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ABSTRACT 
 

Machine learning is a rapidly growing field that has become more common of late. Because of the 

demanding computational usage of machine learning, this field has many dimensions needing 

research. TensorFlow has been developed to deal with and analyze neural networks computation. 

In particular, TensorFlow is often used in one of the machine learning branches and is called deep 

learning. This work discusses the performance of a deep learning model to train a very large dataset 

with TensorFlow.  It compares performance when the run happens on CPUs and on GPUs 

regarding the run time and speed.  The run time is an important factor for deep learning projects. 

The goal is to find the most efficient machine and platform to run the neural networks computation. 

TensorFlow provides all the resources and operations that are needed to process the neural 



 
 

networks computations. TensorFlow has two versions 1.0 and 2.0. This work uses TensorFlow 2.0 

which is easier to code, faster to build the models, and faster for training time.  Also, TensorFlow 

2.0 has the methods used to distribute the run on multi-CPUs and multi-GPUs which use the 

strategy scope to run the model in parallel. The hardware utilized for this work consist of two 

clusters referred to as BlueMoon CPU and DeepGreen GPU. These clusters were developed by 

the University of Vermont for artificial intelligence research. The results show the performance of 

running the model for training a large dataset that becomes better each time the number of 

processors increases. The speedup is the highest when training a large batch size of samples with 

a higher number of processors. When more devices (GPU) have been added to these processors to 

run the model the performance becomes faster especially for the larger batch sizes. When the 

model runs on GPUs it requires a CPU to make the computation processing complete. Reducing 

the CPU number that is used to distribute the data on multi- GPUs makes the speedup higher than 

using more CPUs that are responsible to distribute the data on the same number of GPUs. The 

results contain the comparison run time of the classification model for the same dataset when run 

on a different machine with or without accelerator and using two different TensorFlow versions. 

The comparison results show using the TensorFlow 2.0 is better than when using the TensorFlow 

1.0. Running the model with accelerator achieves more speedup and running the model on the 

clusters with both TensorFlow versions obtains higher performance. 
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1. CHAPTER ONE: INTRODUCTION AND MOTIVATION 

 Machine learning is a relatively new and growing field whereby computers can "learn" from big 

data sets by building a nonlinear model. The model is somewhat analogous to the processing of 

neurons in living creatures (Wang, 2020). In machine learning, a newer branch called deep learning 

has become more commonly used in research and other applications. Deep Learning is a branch 

of machine learning based on artificial neural networks with representation learning. Deep 

Learning is a type of software that simulates the network of neurons in the human brain. It is called 

deep learning because it uses deep and many layers of neural networks (Hans-D et al., 2017).  Deep 

learning uses neural networks to learn from a dataset and give predictions for previously unseen 

data (Goldsborough, 2016).  Although deep learning is used in many fields such as speech 

recognition, medical imaging, etc., the size of the data and the computation required present 

significant challenges. The computations require a quite powerful platform to compute and find 

the results from this process (Lopes et al., 2010). Big data generally has multiple processing 

dimensions. Other challenges in machine learning computation include storage, data management, 

and data processing. Depending on these challenges and dimensions, it is important to use good 

tools and the right architecture to analyze, compute and implement the artificial neural network 

(Adiyoso, Widiarto, et al., 2018). There are many tools and architectures that can be used to 

analyze and implement big data processing, such as CPU clusters and GPU clusters. TensorFlow 

is a good platform or tool to handle big data processing (Abadi et al., 2016). 

 The deep learning training process typically has millions of parameters that are learned during the 

training (Hassan et al., 2014). Interestingly, high-performance is becoming more advanced, which 

increases the capability of the computation and gives the researchers more opportunities to pursue 
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deep learning in many different fields (Lopes et al., 2010). It is important to choose the correct 

computational method depending on the dataset used (especially for image classification datasets) 

and the specific hardware used to implement any specific application (Mustafa et al., 2019). The 

efficient use of a graphical processing unit GPU with a parallel distribution method to train deep 

learning models on the big datasets is a very good way to accelerate the time of training (Adie, 

2018).  

This thesis focuses on comparing the running time for a parallel implementation for the machine 

learning model using TensorFlow API (TensorFlow.org, 2015) and a big dataset on multiple GPUs 

and multiple CPUs. 

 TensorFlow is an end-to-end open-source platform for machine learning computation. It has a 

flexible environment of tools and many libraries to enable the researchers to build their models. 

TensorFlow can be a good way to compute many algorithms in deep neural networks and a wide 

area of computer science and other fields (TensorFlow.org, 2015). The GPU system already has 

the parallel computation framework and programming model that work with C/C++ languages like 

CUDA (Lopes, 2010). TensorFlow is a machine learning framework that can be used with systems 

ranging from small machines such as phones up to large-scale distributed systems of hundreds of 

machines containing thousands of computational devices. The computational devices supported 

include GPU as well as CPU. TensorFlow scales to very big sizes of a dataset (TensorFlow.org, 

2015). 

The TensorFlow computation can be visualized as a graph that is composed of an interconnected 

set of nodes (Goldsborough, 2016). The graph represents the dataflow of the computation. The 

graph has extensions that allow some kinds of nodes to maintain and update the persistent states 
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for looping and branching control structures (Abadi et al., 2016). The edges between the nodes 

have so called control dependencies. These control dependencies require that the source node must 

finish executing before the destination node starts executing for the same data. 

The math operations in TensorFlow have names to represent the computation we want to 

implement in the model (e.g., “add”, “multiply”, etc.) to make it easier to deal with tensors in 

multi-dimensional arrays (Abadi et al., 2016).  

Figure 1.1 shows a TensorFlow graph that performs computation on the inputs using nodes that 

represent the operations and a TensorFlow graph using edges that describe tensors that get 

transferred between the nodes. At the end of the computation, the ReLu function is used to produce 

the final result. ReLU is a type of activation function. ReLU stands for the rectified linear unit, 

which is a linear unit for all positive values, and zero for all negative values. It is defined as y = 

max (0, x) in Mathematics. ReLU is the most commonly used activation function in neural 

networks, ReLU is usually a good first choice (Danqing Liu, 2017). 
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Figure 1-1 A directed graph is describing a TensorFlow computation. 

 

To execute the computations in TensorFlow, shown in Figure 1.1, the Graph is considered as a 

Session. w, x, and b are tensors over the edges of this graph. MatMul is an operation over the 

tensors w and x; after that, Add is called and adds the result of the previous operator with b.  At 

the end of the computation, the ReLu or any one of the other activation functions is used to produce 

the wanted result. (Ravi Ranjan Singh, 2020).  

TensorFlow works as follows (see Figure 1.2): First, a Session is created to write arguments. Next, 

the Run interface is called to compute the output that we want to find. In machine learning, the 

parameters of the model are stored in tensors held in variables and updated as part of Run for the 
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model. By using Sessions and Variables, and then calling Run; each node can be updated. Beyond 

that, training is accomplished by calling Run thousands or millions of times (Goldsborough, 2016). 

1. graph = tf.Graph() 
2. with graph.as_default() as g: 
3.    w1 = tf.Variable(np.array([1,2], dtype = np.float32)) 
4.    w2 = tf.Variable(np.array([2,2], dtype = np.float32)) 
5.   
6.    wx = tf.multiply(w1, w2)  
7.    initialize = tf.global_variables_initializer() 
8.   
9. with tf.Session(graph=graph) as sess: 
10.    sess.run(initialize) 
11.    wx_v= sess.run([wx]) 
12.   print(wx_v) 

 

Figure 1-2 An example of creating a Session to write arguments and calling the Run interface to 

compute the wanted output (tutorialexample.com, 2020). 

 

 Google Brain released the first version of TensorFlow 1.0 in November 2015 (Aurélien, 2017). 

At that time, TensorFlow was often seen by beginners and experts alike as exhausting code because 

TensorFlow logic code was vastly different from that of other libraries. At the same time, there 

were many high-level packages such as Pytorch and Keras that became more popular than 

TensorFlow. TensorFlow and Keras were both open-source libraries for artificial intelligence 

applications in 2017. Later, Keras was integrated into TensorFlow, and even after this integration, 

TensorFlow was losing popularity. After that, Google released the version of TensorFlow 2.0 on 

September 30th, 2019, and it has been the point of focus for the machine learning and data science 
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experts since then. TensorFlow quickly became the most popular open-source machine learning 

library worldwide (Singh et al., 2020) (TensorFlow.org, 2015). 

TensorFlow 2.0 is an updated version of TensorFlow that has been released with a focus on ease 

of use, simple syntax writing, and higher productivity for developers. The development of deep 

learning applications became easier with TensorFlow 2.0 because of the updated features such as 

tight integration of Keras, default eager execution, and Python function execution to make the 

working of developing applications more familiar to python users (Silaparasetty, 2020). Also, the 

TensorFlow team modified the Application Programming Interface (API) for the TensorFlow 2.0. 

All operations that are used internally can be exported, such as variables and checkpoints. TF1.0 

is demanded to build manually an abstract syntax tree (the graph) together by making (tf.*)  calls. 

Then manually compile the graph by passing a set of output tensors and input tensors to a 

session.run call. TF2 executes eagerly which means it can immediately execute Tensors and 

Operations. TF2 makes graphs and sessions feel like implementation details. There is no need to 

do a session.run call in TensorFlow 2.0 because it is deleting all graphs - sessions code and writing 

TensorFlow code like a simple Python code. All these made it easy for users to get started with 

TensorFlow. The experts and even the beginners can execute the deep learning models with this 

latest version of TensorFlow (Singh et al., 2020) (TensorFlow.org, 2015).  

An example of the difference in code syntax between TensorFlow 1.0 and TensorFlow 2.0 is 

shown below in Figure (1-3). 

TensorFlow 1.0 code Simplified TensorFlow 2.0 code  
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# Graph generation 
tf_a = tf.placeholder(dtype=tf.float32) 
tf_b = tf.placeholder(dtype=tf.float32) 
tf_c = tf.add(tf_a, tf.math.multiply(tf_b, 2.0)) 
 
# Execution 
with tf.Session() as sess: 
    c = sess.run(tf_c, feed_dict={tf_a: 5.0, tf_b: 2.0}) 
    print(c)  

a = tf.constant(5.0) 
b = tf.constant(3.0) 
c = tf_a + (tf_b * 2.0) 
print(c.numpy()) 

 

Figure 1-3 An example of the difference in code syntax between TensorFlow 1.0 and TensorFlow 

2.0 (stackoverflow.com, 2020). 

 

This thesis investigates the performance of a deep learning model on different hardware 

configurations. The model was a classification model for a big dataset of images. The interface 

TensorFlow was used to build the model and to distribute the model to run it in parallel on a 

specific hardware. Then, there is a discussion of the results of the running time for the parallelized 

model for the various hardware tested. After the discussion of the results, the comparison is done 

for running the model on Multi GPUs and Multi CPUs with TensorFlow and a large dataset. The 

goal of the comparison is to find the best and fastest hardware to run deep learning or machine 

learning models, especially when a large dataset is used with the model. The work is organized as 

an introductory chapter and then four additional chapters. Chapter Two discusses the related work 

for this thesis and the contribution of this work. Chapter Three talks about the details of the 

important steps for this work and the experimental setup of hardwares and softwares that have 

been used to accomplish the work. Chapter Four shows the results that were gotten from finishing 

the experiments. The results consist of plots and tables for recorded running time and for the 

calculated speedup to measure the performance. Chapter Five includes the conclusions and future 

recommendations. 
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2. CHAPTER TWO: RELATED WORK 

 2.1 Parallel Implementation of Neural Network Models on GPUS: 

Ryan J. Meuth, Donald C. Wunsch II University of Missouri-Rolla showed that the 

performance of implementations of neural network algorithms could be higher or lower on 

graphics processing units as compared to a CPU. They showed that it is important to know 

the strengths and limitations of the GPU and to develop algorithms targeted to the GPU in a 

way that exploits GPU capabilities (Meuth et al., 2007).  

2.2 Parallel Computing Using TensorFlow for Artificial Intelligence Models 
on GPU: 

Adie et al. showed that using TensorFlow with GPUs could speed up the running time of the image 

processing models. Also, using TensorFlow could simplify the code significantly because of 

standard libraries that handle typical operations. Using TensorFlow to build a model could also 

simplify migration between CPUs or GPUs since the same code can be compiled for either. (Adie, 

2018). 

2.3 The Evaluation of The TensorFlow Model on GPU And CPU. 

 K V Sai Sundar et al. showed a comparison of training time by using GPUs and CPUs to evaluate 

the training time of the TensorFlow model. They noticed higher performance with an increasing 

number of iterations and/or deeper networks for GPUs vs. CPUs. Although sometimes it is possible 

to use an existing partially trained model, at other times, the training begins from scratch.  K V Sai 

Sundar et al. noticed that because of the high number of training iterations required when training 

from scratch, it could be important to use GPUs to train the model from scratch because the 

difference in speed can have a  large impact on training time. Using the GPUs gave better 
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performance when completing the computations for these numbers of iteration. (Sundar et al., 

2018). 

The following figure (Figure 2.1) shows the procedure of the computation of deep neural 

networks to find the output classification by extracting features from inputs to arrive at 

probabilities for various classes through softmax function “The softmax function is used in various 

multiclass classification methods, such as multinomial logistic regression” (en.wikipedia.org, 

2021) or any other classifier functions “ The activation function is an integral part of a neural 

network. The activation function is used in the final layer of a neural network-based classifier. 

Without an activation function, a neural network is a simple linear regression model. This means 

the activation function gives non-linearity to the neural network.” (Shipra Saxena, 2021). 

 

Figure 2-1 The procedure of computation of neural networks (Sundar et al., 2018). 
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2.4 The Performance Comparison of TensorFlow when Using CPU And 
GPU:  

Eric Lind and Ävelin Patnigoso compared the performance of TensorFlow when using CPU 

and GPU. They noticed that the performance of TensorFlow depends significantly on the CPU 

for a small-size dataset. Also, they found it is more important to use a graphic processing unit 

(GPU) when training a large-size dataset. Furthermore, the CPU and GPU comparison results 

were enough to show that when a complex neural network is being trained with TensorFlow, 

the performance is enhanced by using GPU parallelizing power.  (Lind et al., 2019).  

2.5 Clustering Computation of A Big Dataset Using Multi CPUs And Multi 
GPUs: 

 Widiarto Adiyoso et al. investigated the clustering of big data using multi-CPUs and multi-GPUs. 

They analyzed the performance when using Spark as a baseline for multi-CPU big data clustering 

and TensorFlow as a baseline for multi-GPU big data clustering. Spark is a framework that is used 

for distributing the processing of the models. Spark uses the MapReduce framework to solve 

problems related to big data and its processing (MA Raza, 2020). The experiment showed that 

TensorFlow performs in a range of five to twelve times faster in computation than Spark. 

TensorFlow supports CPU and GPU computation. Ideally, a high-end GPU is required to fully 

utilize the performance of TensorFlow. So the recommended implementation of TensorFlow with 

a high-end GPU contained a high-performance computing (HPC) node. (Adiyoso et al., 2018). 

 The experiment showed that the bigger the cluster, the greater performance speedup can be 

achieved by TensorFlow so that it can be a good package for big dataset computation research. 
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The following figure (Figure 2.2) shows the three important steps in the framework for big data 

management. The three steps are: obtain the dataset from sources, cluster the dataset using the 

clustering methods, and lastly having the clusters as the application of the processed dataset.  

 

 

Figure 2-2 Big data clustering by using Spark method for (CPU-cluster) and TensorFlow 

method for (GPU-cluster) (Adiyoso et al., 2018). 

 

2.6 Contribution of This Thesis: 

This work was inspired by the previous work mentioned. It builds on the previous work in several 

ways. A goal of this work is to do a comparison between running the machine learning model for 

a big dataset by using TensorFlow distribution for parallelizing the computation on GPU clusters 

vs. TensorFlow multi-workers for parallelizing the computation on CPU clusters. This work also 

uses TensorFlow 2.0, which is faster and easier with coding than TensorFlow 1.0. 
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3.  CHAPTER THREE TENSORFLOW FOR MULTI GPUS AND MULTI 

CPUS  

3.1 Introduction  

 Machine learning and deep learning architectures often have millions of parameters to be learned 

during the training. When training a model from scratch on a specific dataset, one needs to look at 

the performance of the architectures on this dataset (Sharma, 2014). It is also important to analyze 

the hardware conditions that affect the performance of the Deep Learning computation (Lopes, 

2010).  

This work focuses on three things: 

3.1.1 Model for training on the large dataset: 

Training on a large dataset takes a very long time to achieve a high percentage of accuracy. 

Training may take weeks of computer time, especially when using older versions of the 

TensorFlow and Keras packages. This work focused on making a comparison between a 

distributed training model on CPU versus GPU. This model classifies an image dataset by 

extracting the features (kaggle.com/shayanriyaz, 2019), learning about various classes using the 

Conv2D model for training, and giving the probability of the outputs through the SoftMax function 

(Sundar et al.,2018). The mini-batch size was used for the distribution of the data (Wang, 2020). 

Strategy scoop provided by TensorFlow was used for the distribution of the model. Strategy scoop 

is part of TensorFlow 2.0 Distribution strategies. It helps distribute training across multiple GPUs 

or multiple machines with minimal code changes (TensorFlow.org, 2015). 
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Figure 3.1 represents the model distribution of the modern Deep Learning systems that train deep 

neural networks and the data distribution, which also can be executed in parallel. They both can 

be suitable for multi-threaded execution on CPUs and multi-stream models on GPUs (Wang, 

2020). 

 

Figure 3-1 Data distribution and model distribution (Wang, 2020). 

 

3.1.2 CPU vs. GPU: 

TensorFlow was the framework used to distribute the implementation of the classification model 

with a few changes for the code (Abadi M, 2016). 

The model was run in parallel on multiple cores or multiple GPU devices. Thus, the runs depended 

on how many cores or GPU devices were requested from the clusters and they would be suitable 

for parallel implementation (Adie, 2018). 



14 
 

The multiple CPUs would make the training faster, but there is one constraint when the training 

happens on multiple GPUs. Choosing the batch size of the training data depends on the memory 

size of the GPUs. So, the memory size of the GPUs should be considered before training the model 

(Sundar et al., 2018). 

3.1.3 The framework TensorFlow: 

This work uses TensorFlow libraries for deep learning to train the model and for TensorFlow 

distribution to achieve parallel model computation. TensorFlow is a deep learning platform that 

Google developed, and the Python programming language supports it. It is an open-source library, 

commonly used in deep learning implementations, and supports distributed computations on CPU 

and GPU clusters. It also can do the automatic parallel computation code for the easy way of 

multiple threading (Geron Aurelien, 2017). 

In order to use GPU processing, TensorFlow needs the CUDA drivers to be installed. Other 

software requirements to be provided include the CUDA toolkit, CUPTI, and cuDNN SDK so 

TensorFlow can run on single or multiple GPUs (TensorFlow.org, 2015). 

3.2 Experimental Setup 

Computational resources at the University of Vermont were used for the runs described in this 

thesis.  It used a cluster called DeepGreen for the GPU runs, and a cluster called Bluemoon for the 

CPU runs. A necessary first step was creating an account for these systems without being a student 

or faculty member at the University of Vermont.  We worked closely with staff at the University 

of Vermont Advanced Computing Core to work through these issues.  
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 3.2.1 Hardware: 

The hardware used in this project consists of a laptop connected to the Internet. This is used to 

login into two types of clusters. The first one is called DeepGreen see Figure 3.2, which is a highly 

parallel cluster commissioned in Summer 2019, that is the most recent artificial intelligence 

supercomputer in the University of Vermont with 80 GPUs capable of over eight petaflops of 

mixed-precision calculations based on the NVIDIA Tesla V100 architecture. Its hybrid design can 

accelerate high throughput artificial intelligence and machine learning computations, and its 

widespread parallelism can model new and transformative research pipelines (VACC, 2019). The 

hardware components of this cluster are: 

1.  10 GPU nodes (Penguin Relion XE4118GTS) each with: 

 2 Intel(R) Xeon (R) Gold 6130 CPU @ 2.10GHz (2x 16 cores, 22M cache). 

 768GB RAM (256GB for GPFS pagepool). 

 8 NVIDIA Tesla V100s with 32GB RAM. 

 4 2-lane HDR (100Gb/s, so 400Gb/s/node) Infiniband links to QM8700 

switch. 

 NVMe nodes, each with 64TB NVMe devices (8x8TB), replicated to 

provide a 64TB / gpfs3 filesystem. 

2. Mellanox QM8700 switch running at HDR speed. 
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Figure 3-2 DeepGreen cluster 

 

Additionally, this research uses a second cluster called BlueMoon see figure 3.3, which is 

a 300 node, 4004 core, high-performance computing system modeled after national 

supercomputing centers (VACC, 2019); it supports large-scale computation, large memory 
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systems, low-latency networking for MPI loads, and high-performance for parallel files 

(VACC, 2019). This cluster is also in the University of Vermont for parallel computation. 

The hardware components of this cluster are: 

1. Thirty-two dual-processor, 12-core (Intel E5-2650 v4) Dell PowerEdge R430 nodes. 

2. Eight dual-processor, 12-core (Intel E5-2650 v4) Dell PowerEdge R430 nodes. 

3. Nine dual-processors, 20 cores (Intel 6230), PowerEdge R440. 

4. Three dual-processor, 10-core (Intel E5-2650 v3) Dell PowerEdge R630 nodes. 

5. 130 dual-processor, 6-core (Intel X5650) IBM dx360m3 nodes. 

6. Infiniband: 8 dual-processor, 160-core (Intel E5-2650 v3) Dell PowerEdge R630 nodes. 

7. Infiniband: 32 dual-processor, 640-core (Intel E5-2650 v3) Dell PowerEdge R630 nodes. 

8. Infiniband: 22 dual-processor, 252-core (Intel E5-2630) IBM dx360m4 nodes. 

9. 2 dual-processor, 12-core (Intel E5-2650 v4) Dell R730, with 1TB 

10. 1 dual-processor, 8-core (Intel E7-8837) IBM x3690 x5, with 512GB 

11. 2 dual-processor, 12-core (Intel E5-2650 v4) Dell R730 GPU nodes, each with 2 NVidia Tesla 

P100 GPUs. (Each GPU has 3584 CUDA cores and 16GB RAM). 

12. 2 Flash-storage GPFS Metadata nodes (IBM x3655s, 10G Ethernet connected). 

13. 2 I/O nodes (Dell R430s, 10G ethernet connected) along with 2 I/O nodes (IBM x3655s, 10G 

ethernet connected) connected to: 
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 1 IBM DS4800 providing 260 terabytes of raw storage to GPFS (roughly 197TB usable) 

 1 IBM DS4700 providing 104 terabytes of raw storage (roughly 76TB usable) 

 1 IBM DCS3850 providing 240 terabytes of raw storage to GPFS (roughly 164TB usable) 

 1 Dell MD3460 providing 357.5 terabytes of raw storage to GPFS (roughly 260.5TB 

usable), and 43 terabytes of the solid-state disk to GPFS (for fast random-access data and 

metadata, roughly 27.5 TB usable) 

 1 IBM V3700 providing ten terabytes of the solid-state disk to GPFS (for fast random- 

access data and metadata) 

 

 

Figure 3-3 BlueMoon cluster 
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 3.2.2 Software: 

 The clusters have the following software:  

3.2.2.1 DeepGreen Software: 

 Operating System: RedHat Enterprise Linux 7 (64-bit) with the GNU compilers (gcc, f77). 

  Resources Manager: Slurm v19. 

  Package Manager: Spack v0.11 

3.2.2.2 Bluemoon Software: 

 Operating System: RedHat Enterprise Linux 7 (64-bit) with the GNU compilers (gcc, f77). 

 Resources Manager: Slurm v20. 

  Package Manager: Spack v0.11.  

3.2.2.3 MiniConda: 

Miniconda is a free minimal installer for Conda. It is a small, bootstrap version of Anaconda that 

includes Conda. Miniconda has the core Python language, a package manager tool (Conda), and 

the packages the Conda and Python depend on (Anaconda.com, 2017). “Anaconda is an open-

source python distribution. It is purpose-built for such applications as machine learning, data 

science, and large-scale data processing” (linuxnetmag.com, 2021). Conda is an environment 

manager and installer for the Conda packages on the platform (linuxnetmag.com, 2021). 

Miniconda offers all the benefits that can be obtained, like using the Anaconda with minimal space 

requirements. We downloaded the Linux 64 version with Python 3.9 on a personal laptop that has 

the Windows operating system; then, it was moved to account on the cluster by using the WinScp 

application (winscp.net, 2014). After MiniConda was moved to the directory, it got installed on 

the cluster, which is working with Linux. 
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The MiniConda program can read and use the Python files that have the extension (.py ). However, 

MiniConda cannot read or use the Python files that have an extension (.ipynb). This means that it 

can only read Python files, not the Jupyter NoteBook Python files. This is another difference 

between the MiniConda and Anaconda. 

3.2.2.4 Use SSH client to connect to the cluster: 

To be able to log in to the cluster from the Windows computer, the SSH client application terminal 

was needed. The SSH is used to write the commands for login into the cluster see figure (3.5). 

After logging in, the command line continued in the same terminal by using a text editor. Nano 

text editor was used for writing the Python files and also for writing the batch files. The batch files 

are Slurm scripts for submitting the job to be running in the cluster (VACC, 2019). 

 3.2.2.5 Install (WinSCP): 

The WinSCP application is installed on a computer with Windows operating system. WinSCP 

requires the same login credentials as the cluster. WinSCP is used to move files from the local 

computer to the remote supercomputer's directory see Figure (3.4) (winscp.net, 2014). These files 

are important for this work to be moved from and into the cluster. These files were moved from 

the computer into the clusters: the MiniConda and the dataset are used on the cluster. Finally, the 

data and results from this work were moved from the clusters into the local laptop computer. 
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Figure 3-4 Using the WinScp application to move files forth and back between the local 

computer to the remote supercomputer’s directory 
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3.2.2.6 Create three Environments of TensorFlow: 

 When the MiniConda software package was installed on the cluster directory, it had the base 

environment that pointed to the original Python software package. It was necessary to create two 

additional TensorFlow environments. One environment is the TensorFlow environment to do the 

computation on the CPU cluster. The other environment is the TensorFlow-GPU environment to 

do the computation on the GPU cluster. 

All three environments were needed for the packages and Python libraries to be installed before 

running any job. 

The following figure (Figure 3.5) shows a screenshot of the SSH terminal and how to use the 

University of Vermont account to log in to the clusters; first, the login has to be to BlueMoon 

(CPU-cluster) by using the command contains Vermont account, and all three environments could 

be used in this cluster by activating any one of them to work with. The login to DeepGreen 

(GPU_cluster) can happen after the log into BlueMoon (CPU-cluster) by using different command 

contains the name of the cluster and directory name that is used in the BlueMoon (CPU-cluster). 

After this, any TensorFlow environment can be activated.  
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Figure 3-5 Using the SSH application terminal to log in the cluster (CPU-cluster) and (GPU-

cluster) and shows how to change TensorFlow environments 
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3.2.2.7 Using a Slurm script to submit a job: 

The batch system which is used in both clusters is Slurm (VACC, 2019). Jobs are submitted by 

running Slurm scripts that specify the necessary parameters for the system. It is a free and open-

source scheduler to submit the jobs that need to be run on clusters. The job script can be created 

using any text editor, and for this work, the Nano editor was used for writing the Slurm commands. 

The commands used in each cluster are mostly the same, but there are a few differences in 

requesting the resources for running the jobs; the Slurm script for running jobs on DeepGreen 

(GPU) cluster requires to request the numbers of GPU and requires adding the CUDA path to this 

script. These numbers of GPUs can be used to parallelize the computation of the job and the CUDA 

path to enable the computation to be performed by GPUs. 
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Slurm script for GPU_cluster (DeepGreen) Slurm script for CPU_cluster (BlueMoon) 

#!/bin/bash 
#SBATCH --partition=dggpu 
# Request nodes 
#SBATCH --nodes=1 
# Request some processor cores 
#SBATCH --ntasks=4 
#SBATCH --mem=12G 
#SBATCH --time=01:00 
# use YOUR job name 
#SBATCH --job-name=first_test_tf 
# use YOUR email address 
#SBATCH --mail-
user=intisar.alkaabawi@maine.edu 
#SBATCH --mail-type=ALL 
# loads CUDA 
export PATH=${PATH}:/gpfs3/arch/x86_64-
rhel7/cuda-10.0/bin 
export 
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/g
pfs3/arch/x86_64-rhel7/cuda-10.0/lib64 
# provide YOUR python filename 
python test2.py  

#!/bin/bash 
#SBATCH --partition=bluemoon 
#SBATCH --nodes=1 
#SBATCH --ntasks=2 
#SBATCH --mem=12G 
#SBATCH --time=01:00 
# use YOUR job name 
#SBATCH --job-name=job_name 
# use YOUR email address 
#SBATCH --mail-user=ktoksu@uvm.edu 
#SBATCH --mail-type=ALL 
# provide YOUR python filename 
python test2.py  

 

Figure 3-6 Sample slurm script 

 

3.2.2.8 Download the dataset and move it to the cluster: 

The dataset used in this thesis is Rice Leaf’s dataset. The dataset was found on the Kaggle website. 

The size of Rice Leaf’s dataset is 7.49 GB of images; the dataset has two directories called train 

directory and validation directory. Inside each directory are four categories they are BrownSpot, 
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Healthy, Hispa, and LeafBlast these names denote that the rice leaf either is healthy or has one of 

the other three diseases. The total images for the training set are 2684 files, and the total images 

for the validation set are 671 files. The machine learning model for this dataset is doing the 

classification model for the images of the rice leaves. The output for this classification is one of 

these four categories. Figure 3.7 shows some representative images from the dataset. 

First, the dataset was downloaded to the Windows computer and extracted. The time for download 

and extract over one hour. Then the dataset was moved to the cluster directory by using the WinScp 

application so it could be used in the model to do the classification. The time for moving the data 

to the cluster directory took almost two hours.  



27 
 

 

Figure 3-7 The Rice Leaves classification for four categories 

 

3.2.2.9 Download the Anaconda and Jupyter Notebook on a PC: 

 A personal computer was used to download the Anaconda software and TensorFlow environment. 

Jupyter NoteBook in this environment was used for plotting the data that was gotten from training 

the model and viewing the images of the dataset. Using this environment was necessary because 

the cluster has a terminal interface, and it does not show any images. 
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3.3 Conclusion 

All hardware and software mentioned above were used to achieve the work. The results for the run 

time were recorded by the clusters when the slurm scripts were submitted to run the code. The 

results were sent to the email address that was added to the slurm scripts. After collecting these 

results, they were saved in excel sheets so they could be used for plotting or calculating the 

speedup. The other results of running the model such as the accuracy function and loss function 

for both training and test datasets.  

The loss function is a measurement of the difference between the actual output and the predicted 

output.  The loss value is a number indicating how bad or good the model's prediction was on the 

trained example.  The model's prediction is good as long as the loss is small; otherwise, the model’s 

prediction is worse the larger the loss (developers.google.com, 2020). The accuracy and loss 

functions for both training and test datasets were obtained through the epochs of training the model 

and were saved in a csv file. One epoch has been completed when the algorithm has seen all 

samples in the dataset (androidkt.com, 2021). 

The csv files were stored in the directory of the user’s account on the cluster, and the files can be 

moved from the directory into the laptop by using the WinScp application. When the csv files were 

moved to the laptop, the Jupyter Notebook was used to run a python code to show plots of the 

accuracy and loss functions for training and test datasets.    
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4. CHAPTER FOUR: RESULTS  

In this chapter, results from running the neural network models on the clusters are presented. These 

results include the time to run the model when it was running on different numbers of processors 

for a different number of batch sizes for the image dataset, and the time for implement the model 

when it was running on different numbers of processors with different numbers of Graphics 

Processing Units for the same batch sizes for the image dataset. Batch size is a term used in 

machine learning and refers to the number of samples that will be passed through to the network 

at one time (androidkt.com, 2021). 

The results are presented in tables of running times, tables of speedup results, plots of time 

comparisons and speedup, and plots for the model classification results, which are the accuracy 

and loss values of training dataset and validation dataset. 

4.1 Execution time on multiple CPUs with multiple batch sizes: 

In this section, the execution time results are presented. The execution time is the time measured 

by using TensorFlow multi worker distribution for training the neural network model. The results 

consist of plots of the comparison of execution time on different numbers of CPUs. For each 

number of CPUs (two, four, and eight), the results contain running the model with a different 

number of batch sizes of the dataset. Time is measured in seconds in all plots.  
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Figure 4-1The Execution Time of multiple CPUs for four batch sizes 

  

Figure 4.1 above shows the time for running the neural network model on the CPUs cluster. The 

time is measured in seconds. Four batch sizes were used to run the model with three different 

numbers of CPUs on the cluster, two, four, and eight. One can see that each time the number of 

CPUs increases, the performance time is faster. The performance is a little faster for the same batch 

size when the CPUs number increases. But when the batch size is large, like 256, the performance 

is a lot faster when the CPUs number is increased. When the batch size is too large, it may not fit 

in the memory of the computer request used for the training.    
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4.2 Execution time on MULTIPLE CPUs with multiple GPUs for the same 
batch sizes: 

 

 

Figure 4-2 The Execution Time of two CPUs with multiple numbers of GPUs for four batch sizes 

 

Figure 4.2 shows the time taken to run the same model while requesting two processors with three 

different numbers of GPUs on the cluster. For the 32-batch size, the performance was almost the 

same with or without requesting the GPUs. Each time the calculation of requesting more devices 

made the performance faster, but at the same time, the distribution time made the run time slower. 

So, when the batch size is small, the performance does not become so much faster because of the 

time spent on sharing the data on many devices. The performance is better when increasing the 

number of GPUs every time the batch size becomes larger because the batch size is too large to fit 

in the memory when the distribution happens on a few devices. For a large batch size, more 

memory location is needed to fit all the samples from the training dataset. 
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Figure 4-3 The Execution Time of four CPUs with multiple numbers of GPUs for four batch sizes 

 

Figure 4.3 shows the time taken to run the model while requesting four processors with three 

different numbers of GPUs on the cluster. For all the batch sizes, the performance was faster when 

requesting the GPUs with four processors. We can see the time difference when running the model 

with just the four processors and when running the model with GPUs beside the four processors. 

But there is some slow performance when increasing the number of GPUs that were requested 

from the cluster. The slower performance is repeatable; that is, it was observed in multiple runs. It 

is not completely clear why the GPU4 times did not follow the general trend of the others. 

The performance is better when increasing the number of GPUs every time the batch size becomes 

bigger because the bigger batch size needs more memory locations, so more devices mean more 

memory available.  
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Figure 4-4 The Execution Time of eight CPUs with multiple numbers of GPUs for four batch 

sizes 

 

Figure 4.4 shows the time spent to run the model when requesting eight processors. These eight 

processors were running the model each time, requesting a different number of GPUs on the 

cluster, two, four, and eight. Four different numbers of batch sizes were used to run the model with 

these three numbers of GPU and eight processors. In general, the performance was faster when 

requesting the GPUs with eight processors. The performance is unlike for all four batch sizes when 

increasing the number of GPUs.  For the large batch size, more devices provide more memory to 

make all training samples fit at the same time to do a faster computation of the model distributed 

on many devices that work in parallel, so the computation time is faster than the time spent on the 

distribution and communication between the devices and the purpose of this work is to find a less 

run time to make the performance better.  The bulk of the processing is done on the GPU devices, 
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and thus one would expect performance to improve as more GPUs are added.  Also, the function 

of the CPU(s) in these calculations is to distribute data to the GPU devices and collect the 

results.  Having multiple CPUs can make this process faster.  In running this code, there was no 

ability to control which CPUs in a multi-core processor or which GPUs in a multi-GPU machine 

were used.  This could account for some of the variability seen. 

4.3 Speedup for multiple CPUs and CPUs with multiple GPUs for the same 
batch sizes: 

This section contains plots of the speedup calculation for training the parallel model on different 

types and numbers of hardware. The speedup is calculated as the execution time when the model 

runs before increasing the number of devices divided by the execution time when the model runs 

after increasing the number of devices (Gelenbe, 1988). The speedup plots can help to make the 

comparison between the different hardware. The comparison leads to choosing which hardware 

would be faster to train the neural networks model.  
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Figure 4-5 The Speedup of the distribution of multiple CPUs for four batch sizes 

Figure 4.5 shows the speedup of the model distribution on multiple CPUs for four different 

numbers of batch sizes. The speedup is a little higher for the small batch sizes when the CPUs 

number is increased but, when the batch size is big, like 256, the speedup is much higher when the 

CPUs number is increased for more distribution. Also, the speedup is higher every time the batch 

size is bigger when the running happens on the same number of processors and when fewer 

processors are requested to run the model. In another way, when the batch size is 256, or bigger 

and more processors are requested, the speedup becomes much higher because fewer processors 

have the lack the memory to compute a large number of samples at the same time on a few 

processors. The bigger batch size needs distribution on more processors for higher speedup.     
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Figure 4-6 The Speedup of the distribution of two CPUs with multiple numbers of GPUs for four 

batch sizes 

 

Figure 4.6 showed the speedup when the model was running on two CPUs then requesting three 

different numbers of GPUs for four batch sizes. We can see the results are close to the previous 

figure. The speedup is higher every time the batch size is bigger when the running happens on the 

same number of processors. Also, the speedup is generally higher when more GPUs are requested 

to run the model. Similarly, using a bigger batch size when requesting more GPUs to distribute the 

model generally leads to higher speedup. 
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Figure 4-7 The Speedup of the distribution of four CPUs with multiple numbers of GPUs for four 

batch sizes 

 

Figure 4.7 showed the speedup when the model was running on four CPUs, each run with a 

different number of GPUs, for four batch sizes. When four GPUs were requested, the speedup was 

a little higher and the running time with four GPUs was close to the running time without the four 

GPUs. On the other hand, When two and eight GPUs were requested the speedup was much higher 

than the speedup without requesting the GPUs. As was mentioned previously, the behavior when 

using four GPUs did not fit the expected trend. We can see the performance for running the model 

with requesting eight GPUs, and the batch size was 64 is the same performance for running the 

model without requesting eight GPUs.  This was verified with multiple runs. 
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Figure 4-8 The Speedup of the distribution of eight CPUs with multiple numbers of GPUs for 

four batch sizes 

 

Figure 4.8 showed the speedup when the model was run on eight CPUs each run with a different 

number of GPUs for four batch sizes. Running the model on 8 CPUs was relatively fast compared 

to the GPUs, and so the speedup values were relatively close to 1 for all numbers of GPUs except 

for large batch sizes when the GPUs outperformed the CPUs.  
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Figure 4-9 The speedup is calculated as the execution time when the model runs eight CPUs 

divided by the execution time when the model runs on eight CPUs with eight GPUs for the first 

value in this figure.  The speedup is calculated as the execution time when the 

 

Figure 4.9 shows the comparison speedup between when the model was running on eight CPUs 

with eight GPUs for one batch size and when the model was running on one CPU with eight GPUs 

for the same batch size. Figure 4.8 showed that the speedup was higher when eight GPUs were 

requested than the speedup without requesting the GPUs. But The enhancement is better when the 

model runs on one CPU with eight GPUs.  Although more distribution should make the speedup 

higher, in this case, the time spent on the distribution, or the processor can run a smaller number 

of devices at a higher clock rate than more number of devices makes the run time slower. So, 

reducing the number of processors with increasing the number of GPUs is the best result that is 

obtained from running this model on the clusters. 
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4.4 Results of Accuracy and loss functions for training and validation 
datasets: 

The results of this section are shown in Figure 4.10 and Figure 4.11. Figure 4.10 shows the 

accuracy function values for the training dataset and the validation dataset through the epoch steps 

of building the parallel model. The accuracy is a method for measuring a classification model’s 

performance. It is the percentage count of predictions where the predicted value equals the true 

value. In figure 4.10, the accuracy for the training dataset comes out to 0.98 (98 correct predictions 

out of 100 total examples), which means the classifier model is doing great. While the accuracy 

for the validation dataset comes out to 0.70, that means the classifier model is still a good accuracy 

percentage, and the model makes a good prediction.  

 Figure 4.11 shows the loss function values for the training dataset and the validation dataset 

through the same epoch steps. The categorical cross entropy loss function is used to compute loss 

values between true labels and predicted labels for this model because it's mainly used for 

multiclass classification problems. This function evaluates how good our model is performing by 

comparing what the model is predicting with the actual output value. Loss function is the value of 

the difference between the actual output and the predicted output. It is the count of the probabilities 

or uncertainty of a prediction based on how much the prediction varies from the true value. The 

model's prediction is good as long as the loss is less; otherwise, the model's prediction becomes 

worse when the loss is greater. If output-pred is very far off from real output, the Loss value will 

be very high. As seen in figure 4.11, the loss curve of the training dataset is going very low, which 

means the prediction for the training is very good. The loss curve of the validation dataset starts 

with high values, then during the epochs continue running the curve becomes low until it reaches 
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almost close to the curve of loss values of the training dataset, which means the prediction for the 

validation is becomes better through increasing the epochs, and the model is learning.  

 
 

Figure 4-10 The accuracy function values for the training dataset vs. the validation dataset 

 

 

Figure 4-11 The loss function values for the training dataset vs. the validation dataset 
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4.5 Results of running time and Speedup for the same dataset on different 
devices: 

This section discusses the running time for different models which run on different devices. All 

these models are to classify the same dataset. There are six values of running time in this section. 

The first value is the time to run a model using the TF 1.0 on a laptop with no accelerator. The 

second value is the time to run a model using the TF 1.0 on a laptop with a GPU accelerator. The 

third value is the time to run a model using the TF 1.0 on a GPU cluster. The fourth value is the 

time to run a model using the TF 2.0 on a GPU cluster. The fifth value is the time to run a model 

using the TF 1.0 on a TPU cluster. The third value is the time to run a model using the TF 2.0 on a 

TPU cluster. Tensor Processing Unit (TPU) is an application-specific integrated circuit to 

accelerate the AI calculations and algorithm (TensorFlow projects). TPUs are usually Cloud 

platform workers, but they can be a smaller version of the chip (TensorFlow.org, 2015). 

 See figure (4.12) shows the values of run time measured by seconds. Figure (4.13) shows the 

calculated speedup depending on the speedup is the old run time divided by the new run time. The 

first value in figure 4.12 is considered as the old runtime, and other values are considered as the 

new runtime to calculate the speed up for them see figure 4.13.  Figure 4.14 and figure 4.15 show 

the plotting chart of the comparison time of the values in figure 4.12 and the comparison speedup 

of the values in figure 4.13. 

 

Figure 4-12 The time results when running the model for training the same dataset on different 

devices 
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Figure 4-13 The speedup results when running the model for training the same dataset on 

different devices 

 

 

Figure 4-14 Plot shows the run time comparison when running the model on different devices 
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Figure 4-15 Plotting the speedup comparison when running the model on different devices 

 

4.6 Summary: 

This section provides an overall summary of the results of this work. As seen at the beginning of 

this chapter, when distributing the model on multiple processors on the cluster, the performance 

was generally faster.  A larger batch size with multiple processors improves the performance even 

more. Besides the fast performance on multiprocessors, adding increasing numbers of GPUs for 

more distribution made the performance even better. There were several slow results when more 

GPUs were added, which was unexpected but repeatable.  The accuracy was high, and the loss 

value was low for the training dataset and a reasonable percentage for the validation dataset. The 

timing results with TensorFlow 2.0 are much better when the model runs on CPU clusters and/or 

GPU clusters than when the model runs on a laptop with or without an accelerator.  The results are 
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also much better than can be obtained with TensorFlow 1.0.  Also, the results of the performance 

are the best when the model runs on Tensor Processing Unit (TPU) clusters with TensorFlow 1.0 

and TensorFlow 2.0.   
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5.CHAPTER FIVE: CONCLUSION AND FUTURE WORK  

5.1 Conclusion:  

The performance of TensorFlow definitely improved when the model was distributed and run on 

multiple processing units and/or GPUs. The parallelizing capabilities of TensorFlow, in general, 

become better for the model of a neural network of classification images with a large dataset.  This 

makes using GPUs with TensorFlow well worth the effort in most cases as faster performance will 

result. When training a model with multiple devices, increasing the batch size uses more 

computing power and thus lowers overall running time. However, the benefits of more GPUs 

become more significant when a large batch size is used, i.e., with more computation, the GPUs 

contribute more.  

The selection of the right device can make the speed up of the calculation time higher, which is 

important for machine learning and neural networks computing. 

Using the GPUs becomes not important when a small dataset has been trained with a less complex 

neural networks model because there is not a big difference in the run time with or without using 

the GPU. So, using the CPU is better in this case for a higher response of the calculation with less 

cost. Otherwise, for a large dataset with a more complex neural networks model, the calculation 

requires a parallel computation to achieve more speed up, and the higher parallel requirements 

should be calculated by the GPU. As seen in the results chapter, the use of parallel computing 

when using TensorFlow and GPUs can speed up the computational process time of image 

classification.  

The results using the TensorFlow 2.0 framework shows that the framework can simplify the code 

with its built-in function, which made it easier for interested users to work with Tensorflow to 

build machine learning models. Also, Tensorflow can ease the code syntax of parallel methods 
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without changing the code when switching from CPU to GPU. Changing the distribution syntax is 

what is required for switching from CPU to GPU parallel method, and all the rest of the code is 

still the same. 

5.2 Future Work:  

We find machine learning a very interesting and demanding field for future work.  Future work 

may include running a machine learning model on Tensor Processing Units (TPUs) that are 

available in Google cloud clusters. These work on the TensorFlow platform that is provided by 

the MATLAB Programming language and has the ability to build a machine learning 

model.  Additionally, working on more comparisons between CPU clusters and GPU clusters in 

other regards could be of interest.  For example, it would be of interest to see the effects of running 

a neural network model regarding not just the run time but also memory allocation for CPU vs. 

GPU.  Other differences in resource allocation could also be studied. 

 
 
 
 

  

  

  

 

 

 



48 
 

REFERENCES: 

[1] Abadi, Martín, et al. "Tensorflow: Large-scale machine learning on heterogeneous distributed 
systems." arXiv preprint arXiv:1603.04467 (2016). 
http://download.tensorflow.org/paper/whitepaper2015.pdf. 
 
[2] Adie, Heronimus Tresy Renata, and Ignatius Aldi Pradana. "Parallel computing accelerated 
image inpainting using gpu cuda, theano, and tensorflow." 2018 10th International Conference on 
Information Technology and Electrical Engineering (ICITEE). IEEE, 2018. https://ieeexplore-
ieee-org.wv-o-ursus-proxy02.ursus.maine.edu/document/8534858. 
 
[3] Adiyoso, Widiarto, et al. "Time performance analysis of multi-CPU and multi-GPU in big data 
clustering computation." 2018 international workshop on big data and information security 
(IWBIS). IEEE, 2018. https://ieeexplore-ieee-org.wv-o-ursus-
proxy02.ursus.maine.edu/document/8471715. 
 
[4] Aurélien, Géron. "Hands-on machine learning with scikit-learn & tensorflow." Geron Aurelien 
(2017). https://upload.houchangtech.com/pdf/Hands-on_Machine_Learning.pdf. 
 
[5] Cuomo, Salvatore, et al. "Parallel implementation of a machine learning algorithm on GPU." 
International Journal of Parallel Programming 46.5 (2018): 923-942. 
https://www.researchgate.net/publication/322149433_Parallel_Implementation_of_a_Machine_L
earning_Algorithm_on_GPU. 
 
[6] Goldsborough, Peter. "A tour of TensorFlow." arXiv preprint arXiv:1610.01178 (2016). 
https://export.arxiv.org/pdf/1610.01178. 
 
[7] Hasan, Shafaatunnur, Siti Mariyam Shamsuddin, and Noel Lopes. "Machine learning big data 
framework and analytics for big data problems." Int. J. Advance Soft Compu. Appl 6.2 (2014). 
https://www.researchgate.net/publication/272356868_Machine_Learning_Big_Data_Framework
_and_Analytics_for_Big_Data_Problems. 
 
[8] Jia, Zhihao, et al. "Exploring hidden dimensions in parallelizing convolutional neural 
networks." arXiv preprint arXiv:1802.04924 (2018). https://arxiv.org/pdf/1802.04924v1.pdf. 
 
[9] Lind, Eric, and Ävelin Pantigoso Velasquez. "A Performance Comparison between CPU and 
GPU in TensorFlow." (2019). https://www.diva-
portal.org/smash/get/diva2:1354858/FULLTEXT01.pdf. 
 
[10] Lopes, Noel, Bernardete Ribeiro, and Ricardo Quintas. "GPUMLib: a new library to 
combine machine learning algorithms with graphics processing units." 2010 10th International 
Conference on Hybrid Intelligent Systems. IEEE, 2010. 
https://www.researchgate.net/publication/224182227_GPUMLib_A_new_Library_to_combine_
Machine_Learning_algorithms_with_Graphics_Processing_Units. 
 



49 
 

[11] Meuth, Ryan J., and Donald C. Wunsch. "A survey of neural computation on graphics 
processing hardware." 2007 IEEE 22nd international symposium on intelligent control. IEEE, 
2007. 
https://web.archive.org/web/20200318115134/https://scholarsmine.mst.edu/cgi/viewcontent.cgi?
referer=&httpsredir=1&article=2404&context=ele_comeng_facwork. 
[12] Mustafa, Eslam M., Mohamed A. Elshafey, and Mohamed M. Fouad. "Enhancing the 
performance of CNN-based blind image steganalysis approach using multi-GPU TESLA P100." 
IOP Conference Series: Materials Science and Engineering. Vol. 610. No. 1. IOP Publishing, 
2019. https://www.researchgate.net/publication/344140896_Enhancing_CNN-
based_Image_Steganalysis_on_GPUs. 
 
[13] Sharma, Chetan. "Big data analytics using neural networks." (2014). 
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1366&context
=etd_projects. 
 
 [14] Silaparasetty, Nikita. "Introducing Tensorflow 2.0." Machine Learning Concepts with 
Python and the Jupyter Notebook Environment. Apress, Berkeley, CA, 2020. 191-213. Web 
Resource 
ONLINE, UM Orono Electronic Resource. 
 
[15] Singh, Pramod, and Avinash Manure. "Introduction to TensorFlow 2.0." Learn TensorFlow 
2.0. Apress, Berkeley, CA, 2020. 1-24. https://link.springer.com/chapter/10.1007/978-1-4842-
5558-2_1. 
 
[16] Sundar, KV Sai, et al. "Evaluating training time of Inception-v3 and Resnet-50,101 models 
using TensorFlow across CPU and GPU." 2018 Second International Conference on Electronics, 
Communication and Aerospace Technology (ICECA). IEEE, 2018. 
https://www.researchgate.net/publication/328458615_Evaluating_Training_Time_of_Inception-
v3_and_Resnet-50101_Models_using_TensorFlow_across_CPU_and_GPU. 
 
[17] Wang, Minjie. Flexible and Efficient Systems for Training Emerging Deep Neural 
Networks. Diss. New York University, 2020. 
https://www.proquest.com/docview/2393632009?https://www.library.umaine.edu/auth/EZProxy/
test/authej.asp?url=accountid=14583&accountid=14583. 
 
[18] TensorFlow.org. Retrieved November 10, 2015, https://www.tensorflow.org. 
 
[19] VACC “Vermont Advanced Computing Core at University of Vermont” 2019 
https://vacckb.helpline.w3.uvm.edu/vacc/kb/.  
 
[20] Anaconda, 2017, https://docs.conda.io/en/latest/miniconda.html.  
 
[21] kaggle.com/shayanriyaz, 2019, https://www.kaggle.com/shayanriyaz/riceleafs.  
 
[22] winscp.net. Retrieved 21 November 2014, https://winscp.net/eng/docs/introduction. 
 



50 
 

[23] Hans-D, Wehle. "Machine Learning, Deep Learning, and AI: What’s the Difference." 
(2017). 
https://www.researchgate.net/publication/318900216_Machine_Learning_Deep_Learning_and_
AI_What%27s_the_Difference. 
 
[24] medium.com, Ravi Ranjan Singh, Mar 15, 2020. https://medium.com/analytics-
vidhya/tensorflow-tutorial-a-beginners-guide-to-tensorflow-part-2-5d1219a8ba5c 
 
[25] medium.com, Danqing Liu, Nov 30, 2017. https://medium.com/@danqing/a-practical-
guide-to-relu-b83ca804f1f7. 
 
[26] tutorialexample.com, by admin, May 2, 2020. https://www.tutorialexample.com/understand-
tensorflow-sess-run-a-beginner-introduction-tensorflow-tutorial/. 
 
[27] en.wikipedia.org, last edited 24 June 2021. 
https://en.wikipedia.org/wiki/Softmax_function#Statistical_mechanics 
 
[28] analyticsvidhya.com, Shipra Saxena, April 5, 2021. 
https://www.analyticsvidhya.com/blog/2021/04/introduction-to-softmax-for-neural-network/. 
 
[29] developers.google.com, 2020. https://developers.google.com/machine-learning/crash-
course/descending-into-ml/training-and-loss. 
 
[30] androidkt.com, 2021. https://androidkt.com/batch-size-step-iteration-epoch-neural-network/. 
 
[31] linuxnetmag.com, 2021. https://linuxnetmag.com/miniconda-vs-anaconda/. 
 
[32] stackoverflow.com, 2020. https://stackoverflow.com/questions/59112527/primer-on-
tensorflow-and-keras-the-past-tf1-the-present-
tf2#:~:text=Differences%20between%20TF1%20and%20TF2%20TF1%20requires%20a,the%2
0full%20graph%20defined%20before%20starting%20the%20computations. 
 
[33] MA Raza, Sep 11, 2020. https://towardsdatascience.com/machine-learning-with-spark-
f1dbc1363986.  
 
[34] Gelenbe, Erol. Multiprocessor speed-up, Amdahl's Law, and the Activity Set Model of 
parallel program behavior. Research Institute for Advanced Computer Science, NASA Ames 
Research Center, 1988, 
https://www.researchgate.net/publication/24286816_Multiprocessor_speed-
up_Amdahl%27s_Law_and_the_Activity_Set_Model_of_parallel_program_behavior.  
 
 
 
 
 
 



51 
 

APPENDIX A: TENSORFLOW CODE OF THE NEURAL NETWORK 

MODEL  

 

1. Muli Workers distribution for multi-CPUs: 

This section contains the code of one part of this work. It has a multi workers distribution 

method (tf.distribute.MultiWorkerMirroredStrategy) that is provided by TensorFlow to 

distribute and run the model on multi CPUs. The code consists of importing the necessary 

libraries at the first step, then loading the dataset to be read inside the code; after that, 

preparing the dataset and splitting it into a training dataset and validation dataset. Set up 

the input pipeline by choosing the batch size and data generator so the dataset can be 

distributed to multi-devices to make the model run in parallel. The code contains two 

functions, one for building the dense layers, then the second one for building the model, 

and it is calling the first function inside it to complete the model building. Then, staringt to 

call the model and run it by using a strategy scope that works with the multi workers 

distribution method on TensorFlow. Furthermore, starting to train the model and saving 

the results on a CSV file to be able to plot them after moving the file to the PC.    

import tensorflow as tf 
from tensorflow.keras.layers import Input, Lambda, Dense, 
Flatten,GlobalAveragePooling2D,BatchNormalization,Dropout,Activation 
from tensorflow.keras.models import Model 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.models import Sequential 
import numpy as np 
from glob import glob 
import matplotlib.pyplot as plt 
import os 
import json 
import sys 
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os.environ["CUDA_VISIBLE_DEVICES"] = "-1" 
os.environ.pop('TF_CONFIG', None) 
if '.' not in sys.path: 
  sys.path.insert(0, '.') 
import tensorflow as tf 
print(tf.__version__) 

 
 

train_path = '/gpfs1/home/i/a/ialkaaba/RiceLeafs/RiceLeafs/train/' 
val_path = '/gpfs1/home/i/a/ialkaaba/RiceLeafs/RiceLeafs/validation/' 

 
data_dir = os.path.join(os.path.dirname('/gpfs1/home/i/a/ialkaaba/'), 
'RiceLeafs/RiceLeafs') 

 
train_dir = os.path.join(data_dir, 'train') 
train_BrownSpot_dir = os.path.join(train_dir, 'BrownSpot') 
train_Healthy_dir = os.path.join(train_dir, 'Healthy') 
train_Hispa_dir = os.path.join(train_dir, 'Hispa') 
train_LeafBlast_dir = os.path.join(train_dir, 'LeafBlast') 

 

validation_dir = os.path.join(data_dir, 'validation') 
validation_BrownSpot_dir = os.path.join(validation_dir, 'BrownSpot') 
validation_Healthy_dir = os.path.join(validation_dir, 'Healthy') 
validation_Hispa_dir = os.path.join(validation_dir, 'Hispa') 
validation_LeafBlast_dir = os.path.join(validation_dir, 'LeafBlast') 

 
train_BrownSpot_names = os.listdir(train_BrownSpot_dir) 
print('train_BrownSpot',train_BrownSpot_names[:10]) 

 
train_Healthy_names =  os.listdir(train_Healthy_dir) 
print('train_Healthy', train_Healthy_names[:10]) 

 
train_Hispa_names = os.listdir(train_Hispa_dir) 
print('train_Hispa', train_Hispa_names[:10]) 

 
train_LeafBlast_names =  os.listdir(train_LeafBlast_dir) 
print('train_LeafBlast', train_LeafBlast_names[:10]) 

 
## Image Count 

 
import time 
import os 
from os.path import exists 

 
def count(dir, counter=0): 
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    "returns number of files in dir and subdirs" 
    for pack in os.walk(dir): 
        for f in pack[2]: 
            counter += 1 
    return dir + " : " + str(counter) + " files" 

 
print('total images for training :', count(train_dir)) 
print('total images for validation :', count(validation_dir)) 

 

## Feature Engineering 
def one_hot_label(image, label): 
    label = tf.one_hot(label, NUM_CLASSES) 
    return image, label 

 
from tensorflow.keras.preprocessing import image_dataset_from_directory 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

def rice_dataset(BATCH_SIZE): 
    IMAGE_SIZE = (150, 150) 
    training_generator = image_dataset_from_directory( 
        train_dir, 
        validation_split = 0.2,  
        subset = 'training', 
        seed = 220, 
        image_size = IMAGE_SIZE, 
        batch_size = BATCH_SIZE, 
      ) 

 
    validation_generator = image_dataset_from_directory( 
        validation_dir, 
        validation_split = 0.3, 
        subset = 'validation', 
        seed = 220, 
        batch_size = BATCH_SIZE, 
        image_size = IMAGE_SIZE, 
       ) 

 

    class_names = os.listdir(train_dir) 
 

    print(class_names) 
    training_generator.class_names = class_names 
    validation_generator.class_names = class_names 

 
    NUM_CLASSES = len(class_names) 
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    train_ds = training_generator.map(one_hot_label, num_parallel_calls=AUTOTUNE) 
    val_ds = validation_generator.map(one_hot_label, num_parallel_calls=AUTOTUNE) 
    train_ds = train_ds.cache().prefetch(buffer_size = AUTOTUNE) 
    val_ds = val_ds.cache().prefetch(buffer_size = AUTOTUNE) 
    return train_ds,val_ds 

 
 

class_names = os.listdir(train_dir) 
 

print(class_names) 
NUM_CLASSES = len(class_names) 
    return block 
def dense_block(units,dropout_rate): 
    block = tf.keras.Sequential([ 
        tf.keras.layers.Dense(units,activation = 'relu'), 
        tf.keras.layers.BatchNormalization(), 
        tf.keras.layers.Dropout(dropout_rate) 
    ]) 
    return block 

 
## Build the Model 
def build_model(): 
    model = tf.keras.Sequential([ 
        tf.keras.layers.Conv2D(32,(3,3),activation = 'relu',input_shape = 
(*IMAGE_SIZE,3)), 
        tf.keras.layers.MaxPooling2D(2,2), 
#        tf.keras.layers.Conv2D(64,(3,3),activation = 'relu'), 
#        tf.keras.layers.MaxPooling2D(2,2), 
        tf.keras.layers.Conv2D(128,(3,3),activation = 'relu'), 
        tf.keras.layers.MaxPooling2D(2,2), 
        tf.keras.layers.Flatten(), 
        dense_block(512,0.2), 
        dense_block(128,0.3), 
        tf.keras.layers.Dense(4,activation = 'softmax') 

 
    ],    name = 'Conv2D_Model') 
      
    return model 
tf_config = { 
    'cluster': { 
        'worker': ['localhost:12345', 'localhost:23456'] 
    }, 
    'task': {'type': 'worker', 'index': 0} 
} 

 
json.dumps(tf_config) 
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os.environ['GREETINGS'] = 'Hello TensorFlow!' 
num_workers = len(tf_config['cluster']['worker']) 

 
strategy = tf.distribute.MultiWorkerMirroredStrategy() 
## Data Generators 
AUTOTUNE = tf.data.experimental.AUTOTUNE 
EPOCHS = 100 
IMAGE_SIZE = (150, 150) 
BATCH_SIZE = 32 * num_workers    ## the batch size can be changed 
train_ds,val_ds = rice_dataset(BATCH_SIZE) 

 
with strategy.scope(): 
    model = build_model() 

 
    METRICS = [tf.keras.metrics.AUC(name='auc')] 

 
    model.compile( 
    optimizer = 'adam',   
    loss = tf.losses.CategoricalCrossentropy(), 
    metrics = METRICS 
    ) 
## Training the Model 
def exponential_decay(lr0,s): 
    def exponential_decay_fn(epoch): 
        return lr0 * 0.1 **(epoch/s) 
    return exponential_decay_fn 

 
exponential_decay_fn = exponential_decay(0.001,20) 

 
lr_scheduler = tf.keras.callbacks.LearningRateScheduler(exponential_decay_fn) 

 
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint('CPU_cluster_model.h5', 
                                                  save_best_only = True) 

 
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience = 10, 
                                                    restore_best_weights = True) 

 
CPU_32 = model.fit( 
    train_ds, 
    validation_data=val_ds, 
    callbacks=[checkpoint_cb, early_stopping_cb, lr_scheduler], 
    epochs=EPOCHS 
) 
import pandas as pd 
# convert the history.history dict to a pandas DataFrame:      
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hist_df = pd.DataFrame(CPU_32.history)  
# or save to csv:  
hist_csv_file = 'CPU_32.csv' 
with open(hist_csv_file, mode='w') as f: 
    hist_df.to_csv(f) 

 
 
 

2. Distribution for multi-CPUs and multi-GPUs: 
 
This code is exactly the same as the previous code except for the distribution method.  This 

code uses distribution  training with Keras to distribute the model on multi GPUs 

(tf.distribute.MirroredStrategy). The difference is with setting the input pipeline. When 

choosing the batch size multiply it by the number of GPUs that used to run the model 

instead of multiplying it by the number of workers.  This method also uses strategy scope 

to run the model in parallel. 

 import tensorflow as tf 
from tensorflow.keras.layers import Input, Lambda, Dense, 
Flatten,GlobalAveragePooling2D,BatchNormalization,Dropout,Activation 
from tensorflow.keras.models import Model 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras.models import Sequential 
import numpy as np 
from glob import glob 
import matplotlib.pyplot as plt 
import os 
import json 
import sys 

 
print(tf.__version__) 

 
 

train_path = '/gpfs1/home/i/a/ialkaaba/RiceLeafs/RiceLeafs/train/' 
val_path = '/gpfs1/home/i/a/ialkaaba/RiceLeafs/RiceLeafs/validation/' 

 
data_dir = os.path.join(os.path.dirname('/gpfs1/home/i/a/ialkaaba/'), 
'RiceLeafs/RiceLeafs') 

 
train_dir = os.path.join(data_dir, 'train') 
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train_BrownSpot_dir = os.path.join(train_dir, 'BrownSpot') 
train_Healthy_dir = os.path.join(train_dir, 'Healthy') 
train_Hispa_dir = os.path.join(train_dir, 'Hispa') 
train_LeafBlast_dir = os.path.join(train_dir, 'LeafBlast') 

 

validation_dir = os.path.join(data_dir, 'validation') 
validation_BrownSpot_dir = os.path.join(validation_dir, 'BrownSpot') 
validation_Healthy_dir = os.path.join(validation_dir, 'Healthy') 
validation_Hispa_dir = os.path.join(validation_dir, 'Hispa') 
validation_LeafBlast_dir = os.path.join(validation_dir, 'LeafBlast') 

 
train_BrownSpot_names = os.listdir(train_BrownSpot_dir) 
print('train_BrownSpot',train_BrownSpot_names[:10]) 

 
train_Healthy_names =  os.listdir(train_Healthy_dir) 
print('train_Healthy', train_Healthy_names[:10]) 

 
train_Hispa_names = os.listdir(train_Hispa_dir) 
print('train_Hispa', train_Hispa_names[:10]) 

 
train_LeafBlast_names =  os.listdir(train_LeafBlast_dir) 
print('train_LeafBlast', train_LeafBlast_names[:10]) 

 
## Image Count 

 
import time 
import os 
from os.path import exists 

 
def count(dir, counter=0): 
    "returns number of files in dir and subdirs" 
    for pack in os.walk(dir): 
        for f in pack[2]: 
            counter += 1 
    return dir + " : " + str(counter) + " files" 

 
print('total images for training :', count(train_dir)) 
print('total images for validation :', count(validation_dir)) 

 

## Feature Engineering 
def one_hot_label(image, label): 
    label = tf.one_hot(label, NUM_CLASSES) 
    return image, label 

 
from tensorflow.keras.preprocessing import image_dataset_from_directory 
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from tensorflow.keras.preprocessing.image import ImageDataGenerator 
 

def rice_dataset(BATCH_SIZE): 
    IMAGE_SIZE = (150, 150) 
    training_generator = image_dataset_from_directory( 
        train_dir, 
        validation_split = 0.2,  
        subset = 'training', 
        seed = 220, 
        image_size = IMAGE_SIZE, 
        batch_size = BATCH_SIZE, 
      ) 

 
    validation_generator = image_dataset_from_directory( 
        validation_dir, 
        validation_split = 0.3, 
        subset = 'validation', 
        seed = 220, 
        batch_size = BATCH_SIZE, 
        image_size = IMAGE_SIZE, 
       ) 

 

    class_names = os.listdir(train_dir) 
 

    print(class_names) 
    training_generator.class_names = class_names 
    validation_generator.class_names = class_names 

 
    NUM_CLASSES = len(class_names) 
    train_ds = training_generator.map(one_hot_label, num_parallel_calls=AUTOTUNE) 
    val_ds = validation_generator.map(one_hot_label, num_parallel_calls=AUTOTUNE) 
    train_ds = train_ds.cache().prefetch(buffer_size = AUTOTUNE) 
    val_ds = val_ds.cache().prefetch(buffer_size = AUTOTUNE) 
    return train_ds,val_ds 

 
 

class_names = os.listdir(train_dir) 
 

print(class_names) 
NUM_CLASSES = len(class_names) 

 
def dense_block(units,dropout_rate): 
    block = tf.keras.Sequential([ 
        tf.keras.layers.Dense(units,activation = 'relu'), 
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        tf.keras.layers.BatchNormalization(), 
        tf.keras.layers.Dropout(dropout_rate) 
    ]) 
    return block 

 
## Build the Model 
def build_model(): 
    model = tf.keras.Sequential([ 
        tf.keras.layers.Conv2D(32,(3,3),activation = 'relu',input_shape = 
(*IMAGE_SIZE,3)), 
        tf.keras.layers.MaxPooling2D(2,2), 
        tf.keras.layers.Conv2D(64,(3,3),activation = 'relu'), 
        tf.keras.layers.MaxPooling2D(2,2), 
        tf.keras.layers.Conv2D(128,(3,3),activation = 'relu'), 
        tf.keras.layers.MaxPooling2D(2,2), 
        tf.keras.layers.Flatten(), 
        dense_block(512,0.2), 
        dense_block(128,0.3), 
        tf.keras.layers.Dense(4,activation = 'softmax') 

 
    ],    name = 'Conv2D_Model') 
      
    return model 

 
strategy = tf.distribute.MirroredStrategy() 
print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) 

 
## Set up the input pipeline 

 
AUTOTUNE = tf.data.experimental.AUTOTUNE 
EPOCHS = 100 
IMAGE_SIZE = (150, 150) 
BATCH_SIZE = 32 * strategy.num_replicas_in_sync   ## batch size can be changed 
train_ds,val_ds = rice_dataset(BATCH_SIZE) 
with strategy.scope(): 
    model = build_model() 

 
    METRICS = [tf.keras.metrics.AUC(name='auc')] 

 
    model.compile( 
    optimizer = 'adam',   
    loss = tf.losses.CategoricalCrossentropy(), 
    metrics = METRICS 
    ) 
## Training the Model 
def exponential_decay(lr0,s): 
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    def exponential_decay_fn(epoch): 
        return lr0 * 0.1 **(epoch/s) 
    return exponential_decay_fn 

 
exponential_decay_fn = exponential_decay(0.001,20) 

 
lr_scheduler = tf.keras.callbacks.LearningRateScheduler(exponential_decay_fn) 

 
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint('GPU_cluster_model.h5', 
                                                  save_best_only = True) 

 
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience = 10, 
                                                    restore_best_weights = True) 

 
GPU_32 = model.fit( 
    train_ds, 
    validation_data=val_ds, 
    callbacks=[checkpoint_cb, early_stopping_cb, lr_scheduler], 
    epochs=EPOCHS 
) 

 

import pandas as pd 
 

# convert the history.history dict to a pandas DataFrame:      
hist_df = pd.DataFrame(GPU_32.history)  

 

# or save to csv:  
hist_csv_file = 'GPU_32.csv' 
with open(hist_csv_file, mode='w') as f: 
    hist_df.to_csv(f) 

 
 

 3. The code for plotting the data: 
 
import matplotlib.pyplot as plt 
import pandas as pd 

 
df = pd.read_csv('C:\\Users\\ent_w\\Desktop\\thesis\\CPU_32.csv')  ## here we 
can            ## change the file to plot any file from running a different model. 

 
df[['epoch', 'auc', 'val_auc']].plot( 
    x='epoch', 
    xlabel='epoch', 
    ylabel='Accuracy', 
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    title='Accuracy VS Val_acc for CPU_32' 
 ) 
plt.legend(['train', 'val']) 
plt.show() 
df[['epoch', 'loss', 'val_loss']].plot( 
    x='epoch', 
    xlabel='epoch', 
    ylabel='LOSS', 
    title='LOSS VS Val_loss for CPU_32' 
) 
plt.legend(['train', 'val']) 
plt.show() 

 
 
The code for SLURM Script: 
 
a. CPU cluster:  

 The slurm script has been created using the Nano text editor. slurm is the batch 

system used for the Bluemoon cluster. The Slurm commands are several lines 

starting with #SBATCH. These Slurm commands provide the job setup 

information used by Slurm, including resource requests.  Slurm commands begin 

with #SBATCH then followed by the commands to be executed, the “executable 

section.” However, the hash sign (#) followed by a space is a “comment.” It is often 

the comments are written above commands as explanations of the executable 

commands below. These comments are ignored (not processed as commands). The 

slurm commands were included to run the job are:  

1. Specifying a partition is bluemoon.  

2.  Nodes, Tasks, and Cores (CPUs) 

3.  Memory 

4. .Walltime is the maximum amount of time your job will run. It’s the runtime 

of your job. 

5.  The job name is used as part of the name of the slurm script file.  
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6.  Email Address to receive all mail types the begin time, the fail, and the end 

time for running the job. 

7.  The executable section of slurm script comes after all previous lines and 

tells what slurm job should run, which is the python file name. 

After the job script is written, we can submit the job on the cluster terminal using 

the sbatch command with slurm filename (sbatch filename.sh). 

 
 

#!/bin/bash 
#SBATCH --partition=bluemoon 
#SBATCH --nodes=1  
#SBATCH --ntasks=1 ## the number of processors that we requested 
#SBATCH --mem=30G 
#SBATCH --time=07:00:00 
#SBATCH --job-name=C2G2_128 ##the name of slurm file that contain .sh 
#SBATCH --mail-user=intisar.alkaabawi@maine.edu 
#SBATCH --mail-type=ALL 
# provide YOUR python filename 
python CPU_32.py  ## the name of python that we want to run it    

 
 
b. GPU cluster: 

The slurm script for the DeepGreen cluster (GPU) is exactly the same as the 

previous script for the BlueMoon cluster (CPU). In addition to the previous script 

the DeepGreen slurm script requires the user to load the CUDA path and export the 

CUDA library so the script  is able to run the job on GPUs.  

#!/bin/bash 
#SBATCH --partition=dggpu 
#SBATCH --nodes=1 
#SBATCH --ntasks=8 ## the number of processors that we requested 
#SBATCH --gres=gpu:4 ## the number of GPUs that we requested 
#SBATCH --mem=30G 
#SBATCH --time=01:00:00 
#SBATCH --job-name=GPU8_256  ##name of slurm file that contain .sh 

 
#SBATCH --mail-user=intisar.alkaabawi@maine.edu 
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#SBATCH --mail-type=ALL 
# loads CUDA 
export PATH=${PATH}:/gpfs3/arch/x86_64-rhel7/cuda-10.0/bin 
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/gpfs3/arch/x86_64-
rhel7/cuda-10.0/lib64 
# provide YOUR python filename 
python GPU_256.py ## the name of python that we want to run it 
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