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Abstract

Nanoscale systems, especially the one-dimensional semiconducting nanowires, have

been the subject of immense research interests due to their potential applications in

nanoelectronics and optoelectronics that demand cheaper, smaller, faster, and energy-

efficient components. In particular, the core/shell nanostructures, in which the core

materials are shielded by materials with larger bandgap called shell, have been shown

to enhance the performance of field effect transistors (FETs), solar cells, light emit-

ting diodes (LEDs), and thermoelectric devices due to their outstanding features like

valence band offset between the core and shell, higher stability against oxidation, re-

duction in the surface trap states, diminished nonradiative recombination processes,

and enhancement in the carrier multiplication and carrier transport processes. Incor-

poration of spin functionality via doping of a magnetic impurity into such core/shell

(non-magnetic) nanostructures also offers additional advantages for next-generation

spin-based electronic devices. Such devices are not only smaller, cost-effective, and

non-volatile but also have increased data processing speed, consume less power, and

assist reducing heat dissipation compared to the traditional electronic devices. In the

first part of my thesis, I have studied the role of Mn and Cr dopants on the elec-

tronic structure, magnetic properties, and strain-induced magnetic phase transitions

in Ge/Si core/shell nanowire heterostructures using the many-body density functional

theory (DFT) approach. Subsequently, I have designed a spin filtering device using

xxxiii



Mn-doped Ge/Si core/shell nanowire and a switching device using Cr-doped Ge/Si

core/shell nanowire. To understand the spin-transport properties of these devices,

I have used a real space orbital based DFT in conjunction with the single-particle

non-equilibrium Green’s function approach. In the second part of my thesis, I have

studied the effect of size and growth direction on the electronic structure, stability,

mechanical, and optical properties for PbTe/PbS core/shell nanowires. To under-

stand the thermodynamic stability of these complex structures, I have performed

the ab-initio molecular dynamics simulations that demonstrate the possibilities of

core-to-shell diffusion at room temperature in certain growth direction.
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Chapter 1

Introduction

Since the invention of the first transistor in 1947 by John Bardeen and Walter Brat-

tain, followed by the development of the first integrated circuit in 1958 by Jack Kilby,

the ability to fabricate transistors with reduced size and fit billions of them in a

microprocessor chip leading to much faster, lighter, smaller and cheaper electronic

devices that consume less power has revolutionized the field of solid-state-circuits

industry[1, 2]. The steady rise in device miniaturization in the last few decades was

foreseen from Moore’s law, initially proposed by Gordan Moore in 1965, which states

the number of transistors in a microprocessor chip and its performance will double

every two years[1, 3, 4]. Since then, Moore’s law has been the guiding principle for the

exponential growth of the technological advancement that has transformed the less

sophisticated machines of the 1970s and 1980s to modern-day smartphones, laptops,
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automated devices, and high-speed internet[1]. Until 2000s, this simple principle of

shrinking down the size of the transistors to make them much faster, leading to an

unprecedented increase in the performance of electronic devices, worked well [1, 5].

But, this was expected to last for a finite time. In the early 2000s, when the size of

the transistor was reduced to ∼90 nm, the chips started to get hotter due to the rapid

movement of the electrons in the circuit[1]. To avoid this technological challenge, the

clock rates, which measure the microprocessor’s ability to process instructions, were

kept fixed[1]. To follow Moore’s law for technological advancement with the restric-

tion on the electrons speed, machines with multi-cores in a chip were designed[1].

Now, the size of the modern-day transistor is already in the path of reaching its

physical limits. At such atomic scales, the quantum effects dominate, leading to the

tunneling (quantum) of the electrons through the insulating layers. This makes the

performance of the transistor extremely unreliable, and the transistor will no longer

act as a switch[1]. To overcome this hurdle in the near future and continue the scaling

of transistors size, researchers are in search of alternative approaches that can make

the device’s size smaller, faster, and consume less power than the existing silicon-

based complementary metal-oxide-semiconductor (CMOS) technology. This has led

to the discovery of several low-dimensional systems.

Low-dimensional systems[6, 7, 8, 9, 10, 11, 12, 13] are the ones in which the mo-

tion of quantum mechanical particles like electrons or holes are confined in one

or more directions. Such systems can be formed by the reduction of the size of
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the bulk system in one or more dimensions[14]; the length scale (∼few nanome-

ters) of such systems lie within the characteristic length scale of an atom and

the host (bulk) material[15]. These systems can be 2-d nanosheets[16, 17], 1-d

nanowires/nanotubes[18, 19, 20, 21, 22, 23] and 0-d quantum dots[6]. These ma-

terials offer wide range of possibilities from topological insulators[24, 25, 26] to

insulators[27, 28, 29] to semiconductors[18, 19, 30, 31] to semi-metals[16, 32] to

metals[33, 34] to superconductors[35, 36]. In 1-d nanowires[7, 8, 9, 10], which is the

interest of this work, the carriers are confined in two transverse directions, but are free

to move along the nanowire axis. Here, we are interested in the core-shell nanowire

heterostructures[8, 18, 19, 37, 38, 39, 40, 41, 42], especially the Ge/Si core/shell and

PbTe/PbS core/shell nanowires, in which the core material (Ge in Ge/Si core/shell

and PbTe in PbTe/PbS core/shell nanowire) is shielded by a material with higher

bandgap called shell (Si in Ge/Si core/shell and PbS in PbTe/PbS nanowires). Such

geometry in Ge/Si core/shell nanowire leads to the valence band offset ∼0.5 eV be-

tween the Ge-core and Si-shell[8], thus minimizing the effect of the Schottky barrier

to the device performance[8]. It is worth noting that the formation of the Schottky

barrier limits the performance of the nanoelectronic devices in the homogenous Si and

Ge nanowires[37]. Subsequently, a low bias ballistic transport with scattering mean

free path of ∼500 nm[19, 37] and high carrier (hole) mobility of ∼730 cm2V−1s−1

(∼ factor of 10 times larger than p-type Si metal oxide semiconducting field effect

transistors (MOSFETs))[37] have been reported in these nanowire heterostructures,
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leading to the superior performance of the field effect transistors (FETs) compared

to the current state of the art MOSFETs[37]. The programmable logic circuits of

Ge/Si core/shell nanowire FETs have also been designed[43]. Moreover, the Ge/Si

core/shell nanowires are compatible with the current Si-based technology and can be

synthesized in high yield[18, 19, 37] with reproducible electronic properties.

Incorporating spin functionality in these radial heterostructures via doping of mag-

netic atoms that provides immunity from the substrate effect would offer an addi-

tional opportunity for using them in next-generation spintronics[44, 45, 46, 47, 48].

By exploiting the electron spin instead of its charge, the device can not only be

made smaller, cost-effective, and non-volatile, but also have increased data process-

ing speed, consume less power, and reduce heat dissipation compared to the tra-

ditional electronic devices. In this thesis, we first explored the role of Mn dopant

to the electronic, magnetic, mechanical, and spin-transport properties of Ge/Si

core/shell nanowires. Numerous studies of Mn dopants in homogenous Si and Ge

nanowires[49, 50, 51, 52, 53, 54, 55, 56] have been reported confirming the occurence

of ferromagnetism at room temperature. However, the stabilization of the ferromag-

netic phase at room temperature in homogenous Ge and Si nanowires can be a chal-

lenge due to the effect of the substrate. The core-shell geometry of these nanowires

overcome such limitations by allowing one to dope the magnetic atoms in the core

region of these nanowires. Due to the valence band offset between the Ge and Si,
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the spin carriers in such structures can then be transported through the core, min-

imizing the spin lifetime degradation due to scattering and recombination with the

surface states, as well as diminish the momentum-dependent randomization of spins

(spin dephasing)[45]. In the first project, using first-principles density functional the-

ory that does not make any assumptions of the electronic structure, we investigated

the role of small concentration of Mn dopants (≤ 2%) to the electronic, magnetic,

and mechanical properties of Ge/Si core/shell nanowire heterostructures. For under-

standing the usage of this newly tailored material in a practical device settings, we

studied the spin-transport properties of a prototypical nanowire (magnetic) junction

using DFT and the single particle non-equilibrium Green’s function approach. Based

on our study, we report that Mn doped nanowire (Ge/Si core/shell) can act as an

excellent spin filter with spin filtering efficiency of 90.4 %.

Having shown that the substitutional doping of Mn into the Ge-core/Si-shell nanowire

transforms the semiconducting material to a ferromagnetic half-metal[57], the pos-

sibility of antiferromagnetic (AFM) semiconducting behavior with Cr-dopant is ex-

plored in the second project. An antiferromagnet offers many important functionali-

ties such as opportunities for electrical control of magnetic domains, immunity from

magnetic perturbations, and fast spin dynamics[58, 59, 60, 61, 62, 63, 64, 65, 66].

Introducing some of these intriguing features of an antiferromagnet into a low dimen-

sional semiconductor core-shell nanowire offers an exciting pathway for its usage in
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antiferromagnetic semiconductor spintronics[59, 60, 61, 62]. Using a quantum me-

chanical DFT approach, we predict that the Cr-doped Ge-core/Si-shell nanowire is

an antiferromagnetic semiconductor. The spin polarized transport calculations using

a finite cluster real space DFT together with the non equilibrium Green’s function

approach reveal that this material can be used as an electrical switch with a high

ON/OFF current ratio (∼41 times higher for the ON state at a relatively small bias

of 0.83 V).

On the other hand, in the PbTe/PbS core/shell heterostructure, the shelling of the

PbTe nanostructure with PbS suppresses the hole conductivity by localizing it within

the nanocrystal and enhances the electron conductivity, making the carrier trans-

port completely n-type (unipolar) incontrary to the ambipolar transport of carriers

in pristine PbTe and PbS nanostructures. This also means that these core/shell het-

erostructres are suitable for photodetectors, thermoelectric and electron transport

layer in photovoltaic devices[42]. Furthermore, it has been observed that the shelling

enhances the stability of nanocrystals against oxidation[67], reduces the trap states,

diminishes the non-radiative recombination processes[68], and enhances the carrier

multiplication [69] and (carrier) transport processes[70]. The successful synthesis of

nanocrystals of lead chalcogenides[42, 71, 72, 73, 74, 75] accompanied by the ability to

tune the thickness of the core and shell provides additional opportunities for studying
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the tunable electronic properties of these quantum materials for a wide range of appli-

cations including but not limited to FETs[42, 76, 77], solar cells[78], LEDs[42], high-

performance optoelectronics[79, 80], and high-efficiency thermoelectrics[72]. There-

fore, in the third project, we studied the directional dependence, as well as the effect

of size of the core to the electronic structure, thermodynamical stability, mechanical,

and optical properties of the PbTe/PbS core/shell nanowire heterostructures using

DFT and ab intio molecular dynamics.

This thesis is organized as follows. I have discussed in brief the many-body density

functional theory and quantum transport in a nanoscale junction in Chapter 2 and

Chapter 3, respectively. The results of three projects mentioned here are included in

Chapter 4, Chapter 5, and Chapter 6 of this thesis followed by conclusion and future

work in Chapter 7.
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Chapter 2

Many-Body Theory

2.1 Many-Body Schrödinger Wave Equation

In this chapter, I will discuss the many-body theory that has been used to study the

electronic, magnetic, mechanical, and optical properties of the core-shell nanowire

heterostructures. The theory of quantum transport will be discussed in Chapter 3.

Let’s begin by writing the non-relativistic time-independent many-body Schrödinger

wave equation (SWE)[81, 82]

ĤΨ({r}, {R}) = EΨ({r}; {R}) (2.1)
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In Equation 2.1, Ĥ is the Hamiltonian operator, E is the total energy, and Ψ({r}; {R})

is the total wave function of a many-body system that depends on the coordinates of

all the electrons {r} and ions {R}. The non-relativistic Hamiltonian (Ĥ) for a system

of Ne electrons and NI ions in atomic units (~ = me = e = 1) can be expressed

as[81, 82, 83]

Ĥ = −1

2

Ne∑
i=1

∇2
i −

1

2

NI∑
I=1

∇2
I

MI

−
Ne∑
i=1

NI∑
I=1

ZI
| ri −RI |

+
1

2

Ne∑
i=1

Ne∑
j 6=i

1

| ri − rj |
+

1

2

NI∑
I=1

NI∑
J 6=I

ZIZJ
| RI −RJ |

(2.2)

In Equation 2.2, me is the mass of an electron, ZI and MI are the atomic number

and mass of I th ion, ri and rj are position of ith and jth electron, and RI and RJ

are position of I th and J th ion. The first and the second terms in Equation 2.2 are

the kinetic energy operators for the electrons and ions respectively, the third term is

the potential energy of attraction between the electrons and the ions, the fourth term

is the potential energy of repulsion between the electrons, and the fifth term is the

potential energy of repulsion between the ions. The factor 1
2

in the fourth and fifth

terms arises to avoid counting of the same interaction twice in the Hamiltonian. It may

be noted that in writing the Hamiltonian (Equation 2.2), the spin-orbit interactions

are not taken into account.
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2.2 Born-Oppenheimer Approximation

At this point, there are two major challenges in solving Equation 2.1: (i) the electron-

electron interaction terms in the Hamiltonian are not separable (ii) the wave function

of the many-body system depends on the positions of all the electrons and ions, im-

plying that Equation 2.1 is a coupled problem of the electrons and ions. Therefore, it

can’t be solved without some approximations. Born-Oppenheimer approximation[84]

splits the complex problem of the many-body system involving electrons and ions into

two separate problems: one for the electrons and the other for the ions. Since the

mass of an ion is much larger than an electron, its kinetic energy is much smaller than

the kinetic energy of an electron. Therefore, ions can be assumed to be at rest and

the electrons adjust their coordinates instantaneously for a given ionic configuration.

The Born-Oppenheimer approximation allows us to decouple the total wave function

in Equation 2.1 as[81, 82]

Ψ({r}; {R}) = Φ({r}; {R})ζ({R}) (2.3)

Let’s rewrite the Hamiltonian in Equation 2.2 as

Ĥ = T̂e + T̂N + V̂eN + V̂ee + V̂NN (2.4)
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The many-body SWE (Equation 2.1) can then be split into the following two

equations[81, 82]:

(T̂e + V̂eN + V̂ee + V̂NN)Φ({r}; {R}) = Etot
n ({R})Φ({r}; {R}) (2.5)

(T̂N({R}) + Etot
n ({R})ζ({R}) = Enuc

n ζ({R}) (2.6)

The term V̂NN in Equation 2.5 is a constant for a given ionic configuration and can

be dropped. Let’s rewrite Equation 2.5 as[81, 82]

(T̂e + V̂eN + V̂ee)Φ({r}; {R}) = Eel
n ({R})Φ({r}; {R})

⇒ ĤelΦ({r}; {R}) = Eel
n ({R})Φ({r}; {R})

(2.7)

Equation 2.7 is now a complete electronic problem. The ionic coordinates {R} ap-

pears only as a parameter in Equation 2.7 and can be solved for different configu-

rations of the nuclear coordinates to obtain the wave function Φ({r}, {R}) and the

energy Eel
n ({R}) of the many-electron system[81, 82]. n, in Equation 2.7, is a quan-

tum number that gives various energy levels of an electronic problem for a given

configuration of ions {R}. Equation 2.6 describes the rotational, vibrational, and

translational motions of ions in potential energy surface (PES) obtained by solving

Equation 2.5. A typical PES is shown in Figure 2.1[81]. In electronic structure, we

are only interested in solving Equation 2.7 at the equilibrium ionic configuration. The
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Figure 2.1: An example of potential energy curve for the ground state
(GS) obtained by solving Equation 2.5. Re is the equilibrium configuration
of ions.

complete form of Equation 2.7 is

[
− 1

2

Ne∑
i=1

∇2
i −

Ne∑
i=1

NI∑
I=1

ZI
| ri −RI |

+
1

2

Ne∑
i=1

Ne∑
j 6=i

1

| ri − rj |

]
Φ({r}; {R})

= E({R})Φ({r}; {R})

(2.8)

In Equation 2.8, Eel
n ({R}) is replaced by E({R}). Thus, the Born-Oppenheimer ap-

proximation simplifies the problem of a many-body system to some extent by splitting

a single problem of electrons and ions into two problems that describe the motion of

ions and electrons separately. But, even after this simplification, the solution to the

many-body system remains challenging as the electron-electron interaction terms in

the Hamiltonian (Equation 2.8) is unknown and inseparable. Therefore, we need to

make approximations to decompose a single problem of Ne electrons (Equation 2.8)

to Ne single electron problems.
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2.3 Hellmann-Feynman Theorem

Since we intend to solve Equation 2.8 at the equilibrium configuration of the ions,

one may ask: how do we get the equilibrium geometry of the ions. For this, we use

Hellmann-Feynmann theorem[85, 86] that provides a way to calculate the forces on

atoms from the ground state energy. Since the ions move in the potential energy

surface described by the electrons, the force acting on an atom I at position RI is

given by the derivative of the total ground state energy of the electronic problem[87]

FI = − dE

dRI

(2.9)

The displacement of the ions cause the single electron orbitals (Kohn-Sham states to

be discussed later) to change, giving rise to forces on ions[87]. These forces can be

observed by writing Equation 2.9 as[87]

FI = − ∂E

∂RI

−
∑
i

∂E

∂φi

∂φi
∂RI

−
∑
i

∂E

∂φ∗i

∂φ∗i
∂RI

(2.10)

If φi is an eigen state of the Hamiltonian H, Hφi = εiφi. The sum of second and

third term in Equation 2.10 becomes zero if 〈φi|φi〉 = 1. Therefore, the force that an

ion feels can be expressed as the partial derivative of the total energy with respect to
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the ionic position as

FI = − ∂E

∂RI

(2.11)

This is called Hellmann-Feynmann theorem. It may be noted that the Hellmann-

Feynmann forces are extremely sensitive to the errors in the electronic orbitals[87].

Therefore, these orbitals have to be relaxed close to their ground state for each ionic

step as errors in these orbitals cause force on the atoms that prevent them from

reaching the equilibrium ionic configuration[87]. In our calculations, we have assumed

the residual forces acting on atoms to be less than a predefined value (0.01 eV/Å) so

that the Hellmann-Feynmann forces on them are negligible.

2.4 Hartree-Fock Theory

In Quantum Mechanics, there are two approaches to solve the problem of a many-

electron system: (i) Wave Function Theory (WFT) (ii) Density Functional Theory

(DFT). Let’s begin with discussing the WFT. Here, we limit our discussions of WFT

to Hartree and Hartree-Fock Theory. Hartree Theory[88, 89, 90] is the simplest form

of the WFT in which it is assumed that each electron moves in an effective field due

to all the other Ne − 1 electrons and the ions; their motion in such an effective field

can be described by the single-particle SWE[91]. The Ne electrons, in an effective
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potential, can be treated as independent and therefore the total wave function can

be expressed as the product of individual orbitals for Ne electrons as[91]

Φ(r1, r2, .., ri, .., rNe) = φ1(r1)φ2(r2)...φi(ri)...φNe(rNe) (2.12)

Slater[92] and Fock[93] found that wave function in Equation 2.12 does not obey

the correct symmetry of the wave function of the electrons and fails to capture the

quantum mechanical phenomena like exchange interactions in materials. Therefore,

we need Hartree-Fock theory[94, 95, 96]. Since electrons are fermions, the total wave

function should be anti-symmetric i.e.

Φ(x1,x2, ..,xi,xj, ..,xNe) = −Φ(x1,x2, ..,xj,xi, ..,xNe) (2.13)

An anti-symmetric wave function can be expressed in the form of Slater

determinant[81, 97] as

Φ(x1, ..,xi,xj, ..,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) .. φNe(x1)

φ1(x2) φ2(x2) .. φNe(x2)

.. .. .. ..

φ1(xNe) φ2(xNe) .. φNe(xNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)

In the above determinant (Equation 2.14), 1√
N !

is the normalization constant

and (φ1, φ2, φ3, ......., φNe) represents the Ne spin orbitals that are occupied by Ne
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electrons[81]; the columns and rows are labelled by spin orbitals and electrons

respectively[81]. This determinant is zero if any two columns are identical, sug-

gesting that there cannot be two electrons occupying the same spin-orbital. This

is Pauli’s exclusion principle[81]. Furthermore, the determinant changes sign if any

two rows are interchanged. This means the determinant preserves the anti-symmetry

property of the many-electron wave function as interchanging two rows is equivalent

to interchanging the coordinates of two particles. The total electronic Hamiltonian

in Equation 2.8 can be expressed as the sum of the individual Hamiltonians for Ne

electrons as[91, 95]

Ĥ =
Ne∑
i=1

[
ĥ(ri) + ŵ(ri, rj)

]
(2.15)

In Equation 2.15, ĥ(ri) and ŵ(ri, rj) are the one and two electron operators and are

given by

ĥ(ri) = −1

2
∇2
i −

NI∑
I=1

ZI
| ri −RI |

= −1

2
∇2
i + Vext(ri) (2.16)

ŵ(ri, rj) =
1

2

Ne∑
j 6=i

1

| ri − rj |
(2.17)

In Hartree-Fock theory, we take the best possible single Slater determinant to repre-

sent the ground state of a many-electron system. The best possible determinant is
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obtained by minimization of the energy with respect to these orbitals. The expecta-

tion value of the Hamiltonian in Equation 2.15 can be expressed as[91]

E = 〈Φ|Ĥ|Φ〉

=
Ne∑
i=1

hi +
1

2

Ne∑
i=1

Ne∑
j=1

(Jij −Kij)

(2.18)

The one-electron and two-electrons integrals in Equation 2.18 are given by[91]

hi =

∫
φ∗i (x)

[
− 1

2
∇2 + Vext(r)

]
φi(x)d3x

Jij =

∫ ∫
| φi(x) |2| φj(x′) |2 d3xd3x′

| r− r′ |

Kij =

∫ ∫
φ∗j(x

′)φ∗i (x)φi(x
′)φj(x)d3xd3x′

| r− r′ |

(2.19)

It may be noted that φi(x) are composite spin orbitals that contains both the spin and

space parts[91]; these space and spin parts are detachable in the absence of magnetic

interactions in the many-body Hamiltonian. Furthermore, the integration over the

space coordinates and summation over the spin coordinates are denoted by a single

integration over the composite variable x in Equations 2.19[91].

φi(x) = φi(r)

{
α or β

∑
spin

∫
d3r ≡

∫
d3x

(2.20)
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Here α and β are the two possible spin states. In Equations 2.19 and 2.20, x is the four

dimensional variable of the spin and space coordinates[91]. These spin orbitals satisfy

the orthonormality condition
∫
φ?i (x)φj(x)d3x = δij. The integrals Jij and Kij are the

Coulomb and Exchange integrals. Jij has a purely classical origin and is due to the

classical Coulomb interaction between two overlapping charge distributions. It may

be noted that this term was present in the Hartree theory. Kij, on the other hand,

has a purely quantum origin and arises because the total wave function of electrons

should be anti-symmetric upon the exchange of two electrons. If two electrons have

their spins pointing in the same direction, the total energy in Equation 2.18 decreases

as Kij > 0. This suggests the exchange interactions tend to keep electrons of the same

spins away from each other by lowering their repulsive energy[91]. Such reduction in

the energy of electrons arising due to the anti-symmetry of their total wave function

is called exchange energy[87]. In this sense, there is some sort of correlation between

particles of the same spins in Hartree-Fock theory. However, this theory does not

treat properly the correlation between electrons of opposite spins. If two electrons

have their spins pointing in the opposite direction, Kij = 0. Therefore, the energy of

electrons in the triplet state is lower energy than the energy when they are in a singlet

state. Furthermore, if i=j, Jij = Kij. This means there is no self-interaction error

in Hartree-Fock theory and this is the reason why a part of Hartree-Fock exchange

is included in the hybrid functionals in DFT to partially correct the self-interaction

error.
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Next, we minimize the expression of energy in Equation 2.18 using Lagrange’s method

of undetermined multiplier, λij, under the constraint that these spin orbitals have to

be orthonormal. For this we define a functional F (φi, φ
∗
i ) as[91]

F (φi, φ
∗
i ) =

Ne∑
i=1

∫
φ∗i (x)

[
− 1

2
∇2 + Vext(r)

]
φi(x)d3x

+
1

2

Ne∑
i=1

Ne∑
j=i

∫ ∫
| φi(x) |2| φj(x′) |2 d3xd3x′

| r− r′ |

− 1

2

Ne∑
i=1

Ne∑
j=i

∫ ∫
φ∗j(x

′)φ∗i (x)φi(x
′)φj(x)d3xd3x′

| r− r′ |

−
∑
ij

λji(〈φi | φj〉 − δij)

(2.21)

Using minimization condition
δF (φi,φ

∗
i )

δφ∗k
= 0, we get[91]

[
− 1

2
∇2 + Vext + VH + Vx

]
φi(x) =

Ne∑
j=1

φj(x)λji (2.22)

The matrix of Lagrange undetermined multiplier can be diagonalized by using unitary

transformation to get a set of single-electron Schrödinger wave-like equations called

Hartree-Fock equations as[91]

[
− 1

2
∇2 + Vext + VH + Vx

]
φi(x) = εiφi(x) (2.23)

In Equation 2.23,

Vext = −
NI∑
I=1

ZI
| r−RI |

(2.24)
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VH =
Ne∑
j=1

∫
|φj(x′)|2d3x′

| r− r′ |
(2.25)

Vx = −

[
Ne∑
j=1

∫
φ∗j(x

′)φi(x
′)d3x′

| r− r′ |

]
φj(x)

φi(x)
(2.26)

Here, VH and Vx are the Hartree and exchange term, respectively. In short[91],

Heff
i φi(x) = εiφi(x) (2.27)

Here, i = 1, 2, ......, Ne. Thus, a single equation for Ne electrons has been reduced to

Ne effective single-electron equations using Hartree Fock theory. These equations are

still coupled as the solution of the one-electron problem enters the differential equation

for the second through the effective potential[91]. This makes these equations non-

linear and therefore, there are no exact solutions to these equations. These equations

have to be solved self-consistently/iteratively in computers.

2.5 Correlation Energy

In Hartree-Fock theory, the electrons interact with an average potential arising due

to all the other electrons and the nuclei. Therefore, it neglects the interaction be-

tween the electrons due to their instantaneous positions and tends to keep them away
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from each other’s vicinity. Such interactions between the electrons due to their in-

stantaneous positions are called dynamic correlation. In Hartree-Fock theory, the

many-electron wave function is represented by a single Slater determinant that may

not represent the true wave function of a many-electron system. In reality, the true

wave function should be the linear combination of all the possible Slater determinants

corresponding to the single, double and higher-order electronic excitations. The other

form of correlation, also called static correlation, is related to the existence of the sev-

eral nearly degenerate configurations (Slater determinants) that have not been taken

into account when the total wave function of electrons is approximated by a single

Slater determinant. Since the wave function of electrons is not exact, the energy we

get in Hartree-Fock theory is always larger than the true energy of the system. The

correlation energy, defined as the difference between the exact non-relativistic energy

and the Hartree Fock theory, can be expressed mathematically as[98]

Ecorr = Eexact − EHF (2.28)

Correlation energy is negative and therefore it lowers the energy of the system. This

energy is missing in Hartree-Fock theory. Both dynamic and static correlation can

be treated properly by taking a linear combination of many possible Slater determi-

nants as in configurational interaction (CI). However, full CI can be computationally

inefficient even for systems with a few atoms and DFT becomes an obvious choice as

it allows us to simulate much larger systems that full CI can’t.
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2.6 Density Functional Theory (DFT)

In DFT, it is the ground-state electron density n(r) that determines all the ground

state properties of the system including the ground state wave function. The electron

density n(r) has the following properties:

(i) n(r) ≥ 0

(ii) n(r) = Ne

∫
...
∫
|Φ(r, r2, r3, ..., rNe)|2d3r2d

3r3....d
3rNe

Integration of density over entire volume gives the total number of electrons Ne i.e.∫
n(r)d3r = Ne

(iii)

n(r) =
Ne∑
i=1

fi | φi(r) |2

fi is the occupation probability. It may be noted that only the occupied orbitals

contribute to the electron density.

2.6.1 Why DFT?

The main advantage of DFT over the WFT based approach is that it makes the

computation of many-electron systems possible in computers. To explain this,
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let’s consider a many-electron system with Ne electrons. The wave function,

Φ(r1, r2, r3, ...., rNe), is a function of 3Ne variables. Let’s say we want to represent

this wave function using M grid points in space. Then at each grid point, we have

3Ne variables so that the total numbers of variables in space becomes M3Ne . In the

simplest case, when we have Ne = 10 electrons and M = 100 grid points, the total

number of variables become 1060. Considering that each variable can be stored us-

ing 10 bytes of memory, we need around 1052 GB to store the wave function of a

many-electron system which is almost impossible. But if we use DFT to represent an

electron density using M = 100 grid points, we have only 106 variables as density is

a function of 3 variables. If we compute the memory required in computers to store

the density, we need only 10 MB of space. In a Kohn-Sham DFT, an electron density

is constructed from the Ne occupied orbitals using n(r) =
∑Ne

i=1 fi | φi(r) |2. So, we

need Ne × 1003 variables to represent a system of Ne electrons. For Ne=10, we need

only 100 MB of memory to store all these orbitals. Therefore, DFT makes simulation

of much larger electronic systems possible in computers.

DFT is based on Hohenberg-Kohn theorems I and II for an inhomogenous electron gas

[99]. Before discussing them, let’s discuss the Thomas-Fermi model for a homogeneous

system of electron gas which laid the foundation for these theorems.
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2.6.2 Thomas-Fermi Model

It was Thomas-Fermi who in 1927 expressed the kinetic energy of non-interacting

homogenous electron gas in terms of the local electron density at a point r. Dirac,

in 1930, extended this model by including the exchange energy that is still used as

an approximation to the exchange term in Local Density Approximation (LDA) in

modern DFT[98]. To obtain the expression of kinetic energy as a function of density,

we discretize the space into cubic cells. Each of them have a volume ∆V = l3, where l

is the length of a side of the cube. Let ∆N be the number of electrons in ∆V . These

∆V ’s are independent of each other and may have different number of electrons.

Consequently, the total kinetic energy of electrons in a cell can be expressed as[98]

∆E =
3

5
∆NεF

=
3h2

10m

(
3

8π

)2/3

l3
(

∆N

l3

)5/3 (2.29)

The term n = ∆N
∆V

is called the density of electrons for each cubic cell and might be

different for different cells. In the limit ∆V → 0, n = ∆N
l3

= n(r). Subsequently, the

summation over all cells in the space can be changed to integration while calculating

the total kinetic energy of all the electrons in space. The Thomas-Fermi total kinetic
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energy functional in atomic units is therefore[98]

TTF [n(r)] =
3

10

(
3π2)2/3

∫
[n(r)]5/3d3r (2.30)

The Thomas-Fermi total energy functional can be expressed as[98]

ETF [n(r)] =
3

10

(
3π2)2/3

∫
[n(r)]5/3d3r− Z

∫
n(r)

r
d3r

+
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′

(2.31)

In Equation 2.31, the first term is the Thomas-Fermi total kinetic energy functional.

The second term represents the potential energy of attraction between the electrons

and the ions. Similarly, the third term is the potential energy of repulsion between the

electrons. It may be noted that in writing Equation 2.31, Thomas-Fermi neglected

the exchange-correlation energy. The energy functional in Equation 2.31 can be min-

imized under the constraint
∫
n(r)d3(r) = Ne to get the Euler-Lagrange equation[98]

µFT =
δEFT [n(r)]

δn(r)

=
1

2

(
3π2)2/3[n(r)]2/3 − Z

r
+

∫
n(r′)

|r− r′|
d3r′

=
1

2

(
3π2)2/3[n(r)]2/3 − φ(r)

(2.32)

In Equation 2.32, φ(r) is the potential due to the nuclei and electrons at a position

r[98]. Equation 2.31 tells that the total energy of the system can be calculated once

we know the density. This idea of expressing the energy in terms of the electron

26



density was used by Hohenberg-Kohn to propose two theorems on which the modern

DFT is based. It may be noted that the Thomas-Fermi model is the simplest model

for the total energy of a system of electrons and is an approximation to DFT.

2.6.3 The Hohenberg-Kohn Theorem I

The Hohenberg-Kohn Theorem I states that the external potential Vext(r) is a

unique functional of the ground state electron density n(r) within a constant[98, 99].

So the basic variable in DFT is n(r)[99]. As the many-body Hamiltonian is determined

by the external potential Vext(r), the full many-body ground state problem is also a

unique functional of n(r)[99].

To prove this theorem, we consider two systems such that Vext(r) 6= V ′ext(r) + C.

Both of these systems have the same ground state density i.e n(r) = n(r′). Let their

respective Hamiltonians be H and H ′.

System I: Vext(r), Ĥ, n(r), Φ(r), E, Ne

SystemII: V ′ext(r), Ĥ ′, n(r), Φ′(r), E ′, Ne

27



The ground state energy E0 for the System I can be expressed as[98]

E0 = 〈Φ|Ĥ|Φ〉

< 〈Φ′|Ĥ|Φ′〉

= 〈Φ′|Ĥ ′|Φ′〉+ 〈Φ′|Ĥ − Ĥ ′|Φ′〉

= 〈Φ′|Ĥ ′|Φ′〉+

∫
[Vext(r)− V ′ext(r)]n(r)d3r

< E ′0 +

∫
[Vext(r)− V ′ext(r)]n(r)d3r

(2.33)

Similarly, the ground state energy for the System II can be expressed as[98]

E ′0 < E0 +

∫
[V ′ext(r)− Vext(r)]n(r)d3r (2.34)

Adding Equations 2.33 and 2.34,

E0 + E ′0 < E ′0 + E0 (2.35)

Thus we arrive at a contradiction. This means there is no existence of two external

potentials that differ by more than a constant and give same ground state electron

density n(r). The electronic Hamiltonian is

Ĥ = T̂e + V̂ee + V̂eN (2.36)

In DFT, it is the electron density that determines the total number of electrons
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Ne, the external potential Vext, and all the ground state properties like energy, wave

function, force etc. Therefore, the total energy is the functional of the ground state

density n(r) and can be expressed as[98, 99]

Ev[n] = 〈Φ|Ĥ|Φ〉

= 〈Φ|T̂e|Φ〉+ 〈Φ|V̂ee|Φ〉+ 〈Φ|V̂eN |Φ〉

= T [n] + Vee[n] + VeN [n]

= FHK [n] + VeN [n]

= FHK [n] +

∫
Vext(r)n(r)d3r

(2.37)

where

FHK [n] = T [n] + Vee[n] (2.38)

Vee[n] = J [n] + non− classical term

In Equation 2.37, Φ is the ground state wave function that corresponds to the elec-

tron density n(r). The subscript v in Ev means that the energy depends explicitly

on the external potential Vext[98]. J [n(r)], in Equation 2.38, is the Coulomb repul-

sion between the electron distribution and has classical origin as explained earlier.

The non-classical term is not known in DFT and arises due to exchange-correlation

between electrons in materials. It’s origin is quantum in nature. FHK [n(r)], in Equa-

tion 2.38, is a universal functional of the electron density and is valid for any external
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potential and the number of electrons in the system.

2.6.4 The Hohenberg-Kohn Theorem II

The Hohenberg-Kohn Theorem II is basically a variational principle and states

that for any trial density n′(r) such that n′(r) ≥ 0 and
∫
n′(r)d3r = Ne, the energy

obtained satisfies the following condition[98]

Ev[n0] ≤ Ev[n
′] (2.39)

Ev[n0] is the ground state energy corresponding to the ground state electron density

n0(r) and external potential Vext(r); Φ0 is the ground state wave function. To prove

this theorem, let us suppose that V ′ext(r) and Φ′ be the external potential and the

wave function determined by the electron density n′(r). This means if we consider

a problem with Vext(r) as the external potential, Φ′ becomes the trial wave function

and therefore, we can write[98]

Ev[n0] = 〈Φ0|Ĥ|Φ0〉 ≤ 〈Φ′|Ĥ|Φ′〉

= FHK [n′] +

∫
n′(r)Vext(r)d

3r

= Ev[n
′]

⇒ Ev[n0] ≤ Ev[n
′]

(2.40)
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2.6.5 Levy Constrained Search

There are two limitations of Hohenberg-Kohn theorems: (i) it assumes that there

should not be any degeneracy in the ground state (ii) the electron density has to be

v-representable. However, the general condition for having a v-representable density is

not known making practical implementation of the Hohenberg-Kohn theorem difficult.

Levy constrained approach formulation[100, 101] gets rid of both of these limitations

in the original Hohenberg-Kohn theorem by converting the v-representability problem

to N-representability. Let’s discuss it. Let’s consider a ground state density n0(r) that

can be constructed from many different wave functions. Let Φn0 and Φ0 be any two of

them such that Φ0 is the true ground state wave function. Using variational principle,

we can write[98]

〈Φn0|Ĥ|Φn0〉 ≥ 〈Φ0|Ĥ|Φ0〉

⇒ 〈Φn0|T̂ + V̂ee|Φn0〉+

∫
n0(r)Vext(r)d

3r ≥ 〈Φ0|T̂ + V̂ee|Φ0〉+

∫
n0(r)Vext(r)d

3r

⇒ 〈Φn0|T̂ + V̂ee|Φn0〉 ≥ 〈Φ0|T̂ + V̂ee|Φ0〉

(2.41)

This means although a given ground state density n0(r) can be obtained via inte-

gration from many different wave functions (Φn0 and Φ0), it is only the ground state
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wave function Φ0 that minimizes T +Vee. The right hand side of Equation 2.41 is[98]

FHK [n0] = 〈Φ0|T̂ + V̂ee|Φ0〉

= min
|Φ>→n0

〈Φ|T̂ + V̂ee|Φ〉
(2.42)

This is Levy’s constrained search approach. As stated earlier, it removes the limitation

of the Hohenberg-Kohn theorem that there should not be degeneracy in the ground

state and allows us to generalize the definition of FHK [n0] from v-representable density

to N-representable density as[98]

F [n] = min
|Φ>→n

〈Φ|T̂ + V̂ee|Φ〉 (2.43)

Using Equations 2.42 and 2.43, we can write[98]

FHK [n0] = F [n0] (2.44)

for any v-representable density n0. The ground state energy can be written as[98]

E0[n] = min
n

[
min
|Φ>→n

〈Φ|T̂ + V̂ee|Φ〉+

∫
Vext(r)n(r)d3r

]
(2.45)

There are two minimization constraints in Equation 2.45; the inner minimization

is over all the wave functions that integrate to give the same density n(r) and the

outer is over all the densities that integrate to give total number of electrons Ne[98].
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Equation 2.45 can be written as[98]

E0[n] = min
n

[
F [n] +

∫
Vext(r)n(r)d3r

]
= min

n
E[n]

(2.46)

Thus we converted the v-representability problem as proposed originally by

Hohenberg-Kohn to an N-representable problem using the idea of Levy’s constrained

search approach.

2.6.6 The Kohn-Sham Formulation

Hohenberg-Kohn theorem does not give us an idea about the nature of the univer-

sal functional F [n(r)], neither it provides a way to obtain the ground-state (GS)

properties of the system from the ground-state electron density. Therefore, we need

Kohn-Sham formulation[102]. To derive the Kohn-Sham equations, we consider two

systems as illustrated in Figure 2.2. One of them is a real system of interacting elec-

trons that includes the exchange-correlation between them. The other is an auxiliary

system of non-interacting electrons in which the electrons move in an effective poten-

tial called Kohn-Sham potential. We further assume that both of these systems has

the same electron density n(r).
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Figure 2.2: One to one mapping of the real interacting system with a
non-interacting system. Both systems have the same ground state density
n(r).

The energy functional for the electrons moving in an effective Kohn-Sham potential

V KS(r) is[98]

E[n] = Ts[n] +

∫
V KS(r)n(r)d3r (2.47)

Ts [n(r)] is the total kinetic energy functional of the auxiliary system of non-

interacting electrons and can be expressed as sum of the kinetic energies of the

non-interacting single particle orbitals φi’s as[98]

Ts [n] = 〈Φ| − 1

2
∇2|Φ〉

= −1

2

Ne∑
i=1

∫
φ∗i (r)∇2φi(r)d

3r

(2.48)

where Φ is the Slater determinant. The energy functional in Equation 2.47 can
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be minimized by using the Lagrange’s undermined multiplier under the constraint∫
n(r)d3r = Ne. To do so, we write the energy functional as[98]

E[n] = Ts[n] +

∫
V KS(r)n(r)d3r− µ[

∫
n(r)d3r−Ne] (2.49)

Using the minimization condition δE[n]
δn(r)

= 0, we get the Euler-Lagrange equation for

a system of non-interacting electrons[98, 103]

µ =
δTs[n]

δn(r)
+ V KS(r) (2.50)

For a system of interacting electrons, the energy functional can be expressed in terms

of the kinetic energy functional of the non-interacting electrons as[98]

E[n] = Ts[n] +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′ +

∫
Vext(r)n(r)d3r + Exc[n] (2.51)

where Exc is the exchange correlation energy functional (to be discussed later) and is

given by[98]

Exc = T [n]− Ts[n] + Eee[n]− EH [n] (2.52)

In Equation 2.52, T [n(r)] and Eee [n(r)] are the exact kinetic and electron-electron in-

teraction energies of the interacting electrons respectively. Let’s minimize the energy
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functional in Equation 2.51 using the Lagrange’s undermined multiplier under the

constraint,
∫
n(r)d3r = Ne. For this we rewrite the energy functional for interacting

electrons as[98]

E[n] = Ts[n] +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′

+

∫
Vext(r)n(r)d3r + Exc[n]− µ′[

∫
n(r)d3r−Ne]

(2.53)

Minimization of Equation 2.53 will give Euler-Lagrange equation for interacting

electrons[98, 103]

µ′ =
δTs[n]

δn(r)
+

∫
n(r′)

|r− r′|
d3r′ + Vext(r) +

δExc[n]

δn(r)
(2.54)

Comparing Equations 2.50 and 2.54, the effective potential in which the electrons

move is given by[98, 103]

V KS(r) =

∫
n(r′)

|r− r′|
d3r′ + Vext(r) +

δExc[n]

δn(r)

= VH(r) + Vext(r) + Vxc(r)

(2.55)

Both the minimizations (one for the auxiliary system and other for the interacting sys-

tem) have the identical solution for the density if the effective potential is chosen to be

the sum of the three terms (VH(r), Vext(r) and Vxc(r)) as in Equation 2.55[103]. This

means that the density of the interacting system in an external potential Vext(r) can be
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obtained by solving the equations of the non-interacting electrons in the effective po-

tential V KS(r)[103]. In Equation 2.55, Vxc(r) is the exchange-correlation potential. To

get single electron Kohn-Sham equations, we minimize Equation 2.51 under the con-

straint that the electrons orbitals have to be orthonormal i.e.
∫
φi(r)φj(r)d

3r = δij.

For this we rewrite energy functional as[98]

E(φ∗i , φi) = −1

2

Ne∑
i=1

∫
φ∗i (r)∇2φi(r)d

3r +
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′

+

∫
Vext(r)n(r)d3r + Exc[n]−

∑
ij

εij[

∫
φ∗i (r)φj(r)d

3r− δij]
(2.56)

Using the minimization condition
δE(φ∗i ,φi)

δφ∗k
= 0 and then diagonalizing the Lagrange’s

undetermined multiplier εij using unitary transformation, we get single particle equa-

tions of the form[98]

[
− 1

2
∇2 + Vext(r) +

∫
n(r′)

|r− r′|
d3r′ + Vxc(r)

]
φi(r) = εiφi(r)[

− 1

2
∇2 + V KS(r)

]
φi(r) = εiφi(r)

(2.57)

where,

V KS(r) =

∫
n(r′)

|r− r′|
d3r′ + Vext(r) + Vxc(r)

In Equation 2.57, i = 1, 2, 3, ......Ne. Thus, Kohn-Sham formulation splits a single

problem of Ne electrons to Ne single electron problems with the electrons moving
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in an effective Kohn-Sham potential V KS(r). The set of the Kohn-Sham equations

in Equation 2.57 are non-linear equations. These have to be solved self-consistently

(iteratively) starting from some guess for the electron density to get well conserved

density that can be constructed from the occupied orbitals using[98]

n(r) =
Ne∑
i=1

φ∗i (r)φi(r) (2.58)

Such iterative method will give a self-consistent ground state density. The total

energy in Kohm-Sham theory is then calculated from the self-consistent density by

using the relation[98, 103]

E =
Ne∑
i=1

εi −
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′ −

∫
Vxc(r)n(r)d3r + Exc[n] (2.59)

It may be noted that Kohn-Sham’s theory is a single orbital theory. εi, in Equation

2.59, is the energy corresponding to the orbital φi.

2.6.7 Exchange-Correlation Energy

In writing the energy functional (Equation 2.51) for interacting electrons, we ex-

pressed it in terms of the kinetic energy functional (Ts[n]) for the non-interacting
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electrons. The Kohn-Sham kinetic energy functional (Ts[n]) is not the true represen-

tative of the kinetic energy of real interacting electrons. Further, the exact form of

the electron interaction energy functional Eee[n] is not known. All the unknown quan-

tities in DFT are contained in the exchange-correlation energy functional and is the

difference in exact kinetic energy (T [n]) and Kohn-Sham kinetic energy (Ts[n]), plus

the difference in exact electron-electron interaction energy (Eee[n]) and the Hartree

energy (EH [n]). Quantitatively, it can be expressed as[98]

Exc = T [n]− TS[n] + Eee[n]− EH [n]

Since the exact form of the exchange-correlation energy functional is not known, we

need to make approximations for it. The accuracy of the result in DFT depends on

how well the approximations for the exchange-correlation energy are made. Some of

the approximations like LDA, GGA, etc will be discussed in the next subsections.

2.6.7.1 Local Density Approximation

The simplest approximation for the exchange-correlation energy functional is the

Local Density Approximation (LDA) in which it is assumed that the exchange-

correlation energy at a point r is the same as that of a locally uniform electron
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gas. In this approximation, the exchange-correlation energy is given by[87, 98]

ELDA
xc [n] =

∫
εxc(n)n(r)d3r (2.60)

where εxc(n) = εhomxc (n) is the exchange-correlation energy per particle of a uniform

electron gas having density n. The exchange-correlation potential V LDA
xc is[98]

V LDA
xc (r) =

δELDA
xc [n]

δn(r)
=
∂ [n(r)εxc(n(r))]

∂n(r)
(2.61)

The exchange-correlation energy per particle can be split as the sum of the exchange

and the correlation parts as

εxc(n) = εx(n) + εc(n) (2.62)

The exchange part is given by Dirac expression for the exchange energy functional

as[98, 104].

εx(n) = −Cxn(r)1/3 (2.63)

where

Cx =
3

4

(
3

π

)1/3
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Since the functional form of the correlation term is not known, it is determined

by using Quantum Monte-Carlo simulations[98]. By incorporating the spins, the

exchange-correlation functional can be generalized as

Exc
[
n↑, n↓

]
=

∫
εxc(n

↑, n↓)n(r)d3r (2.64)

This approximation is called Local Spin Density Approximation (LSDA).

2.6.7.2 Generalized Gradient Approximation

The generalized gradient approximation (GGA) is different from LDA in the sense

that it incorporates the inhomogeneities in the electron density arising due to its

variation in space by taking the gradient of the electron density in the expression

of exchange-correlation energy functional. In GGA approximation, the exchange-

correlation energy functional can be written as

EGGA
xc [n] =

∫
f(n(r),∇n)d3r (2.65)

If we incorporate spins, Equation 2.65 can be generalized as[105]

EGGA
xc

[
n↑, n↓

]
=

∫
f(n↑, n↓,∇n↑,∇n↓)d3r (2.66)
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GGA exists in different forms. One of such forms is PBE (Perdew, Burke, and

Ernzerhof)[105].

2.6.7.3 Hybrid Functional

In Hartree-Fock theory, the Coulomb term Jij and the exchange term Kij cancels

each other in the expression of energy for i = j as stated earlier. Therefore, there

is no self-interaction error in Hartree-Fock theory. However, in Kohn-Sham DFT,

the Coulomb repulsions between the electrons are treated exactly, but the exchange

interactions are approximated. Therefore, they don’t cancel exactly and leads to

errors called self-interaction errors (SIE). Physically, SIE represents the interaction

of an electron with itself and should be avoided in calculations. As a result of SIE,

the local/semi-local functionals like LDA and GGA underestimate the energy gap in

several systems like Group IV semiconductors. In such cases, hybrid functionals like

HSE and B3LYP can be useful as these are formed in such a way that a part of the non-

local exchange energy comes from the Hartree-Fock theory and the remaining from

the other available local/semi-local functionals like LDA and PBE; the correlation

part in hybrid functional comes entirely from the local/semi-local functional. The
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Hartree-Fock exact exchange energy term is given by[106]

EHF
x = −1

2

∑
i

∑
j

Kij

Kij =

∫ ∫
φ∗i (r1)φ∗j(r2)

1

|r1 − r2|
φj(r1)φi(r2)d3r1d

3r2

(2.67)

HSE:

One of the commonly used Hybrid functional is HSE proposed by

Heyd–Scuseria–Ernzerhof. It splits the Hartree-Fock exchange interactions into two

parts (i) short-range (SR) (ii) long-range (LR) and then avoids the LR Hartree Fock

exchange component as these are slowly varying and are computationally expensive.

The exchange-correlation energy in this approximation can be expressed as[107, 108]

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c

(2.68)

In Equation 2.68, a is the parameter that determines the amount of mixing of the

two exchanges (HF and PBE) and ω is the parameter that controls the extent of the

short-range interactions. In Equation 2.68, the subscript x and c stand for exchange

and correlation; the superscript SR and LR stand for short-range and long-range

interactions respectively. There are two forms of HSE: (a) HSE06 for which a = 1
4

and ω = 0.2 (b) HSE03 for which a =
1

4
and ω = 0.3.

B3LYP:
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Another widely used hybrid functional is B3LYP (Becke, three-parameter, Lee-Yang-

Parr)[106, 109, 110] in which the exchange-correlation energy functional can be ex-

pressed as

EB3LY P
xc = ELDA

xc + a0(EHF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c )

(2.69)

where a0 = 0.20, ax = 0.72, and ac = 0.81 are the mixing parameters.

2.7 Bloch’s Theorem and Plane-Wave Expansion

Till now, we simplified the problem of the many-body system by decoupling the

combined problem of the electrons and ions into two separate problems: one for the

electrons and the other for the ions. We then split a single problem for Ne electrons

to Ne single electron problems using both the WFT and DFT. We also said that by

switching from WFT to DFT, the number of variables decreases from 3Ne to just

three. This was a huge simplification as it gave hope of solving many-body systems

in computers. However, in a real system, we deal with many electrons and nuclei of

the order of 1023. Therefore, it’s almost impossible to calculate the wave functions

for each of these electrons. Further, as the electronic wave function extends all over

the crystal, the size of the basis sets needed to expand each of these electrons would
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be infinite[87]. To reduce the computational complexity of the problem, we make use

of the fact that the system under study is periodic in nature; the electrons move in a

periodic potential of the form V (r) = V (r+R), where R is the Bravais lattice vector.

The periodicity of a crystal leads to the Bloch theorem which states that the solution

of the SWE in a periodic potential with Hamiltonian of the form, H = 1
2
∇2 + V (r),

is the product of the plane wave and a function with the same periodicity as that of

lattice[111, 112].

φnk(r) = fnk(r)e
ik·r (2.70)

In Equation 2.70, k is a Bloch vector, n is the band index, and fn(r) is a function

that has the periodicity of the lattice. It (fn(r)) is given by[111, 112]

fnk(r) = fnk(r + R) (2.71)

Translation of the Bloch wave function by a Bravais lattice vector R yields[111, 112]

φnk(r+R) = φnk(r)eik·R (2.72)

The charge density is

|φnk(r+R)|2 = |φnk(r)|2 (2.73)

Equation 2.72 and 2.73 tells that although the wave function at a point r+R will

gain a phase of eik·R on translation by Bravais lattice vector R, the charge density
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remains invariant. This suggests that we don’t have to consider all the electrons

in a crystal if we implement Bloch theorem and periodicity. We can concentrate

only on the electrons in a unit cell to solve the problem of a many-electron system.

The advantage of the Bloch theorem is therefore to reduce the problem of solving an

infinite number of electrons in an infinite crystal (periodic) to the problem of solving a

finite number of electrons in a unit cell[87]. Since fn(r) is periodic, it can be expanded

in terms of Fourier series as the sum of discrete plane waves with wave vectors equal

to reciprocal lattice vectors G of the crystal[111, 112].

fnk(r) =
∑
G

cnGe
iG·r (2.74)

Therefore, a single electronic wave function in Equation 2.70 can be expressed as the

sum of plane waves[111, 112]:

φnk(r) =
∑
G

cnk+Ge
i(k+G)·r (2.75)

In Equation 2.75, only those G’s that are the reciprocal lattice vectors of the crystal

such that R.G = 2πm are allowed and acceptable. Here, R is the direct lattice vector

of the direct lattice. Therefore, there are only discrete G’s due to lattice periodicity.

φnk(r), in Equation 2.75, are the Kohn-Sham states. The Kohn-Sham equations can

be solved in reciprocal space to obtain the orbitals φnk(r) and energy eigen values

εnk for a given k and n. Since any two wave vectors (k′ and k) satisfy the condition
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k′ = k + G , the orbitals φnk(r) and energy eigen values (bands) εnk are periodic

function in the reciprocal space[111, 112], implying that we only need to calculate the

energy and orbitals in a single unit cell in the reciprocal space[111, 112] .

φn,k+G(r) = φnk(r)

εn,k+G = εnk

(2.76)

k, in Equation 2.76, is a continuous variable. Therefore, in the next section, we

provide a way to discretize the k-space and obtain the observables of the system

using a finite number of k-points in the reciprocal space.

2.8 k-point Sampling

Let us consider a periodic crystal (infinite) with N1, N2, and N3 number of cells along

the direction of primitive vectors a1, a2, and a3 respectively in real space. The total

number of cells in the entire crystal is Ncells = N1 ×N2×, N3. We impose Born-Von

Karmen periodic boundary condition that the wave function entering one face of the

crystal must match the wave function leaving the opposite face i.e.[112]

φnk(r +Niai) = φnk(r) (2.77)
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Using Bloch theorem: φnk(r +Niai) = φnk(r)e(iNik·ai), Equation 2.77 becomes

e(iNik·ai) = 1 = e(i2πmi)

⇒ k · ai = 2π
mi

Ni

(2.78)

where i = 1, 2, 3 and mi are integers. This condition impose restriction on the values

of k that we can take and makes sure that k is discrete in number. This allows us to

define the Bloch vector k in the reciprocal space as

k = u1b1 + u2b2 + u3b3 (2.79)

where ui are numbers. Using ai ·bi = 2πδij, ui = mi

Ni
. The allowed values of the Bloch

vectors k are[112]

k =
3∑
i=1

mi

Ni

bi (2.80)

The elemental volume in reciprocal space is given by[112]

∆k =
b1

N1

.

(
b2

N2

× b3

N3

)
⇒ b1.(b2 × b3) = Ncells ×∆k

(2.81)

This means the volume (b1.(b2 × b3)) of a primitive cell in the reciprocal lattice

is equal to the number of cells in real space times the spacing in k-space, implying

that there are Ncells points in a unit cell in the reciprocal space where each point is

contributed by a unit cell in the real space. As said earlier, the condition: k′ = k+G
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demands that we don’t have to go beyond the unit cell in reciprocal space to calculate

the wave function and energy. This means the problem has now reduced from the

problem of a continuous k in reciprocal lattice to a discrete k in a unit cell of the

reciprocal lattice. But the allowed values of k are still infinite. Let’s now reduce the

number of k-points to a finite number.

In plane-wave based DFT, the electronic properties like charge density, DOS, energy

etc. can be obtained by integrating over the Brillouin zone (BZ) as

f(r) =
1

ΩBZ

∑
n

∫
BZ

fn(k)d3k (2.82)

ΩBZ is the cell volume in the Brillouin zone. For ∆k = 0 i.e. if two k-points in

the BZ are close enough, the orbitals are almost identical indicating that the wave

function over a region of k-space can be approximated by the wave function at a

single k-point[87]. This means we do not need an infinite number of k-points in the

reciprocal space to evaluate the above integral. We can replace the integral over the

entire BZ by summation over the discrete but finite number of k-points by using the

following transformation

1

ΩBZ

∫
BZ

→
BZ∑
k

(2.83)

Equation 2.82 then becomes

f(r) =
BZ∑
nk

fn(k) (2.84)
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If the system under study has some point group symmetry, the irreducible BZ is just

a subset of the entire BZ. In such cases, instead of summing over the entire Brillouin

zone, we can perform weighted sum over the fewer k-points in the irreducible BZ as

f(r) =
IBZ∑
nk

fn(k)wk (2.85)

where, wk
′s are weights. Now, one may ask: how do we choose the appropriate

number of k-points in the BZ? To answer this, we do a convergence test with respect

to the number of k-points. It may be noted that as the size of the unit cell in the direct

lattice increases, the size of the BZ in the reciprocal lattice becomes smaller. This

means we need fewer points to sample the BZ/IBZ for large supercells. This is a huge

advantage as it allows the computations of large supercells possible in computers.

In this work, we have used Monkhorst pack[83, 113, 114] to sample the BZ in which

the numbers ui in Equation 2.79 are given by

ui = (2ri −Ni − 1)/2Ni

ri = 1, 2, 3, ..., Ni

i = 1, 2, 3

(2.86)

Ni is an integer that defines the number of special k-points in the set.
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2.9 Truncating Plane-Wave Basis Sets

In Equation 2.75, we expressed the Kohn-Sham orbitals as the infinite sum of plane

waves in the reciprocal lattice. It may be noted that the higher Fourier component

Cn,k+G in Equation 2.75 is much smaller for the plane waves with higher kinetic energy

and therefore can be neglected[87]. This suggests that the expansion in Equation

2.75 can be truncated at some value of |k + G|. For this, we introduce a concept of

kinetic energy cut-off for plane waves such that all the plane waves that satisfy the

equation[115]

|k + G| ≤ Gcut

⇒ 1

2
|k + G|2 ≤ 1

2
G2
cut

⇒ 1

2
|k + G|2 ≤ Ecut

(2.87)

are considered for the expansion in Equation 2.75. Equation 2.87 can be represented

by a sphere (Figure 2.87) in reciprocal space within which all allowed points in the

expansion of the plane waves lie. The number of plane waves within such sphere can

be approximated in terms of Ecut by

NPW =
V E

3
2
cut

6π2
(2.88)
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Figure 2.3: Planes waves can be represented by grids in reciprocal space;
all plane waves within the cutoff energy are chosen for plane-wave expansion.

where V is the volume of the unit cell in the real space. Such truncation might lead to

errors in the computed values of observables. However, these errors can be minimized

by increasing the value of cut-off energy. It is worth noting that it may not be always

feasible to increase the cut-off energy especially for a system with a large number of

electrons. Then one can ask again: how do we select the relevant value of Ecut for

your calculations? To know this, we do an energy convergence test with respect to

the Ecut.
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2.10 Pseudopotential Approximation

In previous sections, we reduced the complexity of solving the problem of the many-

electron system by introducing the concept of periodicity of the crystal, k-point sam-

pling, and kinetic energy cut-off. In this section, we go a step further and lessen the

number of plane waves required in our calculations by using the notion of pseudopo-

tential. In a real many-body system, the core electrons feel strong nuclear potential

Figure 2.4: Schematic showing (a) all electron wave functions of the core
and valence electrons (b) pseudo wave function and pseudo potential below
and above the cut off radius rc and the corresponding all electron wave
function and potential.

due to the nucleus. It has two consequences: (i) the core electrons wave functions

are localized near the nucleus (ii) the valence electron wave functions have a lot of

wiggles near the nucleus as these have to be orthogonal to the core electrons wave

functions[87]. If we want to represent such wave functions as the linear combination
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of plane waves, we might need a basis with a large number of plane waves. This

makes all-electron computations nearly impossible in computers. However, it is the

valence electrons in materials that take part in bonding and determine their physical

properties. This allows us to replace the core electrons and the nucleus with some

effective potential, also called pseudopotential, such that only the valence electrons

experience this effective potential. Since the valence electrons wave functions (ψAE)

have a lot of wiggles near the nucleus and are much smoother away from the nucleus,

we can define a cut-off radius rc. Below rc, the pseudopotential (VPS) and pseudo-

wave function (ψPS) are much smoother than the nuclear potential (VAE) and valence

electron wave functions (ψAE)[87]. Above rc, they are identical (Figure 2.4)[87]. The

use of pseudopotential increases the efficiency of our calculations due to the following

two reasons (i) we have less number of electrons for expansion (ii) we replace wiggles

in valence electron wave function by a much smoother function within the cut-off

radius rc. This also means that the plane waves required in our calculations decrease

by a lot.

While constructing a pseudopotential, we should note the followings[87, 116]:

(i) Above rc, the pseudo wave function (ψPS) and all-electron wave function (ψAE)

should be identical.

(ii) The pseudo wave function (ψPS) should be a smooth function and should not

contain any nodes.

(iii) The all-electron eigen values should be similar to the pseudo eigenvalues.
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(iv) Within rc, the charge enclosed by the valence wave function and the pseudo wave

function should satisfy the condition

∫ rc

0

|ψAEl (r)|2d3r =

∫ rc

0

|ψPSl (r)|2d3r (2.89)

(v) For r > rc, the logarithmic derivatives of the pseudo wave function and its first

energy derivatives should be identical to the corresponding derivatives for the all-

electron wave function.

In Equation 2.89, l represents the angular momentum of the system. The pseudopo-

tentials that satisfy the Equation 2.89, also called norm-conserving criteria, are the

norm-conserving pseudopotentials[116]. However, there are several systems (like O

2p and Ni 3d) where it is not possible to create the pseudo wave functions which are

softer than all-electron wave functions using the norm-conservation requirement[117].

Further, the norm-conserving pseudopotentials are computationally expensive for sys-

tems involving transition metal and rare-earth atoms[118]. In such cases, Ultra-soft

pseudopotential can be useful which was proposed by Vanderbilt in 1990[117]. In this

type of pseudopotential, the norm-conserving condition is relaxed so that the pseudo

wave function becomes much smoother. This has the advantage that the number of

plane waves required in our calculations can be decreased significantly (i.e. kinetic

energy cut-off can be lowered) thereby increasing the computational efficiency.
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2.11 Plane-Wave Representation of Kohn-Sham

Equations

Using the concept of the periodicity of the lattice, k-point sampling, symmetry of

the crystal, plane wave cut-off, and pseudopotentials, we have significantly lower the

number of plane waves in our caclulations. Therefore we diagonalize much smaller

matrix of size Nb ×Nb. Using plane wave expansion of orbitals in Equation 2.57, the

Kohn-Sham equation becomes[87]

∑
G′

[
1

2
|k + G|2 δGG′ + Vext(G−G′) + VH(G−G′) + Vxc(G−G′)

]
ci,k+G′

= εici,k+G

(2.90)

As stated earlier, Vext(G) = Vion(G). Equation 2.90 can be solved by diagonalizing

the Hamiltonian. It may be noted that the size of the matrix is determined by the

cut-off energy.

2.12 Collinear and Noncollinear Magnetism

In this work, we have studied both the collinear and non-collinear magnetism. In

collinear magnetism, the magnetization vector ~m(r) = m(r)ẑ. Here, the unit vector
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ẑ may be either parallel or antiparallel to a given direction ẑ, indicating the magne-

tization is either parallel or antiparallel to ẑ. In noncollinear magnetism, the mag-

netization ~m(r) is a continuous vector variable of position r[119]. It is the spin-orbit

interactions that couples the magnetization to a crystal lattice. Once the spin-orbit

coupling (SOC) is turned on, rotations of these spin magnetic moments in different

directions yield different energy[115]. So the basic variables in spin DFT are the

scalar electron density and the magnetization density (a vector)[120]. Here instead of

these 4 variables, we use a 2× 2 density matrix with elements nαβ(r) to express spin

DFT[119, 120].

Tr[nαβ(r)] ≡ nTr(r) =
∑
α

nαα(r) (2.91)

The total density matrix is[119]

nαβ(r) = [nTr(r)δαβ(r) + ~m(r) · ~σαβ(r)]/2 (2.92)

The magnetization density is[119]

~m(r) =
∑
αβ

nαβ(r) · ~σαβ(r) (2.93)
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Here, σ is Pauli’s spin matrices. The Kohn-Sham energy functional can be written

as[119, 121]

E =
∑
α

∑
n

fn〈Ψα
n| −

1

2
∆|Ψα

n〉+

∫
Vext(r)nTr(r)d

3r

+
1

2

∫ ∫
nTr(r)nTr(r

′)

|r− r′|
d3rd3r′ + Exc[

←→n (r)]

(2.94)

The Kohn-Sham equations can be expressed as[121]

∑
β

Hαβ|Ψβ
n〉 = εnS

αα|Ψα
n〉 (2.95)

where[121]

Hαβ = −1

2
∆δαβ + Vext(r)δαβ +

1

2

∫
nTr(r

′)

|r− r′|
d3r′δαβ + V αβ

xc [←→n (r)](r) (2.96)

In matrix form, we have[121]

Hαα V αβ
xc

V βα
xc Hββ


|Ψα

n〉

|Ψβ
n〉

 = εn

|Ψα
n〉

|Ψβ
n〉

 (2.97)

where

V αβ
xc [←→n (r)] =

δExc [←→n (r)]

δnβα(r)
(2.98)

←→n is 2 × 2 matrix same as nαβ. It may be noted that for ~m(r) = m(r)ẑ, ←→n is
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diagonal and an approximation to the exchange correlation functional Exc[
←→n ] is well

founded[121]. Therefore, we need to diagonalize nαβ. This can be done by using the

spin-1/2 rotation matrices U(r)[121].

∑
αβ

Uiα(r)nβα(r)U+
βj(r) = δijni(r) (2.99)

ni(r) is the eigen values that depends on the position r[120]. The exchange-correlation

potential can be written as

V αβ
xc (r) =

1

2

[ δExc
δn1(r)

+
δExc
δn2(r)

]
δαβ +

1

2

[ δExc
δn1(r)

− δExc
δn2(r)

]
(U+(r)σzU(r))αβ (2.100)

Equivalently, using[121]

n↑(r) =
1

2
[nTr(r) + |m(r)|]

n↓(r) =
1

2
[nTr(r)− |m(r)|] (2.101)

ˆm(r) =
m(r)

|m(r)|

the exchange-correlation potential can be approximated as[121]

V αβ
xc (r) =

1

2

[ δExc
δn↑(r)

+
δExc
δn↓(r)

]
δαβ +

1

2

[ δExc
δn↑(r)

− δExc
δn↓(r)

] ˆm(r) · ~σαβ

Exc =

∫
nTr(r)εxc[n↑(r), n↓(r)]d

3r
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In collinear case, there is existence of a common magnetization axis for all the atoms

and spin-1/2 rotation matrices are independent on the position r[120]. In such cases,

all the observables including the energy are functional of the density and the mag-

nitude of magnetization |m(r)| instead of the magnetization vector ~m(r)[120]. The

spin-up and spin-down spin densities can be obtained using the spin-up and spin-down

orbitals using[120]

n↑(r) =

N↑e∑
i=1

|φ↑i (r)|2 (2.102)

n↓(r) =

N↓e∑
i=1

|φ↓i (r)|2 (2.103)

The Kohn-Sham equations for collinear case are[120]

[
− 1

2
∇2 + V KS,σ(r)

]
φσi (r) = εσi φ

σ
i (r) (2.104)

where, σ = ↑ or ↓ with the effective potential given by[120]

V KS,σ(r) =

∫
n(r′)

|r− r′|
d3r′ + V σ

ext(r) + V σ
xc(r)

It is worth noting that the external potential contains a field terms -(±µBB) in

the presence of the magnetic field; the negative sign in front indicates that spin-up

electrons (majority spin carriers) are energetically favorable than spin-down electrons
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(minority spin carriers)[120]. The exchange-correlation potential can be expressed as

V σ
xc(r) =

δExc[n
↑(r), n↓(r)]

δnσ(r)

The total density can be written as[120]

n(r) = n↑(r) + n↓(r) (2.105)

The magnetization density is[120]

m(r) = n↑(r)− n↓(r) (2.106)

The local magnetic moment M for collinear case is obtained by the integration of the

magnetization density over volume Ω[120]

M =

∫
Ω

m(r)d3r (2.107)

It may be noted that the collinear magnetic ordering may be ferromagnetic, antifer-

romagnetic, and ferrimagnetic states.
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2.13 Projector Augmented Wave Method

In augmented-wave methods, we split the electronic wave function into two parts

by defining a cut-off radius rc around the atom. Below the sphere defined by the

cut-off radius rc, the wave function is represented by the partial wave expansion.

Outside the sphere, the wave function is expressed as a linear combination of the

functions (like plane waves) in a basis set. The boundary condition then demands

that these wave functions and their derivatives must match at the boundary rc[122].

PAW method uses the idea of Linear-Augmented-plane-wave (LAPW) method and

Vanderbilt Ultrasoft pseudopotential (USSP) method. It was proposed by Blöch[122].

In the PAW method, there exists a linear transformation[118, 122, 123]

τ = 1 +
∑
i

(|φi〉 − |φ̃i〉)〈p̃i| (2.108)

that allows us to obtain the all-electron (AE) wave function |ψn〉 from the pseudo

(PS) wave function |ψ̃n〉 using[118, 122, 123]

|ψn〉 = |ψ̃n〉+
∑
i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃〉 (2.109)

In Equations 2.108 and 2.109, i represents the atomic sites, |φi〉 and |φ̃i〉 represents the

all-electron (AE) and pseudo(PS) partial waves; the all-electron (AE) partial waves
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|φi〉 are the solutions of the radial part of the SWE. Outside rc, |φi〉 = |φ̃i〉. Within rc,

|φ̃i〉 is matched onto |φi〉. The pseudo wave function |ψ̃n〉 are expanded as the linear

combination of the plane waves in reciprocal space. p̃i are the projector function that

satisfies the orthonormality condition 〈p̃i|φj〉 = δij.

The PS operator form of the quasi local operators like kinetic energy within PAW

formalism is[122]

Ã = τ †Aτ

= A+
∑
ij

|p̃i〉(〈φi|A|φj〉 − 〈φ̃i|A|φ̃j〉)〈p̃j|
(2.110)

If the operator is non-local, we have to add ∆A to the Equation 2.110[122], where

∆A =
∑
i

|p̃i〉(〈φi| − 〈φ̃i|)A
(

1−
∑
j

|φ̃i〉〈p̃j|
)

+ (1− |p̃j〉〈φ̃j|)A(|φi〉 − |φ̃i〉)〈p̃i|

(2.111)

2.14 Spin-Orbit Coupling in PAW Method

The spin-orbit coupling (SOC) is the interaction between the spin motion (represented

by the Pauli matrices ~σ) of an electron with its orbital motion (represented by the

orbital angular momentum ~L). The effect of the spin-orbit interaction is to add an
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additional interaction term proportional to ~σ ·~L to the non-relativistic Hamiltonian as

discussed before. Here, we will discuss the SOC implementation in the PAW method.

As SOC is a relativistic effect, it is stronger closer to the nucleus (within PAW sphere)

and is negligible away from the nucleus (exterior to the PAW sphere). This means

there is the cancellation of the first and third term in Equation 2.110[123]. Therefore,

the Hamiltonian (in the PAW formalism) that incorporates the effects of SOC can be

expressed as[123]

H̃SO =
∑
ij

|pi〉〈φi|HSO|φj〉〈pj| (2.112)

where

Hαβ
SO =

~2

(2mec)2

K(r)

r

dV (r)

dr
~σαβ · ~L (2.113)

Here,

K(r) =

(
1− V (r)

2mec2

)−2

(2.114)

In Equation 2.113, ~σαβ · ~L represents the interaction between electron orbital motion

with its spin motion as said before. V(r), in Equation 2.113, is the effective AE

potential within the PAW sphere.

Using, φi(r) = Ri(|r|)Ylimi
(r̂), in Equation 2.113, we get[123]

H̃αβ
SO =

~2

(2mec)2

∑
ij

|p̃i〉Rij~σαβ · ~Lij〈p̃j| (2.115)
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Ylimi
in Equation 2.113 are the spherical harmonics. In Equation 2.113,

Rij = 4π

∫ rc

0

Ri(r)
K(r)

r

dV (r)

dr
Rj(r)d

3r

~Lij = 〈Ylimi
|~L|Yljmj

〉
(2.116)

We can obtain the effect of the H̃αβ
SO on the PS orbitals using[123]

|ψ̃αn〉 =
∑
αβ

H̃αβ
SO|ψ̃

β
n〉 (2.117)

In Equation 2.117, α and β represent the spin-up and spin-down components of the

spinor[123].
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Chapter 3

Quantum Transport in a Nanoscale

Junction

In this chapter, I will discuss the formalism of the charge and spin transport theory

that has been used to calculate the transmission function and current in this thesis.

Since the system under study is a one-dimensional system with a length scale of the

order of a few nanometers, the quantum confinement effects are dominant leading to

the discretization of energy levels. Therefore, the classical transport theory is inad-

equate to describe the transport phenomena in our system, suggesting the necessity

to include the quantum nature of the electron in our theory to study its transport

properties[2, 124, 125]. Let’s begin this chapter by discussing the characteristics

length scales that enter the picture when studying physics at a nanoscale level.
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3.1 Fundamental Length Scales

In this thesis, we want to study electron transport in a nanoscale junction. Being

Fermions, these electrons obey Pauli’s exclusion principle. At T=0K, electrons occupy

the states up to a Fermi level (characterized by Fermi energy EF , Fermi wave vector

kF , and Fermi velocity vF ) so that all the states below it are filled and above it are

empty. It may be noted that only the electrons that are in the neighborhood of EF

make a significant contribution to the transport in solids[126]. This also implies that

the electrons with the characteristics wavelength of the order of Fermi wavelength λF

are of physical importance when studying the electron transport at a nanoscale level.

The Fermi wavelength of a two-dimensional electron gas can be written in terms of

its Fermi wave vector (kF ) and electron density (ns) as[124, 125, 126]

λF =
2π

kF

=
√

2π/ns

(3.1)

The quantum effects are dominant if electronic vibrations in scattering potentials

arising due to disorder or lattice vibrations (phonon induced scattering of electrons)

in solids are of the same order as that of the Fermi wavelength (λF )[126]. The

scattering of an electron in scattering potentials may be elastic or inelastic. In an

elastic scattering, both the energy and phase of an electron is conserved. For elastic
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scattering processes, we can introduce a length scale called elastic mean free path (lm)

which is defined as the average distance covered by an electron during two consecutive

elastic scatterings. It can be expressed in terms of Fermi velocity (vF ) and momentum

relaxation time (τm) as[124, 125, 126]

lm = vF τm (3.2)

If the channel length (lN) and elastic mean free path (lm) obey the condition lN < lm,

electrons move freely without being scattered. In this case, the electron transport

becomes ballistic. On the other hand, if lN > lm, the charge carriers are scattered

during transport and the transport becomes diffusive. In the second type of scattering

process, also called inelastic scattering, the energy is not conserved. In this case,

the phase of an electronic wave function is also not conserved. Such dephasing of an

electronic wave function (accompanied by the energy change) when an electron comes

across an inelastic scattering center can be quantified by a length scale called phase

coherence length lφ and is defined as the distance traveled by an electron between

two consecutive inelastic scattering processes. Mathematically, it is given by the

relation[124, 125, 126]

lφ = vF τφ (3.3)
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In Equation 3.3, vF and τφ are the Fermi velocity and the phase relaxation time.

The knowledge of the phase coherence length lφ determines the nature of trans-

port through the nanoscale junction. If lN < lφ, the quantum interference effects

come into existence and electrons are transported coherently through the nanoscale

junction[124, 125, 126]. On the other hand, if lN > lφ, no quantum interference effects

occur within the device[124, 125, 126]. Any fluctuations in the potential can cause the

phase of an electronic wave function to relax; at a low temperature, such fluctuations

in potential occur due to electron-electron interactions in solids.

Here, we are interested in studying the spin transport phenomena in a nanoscale

device. The length scale that enters into the picture when studying spin transport

phenomena is the spin diffusion length. It is defined as the distance over which a spin

carrier retains the memory of its initial spin orientation intact during its transport

through the channel. It is given by[126]

lsd =
√
Dτσ (3.4)

D and τσ, in Equation 3.4, are the diffusion constant and spin relaxation time; σ

corresponds to spin-up or spin-down electrons. The spin diffusion length is determined

by the strength of the spin-orbit and hyperfine interactions in materials and is usually

larger in materials with a small atomic number[47]. For carbon nanotubes, lsd ∼130

nm[127].
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3.2 Modeling of a Nanoscale Device

The schematic of a prototypical nanowire junction is presented in Figure 3.1. It con-

sists up of a finite segment of a one-dimensional nanowire placed in between two semi-

infinite electrodes. The electrons are free to move in the x-direction (the nanowire

axis) and confined in transverse directions (y- and z-direction), suggesting the dis-

cretization of energy levels of these electrons in the nanowire. When a nanowire

with such discrete energy levels is sandwiched between two electrodes that have dif-

ferent values of the chemical potential, electrons will flow from the electrode with

higher chemical potential (called source) to the electrode with lower chemical poten-

tial (called drain); the pathway for such flow is provided by the nanowire channel.

Such motion of the electrons from the source to the drain will give rise to current.

Figure 3.1: A schematic showing a two terminal nanowire junction; the
nanowire together with the leads form an active scattering region.

Here, we make the following two assumptions: (a) the current through the nanowire
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junction is constant in time (b) the energy levels in the nanowire channel are sta-

tionary. To function as a device, the nanowire and the semi-infinite electrodes must

exchange electrons and energy between them. The nanowire together with the semi-

infinite electrodes forms an open system. For modeling purposes, we partition the

open junction into three parts: (a) the spacer (channel) that includes nanowire of a

finite length (b) the lead that contains a finite number of the metal atoms and (c)

the unperturbed electrode part that retains the bulk nature of the electrode; this

part acts as a source of electrons on one side and sink on the other side when the

nanowire junction is in a non-equilibrium situation. The rationale behind taking a

finite number of atoms in the lead is because it makes calculations of the coupling

matrices between the lead-nanowire junction possible in computers. These leads are

strongly coupled to the spacer/channel and together they form an active scattering

region. The transport of carriers in a nanoscale junction is a non-equilibrium statis-

tical phenomenon that can be achieved by the application of an electric field. Under

this situation, the chemical potential of the left and the right electrodes are different

and are given by

µL,R = EF ∓ VL,R (3.5)

In Equation 3.5, EF and VL,R are the Fermi energy and voltage drop at the elec-

trodes. In our calculations, we have determined these voltages self-consistently using

a real space orbital-based DFT as implemented in Gaussian[128]. For this, we have

calculated the average potentials of all the atoms at the left and right leads separately
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for each value of the applied electric field. From these average potentials, we have

subtracted the average potential at zero bias. Then the source to drain voltage VSD

at each field is obtained by calculating the difference between VL and VR. It may

be noted that at equilibrium, the potential at the left and the right electrode must

satisfy the condition: VL = VR = 0. If we are studying the gating effect on this

nanowire junction, we do it by the application of an electric field (also called gate

field) perpendicular to the nanowire axis.

3.3 Landauer Formalism to Study Electron Trans-

port

Let’s now discuss the Landauer formalism[129, 130] of electron transport that ex-

presses the total current through the nanowire junction in terms of the transmission

function. This formalism is valid in the regime of coherent electron transport that

happens when the dimension of the device is less than the phase coherence length of

the electron i.e. if ld ≤ Lφ[124, 125, 129, 130]. To derive an expression of the current,

we consider a nanoscale junction as in Figure 3.1 and assume identical leads on either

side of the scattering region. Since electrons are fermions, their distributions at the
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left and the right electrodes is given by Fermi-Dirac distribution as[124, 125]

fL,R(E) =
1

e(E−µL,R)/kBT + 1
(3.6)

In Equation 3.6, µL is the chemical potential of the left electrode; µR is the chemical

potential for the right electrode. These chemical potentials are related to the bias

voltage V by the mathematical relation[124, 125]

V =
µL − µR

e
(3.7)

where e is the charge of an electron. In the junction shown in Figure 3.1, the electrons

move freely in the x-direction, whereas they are confined in y and z directions. Such

quantum confinement of electrons in the nanowire junction leads to the discretization

of energy levels as discussed earlier. The Hamiltonian for the active scattering region

is given by[124, 125]

HS = − ~2

2m
∇2 + V (r) (3.8)

In the limit of x→ ±∞ (asymptotic condition), we can approximate the Hamiltonian

in Equation 3.8 as[124, 125]

lim
x→−∞

HS = − ~2

2m
∇2 + VL(r) ≡ HL (3.9)

lim
x→−∞

HS =
−~2

2m
∇2 + VR(r) ≡ HR (3.10)
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where HL and HR are the Hamiltonian for the left and right electrode respectively.

Let’s first consider the SWE for the left electrode (with Hamiltonian HL)[124, 125]

[
− ~2

2m
∇2 + VL(r)

]
ψnk(r) = Eψnk(r) (3.11)

The general solution of the SWE in Equation 3.11 can be written as the product of

the longitudinal and transverse components as[124, 125]

ψnk(r) =

√
1

Lx
un(r⊥)eikx, −∞ < k < +∞ (3.12)

The energy eigen values are given by[124, 125]

En(k) = εn +
~2k2

2m
(3.13)

Since the eigen states in Equation 3.12 has a component of the form (eikx), an electron

has a non-zero probability density throughout the space. It is possible that the eigen

value problem in Equation 3.11 has a decaying solution, but their contribution to

the probability density is negligible[124, 125]. It may be noted that the solution of

the SWE for the right electrode would be similar. Let’s now write the SWE for the

scattering region with Hamiltonian HS as[124, 125]

[
− ~2

2m
∇2 + V (r)

]
φnk(r) = Eφnk(r) (3.14)
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The eigen states φnk(r) can be obtained using the asymptotic boundary condition

that the solution of Equation 3.14 must match the eigen function of the Hamiltonian

HR and HL as x→ ±∞ i.e.[124, 125]

lim
x→∓∞

φnk(r) = ψnkL,R(r) (3.15)

In the active scattering region, there are the travelling waves coming from both left

and right sides of the junction. Let’s assume an electron with energy Ei and initial

state φiki(r) at x → −∞ (left side of the active scattering region) is coming toward

the active scattering region. Since the potential is complex in nature, it is not possible

to tell exactly the state of an electron when it reaches the active scattering region.

However, when this electron reaches deep in the right electrode (x→ +∞), its eigen

state can be expressed as the linear combination of the eigen states of the Hamiltonian

HR at the right electrode and is given by[124, 125]

φ+
iki(r)→

NR∑
f=1

tifψfkf (r), x→ +∞ (3.16)

tif and NR, in Equation 3.16, are the complex coefficients and the number of eigen

channels in the right lead for a given energy; the plus (+) sign in the eigen function φ+
iki

is indicative of the fact that it stems from the past wave function ψiki. It may be noted

that the decaying wave solution of HS has negligible effect in the region x → +∞ .
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In the deep left (x→ −∞), the eigen state of an electron is the superposition of the

incident wave and back-scattered states from the junction and is given by[124, 125]

φ+
iki(r)→ ψiki(r) +

NL∑
f=1

rifψfkf (r), x→ −∞ (3.17)

The average current I(Ei) corresponding to the state with energy Ei can be obtained

by the integration of the current density along the y-z plane as

Ii(Ei) = e < φ+
iki|ĵ|φ

+
iki >

=
e~

2mi

∫ +∞

−∞
dy

∫ +∞

−∞
dz

[
[φ+
iki(r)]

∗∂φ
+
iki(r)

∂x
− φ+

iki(r)
∂[φ+

iki(r)]
∗

∂x

]
=
e~ki
mLx

=
evi(ki)

Lx

(3.18)

Deep inside the left lead (x→ −∞), the current can be expressed as[124, 125]

IL(Ei) = Ii(Ei)

(
1−

NL∑
f=1

Rif (Ei)

)
(3.19)

NL and Rif , in Equation 3.19, are the number of channels in the left electrode and

the reflection probability; the reflection probability is given by[124, 125]

Rif (Ei) ≡ |rif |2
If (Ei)

Ii(Ei)
(3.20)

Ii(Ei) is the current due to ψiki .
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Deep inside the right lead (x→ +∞), the current is[124, 125]

IR(Ei) = Ii(Ei)

NR∑
f=1

Tif (Ei) (3.21)

where NL and Tif , in Equation 3.21, are the number of channels in the right electrode

and the transmission probability respectively. The transmission probability is given

by

Tif (Ei) ≡ |tif |2
If (Ei)

Ii(Ei)
(3.22)

We make an assumption that the current in the deep left and deep right electrodes

must be identical (steady-state condition). In the non-equilibrium condition obtained

by the application of the bias V, the distribution of the electrons at the right electrode

will be different from their distribution at the left electrode, implying that the chem-

ical potential for the left and the right electrode will also be different. The motion

of these electrons through eigen channels will give rise to currents. The total current

can be expressed as the sum of all currents due to all available eigen channels (at all

possible energies) assumed to be independent of each other[124, 125].

I = 2e

∫
dE

[ NL∑
i=1

NR∑
f=1

fL(E)Di(Ei)Ii(Ei)Tif (Ei)−
NR∑
i=1

NL∑
f=1

fR(E)Di(Ei)Ii(Ei)Tif (Ei)

]
(3.23)

The factor 2 in Equation 3.23 is due to the two possible spin directions; fL,R(E)

gives the distribution of the electrons at the left and the right electrodes as discussed

78



earlier. If the lead is a one-dimensional material, its density of states (DOS) can be

expressed as

Di(Ei) =
Lx
2π

dki
dEi

=
Lx

2π~vi

(3.24)

The transmission coefficient (TRL(E)) from right to left can be expressed as the

sum of transmission probabilities through all the eigen channels at the right and

left electrodes[124, 125].

TRL(E) =

NR∑
i=1

NL∑
f=1

Tif (E), R→ L (3.25)

Similarly, the transmission coefficient (TLR(E)) from left to right can be expressed as

the sum of the transmission probabilities through all the eigen channels at the left

and right electrodes i.e.[124, 125]

TLR(E) =

NL∑
i=1

NR∑
f=1

Tif (E), L→ R (3.26)

The conservation of particle flux during carrier transport demands that the transmis-

sion coefficients in Equations 3.25 and 3.26 must be equal i.e.

TLR(E) = TRL(E) = T (E) (3.27)
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Using Equations 3.23 and 3.27, the total current through a nanoscale junction can be

expressed as[124, 125]

I =
e

π~

∫
dE[fL(E)− fR(E)]T (E)

=
2e

h

∫
dE[fL(E)− fR(E)]T (E)

(3.28)

3.4 Single Particle Green’s Function Formalism

In the last section, we showed that the total current for ballistic transport through a

nanoscale junction can be expressed in terms of the transmission function T (E) using

Landauer formalism of electron transport. Let’s go beyond that and provide a way

to calculate T (E) using a single particle many-body Green’s function approach in

real space. Let L and R denote the left and right semi-infinite electrodes; S denotes

the sample or central region. The semi-infinite electrode L is coupled to the central

region S by the coupling potential CLS +C†LS[125]. Similarly, R is coupled to S by the

potential CRS + C†RS[125]. It may be noted that the two semi-infinite electrodes are

far apart, suggesting that there is no direct coupling between them. Let’s express the

total Hamiltonian as the sum of Hamiltonians of the isolated semi-infinite electrodes

(HL and HR), isolated sample or central region (HS), and the coupling potentials
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(CLS + C†LS and CSR + C†SR)[124, 125].

H = HL +HR +HS + CLS + C†LS + CSR + C†SR

= HL +HR +HS + CLS + CSL + CSR + CRS

(3.29)

It may be noted that the Green’s function associated with the isolated Hamiltonians

are assumed to be known[125]. Here, our motive is to find the Green’s function of the

central region S in the presence of the coupling with the semi-infinite electrodes[125].

For this, we begin by writing the SWE for the nanoscale device in matrix form

as[124, 125]


HL CLS 0

C†LS HS C†SR

0 CSR HR




|ΦL〉

|ΦS〉

|ΦR〉

 = E


|ΦL〉

|ΦS〉

|ΦR〉

 (3.30)

Here |ΦL〉 , |ΦS〉, and |ΦR〉 are the single particle eigen functions of their respective

Hamiltonians HL, HR, and HS. E is the injection energy of the tunneling electrons.

From Equation 3.30, we get three equations of the form[124, 125]

HL|ΦL〉+ CLS|ΦS〉 = E|ΦL〉 (3.31)

C†LS|ΦL〉+HS|ΦS〉+ C†SR|ΦR〉 = E|ΦS〉 (3.32)

CSR|ΦS〉+HR|ΦR〉 = E|ΦR〉 (3.33)
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Using Equations 3.31, 3.32, and 3.33, we arrive at the following two equations[124,

125]

|ΦL〉 = GLCLS|ΦS〉

|ΦR〉 = GRCSR|ΦS〉
(3.34)

where GL,R is the Green’s function of the left and the right electrodes and are given

by

GL,R =
1

E −HL,R

(3.35)

Using the expression of the Green’s function in Equation 3.32, we get

C†LSGLCLS|ΦS〉+HS|ΦS〉+ C†SRGRCSR|ΦS〉 = E|ΦS〉 (3.36)

(E −HS − ΣL − ΣR)|ΦS〉 = 0 (3.37)

Equation 3.37 suggests that we can define a Green’s function as[124, 125]

G(E) =
1

(E −HS − ΣL − ΣR)
(3.38)

This is a retarded Green’s function and is the response function to an impulse exci-

tation at t =0. In Equation 3.37, ΣL = C†LSGLCLS and ΣR = C†SRGRCSR are the

self-energy functions for the left and the right electrodes respectively. The physical

82



significance of these functions is that they allow the exchange of energy and elec-

trons between the central scattering region and the semi-infinite electrodes. These

non-Hermitian matrices broaden the electronic energy levels in the central scattering

region; the imaginary parts of these matrices give broadening or the inverse life-

time of energy levels, suggesting the electrons have a finite lifetime in this region

before they vanish into the electrodes. This means using a single-particle Green’s

function approach, we reduced the intricate problem of a nanoscale device that in-

cludes the semi-infinite electrodes and the central scattering region to a problem

of active scattering region, which is open to both electrodes through the self-energy

functions[124, 125]. The broadening functions ΓL,R can be calculated from self-energy

functions using[124, 125]

ΓL,R = i[ΣL,R − Σ†L,R] (3.39)

Consequently, the transmission function is defined, in terms of the broadening func-

tions of the left electrode, right electrode, and the Green’s function, as the sum of

transmission probabilities over all eigen channels available in the central scattering

region[124, 125] .

T (E) = Tr[ΓLGΓRG
†] (3.40)

Physically, the transmission function in Equation 3.40 gives the probability of trans-

mission of electrons from the source to the drain.

Next, we extend the theory to a real system under non-equilibrium condition. As
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stated earlier, such non-equilibrium condition can be achieved by perturbing the

system with an electric field ~ε along the axis of the nanowire. The Hamiltonian of

the active scattering region in presence of such field can be written as the sum of

Hamiltonians without electric field (H(0)) and the perturbation term (~ε ·
∑

i
~r(i))

as[124, 125]

H(E, ε) = H(0) + ~ε ·
∑
i

~r(i) (3.41)

r(i) represents the position of the ith electron. In this thesis, we have calculated

the single electron energy levels in the active scattering region self-consistently using

the finite cluster real space orbital based DFT as implemented in Gaussian[128] and

then extracted the Hamiltonian (HM(E, ε)) of the nanowire segment only from the

Hamiltonian H(E, ε) of active scattering region. Subsequently, we have obtained

the bias-dependent single particle Green’s function of the molecular part (nanowire

segment) from the Hamiltonian HM(E, ε) using

GM(E, ε) = [E × S −HM(ε)− ΣL(ε)− ΣR(ε)]−1 (3.42)

In Equation 3.42, ΣL and ΣR are the bias-dependent self-energy functions for the left

and the right electrodes; E and S are the injection energy of the tunneling electron

and overlap matrix whose dimension is same as HM . The self-energy functions ΣL,R

can be obtained from the bias-dependent nanowire-lead coupling matrices CL,R and
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the Green’s function Gp for the leads using[124, 125]

ΣL,R = C†L,RGpCL,R (3.43)

Since the leads on either side of the nanowire in our calculations are identical, Gp

is identical for both leads in our calculations. Now one may ask: how do we obtain

the Green’s function for the leads? It is important to note that in the wideband

approximation, the Green’s function Gp can be obtained from the DOS per electron

(η(E)) using the mathematical relation[131, 132]

Gp(E) = −iπη(E)× In (3.44)

In this thesis, the DOS per electron (η(E)) has been obtained from the bulk DOS of

the material of the lead (Au) using a periodic DFT; the energy grid spacing of 0.001

eV is considered for calculating DOS. Such periodic calculations to obtain DOS also

justify that electrodes in our transport calculations are semi-infinite. In, in Equation

3.44, is an identity matrix with dimension n×n; n is the total number of Gaussian

basis functions used to represent Au atoms. In our calculations, the Fermi energy of

the bulk Au electrode has been matched to the Fermi energy of the active scattering

region so that the device is under equilibrium. The equilibrium Fermi energy of the

nanowire-lead junction (active scattering region) is its Highest Occupied Molecular

Orbital (HOMO). In the spin-polarized cases (to be discussed in the next section),
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the HOMO for the α and β electrons are different; the highest occupied energy level

among the α and β electrons is the HOMO of the system.

3.5 Spin Transport in a Nanoscale Junction

In previous sections, we derived relations to study the charge transport through the

nanoscale junction. But, an electron, in addition to its charge, possesses an additional

degree of freedom called spins. Therefore, in this section, we extend our theory to

incorporate spin degrees of freedom and provide a way to calculate the spin-polarized

Green’s function that can then be used to obtain the spin-polarized transmission and

current. To study the spin transport phenomena in a nanoscale junction, we need to

make the device magnetic. There are two ways to do this. The first way is to place the

magnetic channel between the two non-magnetic electrodes (eg. Au). The channel,

if not magnetic, can be made magnetic by introducing a spin-functionality into the

material via doping. If the channel becomes ferromagnetic after doping, the device

can act as a spin filter. The second way is to place a non-magnetic channel between

the two magnetic electrodes (Ni, Co, Fe). Such a device is called a spin valve.

In this thesis, we have doped magnetic impurity in the non-magnetic Ge-core/Si-shell

nanowire and placed a finite segment of this material in between the non-magnetic

gold electrodes to form a nanoscale junction. Since the nanowire segment is magnetic
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and the electrodes are non-magnetic in our prototypical device, the Hamiltonian and

the self-energy functions are spin-polarized; the Green’s function for the leads is spin-

unpolarized. The spin-dependent Green’s function for the molecular part (nanowire

segment) is given by[133]

Gσ
M(E, ε) = [E × S −Hσ

M(ε)− Σσ
L(ε)− Σσ

R(ε)]−1 (3.45)

σ in Equation represents the spin states in ±z directions. The self-energy function

for the spin polarized cases can obtained using[133]

Σσ
L,R = Cσ†

L,RG
σ
pC

σ
L,R (3.46)

where, the Green’s function of the lead for the spin polarized cases is obtained

using[133]

Gσ
p = −iπησ × In (3.47)

In Equations 3.47, n is the total number of Gaussian basis functions for Au atoms in

the lead, In is an identity matrix, and ησ is the spin-polarized bulk DOS per electron

for the spin up or spin down electrons. For non-magnetic leads (Au), the spin-up

and spin-down DOS are identical. The spin-polarized current in the open junction is

calculated using[133]

Iσ =
e

~

∫ µ2

µ1

T σ(E, V )[f(E, µ2)− f(E, µ1)]dE (3.48)
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σ refers to α or β electrons, µ1 and µ1 are the electrochemical potentials of the

two contacts, which are determined self-consistently. T σ(E, V ) is the multi-channel

transmission function that represents the sum of the transmission probabilities over all

the channels; f is the Fermi distribution function, and V is the applied potential. The

total current was calculated as I = Iα + Iβ. It may be noted that under equilibrium

conditions, the Fermi energy of the bulk Au electrode (obtained using the k-space

approach) is matched to the Fermi energy (HOMO energy obtained using the real-

space approach) of the active scattering region in our calculations. The equilibrium

Fermi energy of the nanowire-lead junction (active scattering region) is its Highest

Occupied Molecular Orbital (HOMO). In the spin-polarized cases (to be discussed

in the next section), the HOMO for the α and β electrons are different; the highest

occupied energy level among the α and β electrons is the HOMO of the system. The

transmission function is given by T σ(E) = Tr[ΓLG
σΓRG

σ†], where ΓL,R = i[Σσ
L,R −

Σσ†
L,R] is the broadening term that gives the inverse life time of an energy level.
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Chapter 4

Mn-doped Ge/Si core/shell

nanowire

4.1 Introduction

Since their inception[18], core-shell semiconductor nanowires, built out of group

IV elements such as Ge and Si are the subject of immense interest[19, 37, 38,

39, 40, 41, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144]. This level of

interest in these nanostructures can be attributed to their multi-functional appli-

cations ranging from next-generation electronics[37, 40, 145] to biosensors[146] to

photovoltaics[147, 148] to quantum computing devices[38, 39, 143]. For example,
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the Ge-core/Si-shell nanowires, which are the materials of choice due to its compat-

ibility with the current Si-based technology, have been successfully synthesized in

high yield[18, 19, 37] and reported to exhibit ballistic transport at a low bias with

scattering mean free path of ∼500 nm[19, 37]. Converting these low dimensional semi-

conductors to spin active structures would offer an additional opportunity for using

them in spin-based electronics of the future[44, 45, 46, 47, 48]. Intentional adding of

a small number of magnetic impurities[149, 150] would be a viable path to implement

spin functionality into such a system without destroying completely its semiconduct-

ing property. In fact, there have been numerous studies of Mn dopants in Si and

Ge nanowires[49, 50, 51, 52, 53, 54, 55, 56], nano-columns[151], and nanotubes[152].

Depending upon the concentration of Mn, they have been reported to exhibit ferro-

magnetism at room temperature.

However, unlike these homogeneous nanowires, where the stabilization of the ferro-

magnetic phase at room temperature is a major challenge due to the substrate effect

and often requires alloying, doping Mn into the core region of a Ge-Si core-shell het-

erostructure nanowire would offer significant advantages. Due to the valence band

offset between the Ge and Si in a core-shell nanowire, spin carriers in Mn-doped core-

shell structure can be guided through the spin active Ge core of the wires resulting

in complete suppression of spin lifetime degradation due to scattering and recom-

bination with the surface states. Furthermore, due to the confinement of carriers

to the core region, we could limit the momentum dependent randomization of spins
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(spin dephasing) during spin transport–an important prerequisite in spintronics [45].

Mn-doped core-shell channel can also alleviate the conductivity mismatch challenge

associated with the Schottky junction at the semiconductor nanowire/metal interface.

Despite these advantages, until now, no efforts are made in understanding the role of

Mn dopant on carrier transport in a Ge-core/Si-shell nanowire junction.

In this work, we used a predictive first-principles density functional theory (DFT) to

investigate the electronic structure and magnetic properties of Mn-doped Ge-core/Si-

shell nanowire heterostructures. We limit ourselves to a low concentration of Mn

dopants in the Ge core part of the core-shell structure due to its low solubility in

semiconductors[153]. Our calculations reveal that the addition of Mn dopants trans-

forms the semiconducting Ge-Si core-shell nanowire to a stable half-metallic ferromag-

net. The energy band diagram yields a semiconducting behavior for one spin direction

while the metallic behavior for the other. Inclusion of spin-orbit (SO) interaction is

found to have minimal effect on the energy band structure; a maximum SO split-

ting of ∼24 meV is obtained at the crossing points of majority and minority bands.

Subsequently, a quantum transport approach[133] is used to calculate spin-polarized

transmission in a prototypical Mn-doped Ge-core/Si-shell nanowire junction to assess

its usage in a spin-filtering device. A spin-filter efficiency of 90.4% is found, further

confirming the spin selective property of this material.

91



4.2 Computational Method

We considered a Ge-core/Si-shell nanowire along the 〈110〉 direction as it has been

reported to be the preferred growth direction for a diameter of less than 20 nm[37].

Since Mn prefers the substitutional site in Ge[52, 154, 155, 156], we replaced one of

the Ge in the core region of the unit cell by a Mn atom. In order to avoid the unde-

sirable scattering of the carriers during transport, the surface dangling bonds in the

Mn-doped Ge-core/Si-shell nanowire are passivated by hydrogen atoms. A supercell is

constructed by placing a unit cell comprised of 47 Ge, 80 Si, 48 H, and 1 Mn in a rect-

angular grid with the nanowire wall to wall distance (along x and y-axis) greater than

11 Å between the cells ensuring negligible interaction between the nanowire and its

replica. The infinite nanowire is built by stacking up the supercell in the z-direction;

the percentage of Mn atom in the 128-atoms (excluding hydrogen atoms) unit cell is

0.78%. Subsequently, the nanowire geometry is optimized and the electronic struc-

ture and magnetic properties are calculated using the plane-wave basis function and

the spin-polarized density functional method as implemented in the Vienna Ab ini-

tio Simulation Package (VASP)[157, 158]. The generalized gradient approximation

(GGA) in the form of the Perdew-Burke-Ernzerhof (PBE) functional[105] is used

to approximate the exchange-correlation potential. The Projector Augmented Wave

(PAW) pseudopotential is used to model the valence-core interactions. During the

geometry optimization, structural relaxations that include the strain effect due to Mn
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dopant and lattice mismatch between Si and Ge are carried out without symmetry

constraint until the residual force on each atom reduces to 0.01 eV/ Å; the conver-

gence criterion for total energy is set at 10−7 eV. The optimized unit cell structures

of the Mn-doped Ge-core/Si-shell nanowire for different doping positions in the core

(I, II, and III) and shell (IV) have been presented in Figure 4.1. The Monkhorst-

Figure 4.1: The top view of the optimized unit cell structures of Mn-doped
Ge-core/Si-shell nanowire along the 〈110〉 direction for different doping sites
(I, II, III, and IV). The core diameter of the nanowire is 11.7 Å; the unsatu-
rated surface states are passivated by H-atoms. (Reproduced from Nanoscale
Adv. 2020, 2, 1843-1849 with permission from Royal Society of Chemistry.)

Pack (MP) k-point mesh of 1×1×7 and the kinetic energy cut-off value of 400 eV are

used for these calculations. To correct the self-interaction error associated with the

use of PBE functional, we have also used a hybrid functional (HSE06)[107, 159] that
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blends part of the Hartree-Fock exchange with the exchange and correlation poten-

tial from the PBE functional. A non-collinear spin-polarized calculation that includes

spin-orbit interaction is also performed to measure the spin-orbit coupling induced

splitting of energy bands. To examine the spin-filtering property of this material in a

device configuration, we have constructed a prototypical Mn-doped Ge-core/Si-shell

nanowire junction; a finite segment of the nanowire is sandwiched between two metal-

lic gold electrodes with the electrode-electrode distance of ∼2.37 nm. To avoid charge

trapping at the lead-nanowire interface, we have passivated the unsaturated dangling

states of the finite nanowire at the interface by H-atoms as done for the surface states.

A real space orbital dependent spin unrestricted DFT approach as implemented in

Gaussian[128] is used to construct the spin-polarized retarded Green’s function (Gσ)

for the open junction[133] by dividing it into two parts: (a) an active scattering part

consisting of the finite nanowire channel and 38 atoms from the gold lead and (b) an

unperturbed gold lead that retains its bulk properties. The inclusion of gold atoms

from the lead during the self-consistent calculation allows us to include explicitly the

charging effects due to coupling with the semi-infinite electrodes. We used a pos-

teriori hybrid B3LYP[128] exchange-correlation functional that partly corrects the

self-interaction error for this calculation. This hybrid functional has been shown to

give a much better description of transmission than pure functional[160]. In addition,

a recent density of states analysis in transition metal compounds[161] has shown that

the B3LYP results compare well with the results obtained from embedded dynamical
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mean-field theory. The convergence thresholds for total energy, root mean square

and maximum density are set at 10−9, 10−8, 10−6 a. u. respectively. An all-electron

6-311g* Gaussian basis function [128] is used for Mn and H. For practical purposes,

the Ge, Si, and Au atoms are represented by LANL2DZ effective core-potential basis

set[128]. Subsequently, the transmission function for the majority and minority spin

carriers is calculated as a function of injection energy using a spin-conserved tunneling

approach[133] that does not take into account of the incoherent spin-flip scattering

effect. The details of our method can be found in Chapter 3 of this thesis and in

previous work[133].

4.3 Results and Discussions

We begin by examining the energy of the Mn-doped Ge-core/Si-shell nanowire when

a Ge or Si atom at various sites in the nanowire is replaced by a Mn atom (Figure

4.1). Our calculations reveal that the energy of the nanowire increases as we dope

Mn away from the center of the core in the radial direction (Figure 4.2(a)). The

energy barrier for Mn in going from the core position I to the shell position IV is

∼1.4 eV, suggesting the core positions are the preferred positions for Mn. The most

energetically stable nanowire structure is illustrated in (Figure 4.1(a)). The total

energy vs. lattice parameter curve (Figure 4.2(b)) is calculated to determine the

equilibrium lattice parameter a of the nanowire. The value of a is found to be 7.92Å
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in the doped nanowire, which is 0.01Å shorter than that in the undoped Ge-Si core-

shell nanowire of a similar dimension.

Figure 4.2: (a) Energy vs. Mn position in the nanowire; I, II, III, IV refer
to the Mn positions.(b) Energy vs. Lattice parameter of the nanowire. The
minimum energy is set to zero value in the energy scale for both (a) and (b).
(Reproduced from Nanoscale Adv. 2020, 2, 1843-1849 with permission from
Royal Society of Chemistry.)

The Mn and the nearest neighbor Ge bond distance (2.42 Å) is found to be 0.04 Å

shorter than the Ge-Ge bond distance (2.46 Å) of the undoped nanowire indicating

a lateral bond strain of ∼1.6% upon substitutional doping of Mn. This is expected

because we replaced the Ge with a larger electron cloud (Z=32) by the smaller Mn

(Z=25). From bond angle analysis, we find the tetrahedral symmetry around Ge is

distorted upon the substitution of Mn atom; the maximum angular deviation of 5.5%

is found at the Mn site.

Next, we comment on our calculated electronic band structure. Upon substitutional

doping of Mn, the strong exchange interaction arising from the unpaired d-electrons
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Figure 4.3: Atom decomposed electronic band structure (PBE) of Mn-
doped Ge-core/Si-shell nanowire in the (a-c) Minority-spin direction (d-f)
Majority-spin direction; the circle represents the contribution of Ge, Si, and
Mn atoms to energy bands. (Reproduced from Nanoscale Adv. 2020, 2,
1843-1849 with permission from Royal Society of Chemistry.)

of Mn splits the spin-degenerate energy bands of Ge-Core/Si-shell nanowire to the
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minority and majority spin bands (shown in Figure 4.3). A half-metallic feature is

clearly noticeable in Figure 4.3. The minority spin electrons (Figures 4.3(a), 4.3(b),

and 4.3(c)) exhibit a semiconducting behavior with an energy gap of 0.64 eV. The

valence band maximum and the conduction band minimum are found at the same

Γ point confirming the direct nature of the bandgap as found for the undoped Ge-

core/Si-shell nanowire. The undoped nanowire of a similar diameter is reported to

have a direct bandgap of 0.89 eV[145, 162]. The majority spin carriers (Figures

4.3(d), 4.3(e), and 4.3(f)), however, show a metallic behavior. Analysis of the atom

decomposed band structure for minority spin direction reveals that the contributions

to valence band at the Γ point mainly come from the Ge atoms. However, in the

case of the conduction band (CB), Mn and Ge contributions are comparable at the

high symmetry Γ point. As we move to the next higher energy band (CB+1), the

contribution of the Mn dominates over Ge at the Γ point. For the majority spin case,

both Ge and Mn contribute to energy bands near the Fermi level. The magnetization

is found to be localized around the Mn atom. The contribution to the magnetization

mainly comes from the d orbital of Mn atoms and is found to be ∼-3.18 µB in the

case of PBE functional. Though relatively small in magnitude (∼0.08 µB), the nearest

neighbor Ge atoms are found to have magnetizations of opposite sign that comes from

their p states. The local magnetic alignments in the vicinity of the Mn atom is shown

in Figure 4.4(a). Similar local antiparallel magnetic alignments have been reported

previously in Mn-doped systems[52, 150]. To understand the strength of exchange
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interaction between the Mn dopants, we double the unit cell size with the same Mn

coverage and recalculated the energy (at zero temperature) for ferromagnetic (FM)

and anti-ferromagnetic (AFM) coupling between the Mn atoms.

Figure 4.4: (a) Schematic showing the local alignment of magnetization of
Mn and nearest Ge atoms in the nanowire. (b) Calculated energy for para-
magnetic (PM), ferromagnetic (FM), and antiferromagnetic (AFM) config-
urations; the energy of the most stable FM state is set to zero. (Reproduced
from Nanoscale Adv. 2020, 2, 1843-1849 with permission from Royal Society
of Chemistry.)

The FM state is found to be lower in energy than the AFM state by 90.2 meV. A sim-

ilar order for exchange-energy is reported in Mn-doped homogeneous nanowires[52].

For practical application at room temperature, however, we need to understand the

thermodynamic stability of these magnetically ordered states. We calculated the

metastable high entropy paramagnetic state (the expected transition point between

FM and AFM state) to estimate the energy barrier (shown in Figure 4.4(b)). The en-

ergy barrier is found to be 1.69 eV, which is much higher than the room temperature

(26 meV), suggesting that the FM ordering found here is stable at room temperature.
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Figure 4.5: Electronic band structure (HSE06) of Mn-doped Ge-core/Si-
shell nanowire: (a) Minority-spin direction (b) Majority-spin direction. (Re-
produced from Nanoscale Adv. 2020, 2, 1843-1849 with permission from
Royal Society of Chemistry.)

To gauge the effect of self-interaction error associated with the use of PBE functional

for the exchange-correlation energy and confirm the half-metallic property of our sys-

tem, we have also performed the band structure calculation using a hybrid functional

(HSE06). It has been reported that the use of HSE06 yields bandgaps closer to exper-

imental values in group IV semiconductors[163]. Our results are presented in Figure

4.5. For the minority spin direction, a comparison of the band diagrams obtained us-

ing PBE functional (Figures 4.3(a), 4.3(b), and 4.3(c)) and HSE06 hybrid functional

(Figure 4.5a) reveals an increase in bandgap from 0.64 eV to 1.47 eV upon correcting
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(partly) the self-interaction error. However, the observed metallic behavior for the

spin majority case (Figure 4.5b) is not affected by the self-interaction correction. The

magnetic moment of the Mn is found to be ∼-3.96 µB, which is higher in magnitude

than that found with the use of PBE functional. The nearest neighbor Ge atoms are

found to have oppositely aligned magnetic moments (∼0.13 µB) as observed for the

PBE functional.

To gain a deeper insight into the origin of observed half-metallic behavior, we also

calculated the spin-polarized atom decomposed and orbital decomposed density of

states (DOS) for Mn-doped nanowire. The results obtained using the PBE functional

are presented in Figures 4.6(a) and 4.6(b). In the minority spin case (Figure 4.6(a)),

the energy gap is noticeable, which further confirms its semiconducting behavior; the

Fermi level lies in the gap. The valence band is clearly dominated by Ge, which

is also observed from the atom decomposed band structure in Figure 4.3. For the

majority spin direction (Figure 4.6(b)), a finite DOS at the Fermi energy confirms its

metallic character. Orbital decomposed DOS reveals that the hybridization of the d

state (with some p contribution) of Mn and the p state of Ge is responsible for the

metallic character, which is also evident from the atom decomposed band structure

(Figure 4.3). The absence of energy states in the spin minority case and finite DOS

in the spin majority case at the Fermi energy indicates 100% spin polarization in the

Mn-doped Ge-core/Si-shell nanowire.
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Figure 4.6: Atom and orbital decomposed density of states (DOS) of the
Mn-doped Ge-core/Si-shell nanowire in the (a) Minority-spin direction (b)
Majority-spin direction. (Reproduced from Nanoscale Adv. 2020, 2, 1843-
1849 with permission from Royal Society of Chemistry.)

To further investigate the effect of spin-orbit interaction on energy bands of Mn-doped

nanowire, we have performed the spin-unconstrained noncollinear DFT calculations

that include the spin-orbit coupling (SOC) effect. Our results reveal that the inclusion

of SOC does not alter the half-metallic property of our system, but as expected, it lifts
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the degeneracies at the crossings points of energy bands for the majority and minority

spin carriers as shown in Figure 4.7. The maximum SO splitting at the band crossing

Figure 4.7: (a) The electronic band structure (PBE) of the Mn-doped Ge-
core/Si-shell nanowire with and without spin–orbit (SO) coupling; MJ and
MI refer to the majority and minority spin directions. (b) Magnified version
of (a) depicting SO splitting at the crossing points of MJ and MI bands.
(Reproduced from Nanoscale Adv. 2020, 2, 1843-1849 with permission from
Royal Society of Chemistry.)

is found to be ∼24 meV (Figure 4.7(b)). However, no measurable shifts in energy

levels in the vicinity of Fermi energy are observed due to spin-orbit coupling, which

suggests that the spin coherence length can be much higher in this material. Thus far,

we have focused only on the energetically most stable structure of Mn-doped nanowire

and its properties. However, the doping or implantation of Mn into the Ge-core/Si-

shell nanowire is a non-equilibrium process. Hence, Mn may occupy other possible
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Figure 4.8: Electronic band structure (PBE) of Mn-doped Ge-core/Si-
shell nanowire in the (a) Minority-spin (b) Majority-spin direction when Mn
atom is doped at site II. (c) and (d) represent the band structure in the
Minority-spin and Majority-spin direction when Mn atom is doped at site
III. (Reproduced from Nanoscale Adv. 2020, 2, 1843-1849 with permission
from Royal Society of Chemistry.)

sites in the core as well as in the core and shell. To examine these possibilities, we have

calculated the electronic band structure for Mn dopant at various substitutional sites

(II and III in Figure 4.1). A half-metallic feature is clearly noticeable at both of these

sites (Figure 4.8). We have also studied the case in which Mn is at the interstitial

site (Figure 4.9(a)). Though the half-metallic behavior is still observed, the minority

spin electrons exhibit a semiconducting behavior with an indirect bandgap of 0.07

eV (Figure 4.9). Compared to site I, there is a significant decrease in bandgap for

the minority spin direction in the case of interstitial doping. Now one may ask: Is
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Figure 4.9: (a) The top view of the optimized Mn-doped Ge-core/Si-shell
nanowire along the 〈110〉 direction (Mn at the interstitial site). The elec-
tronic band structure (PBE) of Mn-doped Ge-core/Si-shell nanowire in the
(b) Minority-spin direction (c) Majority-spin direction when Mn is doped
at the interstitial site; the half-metallic feature is noticeable. (Reproduced
from Nanoscale Adv. 2020, 2, 1843-1849 with permission from Royal Society
of Chemistry.)
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Figure 4.10: The optimized unit cell structure of Mn-doped Ge-core/Si-
shell nanowire when (a) both Mn atoms are doped in the core (b) one Mn
atom is doped in the core and other in the shell. The electronic band struc-
ture in the (c) Minority-spin (d) Majority-spin direction when both Mn
atoms are doped in core; (e) and (f) represent the energy band diagram in
the Minority-spin and Majority-spin direction when one Mn atom is doped
in core and other in the shell. (Reproduced from Nanoscale Adv. 2020, 2,
1843-1849 with permission from Royal Society of Chemistry.)
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the half-metallicity remains intact on increasing the concentration of Mn in the unit

cell? To answer this, we increased the concentration of Mn in the unit cell from 0.78

% to 1.56 %. We will consider two cases: (a) both Mn atoms are doped in the core

(Figure 4.10(a)) (b) one Mn atoms is doped in the core and other in the shell (Figure

4.10(b)). Our calculations show that a small increase in concentration of Mn atoms in

the unit cell from 0.78 % to 1.56 % does not alter the half-metallic property (Figure

4.10).

Figure 4.11: Electronic band structure (PBE) of Mn-doped Ge-core/Si-
shell nanowire (Mn at the site I) under tensile strain along the nanowire
axis. (a) and (b) represent the band structure in the Minority-spin and
Majority-spin direction under lateral strain of +1.26%; (c) and (d) represent
the band structures in the Minority-spin and Majority-spin direction under
lateral strain of +2.52%. (Reproduced from Nanoscale Adv. 2020, 2, 1843-
1849 with permission from Royal Society of Chemistry.)
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To investigate the effect of the external strain, which may arise during synthesis of

nanowire at finite temperature, we have also calculated the electronic band structure

of the Mn-doped nanowire for both the tensile and compressive strain. To model the

tensile or compressive strain, we have varied the lattice parameter a appropriately

from its equilibrium value (7.92Å) and allowed the atomic structure to relax without

symmetry constraint until the residual force on each atom is less than 0.01 eV/Å. As

Figure 4.12: Electronic band structure (PBE) of Mn-doped Ge-core/Si-
shell nanowire (Mn at site I) under compressive strain along the nanowire
axis. (a) and (b) illustrate the band structures in the Minority-spin and
Majority-spin direction under compressive strain of -1.26%; (c) and (d) rep-
resent the band structures in the Minority-spin and Majority-spin direction
under compressive strain of -2.52%. (Reproduced from Nanoscale Adv. 2020,
2, 1843-1849 with permission from Royal Society of Chemistry.)

seen from the electronic band structure (Figure 4.11), the system is half-metallic in
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nature under tensile strain values of +1.26% and +2.52%. The minority spin electrons

display a semiconducting behavior in both the cases with a direct energy gap of 0.74

eV and 0.81 eV respectively. The majority spin carriers, on the other hand, show

a metallic characteristic. Our calculations reveal that the tensile strain along the

nanowire axis is found to increase the bandgap in the minority spin direction. In the

case of compressive strain (Figure 4.12), a half-metallic feature is clearly noticeable at

the strain of -1.26%. The minority spin electrons exhibit a semiconducting behavior

with a direct energy gap of 0.55 eV, whereas the majority spin carriers show a metallic

behavior. However, for a large compressive strain of -2.52%, a semiconductor to metal

phase transition in the minority spin direction is observed.

Next, to access the spin-filtering property of the Mn-doped Ge-Core/Si-shell nanowire,

we have constructed a prototypical Mn-doped Ge/Core-Si-shell nanowire junction as

shown in Figure 4.13(a). A spin conserved tunneling approach is used to calculate

the transmission function for the majority (TMJ) and minority (TMI) spin carriers

(Figure 4.13b); the transmission function is given by T σ(E) = Tr[ΓLG
σΓRG

σ†]. Here,

Gσ is the spin polarized retarded Green’s function given by Gσ(E, ε) =

[
E × SNW −

Hσ
NW (ε)−Σσ

L(ε)−Σσ
R(ε)

]−1

, where E is the injection energy, SNW is the overlap matrix,

Hσ
NW (ε) is the bias dependent Hamiltonian of the nanowire channel, and Σσ

L(ε) and

Σσ
R(ε) are the bias-dependent spin-polarized self-energy functions for the left and the

right electrodes that allow the nanowire channel to exchange spin-polarized electrons

and energy with the semi-infinite electrodes. ΓL,R = i[Σσ
L,R−Σσ†

L,R] is the broadening
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Figure 4.13: (a) A prototypical Mn-doped Ge-core/Si-shell nanowire spin-
filter; the channel length is ∼2.37 nm (electrode-electrode distance). (b) Cal-
culated spin-dependent transmission; TMJ and TMI refer to the transmission
for the majority and minority spin carriers respectively. (Reproduced from
Nanoscale Adv. 2020, 2, 1843-1849 with permission from Royal Society of
Chemistry.)

term that gives the inverse life time of an energy level in the central scattering region.

Due to confinement of carries to the spin active Ge-core and observed weak spin-orbit

interaction in the Mn-doped Ge-core/Si-shell nanowire, we assumed the scattering to

be coherent and neglected the spin-flip scattering effect in our calculations. Figure

4.13b shows that there are no transmission peaks found for the minority spin carries

in the vicinity of the Fermi energy. However, a transmission peak appears close to the
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Fermi energy for the majority spin carriers. Analysis of orbital coefficients reveals that

the p states of Ge and the d, as well as p, states of Mn that couple to the s and p states

of gold electrode contribute to the transmission peak in the spin majority case. In the

case of minority spins, the metal-induced broadening is responsible for an insignificant

but a finite transmission value of 6.5×10−3 at the Fermi energy. The TMJ at the Fermi

energy is found to be 128.9 × 10−3. To quantify the asymmetry in spin-dependent

transmission, we calculated the spin-filter efficiency,[164] η = TMJ(EF)−TMI(EF)
TMJ(EF)+TMI(EF)

using

the transmission values for the majority and minority spin carries at the Fermi energy.

The value for η is found to be 90.4 %, which unambiguously confirms the spin-selective

property of Mn-doped Ge-core/Si-shell nanowire channel. We expect the η-value to

approach 100% with an increase in channel length of the nanowire as the transmission

of the minority carrier with a semiconducting feature would fall exponentially[165]

with an increase in the length of the channel. An increase of spin-filtering efficiency

has been reported with the increase of channel length in other materials[164].

4.4 Conclusions

In summary, we predict that a small amount of Mn dopants in the core region of a Ge-

Core/Si-Shell nanowire can transform the semiconducting Ge-Si core-shell nanowire

to a half-metallic ferromagnet with 100% spin polarization at the Fermi energy. The
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ferromagnetic spin ordering is found to be stable at room temperature. The spin-

unconstrained non-collinear magnetic calculation that includes spin-orbit interaction

reveals no measurable shift in energy levels in the vicinity of Fermi energy, which

suggests that the spin-coherence length can be much larger in this material. The

high spin-filter efficiency (> 90%) obtained using a quantum transport approach in

a prototypical nanowire junction further confirms the spin-selective property of this

material. We expect this new finding will generate experimental interest in this

material for possible application in room temperature spintronics.
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Chapter 5

Cr-doped Ge/Si core/shell

nanowire

5.1 Introduction

Antiferromagnetic (AFM) materials are the ones that have magnetic moments alter-

nating between the adjacent atomic sites or layers resulting in a zero-net magnetiza-

tion. Due to this, it is prohibitively difficult to probe the AFM spin ordering in a

material by an external magnetic field. However, the recent success in manipulating

individual spin moments in an AFM material by electrical current[58] has opened

up a new frontier in spintronics research[59, 60, 61, 62]. Further, antiferromagnets
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have been shown to exhibit fast spin-dynamics that lie in the THz range[63, 64, 65].

Furthermore, the absence of a stray magnetic field and the spin precession on a

global scale in this material, which lead to a much weaker spin dephasing, are bene-

ficial for their applications in spintronics[66, 166, 167, 168, 169, 170, 171, 172, 173].

At the same time, the semiconductors such as Si and Ge have been the driving

force in revolutionizing the microelectronics industry for more than half a cen-

tury. The successful synthesis[18, 19, 20, 21] of low dimensional structures out of

these materials with reproducible electronic properties has further reaffirmed our

hope of using these materials in future electronic circuits that demand smaller,

lighter, and energy-efficient components. For example, the semiconductor Ge-

Core/Si-Shell[18, 19, 37, 38, 39, 40, 41, 140] nanowire has been reported to ex-

hibit superior transistor performance compared to the current state of the art

MOSFETs[37]; programmable logic circuits based on these nanowire transistors are

also demonstrated[43].

Thus, a natural question one may ask: Can we harness the intriguing functionality of

an antiferromagnet to this low-dimensional semiconductor? This may lead to a new

class of materials with rich physics for potential applications in future generation anti-

ferromagnetic semiconductor spintronics. The only viable approach to implementing

antiferromagnetism in these materials without destroying their semiconducting be-

havior is via doping of magnetic impurities. In fact, several experimental techniques

such as ion implantation and chemical vapor deposition have been successfully used
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to synthesize transition-metal-doped semiconductor nanowires[49, 50, 51, 54]. In ad-

dition, the core-shell configuration of these nanostructures provides an advantage of

doping magnetic impurities into the core region of the wire, thus guiding the spins

along the core during transport due to valence band offset (∼ 0.5 eV) between the

Ge-core and the Si-shell. Thereby, the spin-dephasing arising from the effect of the

substrate can be completely eliminated during transport, consequently improving the

performance of the spintronic device. Hence, the next question we need to answer:

Is there any magnetic impurity that can transform this semiconductor nanowire to

an AFM semiconductor? Because substitutional doping of Mn has been reported to

transform this semiconducting material to a ferromagnetic half-metal[57], the possi-

bility of AFM semiconducting behavior with Cr-dopant is explored in this study.

In this Letter, we present our calculations that reveal the Cr-doped Ge-Si core-shell

nanowire as an AFM semiconductor. A first-principles spin-unrestricted density func-

tional approach that explicitly considers the electron-electron interactions is used for

our calculations. The stability of the AFM ordering between Cr atoms in the nanowire

is ascribed to the superexchange interactions mediated by the pz orbitals of the bonded

Ge atoms that lie in the proximity of Cr atoms, which is unique and outside of metal

oxides[174]. The effect of spin-orbit (SO) interactions on the electronic band struc-

ture is found to be negligible, indicating the spins can be transported coherently in

this material. Our spin-dependent quantum transport results indicate the electrical

current in the doped (Cr) nanowire to be significantly higher (more than one order)
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than that found in undoped nanowire for a threshold bias of ≥ 0.7 V, suggesting it

can be used as a switch.

5.2 Computational Details

We started with constructing a supercell of the Ge-core/Si-shell nanowire with 48

Ge, 80 Si, and 48 H atoms along the 〈110〉 direction as experimental studies have

reported the 〈110〉 as the favored growth direction for diameter less than 20 nm[37].

To ensure a negligible interaction between the nanowire and its periodic images,

we created a supercell with a lattice parameter of 35 Å in the x- and y-directions;

there is a periodicity of 7.92 Å along the z-direction. The unsaturated surface states

were passivated by H atoms to avert the undesirable scattering of carriers during

transport. Subsequently, we substituted Ge atoms at different sites with Cr atoms

to model the doped nanowire as substitutional doping of Cr has been reported to

be energetically favorable in Ge thin films[175]. The structure was then optimized

without symmetry constraint until the residual force on each atom is less than 0.01

eV/Å using spin-polarized density functional theory (DFT) with a plane-wave basis

as implemented in VASP[157, 158]. The convergence criterion for the total energy

was set at 10−7 eV. The kinetic energy cutoff value of 400 eV was used for the plane-

wave expansion. We used a dense Monkhorst-Pack 1x1x7 k-point grid to sample the

Brillouin zone. The interactions between the valence electrons and the ionic core

116



were described by the projector augmented wave method. The exchange-correlation

potential was approximated by the Perdew-Burke-Ernzerhof (PBE) functional[105].

The self-interaction error associated with the PBE functional was partially corrected

in our calculations by using a hybrid functional, HSE06[107, 108], that includes a part

of the exchange (∼ 25%) from the Hartree-Fock and the remaining part (∼ 75%) from

the PBE functional; the correlation part is taken from the PBE functional. We further

performed noncollinear magnetic calculations to study the effect of SO interactions

on the energy bands of this material.

To study the quantum transport properties, we constructed a prototypical two-

terminal Cr-doped Ge-core/Si-shell nanowire junction by sandwiching a segment of

the nanowire between two gold electrodes; the electrode-electrode distance was ∼

16.74 Å. The open device consists of an active scattering part that includes a segment

of the nanowire along with a finite number of gold atoms from the lead (seven on each

side), and the semi-infinite part of the gold contact that retains its bulk properties.

The spin-polarized retarded Green’s function (Gσ) for this open junction was then ob-

tained by using a spin-unrestricted orbital-dependent posteriori DFT approach[133]

(implemented in Gaussian[128]) that uses Becke’s three-parameter hybrid functional

(B3LYP)[106, 128] for the exchange-correlation functional. This approach that partly

corrects the self-interaction error due to explicit incorporation of a portion of Hartree-

Fock exchange has been found to give a much better description of the transmission

in nanoscale junction[160]. Furthermore, the density of states obtained using B3LYP
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functional in 3d transition metal systems has been shown to agree well with that

obtained from embedded dynamical mean-field theory (eDMFT)[161]. The many-

electron wave function in this approach is expressed by a single Slater determinant,

in which the electrons are described by molecular orbitals constructed from atom cen-

tered Gaussian basis functions[128]. The Ge, Si, and Au atoms were represented by an

effective core-potential double-ζ Gaussian basis set (LANL2DZ) that incorporates the

scalar relativistic effect for Au; Cr and H atoms were represented by an all-electron 6-

311g? Gaussian basis functions[128]. This explicit real space approach[133] allows us

to partition the Kohn-Sham-Fock matrix in the active scattering region to construct

(Gσ):

Gσ(E, ε) =

[
E × SNW −Hσ

NW (ε)− Σσ
l (ε)− Σσ

r (ε)

]−1

(5.1)

E is the injection energy, SNW is the overlap matrix, Hσ
NW (ε) is the bias dependent

Hamiltonian of the nanowire channel; Σσ
l (ε) and Σσ

r (ε) are the bias-dependent spin-

polarized self-energy functions for the left and the right electrodes that allow the

nanowire channel to exchange spin-polarized electrons and energy with the semi-

infinite electrodes. An electric dipole interaction term (~εd ·
∑

i ~ri) was included in the

Hamiltonian of the active scattering region during self-consistent electronic structure

calculations to take into account of the bias effect[133]. The spin-polarized current in

the open junction was calculated as[133]

Iσ =
e

~

∫ µ2

µ1

T σ(E, V )[f(E, µ2)− f(E, µ1)]dE (5.2)
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σ refers to α or β electrons, µ1 and µ1 are the electrochemical potentials of the

two contacts, which are determined self-consistently. T σ(E, V ) is the multi-channel

transmission function that represents the sum of the transmission probabilities over all

the channels; f is the Fermi distribution function, and V is the applied potential. The

total current was calculated as I = Iα + Iβ. It may be noted that under equilibrium

condition, the Fermi energy of the bulk Au electrode (obtained using the k-space

approach) is matched to the Fermi energy (HOMO energy obtained using the real

space approach) of the active scattering region in our calculations. The detailed

procedure for calculating spin-dependent current can be found in Chapter 3 of this

thesis and in earlier work[133].

5.3 Results and Discussions

Because we do not know a priori the most energetically favorable substitutional sites

for the Cr atoms in the Ge-core/Si-shell nanowire, we calculated the energy for various

possible dopant configurations as shown in Figure 5.1. The configuration I (the unit

cell structure is shown in Figure 5.1(a)) was found to be the most stable structure;

the energy of the nanowire corresponding to different dopant sites is illustrated in

Figure 5.2(a). Figure 5.2(b) depicts the variation of the total energy with the lattice

parameter for configuration I; the equilibrium lattice parameter is found to be 7.92

Å. For the rest of the paper, we will focus on the electronic, magnetic, and transport
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Figure 5.1: The optimized unit cell structure of the Cr-doped Ge-core/Si-
shell nanowire along the 〈110〉 direction for various dopant configurations
represented by I, II, III, IV, and V; the unsaturated surface states are passi-
vated by H-atoms. (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

properties of the nanowire for the most stable structure, I. The bond-length analysis

of the optimized structures in doped and undoped configuration indicates a maximum

intrinsic bond strain of ∼-2.02 % at the substitutional site of the Cr; Ge-Ge bond

length was ∼2.47 Å in the undoped case as compared to a smaller Cr-Ge bond length

of ∼2.42 Å in the doped nanowire. The tetrahedral geometry of the Ge is distorted

because of the substitutional doping of Cr; a maximum angular strain of ∼1.52 % was

noted (the Ge-Ge-Ge bond angle in the undoped case was ∼109.830 and upon doping

Ge-Cr-Ge angle becomes ∼111.500 at the corresponding site). Next, we discuss the
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Figure 5.2: (a) Energy (relative to minimum energy configuration I) vs.
Cr-configurations in the nanowire; the various configurations of the two Cr-
atoms in the nanowire is represented by indices I, II, III, IV, and V (see
Figure 5.1). (b) Energy vs. lattice parameter of the nanowire for configu-
ration I. (c) Schematic showing the superexchange interaction mediated by
the pz orbitals of the Ge that dictates the AFM spin ordering between Cr
(dyz-orbitals). (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

magnetic properties of the Cr-doped Ge-core/Si-shell nanowire obtained using the

PBE functional. Our calculations reveal that the Cr atoms in the doped nanowire

prefers the antiparallel alignment of the magnetic moments at the Cr sites over the

parallel alignment; the exchange energy (Ex = EAFM - EFM) is -10 meV. The

electronic structure reveals that the localized d-orbital of Cr atoms contribute to the

magnetization. The magnetization on the adjacent Cr atoms is found to be ±2.59
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µB. A similar value for the magnetization was reported at the Cr sites in the Cr-

doped semiconductor GaN nanowire[150]. The Ge atoms that are bonded to the Cr

atoms in our case are found to be weakly magnetized (±0.08 µB) due to the magnetic

proximity effect; the p states contribute to the magnetization at the Ge sites as shown

in Figure 5.2(c). It should be noted that in the case of Cr-doped GaN nanowire, FM

ordering was reported to be the stable configuration arising from the double exchange

interaction. In the case of the Mn-doped Ge-core/Si-shell nanowire, which is a half-

metal, the FM spin ordering is found to be more favorable with an exchange energy of

∼90 meV, and a majority spin carriers exhibit a metallic behavior with a finite density

of states at the Fermi energy[57]. This suggests that the exchange interaction that

stabilizes the FM ordering between Mn atoms in the Mn-doped nanowire is mediated

by the itinerant electrons (majority spin carries in the metallic channel) at the Fermi

energy. However, in Cr-doped Ge-core/Si-shell nanowire, which is semiconducting (as

discussed in the next paragraph), we find the AFM coupling between the localized

dyz orbitals of the Cr atoms is found to be mediated by the pz orbitals of the bonded

Ge atoms as shown in Figure 5.2(c), suggesting that the superexchange mechanism

is responsible for the stability of the AFM ordering.

To gain a deeper insight, we calculated the spin-polarized atom projected electronic

band structure; the results are presented in Figure 5.3. From Figure 5.3, one can

notice that this material exhibits a semiconducting behavior with an indirect bandgap

of 0.32 eV; the valence band maximum (VBM) is found at the Γ point and the
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Figure 5.3: (a-c) Atom projected electronic band structure (PBE) of Cr-
doped Ge-core/Si-shell nanowire (configuration I) for the spin-up direction.
The circle represents the contribution of the individual Ge, Si, and Cr atoms
to energy bands. The larger the diameter of the circle, the larger the contri-
bution. The energy band diagrams for the spin-down electrons are not shown
as the energy levels for spin-up and spin-down directions are degenerate for
this AFM system. (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

conduction band minimum (CBM) is found at the X point. It is worthwhile to note

that the undoped Ge-core/Si-shell nanowire is a direct bandgap semiconductor. A

close examination further reveals that the contribution to VBM and CBM primarily

comes from the Ge and Cr atoms as expected. Si atoms do not contribute to the

bands near the Fermi level; they begin to contribute for bands with energy of about

-0.71 eV and lower at the Γ point, indicating a large valence band offset (VBO) of

∼0.63 eV between the core (Ge and Cr) and shell (Si). This result further confirms
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that the significant VBO observed in the Ge-core/Si-shell nanowire remains intact

upon substitutional doping of Cr, suggesting spin carriers could be guided either

through the core or the shell part of this nanowire channel during transport. The

results obtained from the atom projected electronic band structure calculations are in

agreement with that obtained from the density of states (DOS) calculations in Figure

5.4. DOS calculations further reveal that the p orbitals of Ge and d orbitals of Cr

contribute mostly to the VB and CB near the Fermi level.

Figure 5.4: Total and orbital decomposed density of states (DOS) of Cr-
doped Ge-core/Si-shell nanowire (configuration I) (i) total DOS in spin up
and spin down directions (ii-iv) orbital decomposed DOS for the Ge, Si,
and Cr atoms respectively; the orbital decomposed DOS for the spin-down
electrons are not shown as the energy levels for spin-up and spin-down direc-
tions are degenerate for this antiferromagnetic (AFM) system. (Reprinted
with permission from Nano Lett. 2021, 21(4), 1856–1862. Copyright (2021)
American Chemical Society.)
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Figure 5.5: Plot showing the contribution of dxy, dyz, dxz, dz2, and dx2 −
y2 orbitals of Cr to energy bands of Cr-doped Ge-core/Si-shell nanowire
(configuration I). (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

Analysis of the orbital decomposed electronic band structure (Figures 5.5 and 5.6)

indicates that the interesting features found in the conduction band and bands in
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Figure 5.6: Plot showing contribution of py, pz, and px orbitals of Ge
(a, b, and c) and Si (d, e, and f) to energy bands of Cr-doped Ge-core/Si-
shell nanowire (configuration I). (Reprinted with permission from Nano Lett.
2021, 21(4), 1856–1862. Copyright (2021) American Chemical Society.)

its vicinity that originated from the Cr 3d states (primarily from dxy, dyz, and dz2)

appear to be topologically relevant, specifically the non-trivial Dirac feature at the
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middle of the ΓX-direction. As expected, the strain effect systematically brings these

unoccupied states closer towards the Fermi level, significantly reducing the bandgap

and leading to a metallic behavior at a high compressive strain of -5.05%. The

shrinking in distance between the Cr-atoms under a compressive strain leads to the

direct exchange superseding the super-exchange interactions causing a magnetic phase

transition from an AFM to a FM state in this system.

It has been reported in earlier studies that PBE functional underestimates the

bandgap in Group IV semiconductors. An accurate value for the bandgap in these

materials has been obtained using the hybrid functional, HSE06[163], that contains a

part of the Hartree-Fock exchange term, in addition to the exchange and correlation

from the PBE functional. Therefore, to further validate the results obtained using

the PBE functional, we recourse to the HSE06 functional that partially corrects the

self-interaction error associated with the PBE functional. Our results show that the

semiconducting behavior with the indirect bandgap feature of the nanowire is retained

upon the inclusion of self-interaction error corrections. A quantitative comparison in-

dicates an increase in the bandgap from 0.32 eV in PBE to 0.40 eV in HSE06 (Figure

5.7(a)). The AFM ordering between the Cr is preserved with the d orbitals of Cr

contributing to the magnetization of ∼ ±3.30 µB; the Ge atoms bonded to the Cr-

atoms have a magnetization of ∓0.15µB. The alignment of the spins is consistent

with that obtained using the PBE functional. Next, we carried out the non-collinear

magnetic calculations to explore the effects of SO interactions (Figure 5.7(b)) on the
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Figure 5.7: Electronic band structure of Cr-doped Ge-core/Si-shell
nanowire (configuration I) obtained using (a) hybrid functional, HSE06 (b)
PBE functional with and without spin-orbit coupling (SOC). The bands for
spin-up and spin-down directions are degenerate. (Reprinted with permis-
sion from Nano Lett. 2021, 21(4), 1856–1862. Copyright (2021) American
Chemical Society.)

electronic structure. As seen from Figure 5.7(b), the SO coupling induced shifts in the

valence band (green circles) at the Γ point and X point are found to be ∼11.16 meV

and ∼19.67 meV respectively; the corresponding shifts in the conduction band (blue

circles) at these points are ∼2.39 meV and ∼7.49 meV respectively. The small SO

coupling effect found here is consistent with the observed weak SO coupling strength

in the undoped Ge-core/Si-shell nanowire[176]. These results imply that the spin

coherence length in this material can be much longer. Our non-collinear magnetic

calculations further confirm that the easy axis for the spin orientation is along the
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nanowire axis with antiparallel spin alignment between the Cr-atoms; the anisotropy

energy is found to vary between 0.1 meV and 0.4 meV, which is consistent with the

observed anisotropy energy in AFM materials with ultrafast spin dynamics[177].

Figure 5.8: Variation of bandgap and exchange energy with strain in the
Cr-doped Ge-core/Si-shell nanowire (configuration I). The strain in percent-
age is calculated as: strain(%) = (a−a0a0

)×100 %, where a0 is the equilibrium
lattice parameter. (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

The implantation of transition metal dopants into Si and Ge nanowires is a non-

equilibrium process (due to their low solubility) usually done at high temperature

(3500C-8000C)[50], which can induce external strains in these systems during synthe-

sis. Thus, we focused next on the effects of tensile and compressive strains on the

electronic structure and magnetic properties of these nanowires. The variation of the

energy gap and exchange energy with lattice strain is presented in Figure 5.8. We

notice an increase in bandgap from 0.32 eV at 0% strain to 0.37 eV at +5.0% strain

(Figures 5.9(a), 5.9(b), 5.9(c), and 5.9(d)).
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Figure 5.9: Electronic band structure (PBE) of Cr-doped Ge-core/Si-
shell nanowire (configuration I) at different values of (a-d) tensile (+1.26%,
+2.52%, +3.79%, and +5.05%) (e-g) compressive (-3.79%, -2.52%, -1.26%,
and 0.00%) strains. (h) represents the electronic band structure at 0.00%
strain. The bands for spin-up and spin-down directions are degenerate.
(Reprinted with permission from Nano Lett. 2021, 21(4), 1856–1862. Copy-
right (2021) American Chemical Society.)
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Figure 5.10: Electronic band structure (PBE) of Cr-doped Ge-core/Si-shell
nanowire (configuration I) for the (a) spin-up (b) spin-down direction at a
compressive strain of -5.05%. (Reprinted with permission from Nano Lett.
2021, 21(4), 1856–1862. Copyright (2021) American Chemical Society.)

The energy gaps remain indirect, and the nanowire prefers to be in an AFM phase.

For a compressive strain (Figures 5.9(e), 5.9(f), and 5.9(g)), the indirect nature of

the energy gap is preserved up to a strain of -2.52%, beyond which, an indirect to

direct bandgap transition is observed. At a strain of -5.05%, a metallic behavior was

noted (Figure 5.10). Unlike the semiconducting phase, which is AFM, the metallic

phase is FM with an exchange energy of 64 meV.

Motivated by the observed weak spin-orbit interactions and negligible strain effects

(for strain < ±1.26 %) on the energy levels at the vicinity of the Fermi energy,

we model a two-terminal junction to access its possible usage in spintronics. The
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portion of the Cr-doped Ge-core/Si-shell nanowire was sandwiched between two gold

electrodes to construct the prototype; the electrode-electrode distance was ∼17Å.

Figure 5.11: (a) Current (I)–Voltage (Vds) characteristics in a two-terminal
Cr-doped Ge-core/Si-shell nanowire junction; spin-up (Iα) and spin-down
(Iβ) currents are identical. (b) Comparison of I-V characteristics between
undoped and Cr-doped nanowire junction. (Reprinted with permission from
Nano Lett. 2021, 21(4), 1856–1862. Copyright (2021) American Chemical
Society.)

Figure 5.11 shows the calculated spin-polarized current in the junction; the current

has been calculated using Equation 5.2. The I-V curve (Figure 5.11(a)) has three

features: (i) the current is negligible for voltage ranging from 0 V to 0.6 V, which we

refer to as the OFF state, (ii) there is almost a plateau behavior in current (ON state)

for the voltage range (0.74 V-1.20 V), and (iii) current rises sharply for bias beyond

1.2 V. The observed ON and OFF state feature indicates that the Cr-doped Ge-

core/Si-shell nanowire can be used as a two-terminal switch. The ON/OFF current

ratio is found to be ∼41 at a bias of 0.83 V. The current for the Cr-doped nanowire
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Figure 5.12: (a-c) Bias-dependent spin-polarized transmission, Tα,β(E,V),
as a function of injection energy in the Cr-doped core-shell nanowire junction.
(d) Transmission as a function of injection energy for undoped nanowire
junction. In all figures, the chemical potential windows (for integration) are
represented by the dotted lines (red).

(Figure 5.11(b)) is found to be significantly higher (∼24 times at 0.83 V) than that

observed in the undoped nanowire, suggesting that the Cr-dopant is responsible for

the observed switching behavior. To unravel the origin of switching, we calculated

the spin-polarized T σ(E, V ) as a function of injection energy at different bias points

(Figure 5.12). The smaller observed current (OFF state) at the 0.37 V as compared
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to the 0.83 V can be understood from the much smaller transmission value (∼0.02) in

Figure 5.12(a) within the integration window. In contrast, three transmission peaks

(peak heights > 0.6) that appear within the chemical potential window [-0.42 eV,

0.42 eV] in Figure 5.12(b) for a bias of 0.83 V explains the ON state behavior in

the current. To understand a small drop in current at 1.13 V as compared to 0.83

V, we analyzed the transmission function at 1.13 V (Figure 5.12(c)). A comparison

of transmission values indicates the three transmission peaks that appeared at 0.83

V within the chemical potential window [-0.42 eV, 0.42 eV] shifted to the left in

Figure 5.12(c) due to Stark effect, resulting in a smaller area under the transmission

curves and hence a smaller current. Furthermore, to understand the higher observed

current in the Cr-doped nanowire junction (∼24 times at 0.83 V) as compared to

undoped ones, we plotted the transmission function for the undoped Ge-core/Si-shell

nanowire device at a bias voltage of 0.83 V (Figure 5.12(d)). A much smaller value of

transmission (∼0.02) within the chemical potential window [-0.40 eV, 0.43 eV] in the

undoped nanowire as compared to a higher transmission value ∼1 for the Cr-doped

junction explains the much smaller current found in the undoped nanowire. Thus,

the question again arises: What does contribute to the higher transmission in the Cr-

doped nanowire junction? To answer this, we have calculated the projected density

of states (DOS) per atom in the device configuration at 0.83 V. For the undoped

device (Figure 5.13(a)), the contribution to the transmission comes mostly from the

Ge atoms, but it is still insignificant (∼0.09 at the Fermi energy). For the Cr-doped
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Figure 5.13: Projected atom decomposed spin-polarized density of states
(DOS) for (a) undoped (b) Cr-doped nanowire junction; (c) is the magnified
version of (b). (Reprinted with permission from Nano Lett. 2021, 21(4),
1856–1862. Copyright (2021) American Chemical Society.)

junction (Figures 5.13(b) and 5.13(c)), on the other hand, a significant contribution

to the density of states (DOS) comes from the Cr atoms at the Fermi energy. This

clearly confirms the role of Cr-dopants in dictating the switching behavior in doped

nanowire circuits.
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5.4 Conclusions

We report a comprehensive study that reveals the Cr-doped Ge-core/Si-shell nanowire

as an AFM semiconductor. The superexchange interactions mediated by the pz or-

bitals of the nearby Ge is found to be responsible for the AFM ordering of spins

between Cr (localized dyz orbitals). The noncollinear magnetic calculations confirm

the weak SO interactions in the nanowire, suggesting that the spins can be transported

coherently over a long distance in this material. The valence band offset between the

Ge-core and Si-shell observed in undoped Ge-core/Si-shell nanowire remains intact

upon the substitutional doping of Cr. The spin-dependent quantum transport calcu-

lations in a model nanowire junction show a switching behavior with a high ON/OFF

current ratio. Considering the significant progress being made in recent years in core-

shell nanowire technology and ion implantation technique, we expect our prediction to

initiate experimental interest in the Cr-doped Ge-core/Si-shell nanowire for potential

applications in low-dimensional AFM semiconductor spintronics.
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Chapter 6

PbTe/PbS core/shell nanowire

6.1 Introduction

Lead salts PbX (X = Te, Se, and S) have drawn substantial interests in recent years

due to their possible applications in infrared lasers[178, 179, 180], sensors[181], long-

distance fiber-optic communications[179], thermophotovoltaics[182], and thermoelec-

tric devices[183, 184]. The 3D bulk phase of these materials have a small bandgap

≤ 0.3 eV. However, their energy gap can be tuned significantly by reducing the di-

mension of the bulk material that escalates the quantum effects; the magnitude of

the bandgap depends upon the size and shape of these nanostructures as reported
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in a number of previous studies[185, 186]. The ability of synthesizing high qual-

ity nanostructures[71, 72, 73, 74, 75] of these materials with varying shape and size

make them suitable candidate for potential applications including but not limited

to field-effect transistors (FETs)[76, 77], photodetectors[187], solar cells[78], high-

performance optoelectronics[79, 80], as well as in high-efficiency thermoelectrics[72].

On the other hand, the core/shell nanostructures[42, 188, 189, 190, 191] have im-

mense benefits. For instance, it has been found that the stability of the nanostruc-

tures against oxidation can be enhanced by shelling them with materials that have

larger bandgap[67]. This (shelling) increases the performance of solar cells and light-

emitting diodes (LEDs) by substantially reducing the trap states, diminishing the non-

radiative recombination[68] processes, and enhancing the carrier multiplication [69]

and carrier transport processes[70]. In an another study, the core/shell geometry has

been found to enhance the luminescence in materials[192]. Moreover, the core/shell

nanowire field effect transistors (FETs) show superior performance compared to the

state of art metal oxide semiconductor field effect transistor (MOSFETs)[37]; the

programmable logic circuit of core/shell nanowire FETs have also been demonstrated

in previous studies[43]. In a recent theoretical study, it has been proposed that the

Mn-doped core/shell nanowire can act as an excellent spin filter with spin filtering

efficiency of more than 90%[57] and Cr-doped core/shell heterostructures can act as

a switch[193]. Furthermore, these materials are beneficial for catalytic applications

from intensifying the H2 generation process[194] to acting as an electrocatalyst for
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oxidation reduction[195, 196].

In this work, we have explored the electronic structure, thermodynamic stability,

mechanical, and optical properties of PbTe/PbS core/shell nanowires of different

core diameters along 〈200〉 and 〈111〉 directions using the first-principles plane-wave

density functional theory (DFT). These heterostructures are found to be indirect

(direct) bandgap semiconductors in the 〈200〉 (〈111〉) direction; the bandgap can

be easily tuned by changing the diameter of the core. The inclusion of the spin-

orbit coupling (SOC) to our calculations is found to lower the bandgap of these

materials. The minimum of the conduction band (CB), which is mostly Pb, moves

towards the Fermi level in the presence of SOC without changing much the valence

band (VB) maximum. Nanowires along the 〈200〉 direction have higher value of

the Youngs’s modulus (∼ 48 GPa) compared to the wires in the 〈111〉 (∼ 20 GPa)

direction; these values do not change significantly with the thickness of the core.

Higher compressive strains (> 11.30%) can cause a semiconductor to metallic phase

transitions in these nanowires with the pressure for such phase transitions being in

the range of ∼3GPa to ∼6 GPa, consistent with the experimental observation in PbS

nanowires and nanoparticles. The absorption spectrum for these materials is broad

(0.39 eV–13 eV) that includes the infrared-visible-ultraviolet region. The ab-initio

molecular dynamics calculations show that core/shell structures in the 〈200〉 direction

is less prone to core to shell diffusion compared to the 〈111〉 direction irrespective of

the thickness of the core and shell.
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6.2 Computational Details

The lead salts PbX (X = Te, S) crystallize in the NaCl type structure (lattice type:

FCC cubic) with space group Fm3̄m. From the bulk structure of PbTe and PbS,

we constructed pristine PbTe and PbS nanowires in the 〈200〉 and 〈111〉 directions.

To construct the PbTe/PbS core/shell nanowire heterostructures, we replaced the Te

atoms in the shell with S atoms. We then enclosed each of these heterostructures

in a huge supercell that is periodic in the longitudinal direction (nanowire axis) but

has a large lattice constant of 35 Å in the transverse directions. This was done to

diminish the effect of the surplus interactions between the nanowires and their periodic

replica. Each of these supercells considered here has 74 atoms. In the pristine PbTe

(PbS) nanowires, there are 37 Pb and 37 Te (S) atoms. In the PbTe/PbS core/shell

heterostructures, there are 37 Pb atoms, with the remaining 37 being the sum of Te

and S atoms. The small (big) core nanowires in the 〈200〉 direction has 5 (13) Te

and 32 (24) S atoms. Similarly, the small (big) core nanowires have 7 (19) Te and

30 (18) S atoms along the 〈111〉 direction. Consequently, we optimized each of these

nanowire structures without symmetry constraints until the residual force on each

atom is less than 0.01 eV/Å using the plane-wave density functional theory (DFT)

implemented in VASP[157, 158]. Figures 6.1 and 6.2 illustrate the optimized unit

cell structures of the pristine PbTe and PbS nanowire structures. The interactions

between ionic core and valence electrons in our calculations were treated using the
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Figure 6.1: The unit cell structures of pristine (a) PbTe (b) PbS
nanowire along the 〈200〉 direction. Similarly, (c) and (d) illustrate
the pristine PbTe and PbS nanowire unit cell structures in the 〈111〉
direction. (Reprinted with permission from J. Phys. Chem. C
- https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

projector augmented wave (PAW) [118, 122] method. We have approximated the

exchange-correlation energy using the Perdew-Burke-Ernzerhof (PBE) functional that

lies within the framework of the generalized gradient approximation (GGA)[105].

Monkhrost-Pack (MP)[113, 114] k-point grid of 1x1x7 (7x1x1) was used to sample

the Brillouin zone for the nanowires oriented along the 〈111〉 (〈200〉) direction. Based

on the convergence tests for the cutoff energy, we used an energy cut-off value of 400

eV. The convergence critera for the total energy was set at 10−6 eV. The PbTe (PbS)

nanowire in the 〈200〉 has equilibrium lattice parameter of 6.58 Å (6.06 Å ). In the
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Figure 6.2: The unit cell structures of (a) small core (dc ∼6.32 Å) (b)
big core (dc ∼12.82 Å) PbTe/PbS core/shell nanowire along the 〈200〉
direction. Similarly, (c) and (d) illustrate the small core (dc ∼5.13 Å)
and big core (dc ∼10.83 Å) PbTe/PbS core/shell unit cell structures in
the 〈111〉 direction. (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

〈111〉 direction, the equilibrium lattice constant is 11.31Å (10.35 Å ) for the PbTe

(PbS) nanowire. Similarly, the small (big) core PbTe/PbS nanowire in the 〈200〉

direction has equilibrium lattice constant of 6.25 Å (6.37 Å ). We obtain the lattice

constant of 10.53 Å (11.11 Å ) for the small (big) PbTe/PbS nanowire in the 〈111〉

direction.

In this work, the electronic structure, mechanical and optical properties of these
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nanowires have been studied both with and without spin-orbit interactions. In addi-

tion, we performed the Born–Oppenheimer ab initio molecular dynamics (MD)[197]

calculations using the Nose-Hoover thermostat[197] in NVT ensmeble as implemented

in VASP to study the thermodynamic stability of these core/shell structures at room

temperature (300K); the total number of time steps for the MD calculations was 4000

with a time resolution of 2fs.

6.3 Results and discussion

Figure 6.3: The electronic band structure of bulk (a) PbS (b) PbTe ob-
tained using PBE and PBE+SOC. (Reprinted with permission from J. Phys.
Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021)
American Chemical Society.)

We start with analyzing the results of our calculations for lead salts PbX (X = Te

and S) obtained using the PBE and PBE+SOC. The relaxed unit cell structures have
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lattice constant ∼6.56 Å and ∼5.99 Å for bulk PbTe and PbS, respectively. The

electronic band structure of bulk PbX (X = Te and S), shown in Figure 6.3, reveals

that these materials are direct bandgap (L-point) semiconductor. We obtain bandgap

∼0.83 eV (∼0.15 eV) at the L-point using PBE (PBE+SOC) for the bulk PbTe; the

energy gap obtained using PBE+SOC agrees well with the reported gap of ∼0.19

eV[198, 199, 200] for this material. Similarly, PBE (PBE+SOC) functional gives an

energy gap ∼0.47 eV (∼0.14 eV) at the L-point for bulk PbS, indicating that the

reported gap of ∼0.29 eV [199, 200, 201] lies within the gaps obtained using PBE and

PBE+SOC for bulk PbS.

Figure 6.4: (a and b) The atom decomposed electronic band structure
(PBE) of PbTe nanowire in the 〈200〉 direction; the circle represents the
contribution of the Pb and Te atoms to energy bands. The electronic
band structures of PbTe nanowire obtained using PBE and PBE+SOC
are compared in (c). (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)
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Next, we discuss the electronic band structure of pristine PbTe nanowire along the

〈200〉 and 〈111〉 directions. Figures 6.4 and 6.5 reveal that PbTe nanowire is an

indirect bandgap semiconductor irrespective of the directions considered. The PBE

functional gives an energy gap of ∼0.94 eV (∼0.84) for PbTe nanowire in the 〈200〉

(〈111〉) direction. In presence of SOC, the gap along the 〈200〉 (〈111〉) direction is

reduced to ∼0.49 eV (∼0.48 eV). Similarly, PbS nanowire is a direct bandgap semi-

Figure 6.5: (a and b) The atom decomposed electronic band structure
(PBE) of PbTe nanowire in the 〈111〉 direction; the circle represents the
contribution of the Pb and Te atoms to energy bands. The electronic
band structures of PbTe nanowire obtained using PBE and PBE+SOC
are compared in (c). (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

conductor (Figures 6.6 and 6.7) with an energy gap of ∼1.05 eV (∼0.82 eV) in the

〈200〉 (〈111〉) direction without SOC. The bandgap in the presence of SOC becomes
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∼0.78 eV (∼0.58 eV) in the 〈200〉 (〈111〉) direction. Such reduction of bandgap in

the presence of SOC is due to the lowering of the CB of these systems. It may be

noted that the VB does not change much in the presence of SOC. This is evident as

the CB is dominated by Pb atoms and the valence band by Te (S) atoms. From our

analysis of electronic band structure for bulk phase of PbTe, we expect PBE+SOC to

give a reasonable value of the energy gap for PbTe nanowires. Similarly, the bandgap

of the PbS is expected to lie within the PBE and PBE+SOC gaps.

Figure 6.6: (a and b) The atom decomposed electronic band structure
(PBE) of PbS nanowire in the 〈200〉 direction; the circle represents the
contribution of the Pb and S atoms to energy bands. The electronic
band structures of PbS nanowire obtained using PBE and PBE+SOC
are compared in (c). (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

Recently, there has been a lot of experimental studies on the lead chalcogenides PbX
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Figure 6.7: (a and b) The atom decomposed electronic band structure
(PBE) of PbS nanowire in the 〈111〉 direction; the circle represents the
contribution of the Pb and S atoms to energy bands. The electronic
band structures of PbS nanowire obtained using PBE and PBE+SOC
are compared in (c). (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

(X = Te, Se, and S) nanostructures. As reported in such studies, shelling the lead

chalcogenides nanostructures with a material of higher bandgap (also lead chalco-

genides) increases their stability against oxidation, reduces the surface trap states,

diminish the nonradiative recombination process, and enhances the carrier multipli-

cation and carrier transport processes. This has led to the superior performance of

the optoelectronic and thermoelectric devices. Therefore, in this work, we study the

PbTe/PbS core/shell nanowires of different core diameters along the 〈200〉 and 〈111〉

directions as less effort has been made to understand their electronic band structure,
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stability, mechanical, and optical properties. In the 〈200〉 direction, the small (big)

core nanowire has core diameter of ∼6.32 Å (∼12.82 Å). Further, these are indirect

bandgap semiconductors (Figure 6.8) irrespective of the core’s thickness. For small

(big) core nanowire, the PBE functional gives an energy gap of ∼ 1.03 eV (∼ 0.86 eV)

with the CB minimum lying at the X point and VB maximum lying in between the

Γ and X point. Both the VB and CB in the 〈200〉 direction show dispersion with the

dispersion width ∼0.35 eV and ∼0.43 eV, respectively for the small core nanowire.

For the big core nanowire, we obtain dispersion width of ∼0.28 eV (∼0.63 eV) for

VB (CB). Figure 6.8 also shows that the CB of this system is mostly Pb (atoms)

with some S (atoms); the VB is dominated by both Pb and Te atoms irrespective

of the core diameter. We further observe that the contribution of Te atoms to inner

bands (Figure 6.8(f)) increases with increase in the core’s thickness (more Te atoms).

With the inclusion of the SOC to our calculations (Figures 6.8(d) and 6.8(h)), the

minimum of the CB of these heterostructures lowers without appreciable change in

position of the VB (maximum), indicating the lowering of the energy gap is due to

lowering of the CB in these nanowires. The magnitude of such lowering of the CB is

∼ 0.20 eV (∼ 0.30 eV) for small (big) core nanowire heterostructures. Since the CB

of this system is mostly Pb, such lowering of CB is due to the strong SOC effect that

arises in the presence the Pb atoms in these heterostructures. We obtain an energy

gap ∼ 0.77 eV (∼ 0.55 eV) for the small (big) core nanowire with the incorporation of

spin-orbit interactions. Another noticeable effect of the SOC is to shift the maximum
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Figure 6.8: The atom decomposed electronic band structure of PbTe/PbS
core/shell nanowires in the 〈200〉 direction for (a-c) small core (dc ∼6.32 Å)
(e-f) big core (dc ∼12.82 Å) nanowire heterostructures; the circle represents
the contribution of the Pb, Te, and S atoms to energy bands. The electronic
band structures for small core and big core nanowire obtained using PBE and
PBE+SOC are compared in (d) and (h). (Reprinted with permission from
J. Phys. Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright
(2021) American Chemical Society.)
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of VB to X point; the minimum of the CB moves in between the Γ and X point.

However, SOC does not change the dispersion widths of the VB and CB significantly;

the dispersion width obtained using PBE and PBE+SOC agrees well within 0.1 eV.

In the 〈111〉 direction, the small (big) core nanowire has core diameter of ∼5.13

Å (∼10.83 Å). The electronic band structure (Figure 6.9) shows that PbTe/PbS

nanowire is a direct bandgap semiconductor irrespective of the core diameter; the

small (big) core nanowire has bandgap of ∼0.67 eV (∼ 1.08 eV) in the absence of

SOC. Figure 6.9 also reveals that the VB in the 〈111〉 direction is almost flat; the CB,

however, shows strong dispersion. The dispersion width of ∼ 0.13 eV (∼ 0.42 eV) is

obtained for the VB (CB) for wire with small diameter. For the big core nanowire,

the dispersion width for the VB (CB) is ∼ 0.04 eV (∼ 0.24 eV). The dispersion width

of the VB estimated here is comparatively smaller than that obtained for nanowires

along the 〈200〉 direction. Figure 6.9 also reveals that the VB of this system is

dominated by Pb, Te, and S atoms for wires with both the core sizes considered here.

However, the contribution to the CB for the small core nanowire comes mostly from

Pb atoms with some S (atoms). For the big core nanowire, the contribution to the

CB comes significantly from Pb atoms with some Te (atoms). Like in the case of

the PbTe/PbS core/shell nanowire along the 〈200〉 direction, the effect of SOC is to

move the minimum of CB (mostly Pb) of these heterostructures towards the Fermi

level. The magnitude of such lowering is ∼0.31 eV (∼ 0.43 eV) for the small (big)

core nanowires at the X-point. We obtain the energy gap of ∼0.39 eV (∼0.63 eV) for
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Figure 6.9: The atom decomposed electronic band structure of PbTe/PbS
core/shell nanowires in the 〈111〉 direction for (a-c) small core (dc ∼5.13 Å)
(e-f) big core (dc ∼10.83 Å) nanowire heterostructures; the circle represents
the contribution of the Pb, Te, and S atoms to energy bands. The electronic
band structures for small core and big core nanowire obtained using PBE and
PBE+SOC are compared in (d) and (h). (Reprinted with permission from
J. Phys. Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright
(2021) American Chemical Society.)
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the small (big) core nanowire in the presence of SOC. The SOC does not shift the VB

of this system appreciably as expected. For the small core nanowire, the dispersion

width of the VB and CB with and without SOC agree well within 0.1 eV. However,

for the big core nanowire, the SOC induced splitting of the energy bands at points

of degeneracies increases the dispersion width of the CB from 0.24 eV to 0.43 eV. A

comparison of the dispersion width of the VB for big core nanowire with and without

SOC shows that they agree fairly well within 0.03 eV.

There are several techniques to synthesize lead chalcogenide (core/shell) nanowires,

with the two most common being chemical vapor transport (CVT)[72] and solution

phase synthesis [191]. Such synthesis processes involve heating/cooling that gives rise

to strains. To understand the effect of the strain in these core/shell heterostructures

and possible phase transitions at higher values of strain, we calculated the bandgap

and relative energy (E = Estrain − E0) at different values of the tensile (ε > 0) and

compressive (ε < 0) strains, where, Estrain and E0 are the energy of the nanowire

with and without strain. The results of our calculations are presented in Figure 6.10.

To apply strains in these nanowires, we varied the lattice parameter from the equilib-

rium lattice constant (a0) and allowed the system to relax. The strain (%) was then

calculated using the relation ε = a−a0
a0
× 100%, where a is the strained lattice param-

eter. From Figures 6.10(a) and 6.10(c), we see that the bandgap of the PbTe/PbS

core/shell nanowire decreases with an increase in the magnitude of the compressive

strain irrespective of the core thickness along both the 〈200〉 and 〈111〉 directions.
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Figure 6.10: (a) Bandgap vs. Strain (%) (b) Relative energy vs. Strain
(%) plots for PbTe/PbS core/shell nanowires along the 〈200〉 direction;
(c) Bandgap vs. Strain (%) (d) Relative energy vs. Strain (%) plots for
these heterostructures in the 〈111〉 direction. Here, Relative energy (E) =
Estrain−E0, where Estrain and E0 are the energy of the strained and strain
free nanowire. The strain (%) is defined as: ε(%) = (a−a0

a0
) × 100%, where

a0 is the lattice constant for the strain free nanowire. (Reprinted with per-
mission from J. Phys. Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577.
Copyright (2021) American Chemical Society.)

For the nanowires in the 〈200〉 direction, the small (big) nanowire undergo semicon-

ductor to metallic phase transition at a strain of -14.40 % (-11.30 %). Similarly, in

the 〈111〉 direction, the semiconductor to metallic phase transition in the small core

nanowire occurs at a strain of -17.1%; the semiconducting feature of the big core
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nanowire remains intact at -16.0%. With tensile strain, the energy gap of the wires

in the 〈200〉 direction will increase below 4.8%. Beyond it (4.8%), there is a relatively

low effect of strain on the bandgap. Figure 6.10(c) also shows the small effect of tensile

strain on the energy gap for wires long the 〈111〉 direction. In the presence of the SOC

(Figure 6.11), the compressive strain values at which such phase transition occur are

lowered in magnitude without changing much the feature of the bandgap vs. strain

curve. Similarly, Figures 6.10(b) and 6.10(d) shows the variation of the relative en-

Figure 6.11: Bandgap vs. Strain (%) plot for PbTe/PbS core/shell
nanowires in (a) 〈200〉 (b) 〈111〉 direction. SOC is included in these
calculations. (Reprinted with permission from J. Phys. Chem. C
- https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

ergy with the strain (%). At small values of the strain (−1.6% < ε(%) < 1.6%), the

variation is quadratic which can be fitted to obtain the Young’s modulus (Y) using

[202]: Y = 1
V0

∂2E
∂ε2

. Here, ∂2E
∂ε2

is the coefficient obtained by the parabolic fit of the
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relative energy (E = Estrain − E0) vs strain curve and V0 is the volume of the strain

free nanowire. Our calculations give Y values of 41.25 GPa (47.35 GPa) for the small

(big) core nanowire in the 〈200〉 direction. The estimated Y value for small (big) core

nanowires in the 〈111〉 direction is 20.51 GPa (19.52 GPa). Our study further reveals

that Y value of the nanowire does not change much with the inclusion of the SOC

in our calculations. With SOC, Y value for the small (big) core nanowire is 44.28

GPa (42.78 GPa) along the 〈200〉 direction and 19.89 GPa (17.18 GPa) in the 〈111〉

direction. Our calculated values of Y are in a very good agreement with previously

reported Y values for bulk Te and Te nanowires[202]. Subsequently, we estimated

the pressure required for phase transitions using the relation: P = Y × (a−a0
a0

). In

the 〈200〉 direction (without SOC), the small (big) core nanowire undergo a phase

transition at a pressure of ∼5.94 GPa (5.35 GPa); the corresponding pressure in the

〈111〉 direction for small core nanowire is ∼3.50 GPa. With SOC, we get P∼5.67

GPa (3.49 GPa) for small (big) core nanowire along the 〈200〉 direction and ∼1.89

GPa (2.78 GPa) for small (big) core nanowire in the 〈111〉 direction. It may be noted

that the pressure for phase transition obtained for the nanowires (both with and

without SOC) along the 〈200〉 direction agree well with the reported pressure of 3.1

GPa[75] for PbS nanowires and 6 GPa[203] for the PbS nanoparticles. In the 〈111〉

direction, PBE gives a good estimate of the pressure for phase transition in these

heterostructures.

Next, we shift our discussion to the optical properties (Figure 6.12) of PbTe/PbS
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nanowires in the 〈200〉 direction. We first discuss the optical spectra in the absence

of the SOC. Figure 6.12 reveals the anisotropic behavior of the real (ε1(ω)) and

Figure 6.12: The energy dependence of the real (ε1(ω)) part of ε(ω), imag-
inary (ε2(ω)) part of ε(ω), and absorption coefficient (α) for (a-c) small
core (d-f) big core nanowire in the 〈200〉 direction. No SOC is included
in these calculations. (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

imaginary (ε2(ω)) part of the complex dielectric function (ε(ω) = ε1(ω) + iε2(ω)), as

well as the absorption coefficient α(ω); their yy and zz components are identical and

are different from the xx components. This is evident due to symmetric nature of the

wire in the y- and z-direction, but not in x-direction–the nanowire axis. From the real

part of the dielectric function (Figure 6.12(a) and 6.12(d)), we get the static dielectric

constant values of εxx(0) = 4.65 (5.91), εyy(0) = 4.06 (4.71), and εzz(0) = 4.06 (4.71)
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Figure 6.13: Atom and orbital decomposed electronic density of states
(DOS) of small core PbTe/PbS nanowire in the 〈200〉 direction. No SOC is
included in these calculations. (Reprinted with permission from J. Phys.
Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021)
American Chemical Society.)

for the small (big) core nanowires. Consequently, we obtain the static refractive index

of this material using nii(0) =
√
εii1 (0), where i={x, y, z}. Our calculations give nxx(0)

= 2.16 ( 2.43), nyy(0) = 2.01 (2.17), and nzz(0) = 2.01 (2.17) for the small (big) core

nanowire. Figures 6.12(b) and 6.12(e) show the imaginary part εii2 (ω), i = x, y, z of

the complex dielectric function for the small and big core nanowires. These contain

several features that peak at 3.05 eV and 3.02 eV for small core nanowire and at

2.01 eV and 2.85 eV for the big core nanowire. We also notice that the peaks in
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Figure 6.14: Atom and orbital decomposed electronic density of states
(DOS) of big core PbTe/PbS nanowire in the 〈200〉 direction. No SOC is
included in these calculations. (Reprinted with permission from J. Phys.
Chem. C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021)
American Chemical Society.)

εii2 (ω), i = x, y, z are well separated on increasing the core thickness. Finally, we

obtain the xx (αxx(ω)), yy (αyy(ω)) and zz (αzz(ω)) components of absorption using

α(ω) = 4πk
λ

= 4π
λ

√
(ε21+ε22)

1
2−ε1

2
; the results are shown in Figures 6.12(c) and 6.12(f).

Like the components of the real and imaginary parts of the dielectric function, the

components of the absorption show different features that have origin in the interband

electronic transitions from the VB to CB. The absorption spectra for the small (big)

core nanowire has interesting feature at 1.18 eV (0.93 eV) which is approximately
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Figure 6.15: The energy dependence of the real (ε1(ω)) part of ε(ω), imag-
inary (ε2(ω)) part of ε(ω), and absorption coefficient (α) for (a-c) small
core (d-f) big core nanowire in the 〈111〉 direction. No SOC is included
in these calculations. (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

the bandgap obtained for these materials in the absence of SOC. These peaks are

approximately the onset of the absorption in these materials and correspond to the

electronic transition from the VB to CB. To see possibilities of such transitions, we

have calculated the density of states (DOS) of these materials; the results are shown

in Figures 6.13 and 6.14. DOS calculations show that the contribution to the VB

comes mostly from the s and p orbitals of Pb and p orbitals of Te; the contribution to

the CB comes mostly from the p orbitals of Pb and s orbitals of Te and S, suggesting

the possibility of s to p or p to s transitions in these materials when they are excited

by light. We also see that the absorption in this material extends from the infrared to
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Figure 6.16: The energy dependence of the real (ε1(ω)) part of ε(ω),
imaginary (ε2(ω)) part of ε(ω), and absorption coefficient (α) for (a-c)
small core (d-f) big core nanowire in the 〈200〉 direction. SOC is included
in these calculations. (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

visible to the ultraviolet region (∼1.0 eV to 13 eV), suggesting the suitability of these

materials for optoelectronic applications. Finite absorption in the ultraviolet region

is also indicative of the fact that there can be the transitions of the electrons from

deep levels in the VB to CB as DOS is negligible beyond 3.37 eV. Figure 6.15 shows

that the xx, yy, and zz components of the real and imaginary part of the dielectric

function, as well as the absorption, are identical for the wires in the 〈111〉 direction. It

may be noted that the periodicity of wires in the 〈111〉 direction are in the z-direction

unlike the nanowires in 〈200〉 direction that are periodic in x-direction. Comparison

of the optical spectra of these wires in the two directions in the absence of SOC shows

160



Figure 6.17: The energy dependence of the real (ε1(ω)) part of ε(ω),
imaginary (ε2(ω)) part of ε(ω), and absorption coefficient (α) for (a-c)
small core (d-f) big core nanowire in the 〈111〉 direction. SOC is included
in these calculations. (Reprinted with permission from J. Phys. Chem.
C - https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

that the magnitude of the absorption coefficient for wires along the 〈111〉 decreases

by 32% compared to that in the 〈200〉 direction. The absorption spectra, however,

remains broad (0.67 eV to 13 eV). The static refractive index values of nxx(0) = 1.67

(1.75), nyy(0) = 1.67 (1.75), and nzz(0) = 1.71 (1.82) are obtained for the small (big)

core nanowire. Compared to the values obtained for nanowires in the 〈200〉 direction,

the values of refractive index decrease by approximately ∼21%. The main effect of

the SOC (Figures 6.16 and 6.17) to the absorption spectra is to redshift the entire

absorption curve without changing the overall features of the absorption. The redshift

is expected as the SOC will decrease the bandgap of these materials.

161



We now study the stability of these nanowire heterostructures along the 〈200〉 and

〈111〉 directions. For this, we begin by calculating the cohesive energy per atom using

Ec =
[
Enw −

∑
i niEi

]
/natoms, where i may be Pb, Te, S. ni, natoms, Ei, and Enw are

the the number of atoms of type i, total number of atoms in the nanowire, energy of

an isolated atom i, and energy of the nanowire respectively. The estimated value of

Figure 6.18: Cohesive energy of the pristine and core/shell nanowires
along the 〈200〉 and 〈111〉 directions; the stability of nanowires in
the 〈111〉 direction is relatively less compared to that in 〈200〉 di-
rection. (Reprinted with permission from J. Phys. Chem. C
- https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

the cohesive energy for small core nanowire along the 〈200〉 (〈111〉) direction is -3.48

eV (-3.42 eV). For the big core nanowire, the cohesive energy is -3.36 eV (-3.26 eV)

in the 〈200〉 (〈111〉) direction. This suggests that wires along the 〈111〉 are less stable
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compared to the nanowires in the 〈200〉 direction. Our calculations (Figure 6.18)

further reveal that the stability of core/shell structures lie in between the stability

of pristine PbTe and PbS nanowires with possible hierarchy being PbS > PbTe/PbS

(small core) > PbTe/PbS (big core) > PbTe. Now one may ask: What happens to

the stability of these nanowires with strain? Application of the tensile or compressive

strain decreases the stability of these nanowires. For instance, the cohesive energy

of a small core nanowire at a strain of ∼-11.0 % differ by 83 meV (30 meV) from

the cohesive energy of strain free nanowire along the 〈200〉 (〈111〉) direction . We

now investigate the possibility of the core to shell diffusion of Te atoms in these

heterostructures. For this, we performed ab-initio MD simulations for 8 ps at room

temperature (300K) with a time resolution of 2 fs. The results of our simulations

are shown in Figure 6.19. In the 〈200〉 direction, the temperature (Figure 6.19(a))

and energy (Figure 6.19(c)) fluctuations are small after 0.4 ps. Such (Figure 6.19b &

6.19d) fluctuations are stabilized after 1.6 ps for wire along the 〈111〉 direction. The

radial distribution function (RDF) for the nanowire in the 〈200〉 direction has peaks

at ∼3.10 Å & ∼3.19 Å, which corresponds to the Pb-Te bond length. On the other

hand, the RDF (Figure 6.19f) for the wire in the 〈111〉 direction shows peaks close

to the Pb-Te bond distance (∼3.10 Å and ∼3.16 Å ), besides the other two peaks

at ∼5.68 Å and ∼6.82 Å. These peaks (∼5.68 Å and ∼6.82 Å ) for the nanowire

along the 〈111〉 direction are indicative of the fact that there is possibility of the core

to shell diffusion of Te atoms in this nanowire; the wire in the 〈200〉 direction has
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Figure 6.19: Temperature vs. Time ((a) & (b)) and Energy vs. Time
((c) & (d)) plot for small core nanowires oriented in 〈200〉 and 〈111〉 di-
rections; the partial (Pb-Te) radial distribution function (RDF) is shown
in (e) and (f). (Reprinted with permission from J. Phys. Chem. C
- https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

minimal possibility of such diffusion as seen from its RDF. These analysis allow us to

conclude that the core/shell nanowire heterostructures along the 〈200〉 direction are

more stable compared to that in the 〈111〉 direction. Here, we want to mention that

our results of the MD run (Figure 6.20) for the big core nanowire are consistent with

the small core nanowire. Therefore, irrespective of the core thickness, the wires in the

〈111〉 direction are more susceptible to the core to shell diffusion at room temperature.
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Figure 6.20: Temperature vs. Time ((a) & (b)) and Energy vs. Time
((c) & (d)) plot for big core nanowires oriented in 〈200〉 and 〈111〉 di-
rections; the partial (Pb-Te) radial distribution function (RDF) is shown
in (e) and (f). (Reprinted with permission from J. Phys. Chem. C
- https://doi.org/10.1021/acs.jpcc.1c06577. Copyright (2021) American
Chemical Society.)

6.4 Conclusion

In summary, our DFT calculations reveal that PbTe/PbS core/shell nanowire is an

indirect (direct) bandgap semiconductor in the 〈200〉 (〈111〉) direction; the bandgap

depends upon the diameter of the core and shell i.e. the number of the Te atoms in

the core and S atoms in the shell. The effect of the SOC on the energy band structure
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is to move the CB, that is dominated by Pb atoms, towards the Fermi energy. Such

lowering is of the order of 0.20 eV–0.43 eV at the X point. The estimated value of the

Young’s modulus is ∼48 GPa (∼20 GPa) for the wires in the 〈200〉 (〈111〉) direction.

These heterostructures undergo semiconductor to metallic phase transitions at high

values of compressive strains; the magnitude of the pressure for phase transitions is in

good agreement with previously reported experimental values in lead chalcogenides

nanowires and nanoparticles. These materials have a broad optical absorption spec-

trum that extends up to 13 eV and includes the infrared-visible-ultraviolet region.

Several peaks in the absorption spectra correspond to the interband electronic tran-

sitions from the s to p or p to s states. Analysis of the cohesive energy shows that the

wires along the 〈200〉 direction are more stable compared to wires in the 〈111〉 direc-

tion; the ab-initio MD calculations reveal that the nanowires in the 〈111〉 direction

are prone to the core to shell diffusion at room temperature.

166



Chapter 7

Conclusion and Future

Perspectives

7.1 Conclusion

In this thesis, we studied the properties of core/shell heterostructures, mainly the

Ge/Si (Mn and Cr doped) and PbTe/PbS (undoped) core/shell nanowires. In the

first project (chapter 4 of this thesis), using first-principles density functional theory,

we report that a small concentration of Mn dopants (≤ 2%) in the Ge-core transform

the Ge/Si core/shell nanowire (a direct bandgap semiconductor) to a room tempera-

ture stable half-metallic ferromagnetic system. The electronic band structure shows
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that Mn-doped Ge/Si core/shell nanowire is semiconducting in the minority spin di-

rection and metallic in the majority spin direction with 100% spin polarization at the

Fermi level; the half-metallic behavior is also confirmed from the density of states

calculations. Here, we also report that the stability of the ferromagnetic ordering

between Mn atoms is mediated by the itinerant electrons which are the majority spin

carriers in the vicinity of the Fermi level in the metallic channel. Spin-orbit (SO)

interactions have negligible effect to the energy bands that are in the proximity of the

Fermi energy; SO splittings of ≤ 24 meV have been observed at the crossing points

of minority and majority bands away from the Fermi level. This also suggests that

the spin coherence length can be much higher in this material. The spin-dependent

quantum transport calculations in a prototype nanowire junction give a spin-filtering

efficiency of 90.4%, indicating the excellent spin-selective properties of this newly

tailored material.

Given that the substitutional doping of Mn into the Ge-core/Si-shell nanowire trans-

forms the semiconducting material to a ferromagnetic half-metal, we explored the

possibility of antiferromagnetic (AFM) semiconducting behavior in the second project

(chapter 5 of this thesis). Using quantum mechanical DFT calculations, we report

the Cr-doped Ge/Si core/shell nanowire as an AFM semiconductor. The origin of

the AFM spin ordering between the localized dyz orbitals of Cr is due to the superex-

change mechanism mediated by the pz orbitals of the Ge that are in the neighborhood

of the Cr. Like in the case of Mn-doped Ge/Si core/shell nanowire, the effect of the
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SOC to bands near the Fermi level is found to be negligible, suggesting a longer spin

coherence length in this material. The spin-polarized quantum transport calculations

in a finite segment of Cr-doped nanowire junction shows that the electrical current in

the doped nanowire is ∼24 times higher in magnitude than the undoped nanowire at

a small bias of 0.83 V. Furthermore, the current has a switching feature with a high

ON/OFF current ratio ∼41 (at 0.83 V). The projected DOS calculations confirm that

Cr in Cr-doped nanowire is responsible for such switching behavior, as well as high

current compared to the undoped nanowire.

In the third project (chapter 6 of this thesis), we studied the electronic structure,

thermodynamic stability, mechanical and optical properties of PbTe/PbS nanowire

heterostructures. Using the many-body DFT calculations, we reveal that PbTe/PbS

core-shell nanowire is a direct bandgap semiconductor along the 〈111〉 direction and

an indirect bandgap semiconductor in the 〈200〉 direction; the energy gap can be tuned

by changing the size of the core and shell. Inclusion of the SOC to our calculation

lowers the conduction band (mostly Pb atoms) of these materials towards the Fermi

level by 0.20 eV–0.43 eV at the X point, reducing the overall energy gap of this

material; the SOC induced shift in the valence band is negligible. A semiconductor

to the metallic phase transition is observed at high compressive strains > 11.30%. The

values of Young’s modulus for the wires oriented along the 〈111〉(〈200〉) direction are

∼20 GPa (∼48 GPa). We further report that these materials have broad absorption

(0.39 eV–13 eV) that includes the infrared-visible-ultraviolet region; the peaks in the
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absorption represent the interband electronic transitions from the valence band to

the conduction band. Analysis of the cohesive energy for these nanowires indicates

that wires along the 〈200〉 direction are more stable than that in the 〈111〉 direction.

The radial distribution functions obtained from the ab-initio molecular dynamics

simulations at room temperature confirm that nanowires along the 〈111〉 direction

are prone to core to shell diffusion at room temperature. For wires in the 〈200〉

direction, the chance of such diffusion is minimal, suggesting their higher stability.

7.2 Future Perspectives

One-dimensional core/shell nanowires, especially Ge/Si and PbTe/PbS core/shell

nanowire heterostructures, offer a wide range of applications including but not limited

to high performance field effect transistors (FETs), quantum computing devices, solar

cells, light emitting diodes (LEDs), sensors, logic circuits, lasers, and thermoelectric

devices as discussed earlier. Incorporating magnetic impurity (Mn & Cr) in a (Ge/Si)

core/shell semiconductor nanowire provides an additional opportunity for its usage in

next-generation spintronics. Therefore, in chapter 4 of this thesis, we predicted theo-

retically that the Mn-doped Ge/Si core/shell nanowire is a room temperature stable

FM half metal that can be used as an excellent spin filter. Similarly, in chapter 5,

we reported that the Cr-doped Ge/Si core/shell nanowire is an AFM semiconductor

that can be used as a switch. In the future, we expect these unique predictions to
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initiate experimental studies in these materials, due to the compatibility of the Ge

and Si with current Si-based technology, for potential applications in low dimensional

FM/AFM spintronics.

In chapter 6, we studied the electronic structure, thermodynamic stability, mechanical

and optical properties of PbTe/PbS nanowires. In the future, we would like to study

the charge transport in this material to explore the transistor behavior for possible

applications in next-generation nanoelectronics. We would also like to explore the

thermoelectric properties of these heterostructures for different core diameters.
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