information from an intersection 

considerable distance behind the intersection giving a sufficient window for the vehicle 

controller to compute an optimal trajectory and then follow it to cross the intersection 

efficiently. DSRC follows the SAE J2735 standard [6]. It consists of various messages 

that can be used for V2X communication but a signalized intersection broadcasts only 

SPaT and MAP messages. SPaT messages consist of information about signal phase 

and timing. Information like the current phase, time to next phase, and cycle times are 

broadcasted by the intersection.  

 

Figure 2 Current phase illustration 

Figure 2 illustrates the current signal in the traffic light. From left to right on the figure, 

we can see the current phase to be green, yellow, and red. According to SAE J2735, the 

signal states are assigned numbers for ease of understanding. The green phase is 

assigned 5, the yellow phase is assigned 7, and the red phase is assigned 3. Time to 
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next signal is the time remaining for the current phase state at the moment when the 

message is broadcasted. MAP messages consist of geological information about the 

intersection like intersection GPS coordinates, speed limits on various movement states 

of intersection. 

2.2 Relevant research outside MTU 

Extensive research has been conducted on developing Eco-AnD algorithms in the last 

decade around the world. Various methods have been considered while designing 

algorithms that can be made the vehicle cross the intersection without coming to a 

completer stop. From the various research conducted, some of the key works are 

described below. 

1) One example is the work done by Asadi and Vahidi [7]. They developed the velocity 

optimization technique by considering the information available from traffic lights 

about the current signal and time to the next signal. They developed two-stage 

algorithms to solve this problem. The first stage was a rule-based algorithm to find the 

optimal speed profile to cross the intersection safely and the second stage was making 

the vehicle follow the optimized speed by using an MPC controller. Their study was 

done in simulations, and it showed a 59 % fuel saving capability and 17.5 % range 

increase for 9 km distance with 9 signalized intersections. The research uses the 

Powertrain Systems Analysis Toolkit (PSAT) developed by Argonne National 

Laboratory to evaluate the energy-saving and fuel economy of the vehicle. Although 

the rule-based algorithm is a powerful tool to generate an optimized speed profile, it 
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does not consider the vehicle’s powertrain efficiency maps and road elevation profiles 

while optimizing the speed profile. Including these factors can further improve the fuel 

economy of the vehicle while crossing the intersection. 

2) Vögele and Endisch [8] developed a dynamic programming-based algorithm to 

generate velocity profiles for Eco-AnD. This study aimed to develop a plethora of 

optimized speed profiles considering the traffic and driver behavior and then give out 

one best possible speed profile suitable for the current situations. The algorithms 

consider the weighing factors between the traffic ahead and the driver comfort to select 

the velocity profile. Also, the study suggests that reducing the travel time (time to cross 

the intersection) can reduce fuel consumption, but a quantifiable measure of energy-

saving is not mentioned. There are several dynamic programming algorithms discussed 

in the paper to find out most time economic algorithm. Discretization of velocity and 

distance is made much coarse to save computation time but this has its disadvantages. 

Considering the DSRC range of 300 m, the discrete level of 50 m may create problems 

when implemented on real vehicles. Having only 6-speed points in the speed profile 

may lead to abrupt acceleration which may be uncomfortable to passengers and may 

not be very fuel-efficient.  

3)  Guo, et al. [9], have attempted to solve the problem for a parallel hybrid vehicle by 

developing a bi-level MPC controller. The problem is divided into two loops, the outer 

loop is optimizing the vehicle’s velocity by communicating with the infrastructure 

whereas the inner loop is keeping the vehicle parameters such as torque split ratio and 

gear shift schedule at optimum level. The study suggests by developing a two-layered 
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algorithm can make the optimization problem computationally efficient by a factor of 

nearly 310 for velocity optimization and by 279 for torque split and gear schedule 

optimization. These results are based upon the simulation carried out in AMESim. 

Although the developed algorithm shows good energy-saving potential in simulations, 

it may be difficult to implement a bi-level MPC controller in real-time considering the 

computation power required for solving the complex problem of 2 stage optimization.  

4)  Hao, et al. [10], have developed an Eco-AnD algorithm for adaptive traffic lights 

which change signal phase and timings considering the traffic situation at the corridor. 

Their work aimed at implementing the algorithm for the real-world case and they 

developed a speed advisory system for the driver considering the traffic around the 

Eigen vehicle and the traffic light signal phase and timings. Their algorithm was able to 

demonstrate an energy-saving of 6 % on real road conditions and 2 % on energy-saving 

on the overall drive cycle. As an innovative idea it is, it has its limitation. With the 

driver speed advisory system, the driver always must keep an eye on the 

instrumentation cluster to follow the speed which is both not safe and will have an 

error in maintaining the actual optimal speed. 

5)  HIL testing of the Eco-AnD algorithm was done in one of the studies done by 

Cantas, et al. [11]. Their algorithm uses a method called green wave state selector 

which uses one out of four pre-defined criteria to alter the vehicle speed. The inputs to 

the algorithm are the vehicle state, SPaT information, and distance, and based upon the 

four states it outs a speed change command. The states tell whether to accelerate, 

deaccelerate, maintain the speed, or come to a complete stop. Using this algorithm, 



11 

they were able to demonstrate a fuel consumption reduction of 3 % and 7 % 

improvement for the multiple intersection model. The green wave algorithm has the 

limitation of considering the vehicle’s propulsion system efficiency maps and road 

elevation changes into considerations. 

6) Sun, et al. [12], dealt with the problem of uncertainty in the phase timings of the 

adaptive traffic lights. The algorithm that is developed is bolstered by the traffic data 

collected over the years and then analyzed. The most likely phase timings according to 

the time of the day are analyzed and then used for speed planning for a CAV. Once the 

uncertainty in the phase timing is dealt with, the problem of generating the optimized 

speed profile is solved by using the distance-based dynamic programming algorithm. 

In simulations, their study shows the potential of saving 40% fuel as compared to the 

human driver model.  The determination of the traffic light phase is based on data 

collected. This type of solution may fall apart for the newly installed traffic lights 

which lack historical data to develop the data-driven optimization technique. 

2.3 Relevant research at MTU 

The first research work related to Eco-AnD was done by Biswajit Barik in his Master’s 

thesis which was published in 2017, [13]. The work focused on developing the CAV 

technologies by using sequential quadratic programming (SPQ) tools to optimize the 

vehicle’s speed profile. The algorithm could simulate the Eco-AnD for three 

consecutive signalized intersections and simulated an energy savings of 8-9 % for GM-

Volt Gen II. 
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As a part of ARPA-E NEXTCAR, MTU has developed a study on Eco Approach and 

departure. The study has focused on demonstrating the potential energy savings on a 

multi-model plug-in hybrid vehicle – Chevy Volt Gen II over the RSU loop. On the 

simulation level, the study showed a potential of 13-44 % energy-saving per 

intersection whereas the experimental trials showed a potential of 25-35 % energy-

saving. Similar analysis showed an energy savings of about 4 % on the overall MTU 

drive cycle. 

Another study at MTU was conducted by Narodzonek in his dissertation focused 

towards developing the dynamic programming-based velocity optimization technique 

that would take the information from the vehicle’s CAN channel and SPaT & MAP 

information from DSRC and give the output of an energy-efficient speed profile. The 

algorithm runs using the ‘dpm’ function to solve the backward dynamic programming 

problem. 

In his study, the vehicle of prime focus was Chevrolet Volt Gen II and only the CD 

mode operation of the vehicle was considered. To calculate the energy consumption as 

a part of the cost function of dynamic programming, a reduced-order energy model was 

used. The details of this model can be found in [14]. The equation for the CD mode 

energy model can be written down as one shown in ( 1 ). The DP uses the reduced-

order energy model as the cost function while assuming an additional constant 

auxiliary load of 1.5 kW, which gives the cost function as ( 2 ). 

 𝐸𝐸 = 𝐶𝐶1 + 𝐶𝐶2𝑇𝑇 + 𝐶𝐶3𝑣𝑣 + 𝐶𝐶4𝑇𝑇𝑣𝑣 + 𝐶𝐶5𝑇𝑇2 + 𝐶𝐶6𝑣𝑣2 ( 1 ) 
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 𝐶𝐶 =  𝐸𝐸.𝑑𝑑𝑑𝑑 +  1.5.𝑑𝑑𝑑𝑑 ( 2 ) 
 

The constraints to the DP are defined such that the vehicle maintains the road speed 

limit and crosses the intersection only within the green phase. The algorithm relies on 

the information on SPaT and MAP broadcasted from the DSRC at the intersection to 

perform the speed optimization. In his research work, the energy-saving potential of 

Eco-AnD at the RSU loop is 5 %, increasing the MPGe of the vehicle by 8.1%. For the 

MTU drive cycle, the energy savings range from 1.8 to 4 % that accounts for an 

increase in MPGe by 1.9 %. 

To make one on one comparison with all the relevant research work, a comparison 

table is developed, Table 1. The table covers various properties of the Eco-AnD 

algorithm that certain studies may or may not consider while developing the research. 

This table covers the literature review from research conducted both outside and at 

MTU. At the end of the table, the scope of this research work is also laid out to 

compare the characteristics of this research in comparison to the literature review 

above. 

Table 1 Literature review comparison table 

Research Optimizat

ion 

Technique 

Vehicle 

Propulsi

on 

system 

dynamic

s 

Road 

dynamics 

considerat

ion 

Simulation/H

IL/On-

road/Track 

Testing 

Traffic 

consider

ation 

Adapti

ve 

Traffic 

lights 
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Clemson 

Universit

y 

Rule-based 

algorithm 

X X Simulation X X 

THI, 

Germany 

DP Y X Simulation Y X 

Jilin 

Universit

y, China 

MPC  Y X Simulation X X 

U of C, 

Riverside 

State 

selection 

algorithm 

X X On-road Y Y 

OSU Green 

wave 

X X HIL X X 

U of C, 

Berkely 

DP Y X Simulation X Y 

Barik, 

MTU 

SQP X Y Simulation X X 

Narodzon

ek, MTU 

DP Y Y Simulation/On

-road testing 

X X 

Goyal, 

MTU 

DP Y Y Simulation/On

-road 

testing/Track 

Testing 

X X 
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3 Research environment 

For any study, the research environment plays a very important role in achieving goals. 

Due to abundant resources available at MTU, it was possible to bring this research to 

success. This research focuses on two vehicles with different powertrain architectures 

for developing the optimization algorithm. A Chevrolet Volt – Gen II (Compound split 

– PHEV) and a Chevrolet Bolt (EV). Details of these vehicles are presented in Section 

3.1.1 and 3.1.2 respectively. Then section 3.1.3 gives the details of the vehicle 

instrumentation that was used to carry out the vehicle level testing of the optimized 

speed profiles. The drive cycles used for this research study are discussed in section 3.2 

and detailed information on the intersections encountered on these drive cycles is laid 

out. Details of track testing at ACM proving grounds are also provided in this section. 

3.1 Vehicles under consideration 

3.1.1 Chevrolet Volt – Gen 2 

Chevrolet Volt – Gen 2 is a light-duty multi-mode plug-in hybrid vehicle. Broadly 

characterizing, the vehicle can operate in two different modes depending upon the 

vehicle’s high voltage battery’s state of charge. Charge depleting (CD) mode is the 

pure electric operation of the vehicle’s powertrain. In this mode, the only propulsion 

source is the high voltage battery, and the engine is shut off making the vehicle’s 

operation analogous to any fully electric vehicle. The charge sustaining (CS) mode of 

the vehicle is the hybrid operation of the vehicle where the engine and two 

motor/generator units of the vehicle propel the vehicle. For the following research 
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application, much focus has been devoted to the CD mode of the vehicle. The vehicle 

has an all-electric range of 53 miles when fully charged [15]. 

 

Figure 3 GM-Volt Gen II 

3.1.2 Chevrolet Bolt – 2019 

Chevrolet Bolt 2019 is a pure electric vehicle with a rechargeable energy storage 

system of 60kWhr capacity. The vehicle is propelled by a single traction motor of 200 

HP driving the front wheels. The vehicle has a driving range of 238 miles on a full 

charge and a maximum speed of 91 MPH [16]. 
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Figure 4 GM-Bolt 2019 

Table 2 Vehicle comparison table 

Vehicle Characteristic Chevrolet Volt Gen II Chevrolet Bolt  

Powertrain Architecture PHEV with dual-motor power 

split. 

EV with single final 

drive ratio 

Modes of operation Charge depleting (CD) & 

Charge sustaining (CS) 

Charge depleting (CD) 

Curb Weight (kg) 1607.0 1616.0 

F0 (N) 172.2 126.3 

F1 (N/mps) 4.5 2.0 

F2 (N/mpss) 0.2 0.4 

Maximum all electric 

range (mi) 

53.0 238.0 
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3.1.3 Vehicle Instrumentation 

The vehicles used in this research were part of DOE ARPA-E NEXTCAR and DOE 

EEMS projects. The focus of these projects is to validate the energy-saving potential of 

various CAV technologies. To meet the research objectives of the projects these 

vehicles were instrumented with various sensors and a data acquisition system. The 

vehicle instrumentation architecture is shown in Figure 5. The vehicle instrumentation 

consists of a dSPACE MicroAutoBox II (MAB II), serving as an on-board processing 

unit for vehicular controls and a high-resolution data acquisition system. It also 

interfaces with various CAN channels of the vehicle and auxiliary sensors in the 

instrumentation package. SWIFT GPS unit, New Eagle drive-by-wire system, and 

various analog sensors are attached to the MAB II. A detailed summary of the vehicle 

instrumentation is laid out in Table 3. 

 

Figure 5 Vehicle Instrumentation in boot 
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Table 3 Vehicle Instrumentation details 

S.No. Component Description 

1 MABx dSPACE Controller – Controller integration and data 

acquisition system 

2 DBW module Drive-by-Wire system controller 

3 Leddar VU8 Obstacle detection 

4 Delphi Radar Obstacle detection 

5 Cohda Radio Processing BSM, MAP, and SPaT information 

6 GNSS module Obtaining vehicle’s current location 

7 GNSS Antenna Obtaining accurate position information 

8 IMU Obtaining vehicle orientation 

 

A laptop is also connected to the MAB II as shown in Figure 6, to provide a human-

machine interface for real-time control and actuation of the vehicle instrumentation. 

 

Figure 6 Laptop connected to vehicle performing real-time vehicular control. 
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3.2 Data collection 

3.2.1 On-road data collection 

3.2.1.1 MTU drive cycle 

Michigan Technological University Drive Cycle (MTUDC) is an amalgamation of city 

and highway driving. The drive cycle stretches up to 24 miles and nearly experiences 

160 m of elevation change happening multiple times. The drive cycle is designed such 

that it has five different signalized intersections, and the drive cycle has the capability 

to stop the vehicle six times on these five intersections. The drive cycle is an 

anticlockwise closed-circuit starting and ending at APS Labs. The circuit has twelve 

right-hand turns and eight left-hand turns. The drive cycle laid over the map is shown 

in Figure 7. Further details of the drive cycle can be found in [17]. 
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Figure 7 MTU Drive cycle, original image taken from Google maps. 

The MTU drive cycle comparison to standard EPA drive cycles is shown in Table 4. 

The MTU drive cycle features an average speed of 33 MPH which lies in between the 

UDDS and other high-speed drive cycles. However, the MTU drive cycle is the longest 

of all the other drive cycles with a total distance of 24 MPH. 
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Table 4 MTU drive cycle comparison with EPA standard drive cycles 

Drive Cycle Distance (mi) Average speed 

(mph) 

Maximum 

speed (mph) 

UDDS 7.5 20.1 56.7 

HWFET 10.3 49.1 60.0 

US06 8.0 49.7 80.3 

MTUDC 24.0 33.0 55.0 

 

3.2.1.2 RSU loop 

To demonstrate the energy-saving potential of Eco-AnD, a subset corridor of the 

MTUDC was chosen with all the intersections. The distance of this corridor is 7 miles 

and has an elevation change of 136.6 m. The maximum speed around this corridor is 45 

mph and the minimum speed is 25 mph. The description of each intersection is given in 

Table 5. 
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Figure 8 RSU loop, original image taken from Google maps. 

The corridor in Figure 8 shows the RSU loop. The five intersections can be seen and 

the approach and departure distances for each intersection are shown with the color. 

For example, the library intersection is shown in orange. The distance before the traffic 

light is the approach and the distance after the traffic light is the departure distance. It 

can also be observed that the Econo intersection is crossed twice first from going from 

downtown to Walmart (direction - southbound) and the second time while going from 

festival foods to the library (direction - eastbound). 
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Table 5 RSU loop intersection details 

Intersection Approach 

Distance 

(m) 

Departure 

Distance 

(m) 

Speed 

limit - 

Approach 

(mph) 

Speed 

limit - 

Departure 

(mph) 

Phase Timings (s) 

          Green 

(5) 

Red 

(3) 

Yellow 

(7) 

Library 300 300 25 30 25 40 4 

Downtown 300 300 25 25 32 28 4 

Econo 

South 

Bound 

300 300 45 45 21 43 4 

Walmart 300 300 45 45 32 32 4 

Festival 

Foods 

300 300 45 25 22 44 4 

Econo East 

Bound 

300 300 25 35 21 43 4 

 

The phase timings of the signals in Table 5 are the observed values at the intersection. 

These values are then used to simulate the results for the Eco-AnD algorithm. The road 

elevation change in these intersections is detailed in Table 6. 
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Table 6 RSU loop intersection elevation details 

S.No Intersection Elevation at -300m Elevation at 300 m Elevation change 

1 Library 207.6 177.3 -30.3 

2 Downtown 165.9 160.0 5.9 

3 Econo South Bound 198.4 224.4 26.0 

4 Walmart 222.9 248.8 25.9 

5 Festival Foods 252.4 278.3 25.9 

6 Econo East Bound 227.9 216.6 -11.3 

 

From the elevation change with respect to distance, the road grade can be easily 

calculated. The grade across these intersections varies from -6.8 deg to +4.1 deg. The 

plot for the grade of each intersection is shown in Figure 9. These grade values are 

used as the disturbance signal to the Eco-AnD algorithm to consider the road 

dynamics. 



26 

 

Figure 9 RSU loop Intersection Grade 

3.2.2 Track data collection 

Track data for Chevrolet Volt Gen II was collected at the American Center of Mobility 

(ACM). The track consists of 2 intersections with DSRC communication to broadcast 

SPaT and MAP information. Optimized speed profiles were tested at these 

intersections to validate the energy savings by the developed Eco-AnD algorithm. 
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Figure 10 ACM Intersection Map 

The phase timings for the intersections at ACM are observed values and summarized in 

Table 7. 

Table 7 ACM Intersection details 

S.N

o 

Intersectio

n 

Approac

h 

Distance 

(m) 

Departur

e 

Distance 

(m) 

Speed 

limit - 

Approac

h (mph) 

Speed 

limit - 

Departur

e (mph) 

Phase Timings (s) 

            Gree

n 

Re

d  

Yello

w 

1 6x6  300 165 35 35 25 47 4 

2 PMB 300 300 35 35 25 19 4 



28 

4 Model Development  

The Eco-AnD model is developed in MATLAB. Open-source MATLAB function 

“DPM” is used to develop the dynamic programming-based algorithm [18]. The 

function takes the inputs of the cost function, constraints, states, control inputs, and 

disturbances, if any, and runs the Bellman-Ford algorithm for backward dynamic 

programming. The problem has been designed in the domain of distance from the 

intersection, as described in Figure 11,  where distance before the intersection 

(approach distance) is negative, zero at the intersection, and positive after crossing the 

intersection (departure distance). DSRC communication range of 300 m before the 

intersection is assumed while defining the problem. 

 

Figure 11 Distance from intersection description 

4.1 Dynamic programming and its components 

As described previously, the inputs to the DP are the cost function, constraints, states, 

control inputs, and disturbance signals. The problem length is dependent upon the 
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approach and departure distance. A discrete level of 5 m is chosen for performing the 

DP calculations considering the computation time. 

4.1.1 Inputs to DP 

Figure 12 gives a pictorial description of the inputs to the DP. It can be observed that 

as soon as the vehicle enters the DSRC range of intersection, it begins to receive the 

SPaT and MAP messages broadcasted by the roadside unit (RSU). Having access to 

the vehicle’s CAN information vehicle has all the information required to process the 

inputs to the DP. Table 8 gives detailed information on the inputs to the DP.  

 

Figure 12 Pictorial view of inputs to DP 

Table 8 Summary of inputs to DP 

S.NO DP 

Parameter 

Physical Entity Source of information 

1 States State 1: Velocity (m/s) 

State 2: Time (s) 

State 1: Vehicle CAN 

State 2: Calculated 
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2 Control 

Input 

Acceleration (m/s^2) Derived from velocity 

3 Domain Distance (m) Combination of MAP data and 

vehicle’s GPS 

4 Constraints Constraint 1: Cross intersection 

in green phase 

Constraint 2: Maintain the legal 

speed limit 

Constraint 1: SPaT information 

(current phase, time to next 

color) 

Constraint 2: MAP information 

5 Disturbance Road grade (Deg)  

 

Inputs to the DP are given in the form of a grid to perform the Bellman-Ford 

optimization. The grid discretization is summarized in Table 9. 

Table 9 Discretization of inputs to DP 

S.No Input Minimum 

limit 

Maximum limit Discrete 

level 

1 State 1: Velocity 0 m/s Max legal speed limit in 

m/s 

0.2 m/s 

2 State 2: Time 0 s Max time for green 

phase closing + 20s 

0.1 s 

3 Control input : 

Acceleration 

-3.0 m/s^2 +3.0 m/s^2 0.1 m/s^2 
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4.1.2 Cost function 

The cost function to the DP is the way of describing the system in DP. The DP aims to 

minimize energy consumption, so the cost function must be defined such that the EGO 

vehicle’s energy consumption is related to the states and control input. As described in 

2.3, the cost function to the DP is the reduced-order energy model. For Chevrolet Volt 

Gen II,  the CD model energy model is used for developing the Eco-AnD algorithm. 

The equation for the model can be found in ( 1 ) & ( 2 ). For GM Bolt the reduced-

order model development is explained in section 4.3. The flow of calculating the cost 

function is shown in Figure 13. 

 

Figure 13 Schematic for calculation cost function - Volt 
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The cost estimation process can be generalized for any vehicle powertrain architecture 

given that the reduced-order energy model is available to use. For the current study, the 

reduced-order energy model for both the vehicle takes the input of road grade and 

vehicle velocity. Using these inputs, the cost for each iteration can be calculated. 

Vehicle auxiliary power may also vary from vehicle to vehicle. For this study, a 

constant auxiliary power load of 1.5 kW is assumed. 

To describe the vehicle’s model and calculate the cost for a discrete level following 

calculations are made- 

Step 1: Calculate final speed from control input and initial speed for 5 m. 

 𝑣𝑣 = �𝑢𝑢2 + 2𝑎𝑎 ∗ 5 ( 3 ) 

Step 2: Calculate the time taken for the maneuver and the total time. 

 𝑑𝑑𝑘𝑘 =
5
𝑢𝑢

 
( 4 ) 

 𝑇𝑇𝑘𝑘 = 𝑑𝑑𝑘𝑘 + 𝑇𝑇𝑘𝑘−1 ( 5 ) 

Step 3: Calculate axle torque for the maneuver. 

 α =
𝑎𝑎
𝑟𝑟

 ( 6 ) 

 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝐼𝐼𝑖𝑖𝑒𝑒𝑒𝑒 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎
𝑟𝑟

 
( 7 ) 

 𝑇𝑇 = �𝐹𝐹0 + 𝐹𝐹1𝑣𝑣 + 𝐹𝐹2𝑣𝑣2 + 𝑀𝑀𝑎𝑎 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(θ)�𝑟𝑟 ( 8 ) 

Step 4: Calculate the cost. 

 𝐸𝐸 = 𝐶𝐶1 + 𝐶𝐶2𝑇𝑇 + 𝐶𝐶3𝑣𝑣 + 𝐶𝐶4𝑇𝑇𝑣𝑣 + 𝐶𝐶5𝑇𝑇2 + 𝐶𝐶6𝑣𝑣2 ( 9 ) 
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 𝐶𝐶 =  𝐸𝐸.𝑑𝑑𝑑𝑑 +  1.5.𝑑𝑑𝑑𝑑 ( 10 ) 
 
 

4.1.3 Constraints to DP 

Constraints to DP are mathematical inequality equations used to describe any physical 

constraint that is the vehicle is required to follow. For the case of Eco-AnD, these 

constraints are described in Table 10. 

Table 10 Constraints to DP 

S.No. Physical Constraint Mathematical form 

1 Road speed limit 𝑣𝑣 < 𝑣𝑣𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙 

2 Cross intersection in green phase 𝑑𝑑𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 

&   𝑑𝑑𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 

Where 𝑑𝑑𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐  is the time to cross 

the intersection and 𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 is the 

time for the next green phase to 

start and 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖  is the time for the 

next green phase to finish. 

 

To calculate the variables 𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 information for the SPaT message is used. 

The signal “minEndTime” gives the time for the next color change and the signal 

“currentphase”  is descriptive of the current phase of the traffic signal, as described in 

appendix 7.1. Combining this information at a -300 m distance from the intersection, a 

feasible green phase passing window can be calculated. A detailed explanation of 
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possible cases is explained in Table 11.  Abbreviation  𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 is used to depict the time 

to the next color change. 

Table 11 Passing window timing calculations. 

S.No Situation Equations for passing 

window opening 

Equation for passing 

window closing 

1 Current phase = Red 

(3) 

𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑑𝑑𝑔𝑔 

2 Current phase = 

Green (5) 

𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 = 0 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 

3 Current phase = 

Yellow (7) 

𝑑𝑑𝑐𝑐𝑜𝑜𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑑𝑑𝑖𝑖 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑔𝑔 

 

The pictorial representation of the passing window calculation is shown in Figure 14. 

Open and closing window of the passing phase is shown in each case of the current 

phase. For example, the case in the image shows the passing window when the current 

phase is red (3). The passing window opens when the signal changes from red to green 

and closes when the green phase changes to yellow. For each case, an illustrative 

example is shown demonstrating one of many possible vehicle trajectories to cross the 

intersection in the green phase passing window. 
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Figure 14 Pictorial representation of passing window calculation 

4.1.4 Simulation Results for GM-Volt Gen II 

To observe the working of the algorithm, the 6x6 intersection at ACM proving grounds 

was designed in simulations. Using the grade information from Figure 10 and phase 

timings from Table 7 inputs of disturbance signal and SPaT signal were simulated. The 

current phase and time to next color signals were chosen from one of the manual-

driven test runs, detailed in Table 12.  

Table 12 6x6 intersection physical scenario 

Intersection 6x6 

Current Phase Red 

Time to next color 32 s 

Grade change -2.1 to 2.4 deg 

Speed limit 35 MPH 

Approach distance (m) 300 

Departure distance (m) 165 
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Using these values, the results from the Eco-AnD algorithm can be obtained as shown 

in Figure 15. 

Subplot 1 shows the optimized speed vs distance plot. As it is established in Table 7, 

the departure distance of the intersection is 165 m which gives a total distance of 465 

m for the intersection. At the entrance of the intersection, distance = -300, the speed of 

the vehicle is 35 MPH and drops to 17 MPH before reaching the intersection. This 

speed drop can be explained by observing subplot 2 that shows the relation of travel 

time vs distance. To avoid crossing the intersection during the red phase, the vehicle 

slows down and only crosses the intersection once the signal switches to the green 

phase which happens at 32 seconds. Subplot 3 shows the trend of control input 

(acceleration) to the dynamic programming algorithm, and throughout the intersection, 

the acceleration stays within -1.1 m/s2 and 0.6 m/s2. The subplot shows the energy 

expenditure by the vehicle which also is the minimum cost for the maneuver as 

generated by the dynamic programming algorithm. Total energy expenditure at the end 

of the maneuver is 258.3 kJ. 
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Figure 15 Simulation result for 6x6 intersection 

4.2 Baseline model development 

One of the distinguished benefits of CAV technologies is their energy-saving potential. 

From the literature review in section 2.2, it can be concretely said that the Eco-AnD 

algorithm can save considerable energy for crossing the intersection depending upon 

the factors such as type of speed profile optimizer, road conditions, and vehicle 

powertrain. So, estimating the energy-saving potential of the developed algorithm 

proves to be one of the key elements of the research progression. To estimate the 

energy consumption improvement, the comparison of energy consumption of 
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optimized speed profiles must be made against the human-driven maneuvers. This 

research focuses on estimating the energy savings in simulations as well as in real-life 

testing. Details on real-life energy savings by the Eco-AnD algorithm are explained in 

section 5. 

Human driving patterns vary from person to person. In [19, 20] authors have developed 

several models to mimic human driving patterns in simulations. Their basis of study 

includes studying the acceleration and deacceleration patterns of human driving for 

both straight roads and curved roads. Out of several models developed by them, 

constant acceleration and deacceleration models are chosen for studying the energy 

benefits of the Eco-AnD algorithm. Running several experimental tests, they have 

found out the acceleration and deacceleration patterns can be approximated to constant 

numbers. The average acceleration value can be approximated to be equal to 1.25 m/s2 

and the average deacceleration can be approximated to be -1.4 m/s2. Also, their 

experimentation with different reference speeds shows that the speed limits do not have 

a significant influence on the driver’s acceleration patterns. 

To further examine the acceleration and deacceleration values analyses were made on 

EPA standard drive cycles [21].  Out of various EPA drive cycles, three drive cycles 

were chosen that would cover most of the human driving patterns. EPA Urban 

dynamometer drive cycle (UDDS) was used to analyze the city driving patterns. The 

drive cycle features various stop-and-go maneuvers to replicate heavy traffic driving 

followed by some high-speed maneuvers reaching up to 60 MPH. Second, the 

Highway fuel economy drive cycle (HWFET) was used to analyze the highway speeds 
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driving patterns. Third, the US06 drive cycle was used to analyze the aggressive driver 

behavior. This drive cycle features various aggressive speed increase/decrease and stop 

and go maneuvers to mimic an aggressive driving behavior. The acceleration vs speed 

relation for these three drive cycles can be observed in Figure 16. 

 

Figure 16 EPA drive cycles speed vs acceleration scatter plot 

From Figure 16, the overlook of the plot of the trends on acceleration for different 

driving conditions can be seen. Using this data, the acceleration and deacceleration 

values can be found for an average driver as well as for an aggressive driver for speeds 

less than 45 MPH. The summary of these values can be found in Table 13. 

Table 13 EPA drive cycles avg acceleration and deacceleration 
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Deacceleration 

1 UDDS  Normal driver - City 1.04 m/s^2 -1.45 m/s^2 

2 HWFET Normal Driver - HW 0.98 m/s^2 -0.45 m/s^2 

3 US06 Aggressive Driver - City 2.33 m/s^2 -2.05 m/s^2 

 

Using these acceleration and deacceleration values an estimate of human driving can be 

made by assuming the human speed change maneuver to be a constant acceleration 

maneuver. An example of such a case is shown for the same real-life case as explained 

in Table 12. The speed profile is developed keeping in mind that the driver has no 

knowledge of the intersection phase timings beforehand. The driver is aware of only 

the current phase state of the intersection (color of traffic light) as perceivable. As a 

normal driver behaves at a traffic light, the simulated speed profile first maintains the 

constant speed till the vehicle is close enough to the traffic light to manually apply the 

brakes and bring the vehicle to a complete stop. After that, the speed profile is held a 

zero speed till the current phase of the traffic light changes from red to green and the 

vehicle begins to accelerate back to the speed limit of the road. Once the speed limit is 

reached then the vehicle maintains the speed limit and crosses the departure distance of 

the intersection. For both the acceleration and deacceleration for this maneuver 

constant values are assumed from the EPA drive cycle analysis for urban city driving.  
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Figure 17 6x6 intersection baseline comparison - Volt 

In Figure 17, the comparison of the simulated baseline speed profile is made with the 

Eco-AnD algorithm optimized speed profile. The baseline speed profile in subplot 1 is 

developed by using a constant acceleration and deacceleration value for vehicle speed 

change maneuver for human driving.  

Subplot 2 shows that the time to cross the intersection for both the speed profiles is 

almost the same, 32.2 seconds, right after the traffic phase changes to green. From 

Subplot 3, the acceleration pattern of both the maneuvers can be seen and it is to be 

noted that the constant acceleration and deacceleration are assumed while designing the 
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baseline speed profiles. It can also be observed that the Eco-AnD algorithm generated 

speed profile takes lesser time to cross the intersection as compared to the baseline 

case. From subplot 4, the comparison of energy consumption can be observed. The 

energy estimates are done using Volt’s reduced-order model that is used as the cost 

function for the DP algorithm, described in ( 10 ). The energy benefit for this scenario 

is 73.1 kJ or 20.7 %. By doing a similar analysis the energy-saving potential for other 

intersections can be estimated as well. 

The calculations made for developing the speed profile are as follows: 

Step 1: Calculating the stopping distance for given deacceleration of -1.45 m/s^2 from 

an initial speed of 35 mph (15.65 mps) 

 
𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑜𝑜 =

(𝑣𝑣2 − 𝑢𝑢2)
2𝑎𝑎

 
( 11 ) 

 
𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑜𝑜 =

02 − 15.652

2 ∗ (−1.45)   =  84.5 𝑚𝑚 
( 12 ) 

Step 2: Calculate the constant speed region for approaching the intersection. 

 𝑑𝑑𝑐𝑐𝑐𝑐,𝑎𝑎𝑜𝑜𝑜𝑜 = 300 − 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑜𝑜 = 300− 84.5 = 215.5𝑚𝑚 ( 13 ) 

Step 3: Calculate distance for accelerating back to 35 mph (15.65 m) 

 
𝑑𝑑𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙 =

(𝑣𝑣2 − 𝑢𝑢2)
2𝑎𝑎

 
( 14 ) 

 
𝑑𝑑𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙 =

15.652 − 02

2 ∗ (1.45)   =  84.5 𝑚𝑚 
( 15 ) 

Step 4: Calculate distance for constant speed during departure. 

 𝑑𝑑𝑐𝑐𝑐𝑐,𝑑𝑑𝑖𝑖𝑜𝑜 = 165 − 𝑑𝑑𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙 = 165− 84.5 = 80.5𝑚𝑚 ( 16 ) 
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Step 5:  Once all the distances are found then using the reduced energy model for GM-

Volt Gen II, the energy consumption is calculated for the maneuver. 

4.3 Bolt- Eco-AnD Algorithm Development 

Energy estimation plays a key role in developing the CAV technologies, as is the case 

for the Eco-AnD algorithm. For GM-Volt Gen II, the reduced-order energy estimation 

model was used as the cost function for the dynamic programming algorithm so for 

developing the similar Eco-AnD algorithm for GM Bolt, a reduced-order model is 

developed. The reduced-order model was developed using the dynamometer testing 

data provided by Argonne National Laboratory (ANL) to MTU as a development 

resource for the DOE EEMS project.  

4.3.1 Reduced-order energy model development process 

A reduced-order energy model for a fully electric vehicle (Bolt) should be analogous to 

the energy model used in ( 9 ) for the CD mode of GM Volt Gen II. A reduced-order 

model can be visualized as a two-dimensional response surface where the predictor 

variables are vehicle velocity and axle torque, and the response variable is high voltage 

battery power consumption. The general equation for a second-order response surface 

for this application is shown in ( 17 ). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖 = 𝑃𝑃(1) ∗ 𝑇𝑇2 + 𝑃𝑃(2)𝑇𝑇 ∗ 𝑉𝑉 + 𝑃𝑃(3) ∗ 𝑇𝑇 + 𝑃𝑃(4) ∗ 𝑉𝑉2 + 𝑃𝑃(5) ∗ 𝑉𝑉 + 𝑃𝑃(6) ( 17 ) 

The reduced-order energy model development process can be characterized into four 

broad steps. 
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4.3.1.1 Step 1: Understanding the data 

The dynamometer data used for developing the reduced-order energy model for Bolt 

comprises eight drive cycles. These drive cycles consist of various EPA standard drive 

cycles such as UDDS, US-06, HWFET, and NEDC (Figure 18).  

 

Figure 18 Dynamometer drive cycle with EPA drive cycles 

EPA drive cycles alone capture most of the on-road driving behaviors for an average 

driver. The dynamometer drive cycles also contain drive cycles that capture various 

aggressive acceleration and braking maneuvers to collect the data on high power 
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regions of the high voltage battery. One such example of a drive cycle is shown in 

Figure 19. 

 

Figure 19 Dynamometer drive cycle with aggressive acceleration and braking 

4.3.1.2 Step 2: Understanding the powertrain efficiencies. 

Before developing the response surface from the dynamometer data, understanding the 

vehicle’s powertrain is one of the crucial elements. The Bolt has a permanent magnet 

synchronous motor powering the front wheels with a fixed final drive ratio. A motor of 

this sort typically has varied efficiency regions based upon the torque it is delivering 

0 5 10 15 20 25 30 35

Distance (miles)

0

50

100

V
el

oc
ity

 (M
PH

)

0 5 10 15 20 25 30 35

Distance (miles)

-1000

0

1000

2000

3000

A
xl

e 
To

rq
ue

 (N
m

)



46 

the speed it is running at, called operating points. The efficiency map of a PMSM 

motor of Bolt can be found in [22]. 

At low torque regions, the efficiency of the motor decreases as torque approaches zero. 

The efficiency of the PMSM machine also varies depending upon if the machine is 

being used as a motor or generator. To account for these factors the efficiency map of 

the motor is divided into different segments, described in Table 14, to develop the 

response surfaces for the reduced-order energy model.  

Table 14 Bolt Motor torque regions 

Torque Zone PMSM Torque Zone Axle Torque Zone Motor Operation 

1 𝑇𝑇𝑙𝑙 < 0 𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖 < 0 Generator 

2 0 < 𝑇𝑇𝑙𝑙 < 63.8 0 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖 < 450 Motor 

3 𝑇𝑇𝑙𝑙 > 63.8 𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖 > 450 Motor 

 

4.3.1.3 Step 3: Developing the response surface from the dynamometer data. 

To develop the response surface, first, the data for vehicle speed, axle torque, and 

battery power was collected from all the drive cycles. Based upon the torque zones 

described in step 2, the data for bifurcated into three different groups. Using 

MATLAB, a second-order surface was developed to fit the data in an individual group 

that has the velocity on the x-axis, axle torque on the y-axis, and battery power on the 

z-axis. The fitted response surface generates the coefficients for each variable in 

equation ( 17 ). The results for the coefficients are shown in Table 15. 
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Table 15 Bolt Power coefficients for energy model 

Power coefficient Torque Zone 1 Torque Zone 2 Torque Zone 3 

P1 ( 𝑾𝑾
𝑵𝑵𝒎𝒎𝟐𝟐) 0.0021 0.0111 0.0037 

P2 ( 𝑾𝑾
𝑵𝑵𝒎𝒎∗𝒎𝒎/𝒔𝒔

 3.1966 3.4336 3.7041 

P3 

( 𝑾𝑾
𝑵𝑵𝒎𝒎

) 

0.1140 -2.9763 -6.7324 

P4 

( 𝑾𝑾
(𝒎𝒎/𝒔𝒔)𝟐𝟐) 

2.2523 -2.5400 9.7436 

P5 

( 𝑾𝑾
𝒎𝒎/𝒔𝒔

) 

3.2761 92.3184 -424.2011 

P6 

(𝑾𝑾) 

527.8151 265.2647 4887.3000 

 

4.3.1.4 Step 4: Validating the developed response surfaces. 

Once the response surfaces were developed, the developed reduced-order model was 

used to predict the energy consumption for the dynamometer drive cycles. To predict 

the energy equation ( 18 ) is used. The result for the dynamometer drive cycles with 

EPA drive cycles is shown in Figure 20. 

 
𝐸𝐸 =  �𝑃𝑃𝑜𝑜𝑖𝑖𝑖𝑖𝑑𝑑,𝑘𝑘 ∗ 𝑑𝑑𝑑𝑑

𝑖𝑖

𝑘𝑘=1

 
( 18 ) 
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Figure 20 Bolt reduced-order energy model result. 

For the eight drive cycles, the model has an accuracy of over 93% and the detailed 

results for all the drive cycles are shown in Table 16. 

Table 16 Bolt- Dynamometer energy prediction results 

DC Distance 

(miles) 

Max 

Energy 

Predicted 

(MJ) 

Max 

Energy 

Data 

(MJ) 

Error % MPGe 

Predicted 

MPGe 

Data 
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2 13.8 9.9 10.1 -1.6 179.6 176.8 

3 13.2 13.2 13.3 -1.0 127.6 126.4 

4 30.2 27.5 27.9 -1.4 136.9 134.9 

5 7.8 6.9 7.0 -1.0 137.9 136.6 

6 33.4 25.7 25.6 0.4 159.8 160.5 

7 180.8 177.9 166.8 6.8 123.5 131.8 

8 22.3 20.7 19.6 3.9 136.8 122.1 

4.3.2 Brake Blending strategy 

For a conventional vehicle, the kinetic energy loss during the braking event is typically 

lost in the form of heat generated by the friction brakes. But with the electrification of 

the vehicles, harnessing this kinetic energy has been possible. Most of the PHEVs and 

electric vehicles can convert the kinetic energy to chemical energy in the battery. The 

traction motor that is used for propelling the vehicle can also be used as a generator to 

harness the energy. 

Electric vehicles are equipped with both regenerative braking as well as mechanical 

friction braking. Since regenerative braking may not be sufficient during all the braking 

scenarios certain blending strategies are incorporated to provide a blend of friction 

brakes and regenerative braking. Factors such as inefficiency of motor/generator at 

certain operation points, brake torque demand more than peak torque output of 

motor/generator unit and reduced life of powertrain components play a crucial role in 

decoding the blending strategy for a vehicle. 
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For GM Bolt the brake blending strategy was figured out by analyzing the 

dynamometer testing data. EPA drive cycle (UDDS, HWFET, US06) was used for 

analyses as they capture most of the human driver braking patterns, Figure 21. 

Dynamometer data is used for analysis as it has lower noise factors of road grade and 

wind. 

 

Figure 21 Drive cycle for brake blending analysis. 

For performing brake blending analysis vehicle’s CAN data is used. Information of 

vehicle speed and regenerative torque is obtained from the vehicle’s primary CAN and 

used for the analysis. Total braking torque of the vehicle is estimated using 

longitudinal vehicle dynamic model for the vehicle, as stated in ( 19 ), where 𝐹𝐹0,𝐹𝐹1,𝐹𝐹2 
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are the set coefficients for the GM Bolt 2019 [23]. Brake blending factor (BF) is 

defined as the proportion of the braking effect due to regenerative braking in 

comparison to total braking torque. The mathematical expression of the blending factor 

is stated in ( 20 ). 

 𝑇𝑇𝑎𝑎𝑎𝑎𝑙𝑙𝑖𝑖 = (𝐹𝐹0 + 𝐹𝐹1𝑣𝑣 + 𝐹𝐹2𝑣𝑣2 + 𝑀𝑀𝑎𝑎) ∗ 𝑟𝑟𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 ( 19 ) 

 𝐵𝐵𝐹𝐹 =
𝑅𝑅𝑃𝑃𝑀𝑀𝑃𝑃𝑀𝑀 𝑇𝑇𝑃𝑃𝑟𝑟

𝑇𝑇𝑃𝑃𝑑𝑑𝑎𝑎𝑎𝑎 𝐵𝐵𝑟𝑟𝑎𝑎𝐵𝐵𝑃𝑃 𝑇𝑇𝑃𝑃𝑟𝑟
 ( 20 ) 

For the drive cycle shown in Figure 21, all the points for the braking were pooled. 

Scatter plots of BF with respect to vehicle velocity and total braking torque were 

generated to observe the trends as shown in Figure 22.  
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Figure 22 BF analysis 

The following trends were observed from the scatter plots: 

1) For speed less than 1.3 m/s, BF remains 0. 

 𝐵𝐵𝐹𝐹𝑣𝑣<1.3 = 0 ( 21 ) 

2) For speed between 1.3 m/s to 5 m/s, BF increased approximately linearly with 

the increase in vehicle speed from 0 to 1. 

 𝐵𝐵𝐹𝐹1.3<𝑣𝑣<5.0 = 0.27 ∗ 𝑣𝑣 −  0.35 ( 22 ) 

3) For speed greater than 5 m/s, and total braking torque greater than 150 Nm, the 

BF remains maximum and is the function of the propulsion limits of the 
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vehicle. The regenerative braking torque limit of the motor is 860 Nm, as 

reflected from the data. So, for total brake torque less than 860 Nm, the BF is 1, 

but beyond the peak torque, the remaining torque is supplied by the friction 

brakes. 

 𝐵𝐵𝐹𝐹𝑣𝑣>5.0,150<𝑇𝑇<860 = 1 ( 23 ) 

 𝐵𝐵𝐹𝐹𝑣𝑣>5.0,𝑇𝑇>860 =
860

𝑇𝑇𝑃𝑃𝑑𝑑𝑎𝑎𝑎𝑎 𝐵𝐵𝑟𝑟𝑎𝑎𝐵𝐵𝑃𝑃 𝑇𝑇𝑃𝑃𝑟𝑟
 ( 24 ) 

4) For speed greater than 5m/s and total braking torque less than 150 Nm, the 

blending factor is approximated to be linearly increasing as the total brake 

torque request increases. A  zoomed-in scatter plot is shown in Figure 23. 

 𝐵𝐵𝐹𝐹𝑣𝑣>5.0,𝑇𝑇<150 =
𝑇𝑇

150
 ( 25 ) 
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Figure 23 0-150 Nm total brake torque zoomed-in plot. 

Determining the BF for the data has its challenges. Various factors affect the 

calculations and make it difficult to concretely estimate the critical values for blending 

strategy. Noise in the BF estimation can be observed in Figure 23, where the total 

brake torque is small. This noise can occur from factors like deviation in set 

coefficient, deviation in vehicle mass, and radius. Acceleration is estimated by taking 

the time derivative of the velocity and taking the derivative of discrete data can lead to 

increased noise. 
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Once the relation of BF with velocity and total brake torque is comprehended, it is 

coupled with the reduced-order energy model developed in section 4.3.1. By doing 

this, it is possible to bifurcate the total brake torque into its friction and regenerative 

braking components.  

4.3.3 Developing Eco-AnD model for Bolt 

The Eco-AnD model developed in section 4.1, can apply to any vehicle if a suitable 

cost function is provided. To extend the scope of the research, the Eco-AnD algorithm 

was developed for Bolt by using the reduced-order energy model developed in section 

4.3.1 coupled with the blending strategy comprehended in section 4.3.2. 

4.3.3.1 Cost function 

The cost function to DP is developed using the reduced-order model developed for Bolt 

with a constant auxiliary load of 1.5 kW. The inputs to the reduced-order model are the 

vehicle velocity and the axle torque. The axle torque has only the regeneration portion 

of total brake torque as only it is responsible for harnessing energy back into the 

battery. The schematic for calculating the cost from the control input (acceleration) and 

state inputs (velocity, time) is similar as shown in Figure 13. By using the reduced-

order energy model for the bolt the cost can be estimated for each iteration. 

4.3.3.2 Constraints and inputs to DP 

As explained in section 4.1, the constraints and inputs to the DP depend upon the road 

conditions and signal phase, and timing situation. The state inputs of velocity and time 

are the optimizer-generated values depending upon the minimum energy profile 
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possible. The constraint to maintain the speed limit is established using the MAP data 

from DSRC communication and another constraint of crossing the intersection during 

the green phase is established using the SPaT information. The distance from the 

intersection is calculated using the GPS in the vehicle and intersection coordinated 

broadcasted by the MAP messages. 

4.3.4 Simulation Results for Bolt 

The simulation result for the Eco-AnD algorithm developed for Bolt for the 6x6 

intersection at ACM proving grounds. The results for intersection conditions as 

explained in Table 12 are shown in Figure 24. Subplot 2 shows the optimized speed 

profile for the intersection distance of 465 m. At -300m, the time remaining for the 

next green phase was 32 seconds, and subplot 2 shows the time taken to cross the 

intersection is just over 32 seconds. Subplot 3 shows the acceleration profile for the 

vehicle which remains within -1.4 m/s^2 to 0.7 m/s^2. The energy consumption plot 

shows that the overall energy consumption for the maneuver is 226 kJ. 
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Figure 24 Simulation result for Bolt 

The energy savings by the Eco-AnD algorithm is analyzed by comparing the speed 

profiles against the baseline case. Like Volt, the baseline speed profiles were developed 

for the bolt to mimic the human driver behaviors at intersections. For speed change 

maneuver constant acceleration and deacceleration values of 1.45 m/s^2 were used as 

established in Table 13.  

From Figure 25, the comparison of optimized speed profile and baseline speed profile 

can be seen. From subplot 2, it can be said that under both the case the vehicle takes 
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the almost same time to cover the distance of 465 m. Subplot 4 shows the comparison 

of the energy consumption. The energy consumed for the baseline case is 301 kJ and 

for the optimized speed profile, the energy consumption is 226 kJ, giving an energy 

saving of 25 % for the 6x6 intersection. 

 

Figure 25 6x6 intersection baseline comparison - Bolt 
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5 Results and Discussions 

Sections 4.1 & 4.3 described the Eco-AnD model development process for Volt and 

Bolt respectively. This section will focus on evaluating the energy-saving ability of the 

developed algorithm. The analysis is made both at simulation and vehicular level for 

Volt whereas for Bolt only simulation results are presented. But following the same 

procedures as for Volt, the estimates for energy benefits for Bolt can be made as well. 

This section also includes a discussion about the computation time of the dynamic 

programming algorithm. An analysis is shown in this section demonstrating the impact 

of discretization of states, control input, and problem length. It is also shown the effect 

of varied approach distance on energy savings and corresponding velocity profiles are 

shown. Lastly, the effect of vehicle mass on the optimized speed trajectory is 

discussed. 

5.1 Eco-AnD energy benefits – Volt 

5.1.1 Simulations 

Simulation level energy benefits of the developed Eco-AnD model are made using the 

baseline model for Volt. An analysis is made for all the intersection crossings in the 

RSU loop and is also done for the intersections at ACM. As the result for the 6x6 

intersection is shown in Figure 17, a similar analysis is made for all the intersections. 

The signal phase and timings measurements are used from the on-road/track testing 

observations and then replicated in the inputs for the DP as described in Table 12. The 
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intersections are designed in the simulations using observed road grades, speed limits, 

and intersection distances.   

An elaborated description of simulated results for various intersections is shown in 

Table 19. The simulation cases described in that table are for the cases when a vehicle 

encounters a red phase as it enters the intersection. For a human driver without the 

knowledge of the signal timings, the baseline case is developed such that the vehicle 

comes to a rest at the intersection and waits for the phase to turn green. The optimizer 

with the knowledge of the signal phase and timings can generate the speed profiles that 

can avoid the complete stops and pass-through by slowing down the vehicle before 

reaching the intersection. The optimizer generated a velocity profile that reflects energy 

savings varying from 81 kJ to 108 kJ. Adding to the energy savings, a time-saving 

potential of the algorithm can also be observed.  

Table 17 Eco-AnD simulated results for RSU loop intersections. 

Property/Intersection Lib. 

Int 

DT 

Int. 

Econo 

South 

Walmart 

Int. 

FF Int Econo 

East 

Int. 

Road grade (deg) [-6.5, -

0.3] 

[-1.5, 

0.4] 

[2.2, 3.0] [2.3,2.6] [1.0, 

3.8] 

[-4.2, 

3.9] 

Intersection distance 

(m) 

600 600 600 600 600 600 

Baseline Model 

Energy (kJ) 

-84.5 304.4 953.4 915.1 634.9 324.6 
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Optimized Energy 

(kJ) 

-165.6 219.3 844.7 806.2 532.2 233.1 

Energy Saving (kJ) 81.1 85.1 108.6 108.8 102.7 91.5 

Baseline Model Time 

(s) 

59.1 63.4 55.2 54.9 62.9 57.2 

Optimized Time (s) 56.2 59.8 54.0 53.9 59.6 54.8 

Time saving (s) 2.9 3.6 1.2 1.0 3.3 2.4 

 

Table 18 Eco-AnD simulated results for ACM intersections - Volt 

Property/Intersection 6x6 Int PMB Int 

Road grade (deg) [-0.4,1.1] [-0.5, 0.6] 

Intersection distance (m) 465 600 

Baseline Model Energy 

(kJ) 

382.1 431.3 

Optimized Energy (kJ) 285.3 329.9 

Energy Saving (kJ) 98.5 101.3 

Baseline Model Time (s) 51 57.3 

Optimized Time (s) 47.4 55.7 

Time saving (s) 3.6 1.6 

5.1.2 On-road Comparison 

On-road comparisons of the energy consumption for Volt are made using MATLAB. 

The cost function of the developed dynamic programming-based Eco-AnD algorithm 
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gives the energy consumption for the optimized speed profile. It takes the inputs of 

road grade and vehicle velocity to predict the energy consumption. The same energy 

model is also used to calculate the energy consumption for the on-road testing data 

collected around the MTU drive cycle and RSU loop by using the experimental speed 

and elevation profiles. Several tests run was made around the RSU loop while 

collecting the data to represent the energy consumption by a human driver at this 

corridor. For energy assessment at the simulation level first, the energy consumption 

by the human driver is compared against the optimized speed profile on an intersection 

basis. For six intersection crossings on the RSU loop data, the vehicle’s energy 

consumption is calculated for the 600 m distance of each intersection using the 

vehicle’s GPS.  

For energy comparison vehicle’s GPS data is used to extract the intersection start 

location 300 m away and intersection endpoint as well. Then the speed and grade 

vectors for the cut-out sections of each intersection are passed through a reduced-order 

energy model to calculate energy and then finally compare against the simulated speed 

profile. The optimized speed profile for each intersection is generated by considering 

the signal phase and timings. 
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Figure 26 RSU loop simulation energy analysis 

From a pool of 27 data sets, the energy analysis was carried out. From each of the data 

sets, the intersection with complete stops was considered and for those intersections, 

the energy-saving from optimized speed profile was recorded. Averaging out for all the 

available data sets these observed energy savings are laid out in Table 19. 

Table 19 Eco-AnD on-road testing results for RSU loop. 

Intersection Energy – Data (kJ) Energy – Optimized 

Speed profile (kJ) 

Energy-saving 

(kJ) 

Library -100.0 -165.5 65.5 

Downtown 278.8 219.3 59.5 

Econo South 948.9 844.7 104.2 

Walmart 944.8 806.2 138.6 

Festival Foods 640.4 532.2 108.2 

Econo East 288.7 233.1 55.6 
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One to one comparison on on-road test data and simulated speed profiles for 

intersections around the RSU loop shows that the energy savings per intersection vary 

from 55.6 kJ to 138.6 kJ depending upon the intersection. 

This analysis is then extended to calculate the energy-saving potential for the RSU loop 

as well as for the MTU drive cycle. The process to estimate the energy saving is 

followed exactly as shown in Figure 26. The location-based energy estimate of human 

driving across the intersection is compared against the optimized speed profile’s 

energy. The intersection with the complete vehicle stops allows estimating the energy 

savings as the optimizer generates the speed profiles such that the vehicle can cross the 

intersection without coming to a complete stop. Figure 27 shows the % energy savings 

for an RSU loop cycle with respect to the number of intersections with energy-saving 

potential. 
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Figure 27 RSU loop energy savings with respect to the number of intersections with 

complete stops 

It can be observed that the number of intersections with complete stops increases the 

energy savings potential of the algorithm increases. The maximum energy savings of 

8% is observed when the optimizer avoids stopping at all six intersections. For data 

sets with one opportunistic intersection, the energy savings vary from 0.6 % to 5.1 %. 

This shows that the impact different signal phases and timings can make on the energy-

saving potential around a corridor. The maximum energy savings are seen when the 

vehicle makes a complete stop at the intersection for the longer durations waiting for 

the green phase. 

On similar lines, the analysis for the overall MTU drive cycle is carried out. From the 

20 MTU drive cycle data sets available the energy-saving potential of the algorithm is 

computed. The results for the MTU drive cycle can be seen in Figure 28. 
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Figure 28 MTUDC Energy Savings vs Intersections with complete stops 

It can be observed that the energy-saving potential varies from 0.7 % up to 4.2% for 

the overall MTU drive cycle. The energy savings depend upon the number of 

opportunistic intersections and phase timings of intersections. From the 20 data sets 

analyzed the maximum energy savings in observed for the drive cycle with 3 

opportunistic intersections and a minimum energy saving is observed for the 

intersection with 1 opportunistic intersection. 

5.1.3 Track testing 

Sections 5.1.1 and 5.1.2 discuss the energy-saving potential of the developed algorithm 

in simulations and by using a hybrid approach where comparison is made between the 

energy consumption by on-road data and optimized speed profiles respectively. This 

section will discuss the track testing of the developed algorithm where experimental 

trials of the optimized speed profiles are made on actual vehicles and then energy 
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benefits are determined by analyzing the real-world experimental data vs human driver 

data. Track testing of the Eco-AnD algorithm was performed at ACM proving grounds 

and the intersection of focus is a 6x6 intersection. The intersection’s comprehensive 

details can be found in Table 20. 

Table 20 6x6 Intersection details 

6x6 Intersection at ACM proving grounds 

Approach Distance (m) 300 

Departure Distance (m) 165 

Grade change -2.1 to 2.4 deg 

Speed limit 35 MPH 

Green phase duration 25 

Red phase duration 47 

Yellow phase duration 4 

 

To perform the track testing of the optimizer, the vehicle was made to follow the 

optimized speed profile using the drive-by-wire (DBW) system installed in the vehicle. 

The DBW system communicates with the MAB-II which provides the capability to 

control the vehicle in real-time. DBW system can control the various actuators in the 

vehicle such as the accelerator pedal, brake pedal, steering. To actuate various 

actuators with the DBW system, specific input commands can be given in real-time. 

DBW system comes with a speed control mode where the DBW system takes the input 

of speed command in m/s and then controls the accelerator pedal and brake pedals to 
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maintain the desired speed. Using the speed control mode of the DBW system it is 

possible to make the vehicle follow the location-based speed profile which otherwise 

would be difficult for a human driver to replicate without making errors.  

For track testing of the Eco-AnD algorithm at ACM, the vehicle was made to follow 

the pre-defined optimized speed profile by giving the speed request command to the 

DBW system in speed control mode. The optimized speed profiles were generated 

beforehand for the signal phase and timing scenario described in Table 12. The 

scenario relates to a human driving case where the time to the next feasible green phase 

is 32 seconds and the current phase at the time of intersection entrance is red. Mapping 

the 6x6 intersection in simulations gives the optimized speed profile as shown in 

Figure 15, which is then given as the input to the DBW system. The various inputs to 

the DP and their source of information while performing track testing are described in 

Table 21. 

Table 21 Source of inputs to DP for track testing 

Inputs to DP Source while track testing 

Vehicle velocity Vehicle CAN 

Distance to intersection MAP data and vehicle’s GPS 

Current Phase Simulated 

Time to next signal Simulated 

Speed limit Simulated 
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The schematic for performing location-based speed control is shown in Figure 29. The 

designed algorithm takes the inputs from the vehicle’s GPS of current vehicle location. 

The information of latitude, longitude, and elevation is then converted to Earth-centric- 

Earth fixed (ECEF) coordinate system for ease of calculations. Then a comparison is 

made between the vehicle’s current location and a pre-defined map of the location and 

optimized speed generated by the Eco-AnD algorithm to find a point in the MAP 

nearest to the current location, called the reference point. Then the reference point is 

used to find the speed input for the DBW system from the optimized speed trajectory 

generated by the Eco-AnD algorithm. Giving the input of the optimized speed for the 

current location to the DBW system makes the vehicle follow the optimized speed 

trajectory and hence cross the intersection efficiently. 

 

Figure 29 Location-based speed profile tracking. 
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The procedure for estimating the location-based speed request to the DBW system can 

further be explained as shown in Figure 30. 

 

Figure 30 Schematic for determining speed request based on the reference point. 

Track testing results for the 6x6 intersection can be visualized from Figure 31. Plots for 

comparison between human driving and optimized speed profile tracking are shown in 

four subplots. Subplot 1 shows the comparison of the vehicle speed for two cases 

where human-driven must come to a complete stop at the intersection (distance = 0), 

the vehicle under the control of optimal trajectory crossed the intersection without 

stopping. The speed of the vehicle shows down 200 m distance before the intersection 

to avoid the completer stop while is uneconomical from the energy standpoint. This is 
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validated from subplot 4 where the energy consumption of the human drive case can be 

seen to increase and surpass the optimal case after crossing the intersection. An overall 

energy benefit of 83.7 kJ is observed for this run. 

 

Figure 31 Track-testing result for 6x6 intersection 

Following the comparison from subplot 2, it can be said that the optimized speed 

profile is not only energy efficient it is time-efficient too. A time benefit of 3.1 seconds 

can be observed at the end of the intersection (distance = 165 m). Subplot 3 shows the 

comparison of the vehicle acceleration and deacceleration for both cases. The vehicle 

undergoes higher acceleration/decelerations in the human-driven case. 
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Repetitive testing for the above scenario was performed to check the repeatability 

testing of the energy savings by the Eco-AnD algorithm and account for the test-to-test 

variations. From Table 22 the average energy consumption for the human driver case is 

360.3 kJ and that for location-based speed control is 256.3 kJ which gives an average 

energy savings of 104 kJ. Similarly, average time savings by the Eco-AnD algorithm is 

calculated to be 3.2 seconds for an intersection distance of 465 m.  

Table 22 Track testing summary 

Test Type Energy Consumed (kJ) Time for maneuver (s) 

Human driven 1 368.5 47.5 

Human driven 2 371.4 48.1 

Human driven 3 340.9 47.7 

Average Human driven 360.3 47.8 

Speed Control 1 252.5 44.8 

Speed Control 2 256.5 44.5 

Speed Control 3 254.8 44.5 

Speed Control 4 261.0 44.5 

Average Speed Control 256.3 44.6 

5.2 Eco-AnD energy benefits – Bolt 

5.2.1 Simulations 

The energy-saving potential of the dynamic programming base Eco-AnD algorithm for 

Bolt is discussed in detail in this section. The DP algorithm for Bolt is described in 4.3 
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and the baseline model development is described in 4.3.4. Detailed results for the 

potential energy savings by the Eco-AnD algorithm developed for Bolt are summarized 

in Table 23 & Table 24. First, the energy-saving potential around the RSU loop 

intersections is summarized. Energy-saving potential of 55 kJ to 95 kJ is observed 

depending upon the intersection. The time benefit for the algorithm is also summaries 

and varies from 0.3 seconds to 3.7 seconds. For the two intersections around ACM 

proving grounds, the energy benefits are about 75 kJ and time benefit of 3.1 seconds 

and 0.4 seconds for 6x6 and PMB intersection respectively.   

Table 23 Eco-AnD results for RSU loop intersections - Bolt 

Property 

Intersection 

Lib. DT Econo 

South 

Walmart FF Econo 

East 

Road grade (deg) [-6.5, -

0.3] 

[-1.5, 

0.4] 

[2.2, 3.0] [2.3,2.6] [1.0, 

3.8] 

[-4.2, 

3.9] 

Intersection distance 

(m) 

600 600 600 600 600 600 

Baseline Model 

Energy (kJ) 

-163.2 245.1 896.8 857.9 578.7 454.6 

Optimized Energy 

(kJ) 

-227.8 189.4 801.3 763.9 493.1 391.2 

Energy Saving (kJ) 65.5 55.7 95.1 94.0 85.6 63.4 

Baseline Model Time 

(s) 

59.0 62.6 53.9 53.9 62.6 56.6 
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Optimized Time (s) 57.7 58.9 53.4 53.6 58.9 54.8 

Time saving (s) 2.3 3.7 0.5 0.3 3.7 1.8 

 

Table 24 Eco-AnD results for ACM intersections – Bolt 

Property/Intersection 6x6 Int. PMB Int. 

Road grade (deg) [-0.4,1.1] [-0.5, 0.6] 

Intersection distance (m) 465 600 

Baseline Model Energy (kJ) 301.7 362.9 

Optimized Energy (kJ) 226.3 284.0 

Energy Saving (kJ) 75.4 78.9 

Baseline Model Time (s) 47.9 56.6 

Optimized Time (s) 44.8 56.2 

Time saving (s) 3.1 0.4 

 

5.2.2 On-road comparison 

The energy-saving estimates for Bolt were made using the Bolt’s reduced order energy 

model. Following the similar estimation methodology as used in section 5.1.2 saving 

potential is estimated. From a data pool of 7 MTU drive cycles, the energy savings 

were estimated as shown in Figure 32.  
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Figure 32 MTUDC Energy Savings vs Intersections with complete stops – Bolt 

The maximum energy savings of 3 % is observed for a data set with two opportunistic 

intersections. For a data set with three intersections with complete stops, an energy 

saving of nearly 1.8 % is observed. A minimum energy saving of 0.2 % is shown for 

the data set with one intersection with a complete stop is observed. 

5.2.3 Computation Time 

For hardware implementation, the control logic must be computationally efficient such 

that when integrated into the real vehicle, the algorithm should be able to provide an 

optimized speed trajectory in the minimum possible time and with the available 

resources. A dynamic programming algorithm can be made computationally efficient 

by optimizing the grid discretization. For the problem in this research, there are two 

states (velocity and time), and one control input (acceleration). Iterating upon the 

different discretization of them Table 25 can be developed. These computation times 
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are based on a computer with a Core i7 processor and 16 GB of RAM. This table 

shows the energy savings (%) with each grid formation. The states and control inputs 

are discretizations in iterated and its effect on the energy savings is observed. 

Table 25 Computation time for different grid discritization 

Iteration 

No 

Velocity 

Discretization 

(m/s) 

Time 

Discretization 

(s) 

Acceleration 

Discretization 

(m/s/s) 

Energy 

Savings 

(%) 

Computation 

Time (s) 

1 0.20 0.10 0.10 -30.1 140.1 

2 1.00 0.10 0.10 -30.1 28.8 

3 1.00 0.20 0.10 -30.1 15.6 

4 1.00 0.20 0.20 -30.0 7.8 

5 1.00 0.10 0.20 -30.1 14.2 

6 1.00 0.25 0.25 -29.9 5.4 

7 1.50 0.25 0.25 -26.1 3.2 

8 1.25 0.30 0.20 -29.6 4.4 

9 1.50 0.50 0.30 -26.1 1.4 

 

From the above nine iterations, the eighth iteration gives the best results as its 

computation time is around 4.4 seconds and the energy-saving potential is 

compromised by only 1.7 %. The computation time can be further brought down by 

reducing the limits of the states/control inputs. This iteration is shown in Table 26. 
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Table 26 Computation time for different control imput limits 

Iteration 

No 

Acceleration 

min (m/s/s) 

Acceleration 

max (m/s/s) 

Acceleration 

Discretization 

(m/s/s) 

Energy 

Savings 

(%) 

Computation 

time (s) 

1 -3.0 3.0 0.20 -30.0 7.8 

2 -2.0 2.0 0.20 -30.0 5.9 

3 -1.5 1.5 0.20 -29.2 3.5 

4 -1.0 1.0 0.20 -29.3 2.6 

 

From the table above, the best scenario is iteration 3 where the computation time is 

about 3.5 seconds. By following a similar procedure the computation time can be 

reduced further. Limiting the state grid and using the variable grid discretization type 

of methods can be used to make the algorithm computationally efficient. The overall 

problem of 600 m is discretized for every 5 m, giving 121 elements in total. The 

problem length can be discretized into a variable discrete level to make the algorithm 

even faster. 

5.2.4 Variable Approach Distance 

The approach distance for the problem is assumed to be 300 m for this research. The 

effect of different approach distances is studied and the corresponding energy-saving 

potential is noted. Table 27 summarizes the energy benefits corresponding to different 
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approach distances. The baseline energy for each case is calculated for a respective 

approach distance plus the 165 m of departure distance. It can be observed that even by 

reducing the approach distance by 50 m, the energy-saving potential on the algorithm 

is about 93.5 kJ, which is only 0.6 kJ less as compared to the case with 300 m approach 

distance.  

Table 27 Effect of different approach distance 

S.No Approach 

Distance 

Baseline 

Energy (kJ) 

Optimized 

Energy (kJ) 

Energy 

Savings (%) 

Energy 

Difference 

(kJ) 

1 300 352.8 258.7 -26.7 -94.1 

2 280 342.7 249.0 -27.3 -93.7 

3 270 337.8 244.2 -27.7 -93.6 

4 260 333.1 239.4 -28.1 -93.7 

5 250 328.2 234.7 -28.5 -93.5 

 

The approach distance can vary because of the computation time required by the 

dynamic programming algorithm. If the algorithm takes 1 sec to compute the optimal 

trajectory, then the vehicle could cover a distance of 20.1 m, of moving at 45 MPH. 

Similarly, for different speeds the distance traveled while computing the optimized 

trajectory can be estimated and approach distance can be changed accordingly. The 
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various optimized speed profiles for the iterations from 300 m approach distance to 250 

m of approach distance can be seen in Figure 33. 

 

Figure 33 Iteration of different approach distance 

5.2.5 Variable Vehicle Mass 

Correct estimation of vehicle mass plays a very crucial role in determining the energy 

consumption for a vehicle. As the energy model developed in section 4.2 uses the 

vehicle mass as a parameter to determine the total axle torque using the vehicle's 

longitudinal dynamics equation. Given the complexity of correct estimation of vehicle 

mass total mass due to various factors such as the number of passengers, auxiliary load, 

etc, the effect of mass on the devised algorithm is studied. Table 28 describes the 

trends in energy savings on Volt, shown as %, with change in mass. 
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Table 28 Effect of different mass 

S.No Mass (as a 

factor of M) 

Baseline 

Energy (kJ) 

Optimized 

Energy (kJ) 

Energy 

Savings 

(%) 

Energy 

difference 

(kJ) 

1 0.90xM 337.9 255.5 -24.4 -82.4 

2 0.95xM 345.2 257.1 -25.5 -88.1 

3 1.00xM 352.8 258.7 -26.7 -94.1 

4 1.05xM 360.7 260.4 -27.8 -100.3 

5 1.10xM 368.7 262.1 -28.9 -106.6 

 

From the table above, the energy savings increase corresponds to the increase in mass 

of the vehicle. The optimized speed profiles for each of the iteration are shown in 

Figure 34. It can be observed that the optimized speed profiles for each iteration are 

close to each other and changing the mass even by 10 % did not have a significant 

impact on the optimized speed profile. 
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Figure 34 Iteration of different mass 
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6 Conclusions and future work 

6.1 Conclusion 

This study focused on extending upon an existing Eco-AnD algorithm from prior work 

at MTU. The algorithm was developed further by refining the input constraints to the 

dynamic programming for intersection crossing time making it possible for the 

algorithm to develop an optimized speed profile for all the possible scenarios of traffic 

phase state when the DSRC communication horizon of intersection is entered. The 

dynamic programming-based Eco-AnD algorithm developed in this study used the 

inputs from V2I communication for signal phase and timings, intersection, and road 

data. Using this information, the algorithm could generate an optimized speed profile 

capable to save both energy and time. 

The devised algorithm was extended for Bolt to show that by only changing the cost 

function the algorithm can generate vehicle-specific velocity profiles. Bolt’s reduced 

order energy model was developed by using the dynamometer data comprising of 

various standard and aggressive drive cycles. The vehicle’s brake blending strategy 

was then modeled to add to the reduced-order energy model and then ultimately to be 

used in the cost function for the DP. 

To show the energy savings results for simulation, on-road and track testing are 

presented. The algorithm was able to demonstrate energy savings in simulations, on-

road test data, and track test data. Additional benefits of the algorithm could be seen as 

total travel time was reduced for crossing the intersection. For estimating the energy-
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saving potential of the algorithm baseline speed profiles were developed and devised 

model was able to demonstrate a benefit of 55-95 kJ per intersection for Bolt and 81-

108 kJ for Volt. On-road energy comparison was made for the RSU loop drive cycle to 

show an energy-saving potential of 0.5 to 8.0 % of energy for Volt depending upon the 

number of intersections with complete vehicle stops. A location-based speed profile 

tracking algorithm was devised and implemented to prove the energy savings by 

optimized speed profile. Track testing showed an energy savings of 104 kJ for the 6x6 

intersection for GM-Volt and a time advantage of 3.2 seconds for the 6x6 intersection 

at ACM proving grounds.  

6.2 Future Work 

During this research, numerous challenges were faced. Many of those challenges were 

overcome such as developing the reduced-order energy model to be used as a cost 

function for GM Bolt. Still, there are quite a few horizons where the above research 

can be extended such as the real-time implementation of the algorithm, passenger 

comfort as a parameter for optimization, consideration of on-road traffic scenarios,  

uncertainty in the traffic phase timings, and extendability to other powertrain 

architectures. 

The dynamic programming algorithm is a computationally demanding algorithm 

majorly due to the cost matrix calculation while backward progression. The 

computational need of the algorithm can be brought down significantly by making the 

state/control grid coarse. Heavy computation times need a faster processor for real-time 



84 

implementation which may not be a very cost-effective solution. So, finding an optimal 

state/control grid that meets the requirements for real-time implementation is 

necessary. 

As we saw the optimized speed profile developed in section 5, the acceleration 

requested by the algorithm at -300 m changes from 0 to a certain value instantaneously. 

This maneuver when implemented on a real vehicle may not be very comfortable for 

the passenger as a sudden change in acceleration produces high jerks. This problem can 

be dealt with during the vehicle implementation phase where optimal speed profile is 

given as the input to the vehicle after smoothening using interpolation. 

The current algorithm works on the assumption that the intersection is clear of other 

traffic, which may not be always the case. As the speed profile in section 5 slows down 

approximately 100 m before the intersection, this may cause disturbance in the 

preceding traffic. Another factor where the surrounding traffic plays an important role 

is when there is traffic waiting at the intersection for the green phase. This traffic pile-

up will affect the optimized speed profile to cross the intersection safely.  

Since the traffic light controllers at certain places are now equipped with much more 

advanced sensors to adjust the signal phase and time in real-time according to the 

traffic demand, so the Eco-AnD algorithm should also be robust enough to account for 

the uncertainty in the signal phase and timings. 
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7 Appendix 

7.1 SPaT and MAP message directory 

The table includes the details on the SPaT and MAP message directory that is used in 

section 4.1. 

Table 29 V2I message directory 

S.No. Name Message Description 

1 minEndTime SPaT Provides the information on the minimum time left 

for the next signal change 

2 currentphase SPaT Provides the information on the current phase state 

3  Red 

5 Green 

7 Yellow 

3 IntersectionID MAP Provides the ID of the intersection from which the 

message is being received 

4 latitude MAP Provides the GPS latitude of the intersection 

5 longitude MAP Provides the GPS longitude of the intersection 

6 elevation MAP Provided the GPS elevation of the intersection 

7.2 Computation Time 

Table includes the several iteration performed on the computation time of algorithm as 

described in section 5.2.3. 

Table 30 Computation time for different grid discretization (full table) 
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S.No Velocity 

Discretization 

(m/s) 

Time 

Discretization 

(s) 

Acceleration 

Discretization 

(m/s/s) 

Energy 

Saving (%) 

Computation 

Time (s) 

1 0.10 0.10 0.10 -25.70 261.10 

2 0.20 0.10 0.10 -26.80 128.77 

3 0.50 0.10 0.10 -25.90 53.57 

4 0.75 0.10 0.10 -26.80 38.40 

5 0.80 0.10 0.10 -28.50 35.01 

6 1.00 0.10 0.10 -30.10 28.00 

7 1.25 0.10 0.10 -29.90 25.58 

8 1.50 0.10 0.10 -26.30 19.37 

9 0.20 0.20 0.10 -26.70 67.70 

10 0.20 0.30 0.10 -26.40 47.30 

11 0.20 0.50 0.10 -26.60 29.57 

12 0.20 0.75 0.10 -25.90 18.74 

13 0.20 1.00 0.10 -25.70 14.48 

14 0.20 1.25 0.10 -25.60 11.11 

15 0.20 1.50 0.10 -25.50 9.12 

16 0.20 2.00 0.10 -25.30 6.90 

17 0.20 0.20 0.20 -26.60 34.20 

18 0.20 0.20 0.30 -26.60 23.79 

19 0.20 0.20 0.50 -26.40 15.56 
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