
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

Fall 12-2021

Computer Modeling Using The Finite-Difference Time-Domain Computer Modeling Using The Finite-Difference Time-Domain

(FDTD) Method for Electromagnetic Wave Propagation (FDTD) Method for Electromagnetic Wave Propagation

Atheer A. Oufi
atheer.oufi@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd

 Part of the Electrical and Electronics Commons, and the Electromagnetics and Photonics Commons

Recommended Citation Recommended Citation
Oufi, Atheer A., "Computer Modeling Using The Finite-Difference Time-Domain (FDTD) Method for
Electromagnetic Wave Propagation" (2021). Electronic Theses and Dissertations. 3510.
https://digitalcommons.library.umaine.edu/etd/3510

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3510?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

COMPUTER MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD FOR

ELECTROMAGNETIC WAVE PROPAGATION

By

Atheer A. Oufi

B.SC University of Technology, 2000

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Electrical Engineering)

The Graduate School

The University of Maine

December 2021

Advisory Committee:

Bruce Segee, Professor of Electrical and Computer Engineering, Advisor

Vincent Weaver, Associate Professor of Electrical and Computer Engineering

Mauricio Pereira da Cunha, Professor of Electrical and Computer Engineering

 ii

© 2021 Atheer A. Oufi

 All Rights Reserved

COMPUTER MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD FOR

ELECTROMAGNETIC WAVE PROPAGATION

By Atheer A. Oufi

Thesis Advisor: Dr. Bruce Segee

An Abstract of the Thesis Presented

in Partial Fulfillment of the Requirements for the
Degree of Master of Science

(in Electrical Engineering)
December 2021

The Finite-Difference Time-Domain (FDTD) technique is a numerical analysis modeling method to

find the solutions of the partial derivatives in Maxwell’s equations to electromagnetic problems. In

FDTD the electrical and magnetic fields components staggered in time and space by a method

developed by Yee. The approximation of the solutions can be found using a set of updated

equations.

In every simulation that utilizes the FDTD method, the factors of time and memory size are the two

significant considerations. This study focused on reducing the computation time, as the

time required to time-march the components of the electrical and magnetic fields at each of the

FDTD problem cells is computationally expensive.

Based on the findings of this study, the issue of time can be solved by parallelizing the code. Since

the structures of the FDTD field's components are independent, the algorithm of the FDTD can be

divided into small tasks that can be executed concurrently. Two approaches were taken to parallelize

the one- and two-dimensional FDTD code: The Compute Unified Device

Architecture (CUDA) approach and Open Computing Language (OpenCL) approach.

The serial FDTD C code was implemented and accelerated using CUDA. The result of the comparison

between the serial and parallel algorithms (C, CUDA, MATLAB) showed a speed-up of 505 speed

factor with the GPU-GPU method and 5 speedup factor with the CPU-GPU method. This was

the case for a one-dimensional space problem.

The FDTD code was implemented and executed with the OpenCL (Open Computing Language)

software as well. The OpenCL software is important since it is open-source and freely available. In

contrast to CUDA, which only supports NVIDIA and enabled GPUs, the code written in OpenCL is

portable and can be executed on any parallel processing platforms such as CPUs, GPUs, DSPs, FPGAs,

and others. Total time's Speedup of 22X has been recorded with OpenCL (PCL) with respect to CPU-

C, with 10000 iterations and a 150000 cells grid size.

iv

DEDICATION

This work is dedicated to my parents; my wife, Rawaa; my daughters, Feed, Aya and Baneen; and my

son, Fadhl who gave me support and encouragement throughout each step of my life.

v

ACKNOWLEDGEMENTS

I would like to thank Professor Bruce Segee for making this master thesis possible, as well as for his

supervision and guidance.

 Atheer Oufi, August 2021

vi

TABLE OF CONTENTS

DEDICATION……. iv

ACKNOWLEDGEMENTS……. v

LIST OF TABLES……… ix

LIST OF FIGURES……….…. x

Chapter

1. INTRODUCTION .. 1

1.1. Brief Review of Electromagnetics ... 1

1.1.1 Green’s, Gauss’s and Stokes’ Theorems ... 1

1.1.2. Gauss’ Divergence Theorem .. 2

1.1.3. Stokes’s Theorem .. 3

1.1.4. Gauss’s Law for Electrical and Magnetic Fields ... 3

1.1.5. Faraday’s Law .. 4

1.1.6. Ampere’s Law with Maxwell’s Correction ... 5

1.2. Divergence and Curl ... 5

1.3. Summary Of the Time-Varying Fields .. 7

2. FINITE-DIFFERENCE TIME DOMAIN METHOD FDTD ... 8

2.1. Introduction .. 8

2.2. Approximation of the Partial Derivatives using Finite Differences ... 9

2.3. The Yee Algorithm .. 11

2.4. FDTD Updating Equations of Three-, Two-, and One-Dimensional Problems 15

vii

2.4.1. Three-Dimensional Problems .. 19

2.4.2. Two-Dimensional Problems ... 27

2.4.3. One-Dimensional Problems ... 30

2.5. Conclusion .. 32

3. HARDWARE ACCELERATION OF FDTD METHOD – CUDA ... 34

3.1. Introduction .. 34

3.2. GPU Programming using CUDA .. 35

3.2.1. Compute Unified Device Architecture ... 36

3.2.2. Programming Model .. 37

3.2.2.1 CUDA Kernel .. 37

3.2.2.2 Thread Hierarchy. .. 38

3.2.2.3 Memory Hierarchy. .. 38

3.3. Hardware Testing Platform .. 42

3.4. CUDA Implementation of the One-, and Two-dimensional Problems .. 43

3.4.1 Main Time Loop .. 44

3.4.2. Programming GPGPU CUDA .. 46

3.5. Verification ... 48

3.6. Speedup, Parallel Efficiency, and Strong and Weak Scaling ... 54

3.7. Timing ... 55

3.8. Performance of the FDTD Parallel Code ... 56

3.8.1 GPU-GPU Performance ... 56

viii

3.8.1.1. Grid Size 217 cells. .. 56

3.8.1.2. Grid Size 617 cells. .. 60

3.8.1.3. Grid Size 4017 cells. .. 61

3.8.2. CPU-GPU Performance .. 62

3.9. Conclusion .. 64

4. HARDWARE ACCELERATION OF THE FDTD METHOD – OpenCL ... 66

4.1. Introduction .. 66

4.2. GPU Programming Using OpenCL ... 66

4.2.1. Platform Model ... 66

4.2.2. Memory Model .. 67

4.2.2. Execution Model .. 69

4.2.3. Programming Model .. 71

4.2.3.1 Initialization. .. 71

4.2.3.2 Allocating memory .. 73

4.2.3.3. Program and Kernel Objects ... 73

4.2.3.4 Execution ... 75

4.3. Performance of One-, and Two-Dimensional FDTD Problems ... 75

5. Conclusions AND FUTURE WORK .. 79

5.1 FDTD Method ... 79

5.2 Future Work .. 81

5.2.1. FDTD Approximation ... 81

ix

5.2.2. CUDA ... 82

5.2.3. OpenCL .. 82

5.2.4. Parallelizing Techniques .. 82

5.3 Conclusion ... 82

BIBLIOGRAPHY ... 84

APPENDIX A ... 86

BIOGRAPHY OF THE AUTHOR ... 93

x

LIST OF TABLES

Table 3.1. Specification of CUDA Quadro P400 ……………………………………………………………… 40

Table 3.2. The error of the Hx values when running the 1D-FDTD code …........................ 55

Table 3.3. Performance of CUDA with 217 cells and 400 steps ………………………………….…. 61

Table 3.4. Performance of CUDA with 400,8193, and 10000 steps …………………............… 61

Table 3.5. Performance of CUDA with 400,8193, and 10000 steps ……...……………….……… 62

Table 3.6. Performance of CUDA with 400,8193, and 10000 steps ………………………………. 62

Table 3.7. GPU-GPU Performance with 10000 iterations in different grid sizes ……….…... 63

Table 3.8. CPU-GPU Performance with 10000 iterations in different grid sizes……………… 64

Table 4.1. Description of OpenCL device’s memories [20] ………………………………...…….……. 69

Table 4.2. OpenCL Platforms …………………………………………………………….………….………………. 78

Table 4.3. OpenCL Performance …………………………………………………….………….…………………. 78

xi

LIST OF FIGURES

Figure 1.1. Flux-Divergence relation in Green’ Theorem. ... 2

Figure 1.2. Flow-Curl relation in Green’ Theorem. ... 2

Figure 1.3. Examples of Different type of divergence of a field D .. 6

Figure 1.4. Circulation of a vector field ... 6

Figure 2.1a Forward, Backward, and Central Finite Differences Error with a step size of 0.8 10

Figure 2.1b Forward, Backward, and Central Finite Differences with a step size of 0.08 11

Figure 2.2. Electrical and Magnetic Components staggered without offset. 12

Figure 2.3. Electrical and Magnetic components staggered within half time step offset. 13

Figure 2.4. Electrical and Magnetic components staggered in Yee Algorithm. 14

Figure 2.5. Electrical and Magnetic components staggered in (one-dimensional) Yee Algorithm. 15

Figure 2.6. The Electric Dipole Moment when an external E field applied. ... 17

Figure 2.7. Magnetic field components on Yee algorithm. .. 21

Figure 2.8. Arrangement of field’s components on a (3-D) Yee cell indexed at (i, j, k) 25

Figure 2.9. Unit cell Indexed as (i, j, k) Showing the Two Modes of Wave Propagation 28

Figure 2.10. Hz-Mode Sliced figure (2.9.) at z=0 .. 28

Figure 2.11. 2D-FDTD Hz- Mode .. 29

Figure 2.12. Ez- Mode Sliced figure (2.9.) at z=0.5 ... 29

Figure 2.13. 2D-FDTD Ez-Mode .. 30

Figure 2.14. Unit cell Indexed as (i, j, k) Showing the Two Modes of Propagation 31

Figure 2.15. One-Dimensional FDTD-Mode 1 ... 31

Figure 2.16. One-Dimensional FDTD-Mode 2 ... 31

Figure 2.17. Summery of the Formulation of the FDTD equations. ... 33

Figure 3.1. FDTD Field update equations in series ... 34

Figure 3.2. FDTD Updated Equations in Parallel ... 35

xii

Figure 3.3. distributions of chip resources for CPU versus a GPU [10] ... 36

Figure 3.4. available memories for thread execution period [10] .. 39

Figure 3.5. An example of initializing and defining Two- Dimensional FDTD problem in MATLAB. 44

Figure 3.6. One-dimensional FDTD algorithm. ... 45

Figure 3.7. Two-dimensional FDTD algorithm (CPU). ... 46

Figure 3.8. An example of FDTD problem ... 49

Figure 3.9. An example of FDTD code in MATLAB .. 50

Figure 3.10. An example of the 1D-FDTD sequential code in C .. 50

Figure 3.11. CUDA function to call the kernel of the same code of figure (3.10.) 57

Figure 3.12. C, MATLAB, and CUDA running time with 10000 iterations and different grid size 63

Figure 3.13. Speedup of the CUDA with different grid sizes .. 64

Figure 3.14. An example of the times that CUDA needed to perform FDTD code 64

Figure 3.15. speedup of the CUDA with different grid sizes ... 65

Table 4.1. description of OpenCL device’s memories [20] ... 68

Figure 4.2. Memory Configuration [20] .. 68

Figure 4.3. An example of two dimensional NDRange [17] .. 70

Figure 4.4. An example of three-dimensional NDRange (AMD)[18] .. 70

Figure 4.5. Create buffer function .. 73

Figure 4.6. Create and Build (program and kernel) functions .. 74

Figure 4.7. FDTD Updating Kernel .. 74

Figure 4.8. Kernel’s Arguments .. 75

Figure 4.9. OpenCL platforms ... 76

Figure 4.10. OpenCL platforms ... 77

1

CHAPTER 1

1. INTRODUCTION

This thesis explores the use of computer models to calculate and visualize electromagnetic fields using

discrete time and discrete space modeling, also known as the Finite Difference Time Domain methods

(FDTD). This thesis derives the necessary FDTD equations and shows how to model electromagnetic

wave propagation in 1D, 2D and 3D. Calculations using a conventional CPU are compared to

calculations using Graphis Processing Units (GPUs) for accuracy, speedup, and efficiency. It is found

that equally accurate results can be obtained in less time using GPUs in parallel as compared to a single

CPU. Both speedup and efficiency increase with increasing problem size.

1.1. Brief Review of Electromagnetics

1.1.1 Green’s, Gauss’s and Stokes’ Theorems

In vector calculus, Green’s, Gauss’, and Stokes’ identities, have widely been used to simplify complex

electromagnetism calculations by relating local properties to global properties. Local properties

include things like the degree of spinning, whether faster or slower, or clockwise or counterclockwise;

vector magnitude; and the direction of each individual point inside the region that is contained by the

vector. Global properties are those such as flow or flux of the fields around or across the boundary of

that region. Theorems are also used to relate (n-dimensional into (n-1) dimensional) integral

problems.

Green’s theorem (Divergence-flux and circulation-curl form) states that for C, a smooth, simple, closed

curve enclosing R, a vector field F having continuous first partial in an open region containing R, as

shown in figure (1.1.), the total flux across the boundary of R region and sum of the divergence of the

field inside R, are equal.

∮ (𝑭 ⋅ 𝑛)) 𝑑𝑠! =		∬ (∇. 𝑭)	𝑑𝐴" 	= 	∬ (#$
#%
+ #&

#'
)	𝑑𝑥𝑑𝑦" (1.1)

2

Figure 1.1. Flux-Divergence relation in Green’ Theorem.

Green’s theorem of circulation-curl form, figure (1.2.), states that the circulation around a closed

region R and the curl of the vector field inside of R, are related according to equation 1.2, below:

∮ (𝑭 ⋅ 𝑇7) 𝑑𝑠! =		∬ (∇ × 𝑭)	𝑑𝐴" 	= 	∬ (#&
#%
− #$

#'
)	𝑑𝑥𝑑𝑦" (1.2)

Figure 1.2. Flow-Curl relation in Green’ Theorem.

1.1.2. Gauss’ Divergence Theorem

The integral of a continuously differentiable vector field across a closed surface, which is called

the flux through the surface, is equal to the integral of the divergence of that vector field within the

region enclosed by the boundary [21], Let V be a sold region on R3 and let S be a surface of V (S must

be oriented with an outward pointing normal vector) Gauss’s Theorem states that for a given vector

field F, the following equation holds:

∯ (𝑭 ⋅ 𝑛)) 𝑑𝐴(=		∭ ∇. 𝑭	𝑑𝑣) (1.3)

𝑛) is a unit normal vector at each point on S. Using electric field density D in Equation (1.3), Gauss’s

theorem states:

∯ (𝑫 ⋅ 𝑛)) 𝑑𝑆(=		∭ ∇.𝑫	𝑑𝑣) (1.4)

F

𝑇7
𝑛)

R
C

F
𝑇7

𝑛)

R

C

3

1.1.3. Stokes’s Theorem

Stokes’ theorem states that the integral of a vector field over any closed path is equal to the integral

of the curl of that field over a surface which has that path as its border. Again, this holds for any vector

field, but using the electric field as an example one can write:

?𝑬	. 𝑑𝑙 = 	B𝜵 × 𝑬	 𝑑𝒔
(

The surface normal is assumed to follow the right-hand convention so that when the fingers of the

right hand are oriented along the path of the loop, the thumb points in the positive direction of the

surface normal.

1.1.4. Gauss’s Law for Electrical and Magnetic Fields

Carl Friedrich Gauss, in 1813, stated the law concerning the electric flux and electric charges. The law

states that the amount of charge inside a closed volume V is equal to the total amount of electric flux

(D) exiting the surface S. Mathematically, Gauss’s law can be expressed in integral form and

differential form. The integral form is:

𝑄*+, = ∯ 𝑫 ⋅ 𝑑𝑺(=	∭ 𝜌*	𝑑𝑣) (1.6)

where D is electric flux density (coulombs/m2), S is the closed surface (arbitrary three-dimensional

surface), dS is differential normal vector that characterizes surface S (m2), and 𝑄*+, is the enclosed

charge (coulombs). The differential form is:

∇.𝑫 = 	𝜌* (1.6a)

where ∇·D is the divergence of the electric flux density, 𝜌* is the electric charge density

(coulombs/m3).

Equation (1.6a) can be rewritten by using Gauss’s theorem in Equation (1.6), Then, the equation (1.6)

becomes:

∯ 𝑫 ⋅ 𝑑𝑺(=		∭ ∇.𝑫	𝑑𝑣)

4

H𝑫 ⋅ 𝑑𝑺
(

=	I𝜌*	𝑑𝑣
)

	
'-*./0
J⎯⎯⎯L	I𝜌*	𝑑𝑣

)
=	I∇.𝑫	𝑑𝑣

)
		
'-*./0
J⎯⎯⎯L	∇.𝑫 = 	𝜌*

The second law of Gauss states that the net magnetic flux through a closed surface is zero. In other

words, the divergence of magnetic field B within a closed surface is equal to zero. The fact that B has

no divergence makes sense, since the magnetic monopole does not exist.

∯ 𝑩 ⋅ 𝑑𝑺(= 0 (1.7)

∇.𝑩 = 0	 (1.7a)

1.1.5. Faraday’s Law

In 1831, Michael Faraday studied the electromagnetic induction properties and formed what was later

named Faraday’s Law of Induction. This law states that, “The electromotive force around a closed path

is equal to the negative of the time rate of change of the magnetic flux enclosed by the path”[22].

𝜀 = 	− /1!
/2

 (1.8)

 (𝜀(volt) 	= ∮𝑬	. 𝑑𝑙) Is the electromotive force, and (𝜙3 = ∬ 𝑩 ⋅ 𝑑𝑺() is the magnetic flux (Weber).

The integral form of Equation (1.8) can be written as:

∮𝑬	. 𝑑𝑙 = − #
#2∬ 𝑩 ⋅ 𝑑𝑺((1.8a)

Where (dS) is an element of surface area of the moving surface S, B is magnetic flux density (Wb/m2),

E is electric field (volts/meter). Applying Stokes’ theorem on Equation (1.8a) gives

 ∮𝑬	. 𝑑𝑙 = 	∬ 𝛁 × 𝑬	 𝑑𝑺(

And eq (1.8a) becomes: ∬ 𝛁× 𝑬	 𝑑𝑺(= − #
#2∬ 𝑩 ⋅ 𝑑𝑺(

 ∇ × 𝑬 =	−	#𝑩
#2

 (1.8b)

5

1.1.6. Ampere’s Law with Maxwell’s Extension

Ampere’s law relates the closed line integral of the magnetic field (𝑯) (in amperes/meter) around the

closed line L, to the total electric current crossing the area S enclosed by the path L.

The integral form of Ampere’s law is:

∮ 𝑯. 𝑑𝑙 = 	∬ 𝐽 ⋅ 𝑑𝑺(= 𝐼*+,5 (1.9)

Where L is closed contour that bounds surface S, dl is differential length vector that characterizes

contour L (meters), ds = n) × dS. I678	 is the current that passes through the surface S, which is

bounded by the loop L.

Since the differential form of Ampere’s law states that the divergence of magnetic field is equal to

zero, applying Stokes’ theorem ∮ 𝐇. d𝐥 =		9 ∬ (∇ × 𝐇). d𝐒: 		and Equation (1.9) becomes:

 ∬ (∇ × 𝐇). d𝐒: =	∬ 𝐉 ⋅ d𝐒:

∇ × 𝐇 = 𝐉 (1.9b)

Equation (1.9b) is known as Ampere’s Law. Maxwell later added a temporal derivative of the

displacement current, density 	#𝑫
#2

 , to the right-hand side of the equation to make it applicable to time-

varying current [23]. And the corrected equation is expressed as:

∇ × 𝑯 = 𝐉 + #𝑫
#2

 (1.9c)

∮ 𝑯. 𝑑𝒍 = ∬ (∇ × 𝐇). d𝐒: =		5 ∬ 𝐉. d𝐒: +∬ #𝑫
#2
⋅ d𝐒: (1.9d)

1.2. Divergence and Curl

The divergence operator of a vector field is the measure of the vector flow out/into of an imaginary

surface surrounding a point P (x, y, z). In other words, it is a measure of the rate of change of the

vector field in the x, y, and z directions.

∇.			= 	 #
#%
+ #

#'
+	 #

#<
	 (1.10)

Let us assume that the density of electrical field D is equal to

6

D = a
𝐷%
𝐷'
𝐷<
c = 𝐷%	 d

1
0
0
f + 𝐷'	 d

0
1
0
f+𝐷<	 d

0
0
1
f

The divergence of D field is the sum of how fast the vector function is changing:

∇.𝑫 = 	 #>"	
#%

+ #>$
#'

+	#>%
#<
		

The divergence of any vector field could be positive, negative, or zero (no divergence).

 (a) Positive div ∇.𝑫 > 0 (b) Negative div ∇.𝑫 < 0 (c) Zero div ∇.𝑫 = 0

Figure 1.3. Examples of Different type of divergence of a field D

The curl operator (∇ ×) Is a measure of the rotation of a vector field. Let (E) be a vector field with

(𝐸%	,𝐸'	, 𝐸<) function components in (x, y, z) directions. That is:

𝑬	 = 	𝐸%	x) + 𝐸'	y)+𝐸<	�̂�

Figure 1.4. Circulation of a vector field

The curl of E field:

∇ ×=	l
𝜕
𝜕𝑦 −

𝜕
𝜕𝑧n x) + l

𝜕
𝜕𝑧 −

𝜕
𝜕𝑥n y) + l

𝜕
𝜕𝑥 −

𝜕
𝜕𝑦n ẑ																										(1.11)

(a) The Curl is Negative
(in –Z direction)

(b) The Curl is positive
(in +Z direction)

 (c) The Curl is Zero

7

∇ × 𝑬 = o

x) y) ẑ
#
#%

#
#'

#
#<

𝐸%	 𝐸'	 𝐸<	

p = q#?%	
#'

− #?$	
#<
r x) + q#?"	

#<
− #?%	

#%
r y) + (#?$	

#%
− #?"	

#'
)ẑ

1.3. Summary Of the Time-Varying Fields

∇. 𝑫 = 𝜌e (1.12)

∇. 𝑩 =0 (1.13)

∇ × 𝑬 =	−	#𝑩
#2
−𝑀 (1.14)

∇ × 𝑯 = 𝐉 + #𝑫
#2

 (1.15)

The following symbols are defined:

E : electric field (volts / meter)

D : electric flux density (coulombs / meter2)

H : magnetic field (amperes / meter)

B : magnetic flux density (webers / meter2)

M : equivalent magnetic current density (volts / meter2)

1- For the static case (#
#2
= 0), the first two equations, the divergence equations, will have no change

since they do not have any terms that are time dependent. The curl equations (Equation (1.14) and

(1.15)) both have time dependent terms that will not change for the static case so these terms will

be zero and the curl equations becomes:

∇ × 𝑬 = 	0 (1.16)

∇ × 𝑯 = 𝐉 (1.17)

The curl equations (1.14) and (1.15) coupling both electrical and magnetic fields and will be used to

drive the necessary equations for the FDTD technique.

8

CHAPTER 2

2. FINITE-DIFFERENCE TIME DOMAIN METHOD FDTD

The Finite Difference Time Domain method (FDTD) is a simple but powerful, accurate, and robust

technique in numerical computational methods. Currently, and in the recent past, a plethora of

applications related to electromagnetics phenomena has needed to solve Maxwell’s equations in time

and space[5]. These applications include but are not limited to, radar technology (generating, sending,

cand receiving, analyzing of electromagnetic waves), antenna and waveguides design, medical

applications, wi-fi, cellular telephone, and non-linear and frequency-dependent materials[1].

Frequency domain techniques were commonly used but the rapid development of computer and

memory technology and the basic mathematics equations for the formulation of the FDTD techniques

has changed the emphasis toward FDTD. FDTD allows one to visualize the propagation of the electrical

E field and the magnetic H field before, during, and after interacting with structures of interest (or free

space) giving the developer an understanding of the response of the system in every step of the testing

time.

2.1. Introduction

The differential forms of Maxwell’s curl equations are the backbone of the FDTD method. The original

idea was first introduced by Kane Yee in 1966 [1]. Yee used the second-order finite central-differences

to approximate the time partial derivative that appear in Maxwell’s equations. The elegance of FDTD

is due to the way that the electrical and magnetic components of the E and H fields are distributed in

Yee’s geometry space.

This chapter will explain the formulation of the FDTD equations the second order finite difference

approximation method, the compute time and spatial steps (△t and △x) and the compute update

coefficients.

9

2.2. Approximation of the Partial Derivatives using Finite Differences

The partial derivative of a function in the x direction can be computed using the Taylor series

expansion of the function over an infinitesimally small interval in the x-direction (holding all other

dimensions constant). Let 𝑓(𝑥) be a function of 𝑥 then Taylor series expansion of 𝑓(𝑥 +△ 𝑥) when

lim
△%→B

𝑓(𝑥 ∓△ 𝑥) = 	𝑓(𝑥) is given by:

1- The forward finite differences:

𝑓(𝑥 +△ 𝑥) = 𝑓(𝑥) + △×	
D!

#F(×)
#%

+ (△×)&

I!
#&F(×)
#%&

+ (△×)'

J!
#'F(×)
#%'

+⋯,	 (2.1)

solve for #F(×)
#%

 , and assume 𝑂(△×) = 	 (△×)
I!

#&F(×)
#%&

+ (△×)&

J!
#'F(×)
#%'

+⋯,								

#F(×)
#%

=	 F(×K△×)LF(%)	
△×

+ 𝑂(△×) (2.2)

2- The backward finite differences approximation:

𝑓(𝑥 −△ 𝑥) = 𝑓(𝑥) − △×	
D!

#F(×)
#%

+ (△×)&

I!
#&F(×)
#%&

− (△×)'

J!
#'F(×)
#%'

+⋯,	 (2.3)

solve for #F(×)
#%

 , and assume 𝑂(△×) = 	△×
I!

#&F(×)
#%&

− (△×)&

J!
#'F(×)
#%'

+⋯,								

#F(×)
#%

=	 F(%)	L	F(×L△×)	
△×

+ 𝑂(△×) (2.4)

3- The central finite differences approximation is the Taylor series expansion of 𝑓(× + △×) −

	𝑓(× − △×)

𝑓(𝑥 +△ 𝑥) − 𝑓(𝑥 −△ 𝑥) = q𝑓(𝑥) + △×	
D!

#F(×)
#%

r − q𝑓(𝑥) − △×	
D!

#F(×)
#%

	r + I(△×)'

J!
#'F(×)
#%'

−⋯,	

𝑓(𝑥 +△ 𝑥) − 𝑓(𝑥 −△ 𝑥)	
2 △× =

𝜕𝑓(×)
𝜕𝑥 + 𝑂(△×I)	

taking (△×	
I

) Sufficiently small, the term 𝑂(△×	
I
)I can be neglected and the equation becomes:

 #F(×)
#%

=	
FM×K△×	& N	L	FM×L

△×	
& N	

△×
 (2.5)

The term 𝑂(△×+) represents all the terms that are neglected. If △× is sufficiently small, then

𝑂(△×+) is the lowest order of (△×) in these neglected terms. For the case of forward and backward

finite differences, this term is 𝑂(△×D) since the lowest power of the neglected terms is 1 and the

10

forward and backward finite differences are said to have first order approximation accuracy. For the

central finite differences, the term is 𝑂(△×I). Since the lowest power of hidden terms in 𝑂(△×+)	is

2, the central finite differences then said to have second order accuracy. If (△×) is reduced by a factor

of 10 then the error in approximation should be reduced by a factor of 100. As (△×) approaches zero

the approximation becomes exact.

Let f(x) = sin(x), consider computing #𝒇(𝒙)
#%

	using forward, backward, and central differences methods

with two steps sizes △×	= 	0.8, 𝑎𝑛𝑑	0.08. The actual derivative is known to be #𝒇(𝒙)
#%

	 = cos(x). Figure

(2.1. a) and (2.1. b) show the error between the exact and approximation derivatives with steps

(0.8,0.08). The forward and backward error are reduced by a factor of 10

(0.4	with	 △×= 0.8	
														
J⎯⎯⎯L 0.04	𝑤𝑖𝑡ℎ △×= 0.08) and are reduced by a factor of 100 with the central

differences' method (error 0.1	with	 △×= 0.8	
														
J⎯⎯⎯L 0.001	𝑤𝑖𝑡ℎ △×= 0.08).

Figure 2.1a Forward, Backward, and Central Finite Differences Error with a step size of 0.8

11

Figure 2.1 b Forward, Backward, and Central Finite Differences with a step size of 0.08

2.3. Yee’s Algorithm

Consider one dimensional space case with q	#𝑯
#'
, #𝑯
#<
, #𝑬
#'
, #𝑬
#<
, 𝐸'	, 𝐻%, 𝐻<	 = 0r𝑎𝑛𝑑	𝑱 = 0. Then apply

Faraday’s law using Equation (1.14):

∇ × 𝑬 =	−	𝜇
𝜕𝑯
𝜕𝑡

o

x) y) ẑ
𝜕
𝜕𝑥 0 0
𝐸%	 0 𝐸<	

p = (0 − 0)x) + l0 −
𝜕𝐸<	
𝜕𝑥 n y) +

(0 − 0)z) = −	𝜇(
𝜕𝑯𝒙

𝜕𝑡 x) +
𝜕𝑯𝒚

𝜕𝑡 y) +
𝜕𝑯𝒛

𝜕𝑡 ẑ)	

𝜇 #𝑯𝒚
#2

= #𝑬𝒛
#%

 (2.6)

Similarly, Ampere’s Law, Equation (1.15) becomes:

ε #𝑬𝒛
#2
= #𝑯𝒚

#%
 (2.7)

Equations (2.6) and (2.7) hold if they have been taken for the same space-time points. The first

equation will be used to find the magnetic field value in the next future step while the second

equation will be used to find the electric field value in the next future step.

Electrical and magnetic fields need to be sampled in space and time domains. Let

𝐸<(𝑥, 𝑡) = 	𝐸<(𝑖 + ∆𝑥, 𝑡 + ∆𝑡) = 𝐸<|-K∆%2K∆2

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12 14 16 18 20

error_fwd error_bwd error_central

12

and

𝐻'(𝑥, 𝑡) = 	𝐻'(𝑖 + ∆𝑥, 𝑡 + ∆𝑡) = 𝐻'�-K∆%
2K∆2

The components will be calculated at discrete time steps separated by delta t, as in figure (2.2.)

Figure 2.2. Electrical and Magnetic Components staggered without offset.

One can notice that after Eq (2.6) is solved to get the future 𝐻'�-
2K∆2

 for all Hy components, and

Equation (2.7) is solved to obtain the future 𝐸<|-2K∆2 components by using the past 𝐸<|-2 and the

past	𝐻'�-
2
 components (not the updated ones we got after solving Eq (2.6)), nothing will change in the

simulation overall. We need to update the values of the 𝐻' field and use it to find the values of the

future 𝐸< field. Later we will use the updated 𝐸< values to find the future 𝐻' field’s values, and so on.

To do that we will stagger the 𝐸<	components by one half time step (∆𝑡/2) offset as shown in figure

(2.3.)

	𝐸,, 𝐻-%.
/

 	𝐸,, 𝐻-%0
/

	𝐸,, 𝐻-%1
/2∆𝑡

 	𝐸,, 𝐻-%.
/2∆𝑡

 	𝐸,, 𝐻-%0
/2∆𝑡

time, 𝑡

Position, 𝑥

	𝐸,, 𝐻-%1
/

∆𝑡

Future(unknown)

Past(known)

∆𝑥

1- apply Eq (2.6) at this point (a=1) then i=2,3,4,…

then

2- apply Eq (2.7) at this point (i=1) then i=2,3,4,…

13

Figure 2.3. Electrical and Magnetic components staggered within half time step offset.

Notice that (𝐻'(𝑖, 𝑡), 𝐸< q𝑖, 𝑡 +
∆2
I
r , 𝑎𝑛𝑑	𝐸<(𝑖 + 1, 𝑡 +

∆2
I
)) are defined values (known), and by

solving the 𝜇 #𝑯𝒚
#2

= #𝑬𝒛
#%

 , the value of the future 𝐻'	𝑎𝑡	(𝑖, 𝑡 +△ 𝑡) will be computed.

A- LHS: To approximate the temporal derivative there are three choices at points (LHS:1, LHS:2,

LHS:3)

1- LHS:1 - Backward Finite Differences (#F(×)
#%

=	 F(×)LF(%L△×)	
△×

):
𝝏𝑯𝒚
𝝏𝒕
	at point(𝑖, 𝑡 +△ 𝑡) =

Y$Z3
45∆4L	Y$Z3

4

∆2
.

The approximation of the derivative in this approach has been taken at the y-axis	(𝑡 +△ 𝑡) which

is different than both terms of the spatial derivative in RHS 𝐸< q𝑖, 𝑡 +
∆2
I
r , 𝑎𝑛𝑑	𝐸<(𝑖 + 1, 𝑡 +

∆2
I
).

Therefore, this approach has obvious drawbacks.

2- LHS:2 - Forward Finite Differences (#F(×)
#%

=	 F(×K△×)LF(%)	
△×

):
𝝏𝑯𝒚
𝝏𝒕
	at the point(𝑖, 𝑡) =

Y$Z3
45∆4L	Y$Z3

4

∆2
.

Again, this solution is not desirable for the same reason above.

3- LHS:3 Central Finite Differences (#F(×)
#%

=	 F(×K△×)LF(%L△×)	
I△×

):
𝝏𝑯𝒚
𝝏𝒕
	at point (𝑖, 𝑡 + ∆2

I
) =

Y$Z3
(45	∆4&)	5	

∆4
& L	Y$Z3

945	∆4& :;	
∆4
&

I∆4&
 =

Y$Z3
45	∆4L	Y$Z3

4

∆2
.

time, 𝑡

Position, 𝑖

Future(unknown)

Past(known)

𝑡 +
∆𝑡
2

𝑡 +
3∆𝑡
2

𝑡 + ∆𝑡

𝑡

1 3 2

Hy Hy Hy

Hy Hy Hy

Ez Ez Ez

Ez Ez Ez

LHS:	1	

LHS:	3	

LHS:	2	

RHS:	3	

RHS:	2	

RHS:	1	

∆𝑥			

14

This solution has the property that the terms exist on the same y-axis as other terms in the RHS of

the equation.

B- RHS: to approximate the spatial derivative we have three choices:

1- RHS:1 - Backward Finite Differences: 𝝏𝑬𝒛
𝝏𝒙
		at point(𝑖 + 1, 𝑡 + ∆2

I
) and

2- RHS:2 - Central Finite Differences: 𝝏𝑬𝒛
𝝏𝒙
	at point(𝑖 + D

I
, 𝑡 + ∆2

I
).

Both approaches will not match the x-axis of the LHS of the equation.

3- RHS:3 - Forward Finite Differences (#F(×)
#%

=	 F(×K△×)LF(%)	
△×

): 𝝏𝑬𝒛
𝝏𝒙
	(At point(𝑖, 𝑡 +	∆2

I
)) =

?%|35>
45	∆4& 	L		?%|3

45	∆4&

∆%
.

So, the correct solution to solve the equation 𝜇 #Y$
#2

= #?%
#%

 for the future 𝐻'\ 𝑠 can be found by

approximating the temporal derivative using central finite differences and the spatial derivative

by forward finite differences. The only problem with this solution is the accuracy of the forward

finite differences method which is order one and the error will accumulate during the time of

the simulation and potentially lead to instability.

Kane Yee, in 1966, solved the partial derivatives of Maxwell’s equations using the second-order

central finite differences approximation by staggering the fields’ components in half time-space

steps as shown in the following figure (2.4.).

Figure 2.4. Electrical and Magnetic components staggered in Yee Algorithm.

	𝐻-%0
/21 	𝐻-%.

/21
 	𝐻-%1

/21

	𝐸,|1
.

/21.

∆𝑥
	𝐻-%0

/ 	𝐻-%.
/

time, 𝑡

Position, 𝑥

	𝐻-%1
/

∆𝑡

Future(unknown)

Node

Node

	𝐸,|1
.

/20.

	𝐸,|0
.

/21. 	𝐸,|?
.

/21.

	𝐸,|0
.

/20. 	𝐸,|?
.

/20.

Past(known)

	𝐻-%@
/21

	𝐻-%@
/

15

1- at Node 1: we solve for at 𝜇 #𝑯𝒚
#2
�
-

2K>& = #𝑬𝒛
#%
�
-

2K>& by using central finite differences.

𝜇
Y$Z3

(45>&)5
>
&		L		Y$Z3

945>&:;
>
&

I×∆4&
=

?%|
35>&

45>&			L			?%|
3;>&

45>&

I×∆"&

Y$Z3
45>		L		Y$Z3

4

∆2
= D

]∆%
(𝐸<|-K>&

2K>& −	𝐸<|-L>&

2K>&)

𝐻'[𝑖]�
2KD = 𝐻'[𝑖]�

2 + ∆2
]∆%

(𝐸<[𝑖 +
D
I
]�
2K>& −	𝐸<[𝑖 −

D
I
]�
2K>&)

2- at Node 2: we solve for at 𝛆 𝝏𝑬𝒛
𝝏𝒕
�
𝒊K𝟏𝟐

𝒕K𝟏
= 𝝏𝑯𝒚

𝝏𝒙
�
𝒊L𝟏𝟐

𝒕K𝟏
 by using central finite differences.

 𝑬𝒛|𝒊K𝟏𝟐

𝒕K𝟏K𝟏𝟐 = 𝑬𝒛|𝒊K𝟏𝟐

𝒕K𝟏L𝟏𝟐 + ∆𝒕
𝛆∆𝒙

(𝑯𝒚�(𝒊L𝟏𝟐)K
𝟏
𝟐

𝒕K𝟏 −	𝑯𝒚�(𝒊L𝟏𝟐)L
𝟏
𝟐

𝒕K𝟏)

𝐸<[𝑖 +
𝟏
𝟐
]�
2K𝟑𝟐 = 𝐸<[𝑖 +

𝟏
𝟐
]�
2K𝟏𝟐 + ∆2

]∆%
(𝐻'[𝑖]�

2KD −	𝐻'[𝑖 − 1]�
2KD)

In C and MATLAB, the electrical and magnetic fields are stored in separate arrays. The elements of

each array are accessed by using integer indices. One can imagine 𝐸<[𝑖 +
D
I
] as 𝐸<[𝑖 + 1] which is at

the right of 𝐻'[𝑖] and 𝐸<[𝑖 −
D
I
] as 𝐸<[𝑖] which is at the left of 𝐻'[𝑖] . As shown in Figure (2.5.).

Figure 2.5. Electrical and Magnetic components staggered in (one-dimensional) Yee’s Algorithm.

Hy(i)= Hy(i) + mHy *(Ez(i+1) - Ez(i))/dx.

Ez(i) = Ez(i) + mEy*(Hy(i) - Hy(i - 1))/dx.

2.4. FDTD Updating Equations of Three-, Two-, and One-Dimensional Problems

The Finite Differences Time Domain (FDTD) Method uses Maxwell’s equations to formulate updated

equations. The first two equations of Maxwell are called the divergence equations while the other

	𝐻-%0
/ 	𝐻-%.

/ 	𝐻-%1
/ 	𝐸,|1

.

/21. 	𝐸,|0
.

/21. 	𝐸,|?
.

/21.

𝐻-[𝑖 + 1] 𝐻-[𝑖 + 2] 𝐻-[𝑖] 𝐸,[𝑖] 𝐸,[𝑖 + 1] 𝐸,[𝑖 + 2]

𝑖 𝑖 + 1 𝑖 + 2

16

two are called the curl equations. These equations together describe how the electric field (E-field)

and magnetic field (H-fields) behave and couple in nature.

∇. 𝑫 = 𝜌e (1.12)

∇. 𝑩 =0 (1.13)

 ∇ × 𝑬 =	−	#𝑩
#2
−𝑴 (1.14)

∇ × 𝑯 = 𝐉 + #𝑫
#2

 (1.15)

All materials are made up of charged particles. Different materials have different responses to the

applied electrical and/or magnetic fields. The response will depend on the strength of the applied field

(i.e., it may tear positive and negative bound charges apart), the frequency-dependent behavior of

dispersive materials, and/or the unique structure of some materials such as crystals that have a

directionally dependent response. For all of that, we need to relate E and B to D and H, respectively.

𝑫(𝑟, 𝑡) = 	 εB	𝑬(𝑟, 𝑡) + 𝑷(𝑟, 𝑡) (2.8)

𝑯(𝑟, 𝑡) = 	 D
]D	
𝑩−𝑴(𝑟, 𝑡) (2.9)

Where M is the magnetization or magnetic moment per unit volume, and P is the polarization

density which could be defined as the ratio of the electric dipole moments 𝒑 (Coulombs-meter) per

unit volume (cubic meter).

 P = 	 𝒑
/)
=	 cE

/)
𝒅 , where P is polarization density (coulombs/square meters), p polarization of the

material, electric dipole moment, (coulombs-meter), 𝑞d bounded charges (coulomb), d displacement

vector pointing from -q to +q. See Figure (2.6.)

17

Figure 2.6. The Electric Dipole Moment when an external E field applied.

A- For isotropic linear materials 	𝑷	 = 	 𝜀B	𝑥*𝑬, and 𝑴	 = 	𝑥e𝑯 (This relation is limited to

ferromagnetic materials only). Thus, substituting this into eq (2.8)

 𝑫 =	εB	𝑬 + εB	𝑥*𝑬

𝑯 =	
1
𝜇B	

𝑩− 𝑥e𝑯

𝑫 =	εB	𝑬	(1 + 𝑥*),

𝑯 =	
1

𝜇B	(1 + 𝑥e)
𝑩	

Where 𝑥*,	𝑥]	 are electric and magnetic susceptibility constants that indicate the degree of

polarization and magnetization of a dielectric material, and it is related to its relative

permittivity and permeability respectively by:

𝑥* =	εf	 − 1

𝑥]	 =	𝜇f	 − 1

𝑫 =	𝜀B	𝜀f	𝑬

𝑯 =	
1

𝜇B	𝜇f		
𝑩

𝑫 = 	ε𝑬 (2.10)

𝑯 = D
]		
	𝑩 (2.11)

Where:	

ε is the electric permittivity = εB	εf		(farads / meter)

εf	 relative electric permittivity (dimensionless scalar)

E E

d

-q +q

Electron cloud displaced electron

18

εB	 free-space electric permittivity (8.854 x 10-12)

𝜇 magnetic permeability (henrys / meter)

𝜇f	 relative permeability (dimensionless scalar)

𝜇B	 free-space permeability (4π x 10-7 henrys / meter)

 B – For dispersive materials:

𝑫(𝑡) = 	𝜀(𝑡) 	∗ 	𝑬(𝑡) (2.12)

𝑯(𝑡) = D
](2)		

∗ 𝑩(𝑡) (2.13)

3- Anisotropic materials:

𝑫(𝑡) = [𝜀]	𝑬(𝑡) (2.14)

𝑯(𝑡) = D
[](2)]		

𝑩(𝑡) (2.15)

4- Nonlinear materials:

D(t) = ε0 [1+ 𝑥* (1) E(t) + 𝑥* (2) E2(t) + 𝑥* (3) E3(t) +…] (2.16)

In case of the isotropic, nondispersive materials:

Note that the electric and magnetic currents J and M are the sum of the independent impressed

sources of E and H field energy, 𝑱𝒊 and 𝑴𝒊, and the conduction current densities (Jc = σe E) and the

magnetic current density 𝑴𝒄 = σe	𝑯

 	𝑱 = 𝑱𝒄 + 𝑱𝒊 = 𝜎𝒆	𝑬	 +	𝑱𝒊																																																	(2.17)

 𝑴 = 𝑴𝒄 +	𝑴𝒊 = σe	𝑯	 +	𝑴𝒊 (2.18)

Where σe is the electric conductivity (siemens/meter), and σm is the magnetic conductivity

(ohms/meter). By using equations (2.17), and (2.18) we can rewrite Maxwell’s equations (1.14), and

(1.15) as:

∇ × 	𝑯 =
𝜕𝑫
𝜕𝑡 	+ 𝜎

𝒆	𝑬	 +	𝑱-																																													(2.19)

∇ × 	𝑬 = −
𝜕𝑩
𝜕𝑡 −	σ

e	𝑯 −	𝑀-																																								(2.20)

19

2.4.1. Three-Dimensional Problems

For constitutive equations of linear, isotropic, and nondispersive materials, equations (2.14), and

(2.15), and equations (2.19) and (2.20) become:

∇ × 	𝑯 = [𝜀]	
𝜕𝑬
𝜕𝑡 	+ 𝜎

𝒆	𝑬	 +	𝑱-

∇ × 	𝑬 = −[𝜇]		
𝜕𝑯
𝜕𝑡 −	σ

e	𝑯 −	𝑀-

𝜀 = 𝜀f	𝜀B	, μ = μf	μB	, 𝑐B = 	
D

kD	μD	
	 = 299792458	𝑚/𝑠			,					𝑛B = 		

μD	
kD	
	 = 376.73031346177	𝛺,

Let 𝐇 = 𝑯l

7D

∇ × 𝑯¦ = 𝑛B[𝜀]	
𝜕𝑬
𝜕𝑡 + 𝑛B𝜎

𝒆	𝑬 + 𝑛B	𝑱- = §	
μB	
𝜀B	
	[𝜀f	𝜀B]

𝜕𝑬
𝜕𝑡 + 𝑛B𝜎

𝒆	𝑬 + 𝑛B	𝑱-

= ¨𝜀B	μB			[𝜀f]
𝜕𝑬
𝜕𝑡 + 𝑛B𝜎

𝒆	𝑬 + 𝑛B	𝑱-

∇ ×	𝑯¦ = 	 [kF]
,D
	#𝑬
#2
	+ 	𝑛B𝜎𝒆	𝑬	 +	𝑛B	𝑱- (2.21)

∇ × 	𝑬 = −	[]]
+D
	#𝑯
l

#2
−				m

G

+D
		𝑯¦ −	𝑀- 	= −[𝜇f]	

]D

n		
μD	
HD	
	

	#𝑯
l

#2
−	nB σe	𝑯¦ −	𝑀-

∇ × 	𝑬 = −	[]F]
,D

	#𝑯
l

#2
−	nB σe	𝑯¦ −	𝑀- (2.22)

 Expanding equations (2.21) and (2.22) to get the scalar form of these two curls equations gives:

1- Expanding Equation (2.21) ∇ ×	𝑯¦ = 	 [kF]
,D
	#𝑬
#2
	+ 	𝑛B(𝜎𝒆	𝑬	 + 𝑱-)

Where∇ × 𝑯¦ = o

x) y) ẑ
𝝏
𝝏𝒙

𝝏
𝝏𝒚

𝝏
𝝏𝒛

𝐻¦%	 𝐻¦'	 𝐻¦<	

p , [𝜀f] = d
𝜀%% 𝜀%' 𝜀%<
𝜀'% 𝜀'' 𝜀'<
𝜀<% 𝜀<' 𝜀<<

f , [𝜎𝒆] = a
	𝜎𝒆%% 	𝜎𝒆%' 	𝜎𝒆%<
	𝜎𝒆'% 	𝜎𝒆'' 	𝜎𝒆'<
	𝜎𝒆<% 	𝜎𝒆<' 	𝜎𝒆<<

c,

	𝑬 = a
𝐸%
𝐸'
𝐸<
c, 𝑱- = a

𝐽-%
𝐽-'
𝐽-<
c

20

q#Y
l%	
#'

− #Yl$	
#<
r x) + q#Y

l"	
#<

− #Yl%	
#%
r y) + q#Y

l$	
#%

− #Yl"	
#'
r ẑ = D

,D
d
𝜀%% 𝜀%' 𝜀%<
𝜀'% 𝜀'' 𝜀'<
𝜀<% 𝜀<' 𝜀<<

f

⎣
⎢
⎢
⎢
⎡
#𝑬𝒙
#2
#𝑬𝒚
#2
#𝑬𝒛
#2 ⎦
⎥
⎥
⎥
⎤
+

𝑛B a
	𝜎𝒆%% 	𝜎𝒆%' 	𝜎𝒆%<
	𝜎𝒆'% 	𝜎𝒆'' 	𝜎𝒆'<
	𝜎𝒆<% 	𝜎𝒆<' 	𝜎𝒆<<

c a
𝐸%
𝐸'
𝐸<
c + 𝑛B a

𝐽-%
𝐽-'
𝐽-<
c

¯
𝜕𝐻¦<	
𝜕𝑦 −

𝜕𝐻¦'	
𝜕𝑧 ° =

1
𝑐B
±𝜀%% l

𝜕𝐸%
𝜕𝑡 n + 𝜀%' ¯

𝜕𝐸'
𝜕𝑡 ° + 𝜀%< l

𝜕𝐸<
𝜕𝑡 n² + nB (𝜎%%𝒆 	𝐸% + 𝜎%'𝒆 	𝐸' + 𝜎%<𝒆 	𝐸<	+𝐽-%)

¯
𝜕𝐻¦%	
𝜕𝑧 −

𝜕𝐻¦<	
𝜕𝑥 ° =

1
𝑐B
±𝜀'% l

𝜕𝐸%
𝜕𝑡 n + 𝜀'' ¯

𝜕𝐸'
𝜕𝑡 ° + 𝜀'< l

𝜕𝐸<
𝜕𝑡 n² + nB (𝜎'%𝒆 	𝐸% + 𝜎''𝒆 	𝐸' + 𝜎'<𝒆 	𝐸<	+𝐽-')

¯
𝜕𝐻¦'	
𝜕𝑥 −

𝜕𝐻¦%	
𝜕𝑦 ° =

1
𝑐B
±𝜀<% l

𝜕𝐸%
𝜕𝑡 n + 𝜀<' ¯

𝜕𝐸'
𝜕𝑡 ° + 𝜀<< l

𝜕𝐸<
𝜕𝑡 n² + nB (𝜎<%𝒆 	𝐸% + 𝜎<'𝒆 	𝐸' + 𝜎<<𝒆 	𝐸<	+𝐽-<)

Assuming only diagonal tensors

¯
𝜕𝐻¦<	
𝜕𝑦 −

𝜕𝐻¦'	
𝜕𝑧 ° =

𝜀%%
𝑐B
𝜕𝐸%
𝜕𝑡 + nB (𝜎%%𝒆 	𝐸%	+𝐽-%)

¯
𝜕𝐻¦%	
𝜕𝑧 −

𝜕𝐻¦<	
𝜕𝑥 ° =

𝜀''
𝑐B

𝜕𝐸'
𝜕𝑡 + nB (𝜎''𝒆 	𝐸'	+𝐽-')

¯
𝜕𝐻¦'	
𝜕𝑥 −

𝜕𝐻¦%	
𝜕𝑦 ° =

𝜀<<
𝑐B
𝜕𝐸<
𝜕𝑡 + nB (𝜎<<𝒆 	𝐸<	+𝐽-<)

#?"
#2

=	
	JD
k""
	q#Y

l%	
#'

− #Yl$	
#<

−	nB (𝜎%%𝒆 	𝐸%	+𝐽-%)r, (2.23)

#?$
#2

=	
	JD
k$$
	q#Y

l"	
#<

− #Yl%	
#%

−	nB (𝜎''𝒆 	𝐸'	+𝐽-')r, (2.24)

#?%
#2
=	

	JD
k%%
	(#Y

l$	
#%

− #Yl"	
#'

−	nB (𝜎<<𝒆 	𝐸<	+𝐽-<) (2.25)

21

Figure 2.7. Magnetic field components on Yee’s algorithm.

We will express these equations in terms of the finite central differences' formula.

?"K5>(-,p,q)L?"K(-,p,q)
∆2

=
	JD
k""

(Y%
K5>&(-,p,q)LY%

K5>&(-,pLD,q)
	∆'

	-
Y$
K5>&(-,p,q)LY$

K5>&(-,p,qLD)

	∆<
 -

nB 𝜎*%(𝑖, 𝑗, 𝑘)𝐸%
+K>&(𝑖, 𝑗, 𝑘) + nB 𝐽-%

+K>&(𝑖, 𝑗, 𝑘)) (2.26)

Now we need to rewrite the right-hand term in eq (2.26), 𝐸%
+K>&(𝑖, 𝑗, 𝑘) in such a way that is defined

at integer time steps (not half steps) by taking the average of 𝐸%+KD and 𝐸%+

𝐸%
+K>&(𝑖, 𝑗, 𝑘) = 	?"

K5>(-,p,q)K?"K(-,p,q)
I

	 (2.27)

By using (2.27) in (2.26)

22

?"K5>(-,p,q)L?"K(-,p,q)
∆2

+		,D	7D rL"(-,p,q)	(?"K5>(-,p,q)K?"K(-,p,q)
Ik""

		=
	JD
k""

(Y%
K5>&(-,p,q)LY%

K5>&(-,pLD,q)
	∆'

	-

Y$
K5>&(-,p,q)LY$

K5>&(-,p,qLD)

	∆<
 - nB 𝐽-%

+K>&(𝑖, 𝑗, 𝑘)))

	Ik""	?"
K5>(-,p,q)L	Ik""	?"K(-,p,q)K∆2		7D rL"(-,p,q)	?"K5>(-,p,q)K∆2	,D	7D rL"(-,p,q)	?"K(-,p,q)

I	∆2	k""
		=

	JD
k""

(Y%
K5>&(-,p,q)LY%

K5>&(-,pLD,q)
	∆'

	-
Y$
K5>&(-,p,q)LY$

K5>&(-,p,qLD)

	∆<
 - nB 𝐽-%

+K>&(𝑖, 𝑗, 𝑘)))

	?"K5>(-,p,q)	sIk""K	∆2	7D rL"(-,p,q)tL	?"K(-,p,q)	(Ik""L∆2	,D7D rL"(-,p,q)
I	∆2	k""

		=
	JD
k""

(Y%
K5>&(-,p,q)LY%

K5>&(-,pLD,q)
	∆'

	-

Y$
K5>&(-,p,q)LY$

K5>&(-,p,qLD)

	∆<
 - nB 𝐽-%

+K>&(𝑖, 𝑗, 𝑘))).

𝐸%+KD(𝑖, 𝑗, 𝑘) 	= 	𝐸%+(𝑖, 𝑗, 𝑘)	
Ik""L	∆2	,D7D rL"(-,p,q)
Ik""K	∆2	7D rL"(-,p,q)

+ I,D∆2
∆'	(Ik""K	∆2	,D7D rL"(-,p,q)

 (𝐻<
+K>&(𝑖, 𝑗, 𝑘) −

𝐻<
+K>&(𝑖, 𝑗 − 1, 𝑘)) - I,D∆2

∆<(Ik""K	∆2	,D7D rL"(-,p,q)
 (𝐻'

+K>&(𝑖, 𝑗, 𝑘) − 𝐻'
+K>&(𝑖, 𝑗, 𝑘 − 1)) - I,D∆2+D

(Ik""K	∆2	,D7D	rL"(-,p,q)

𝐽-%
+K>&(𝑖, 𝑗, 𝑘)))

𝐸%+KD(𝑖, 𝑗, 𝑘) = 		 𝐶*%*(𝑖, 𝑗, 𝑘) 	×	𝐸%+(𝑖, 𝑗, 𝑘) +	𝐶*%u<(𝑖, 𝑗, 𝑘) ×	±𝐻<
+K>&(𝑖, 𝑗, 𝑘) − 𝐻<

+K>&(𝑖, 𝑗 − 1, 𝑘)²

 −	𝐶*%u'(𝑖, 𝑗, 𝑘) × (𝐻'
+K>&(𝑖, 𝑗, 𝑘) − 𝐻'

+K>&(𝑖, 𝑗, 𝑘 − 1)) −	𝐶*%p(𝑖, 𝑗, 𝑘) 	×	𝐽-%
+K>&(𝑖, 𝑗, 𝑘) (2.28a)

Where:

𝐶*%*(𝑖, 𝑗, 𝑘) =
Ik""L	∆2	,D7D rL"(-,p,q)
Ik""K	∆2	7D rL"(-,p,q)

𝐶*%u<(𝑖, 𝑗, 𝑘) =
I,D∆2

∆'	(Ik""K	∆2	,D7D rL"(-,p,q)

23

𝐶*%u'(𝑖, 𝑗, 𝑘) =
I,D∆2

∆<(Ik""K	∆2	,D7D rL"(-,p,q)

𝐶*%p(𝑖, 𝑗, 𝑘) =
2𝑐B∆𝑡𝑛B

	2𝜀%% +	∆𝑡	𝑐BnB	𝜎*%(𝑖, 𝑗, 𝑘)

Using the same process for the rest of the components we get:

𝐸'+KD(𝑖, 𝑗, 𝑘) = 		 𝐶*'*(𝑖, 𝑗, 𝑘) 	×	𝐸'+(𝑖, 𝑗, 𝑘) +	𝐶*'u%(𝑖, 𝑗, 𝑘) ×	±𝐻%
+KDI(𝑖, 𝑗, 𝑘) − 𝐻%

+KDI(𝑖, 𝑗, 𝑘 − 1)²

 −	𝐶*'u<(𝑖, 𝑗, 𝑘) × (𝐻<
+K>&(𝑖, 𝑗, 𝑘) − 𝐻<

+K>&(𝑖 − 1, 𝑗, 𝑘)) −	𝐶*'p(𝑖, 𝑗, 𝑘) 	×	𝐽-'
+K>&(𝑖, 𝑗, 𝑘)							(2.28b)

Where:

 𝐶*'*(𝑖, 𝑗, 𝑘) =
Ik$$L	∆2	,D7D rL$(-,p,q)
Ik$$K	∆2	7D rL$(-,p,q)

𝐶*'u%(𝑖, 𝑗, 𝑘) =
I,D∆2

∆<	(Ik$$K	∆2	,D7D rL$(-,p,q)

𝐶*'u<(𝑖, 𝑗, 𝑘) =
I,D∆2

∆%(Ik$$K	∆2	,D7D rL$(-,p,q)

𝐶*'p(𝑖, 𝑗, 𝑘) =
2𝑐B∆𝑡𝑛B

	2𝜀'' +	∆𝑡	𝑐BnB	𝜎*'(𝑖, 𝑗, 𝑘)

𝐸<+KD(𝑖, 𝑗, 𝑘) = 		 𝐶*<*(𝑖, 𝑗, 𝑘) 	×	𝐸<+(𝑖, 𝑗, 𝑘) +	𝐶*<u'(𝑖, 𝑗, 𝑘) ×	±𝐻'
+K>&(𝑖, 𝑗, 𝑘) − 𝐻'

+K>&(𝑖 − 1, 𝑗, 𝑘)²

 −	𝐶*<u%(𝑖, 𝑗, 𝑘) × (𝐻%
+K>&(𝑖, 𝑗, 𝑘) − 𝐻%

+K>&(𝑖, 𝑗 − 1, 𝑘)) −	𝐶*<p(𝑖, 𝑗, 𝑘) 	×	𝐽-<
+K>&(𝑖, 𝑗, 𝑘)							 (2.28c)

Where:

𝐶*<*(𝑖, 𝑗, 𝑘) =
Ik%%L	∆2	,D7D rL%(-,p,q)
Ik%%K	∆2	7D rL%(-,p,q)

𝐶*<u'(𝑖, 𝑗, 𝑘) =
I,D∆2

∆%	(Ik%%K	∆2	,D7D rL%(-,p,q)

𝐶*%u'(𝑖, 𝑗, 𝑘) =
I,D∆2

∆'(Ik%%K	∆2	,D7D rL%(-,p,q)

𝐶*%p(𝑖, 𝑗, 𝑘) =
2𝑐B∆𝑡𝑛B

	2𝜀<< +	∆𝑡	𝑐BnB	𝜎*<(𝑖, 𝑗, 𝑘)

2- Expanding Equation (2.22)	∇ × 	𝑬 = −	[]F]
,D

	#𝑯
l

#2
−	nB σe	𝑯¦ −	𝑀-

24

∇ × 𝑬 = o

x) y) ẑ
𝝏
𝝏𝒙

𝝏
𝝏𝒚

𝝏
𝝏𝒛

𝐸%	 𝐸'	 𝐸<	

p, [𝜇f] = d
𝜇%% 𝜇%' 𝜇%<
𝜇'% 𝜇'' 𝜇'<
𝜇<% 𝜇<' 𝜇<<

f , 	𝑯¦		 = 	 a
𝐻¦%
𝐻¦'
𝐻¦<

c

q#?%	
#'

− #?$	
#<
r x) + q#?"	

#<
− #?%	

#%
r y) + q#?$	

#%
− #?"	

#'
r ẑ = LD

,D
d
𝜇%% 𝜇%' 𝜇%<
𝜇'% 𝜇'' 𝜇'<
𝜇<% 𝜇<' 𝜇<<

f

⎣
⎢
⎢
⎢
⎡
#Yl"
#2
#Yl$
#2
#Yl%
#2 ⎦
⎥
⎥
⎥
⎤

−	nB σe	𝑯¦ −	𝑀-

¯
𝜕𝐸<	
𝜕𝑦 −

𝜕𝐸'	
𝜕𝑧 ° =

−1
𝑐B
	 ¶𝜇%% ¯

𝜕𝐻¦%
𝜕𝑡 ° + 𝜇%' ¯

𝜕𝐻¦'
𝜕𝑡 ° + 𝜇%< ¯

𝜕𝐻¦<
𝜕𝑡 °· −	nB σ%e	𝐻¦% −	𝑀-%

l
𝜕𝐸%	
𝜕𝑧 −

𝜕𝐸<	
𝜕𝑥 n =

−1
𝑐B
	 ¶𝜇'% ¯

𝜕𝐻¦%
𝜕𝑡 ° + 𝜇'' ¯

𝜕𝐻¦'
𝜕𝑡 ° + 𝜇'< ¯

𝜕𝐻¦<
𝜕𝑡 °· −	nB σ'e	𝐻¦' −	𝑀-'

¯
𝜕𝐸'	
𝜕𝑥 −

𝜕𝐸%	
𝜕𝑦 ° =

−1
𝑐B
	 ¶𝜇<% ¯

𝜕𝐻¦%
𝜕𝑡 ° + 𝜇<' ¯

𝜕𝐻¦'
𝜕𝑡 ° + 𝜇<< ¯

𝜕𝐻¦<
𝜕𝑡 °· −	nB σ<e	𝐻¦< −	𝑀-<

Assuming only diagonal tensors

q#?%	
#'

− #?$	
#<
r = 	−]""

,D
	 #Y

l"
#2
	− 	nB σ%e	𝐻¦% −	𝑀-%

q#?"	
#<

− #?%	
#%
r = −]$$

,D
	 #Y

l$
#2
	− 	nB σ'e	𝐻¦' −	𝑀-'

q#?$	
#%

− #?"	
#'
r = −]%%

,D
	 #Y

l%
#2
	− 	nB σ<e	𝐻¦< −	𝑀-<

#Yl"
#2

=	 ,D
]""

	q#?$
#<
−	#?%

#'
−	nB σ%e	𝐻¦% −	𝑀-%r (2.29)

#Yl$
#2

=	 ,D
]$$

	q#?%
#%
−	#?"

#<
−	nB σ'e	𝐻¦' −	𝑀-'r (2.30)

#Yl%
#2

=	 ,D
]%%
	q#?"

#'
−	#?$

#%
−	nB σ<e	𝐻¦< −	𝑀-<r (2.31)

25

Figure 2.8. Arrangement of field’s components on a (3-D) Yee’s cell indexed at (i, j, k)

The finite central differences form of the equations will be:

𝐻%
+KD/I(𝑖, 𝑗, 𝑘) = 		 𝐶u%u(𝑖, 𝑗, 𝑘) 	×	𝐻%

+LD/I(𝑖, 𝑗, 𝑘) +	𝐶u%*'(𝑖, 𝑗, 𝑘) ×	q𝐸'+(𝑖, 𝑗, 𝑘 + 1) − 𝐸'+(𝑖, 𝑗, 𝑘)r

 −	𝐶u%*<(𝑖, 𝑗, 𝑘) × (𝐸<+(𝑖, 𝑗 + 1, 𝑘) − 𝐸<+(𝑖, 𝑗, 𝑘)) −	𝐶u%e(𝑖, 𝑗, 𝑘) 	×	𝑀-%
+ (𝑖, 𝑗, 𝑘)							 (2.32a)

Where:

𝐶u%u(𝑖, 𝑗, 𝑘) =
I]""(-,p,q)	L	∆2	rG"(-,p,q)
I]"(-,p,q)	K	∆2	rG"(-,p,q)

𝐶u%*'(𝑖, 𝑗, 𝑘) =
I,D∆2

(I]"(-,p,q)	K	∆2	rG"(-,p,q))∆<

𝐶u%*<(𝑖, 𝑗, 𝑘) =
I,D∆2

(I]"(-,p,q)	K	∆2	rG"(-,p,q))∆'

𝐶u%e(𝑖, 𝑗, 𝑘) =
I,D∆2+D

I]"(-,p,q)	K	∆2	rG"(-,p,q)
	

𝐻'
+K>&(𝑖, 𝑗, 𝑘) = 		 𝐶u'u(𝑖, 𝑗, 𝑘) 	×	𝐻'

+L>&(𝑖, 𝑗, 𝑘) +	𝐶u'*<(𝑖, 𝑗, 𝑘) ×	¸𝐸<+(𝑖 + 1, 𝑗, 𝑘) − 𝐸<+(𝑖, 𝑗, 𝑘)¹

 −	𝐶u'*%(𝑖, 𝑗, 𝑘) × (𝐸%+(𝑖, 𝑗, 𝑘 + 1) − 𝐸%+(𝑖, 𝑗, 𝑘)) −	𝐶u'e(𝑖, 𝑗, 𝑘) 	×	𝑀-'
+ (𝑖, 𝑗, 𝑘)							 (2.32b)

Where:

𝐶u'u(𝑖, 𝑗, 𝑘) =
I]$(-,p,q)	L	∆2	rG$(-,p,q)
I]$(-,p,q)	K	∆2	rG$(-,p,q)

 ,

𝐸𝑥(i,j+1,k)	

𝐸 𝑧
(i+

1,
j,k
)	

𝐸 𝑦

(i+
1,j
,k)
	

𝐸𝑥(i,j,k+1)	𝐸 𝑦(
i,j,k
+1
)	

𝐸 𝑧
(i,
j+
1,
k)
	

𝐸𝑥(i,j,k)	

𝐸 𝑧
(i,
j,k
)	

𝐸 𝑦(
i,j,k
)	

26

𝐶u'*<(𝑖, 𝑗, 𝑘) =
I,D∆2

(I]$(-,p,q)	K	∆2	rG$(-,p,q))∆%
 ,

𝐶u'*%(𝑖, 𝑗, 𝑘) =
I,D∆2

(I]$(-,p,q)	K	∆2	rG$(-,p,q))∆<
 ,

𝐶u'e(𝑖, 𝑗, 𝑘) =
I,D∆2+D

I]$(-,p,q)	K	∆2	rG$(-,p,q)
	 .

𝐻<
+KDI(𝑖, 𝑗, 𝑘) = 		 𝐶u<u(𝑖, 𝑗, 𝑘) 	×	𝐻<

+LDI(𝑖, 𝑗, 𝑘) +	𝐶u<*%(𝑖, 𝑗, 𝑘) ×	¸𝐸%+(𝑖, 𝑗 + 1, 𝑘) − 𝐸%+(𝑖, 𝑗, 𝑘)¹

 −	𝐶u<*'(𝑖, 𝑗, 𝑘) × (𝐸'+(𝑖 + 1, 𝑗, 𝑘) − 𝐸'+(𝑖, 𝑗, 𝑘)) −	𝐶u<e(𝑖, 𝑗, 𝑘) 	×	𝑀-<
+ (𝑖, 𝑗, 𝑘) (2.32c)

Where:

𝐶u<u(𝑖, 𝑗, 𝑘) =
I]%(-,p,q)	L	∆2	rG%(-,p,q)
I]%(-,p,q)	K	∆2	rG%(-,p,q)

 ,

𝐶u<*%(𝑖, 𝑗, 𝑘) =
			I,D∆2

(I]%(-,p,q)	K	∆2	rG%(-,p,q))∆'
 ,

𝐶u<*'(𝑖, 𝑗, 𝑘) =
I,D∆2

(I]%(-,p,q)	K	∆2	rG%(-,p,q))∆%
 ,

𝐶u<e(𝑖, 𝑗, 𝑘) =
I,D∆2+D

I]%(-,p,q)	K	∆2	rG%(-,p,q)
	 .

For many of FDTD problems the electric and magnetic currents do not exist (J, and M = 0). In this

case Equations (2.28) and (2.32) can be simplified to:

𝐸%+KD(𝑖, 𝑗, 𝑘) = 𝐸%+(𝑖, 𝑗, 𝑘) +
,D∆2
k""

(Y%
K5>/&(-,p,q)LY%

K5>/&(-,pLD,q)
∆'

−	
Y$
K5>/&(-,p,q)LY$

K5>/&(-,p,qLD)

∆<
) (2.33a)

𝐸'+KD(𝑖, 𝑗, 𝑘) = 𝐸'+(𝑖, 𝑗, 𝑘) +
,D∆2
k$$

(Y"
K5>/&(-,p,q)LY"

K5>/&(-,p,qLD)
∆<

−	Y%
K5>/&(-,p,q)LY%

K5>/&(-LD,p,q)
∆%

) (2.33b)

𝐸<+KD(𝑖, 𝑗, 𝑘) = 𝐸<+(𝑖, 𝑗, 𝑘) +
,D∆2
k%%

(
Y$
K5>/&(-,p,q)LY$

K5>/&(-LD,p,q)

∆%
−	Y"

K5>/&(-,p,q)LY"
K5>/&(-,pLD,q)

∆'
) (2.33c)

𝐻%
+KD/I(𝑖, 𝑗, 𝑘) = 𝐻%

+LD/I(𝑖, 𝑗, 𝑘) + ,D∆2
]""

(?$
K(-,p,qKD)L?$K(-,p,q)

∆<
−	?%

K(-,pKD,q)L?%K(-,p,q)
∆'

) (2.34a)

𝐻'
+KD/I(𝑖, 𝑗, 𝑘) = 𝐻'

+LD/I(𝑖, 𝑗, 𝑘) + ,D∆2
]$$

(?%
K(-KD,p,q)L?%K(-,p,q)

∆%
−	?"

K(-,p,qKD)L?"K(-,p,q)
∆<

) (2.34b)

𝐻<
+KD/I(𝑖, 𝑗, 𝑘) = 𝐻<

+LD/I(𝑖, 𝑗, 𝑘) + ,D∆2
]%%

(?"
K(-,pKD,q)L?"K(-,p,q)

∆'
−	?$

K(-KD,p,q)L?$K(-,p,q)
∆%

) (2.34c)

27

2.4.2. Two-Dimensional Problems

Sometimes, the electromagnetic problem we need to simulate can be described by using only two

dimensions so the material and fields are uniform in one direction and the derivatives in that

direction will be zero. Let #
#<
= 0	, then Maxwell’s equations will be:

𝐸%+KD(𝑖, 𝑗) = 𝐸%+(𝑖, 𝑗) +
,D∆2
k""

(Y%
K5>/&(-,p)LY%

K5>/&(-,pLD)
∆'

) (2.35a)

𝐸'+KD(𝑖, 𝑗) = 𝐸'+(𝑖, 𝑗) −
Y%
K5>/&(-,p)LY%

K5>/&(-LD,p)
∆%

	 (2.35b)

𝐻<
+KD/I(𝑖, 𝑗) = 𝐻<

+LD/I(𝑖, 𝑗) + ,D∆2
]%%

(?"
K(-,pKD)L?"K(-,p)

∆'
−	?$

K(-KD,p)L?$K(-,p)
∆%

) (2.35c)

𝐸<+KD(𝑖, 𝑗) = 𝐸<+(𝑖, 𝑗) +
,D∆2
k%%

(
Y$
K5>/&(-,p)LY$

K5>/&(-LD,p)

∆%
−	Y"

K5>/&(-,p)LY"
K5>/&(-,pLD)

∆'
) (2.36a)

𝐻%
+KD/I(𝑖, 𝑗) = 𝐻%

+LD/I(𝑖, 𝑗) − ,D∆2
]""

?%K(-,pKD)L?%K(-,p)
∆'

 (2.36b)

𝐻'
+KD/I(𝑖, 𝑗) = 𝐻'

+LD/I(𝑖, 𝑗) + ,D∆2
]$$

?%K(-KD,p)L?%K(-,p)
∆%

 (2.36c)

Notice that Equations (2.35a), (2.35b), and (2.35c) and Equations (2.36a), (2.36b), and (2.36c) have

decoupled into two sets (modes): 1- 𝐸<- mode and 2- 𝐻<-mode see Figures (2.9.) – (2.13.)

28

Figure 2.9. Unit cell Indexed as (i, j, k) Showing the Two Modes of Wave Propagation

Mode 1: when z =0

Figure 2.10. 𝑯𝒛-Mode Sliced figure (2.9.) at z=0

Mode 2 at

z=0.5

y

x

z

Mode 2 at

z=0.5

29

Figure 2.11. 2D-FDTD 𝑯𝒛- Mode

Figure 2.12. 𝑬𝒛- Mode Sliced figure (2.9.) at z=0.5

30

Figure 2.13. 2D-FDTD 𝑬𝒛-Mode

2.4.3. One-Dimensional Problems

For one-dimensional problems, #
#<
, #
#'
= 0	, and we have two sets (modes): 𝐸</𝐻' and 𝐸'/𝐻<.

31

EzHy- mode

EyHz- mode

Figure 2.14. Unit cell Indexed as (i, j, k) Showing the Two Modes of Propagation

Mode 1:

Figure 2.15. One-Dimensional FDTD-Mode 1

𝐸<+KD(𝑖) = 𝐸<+(𝑖) +
,D∆2
k%%

Y$
K5>/&(-)LY$

K5>/&(-LD)

∆%

𝐻'
+KD/I(𝑖) = 𝐻'

+LD/I(𝑖) + ,D∆2
]$$

?%K(-KD)L?%K(-)
∆%

Mode 2

Figure 2.16. One-Dimensional FDTD-Mode 2

32

𝐸'+KD(𝑖) = 𝐸'+(𝑖) −
Y%
K5>/&(-)LY%

K5>/&(-LD)
∆%

	

𝐻<
+KD/I(𝑖) = 𝐻<

+LD/I(𝑖) + ,D∆2
]%%

?$K(-KD)L?$K(-)
∆%

2.5. Conclusion

Finite-Difference Time-Domain (FDTD) method was used to find the solutions of Maxwell’s equations

by approximating the time and space partial derivatives with finite central differences. To apply this

method, the components of electrical and magnetic fields need to be staggered relative to each

other in time and space. Either the E or the H fields may stagger on half time and space step offset

from each other. The complexity of the formulation of the FDTD equations is because the

components of the fields are physically located in various locations in time and space, and care

needs to be taken when approximating them. Additionally, these components may reside in

different materials even when they are in the same Yee unit cell. The simplified process to drive the

FDTD equations (update equations) is shown in figure (2.17.) for one, two, and three dimensions:

5
𝜕𝐸$	
𝜕𝑦

−
𝜕𝐸&	
𝜕𝑧

: =
−1
𝑐'
	 =𝜇((5

𝜕𝐻@(
𝜕𝑡

: + 𝜇(& 5
𝜕𝐻@&
𝜕𝑡

: + 𝜇($ 5
𝜕𝐻@$
𝜕𝑡

:A

B
𝜕𝐸(
𝜕𝑧

−
𝜕𝐸$	
𝜕𝑥

D =
−1
𝑐'
	 =𝜇&(5

𝜕𝐻@(
𝜕𝑡

: + 𝜇&& 5
𝜕𝐻@&
𝜕𝑡

: + 𝜇&$ 5
𝜕𝐻@$
𝜕𝑡

:A

5
𝜕𝐸&	
𝜕𝑥

−
𝜕𝐸(
𝜕𝑦

: =
−1
𝑐'
	 =𝜇$(5

𝜕𝐻@(
𝜕𝑡

: + 𝜇$& 5
𝜕𝐻@&
𝜕𝑡

: + 𝜇$$ 5
𝜕𝐻@$
𝜕𝑡

:A

𝜕𝐻@$	
𝜕𝑦

−
𝜕𝐻@&	
𝜕𝑧

	 =
−1
𝑐'
	 E𝜀((B

𝜕𝐸(
𝜕𝑡
D + 𝜀(& 5

𝜕𝐸&
𝜕𝑡
: + 𝜀($ B

𝜕𝐸$
𝜕𝑡
DG

𝜕𝐻@(
𝜕𝑧

−
𝜕𝐻@$	
𝜕𝑥

	 =
−1
𝑐'
	 E𝜀&(B

𝜕𝐸(
𝜕𝑡
D + 𝜀&& 5

𝜕𝐸&
𝜕𝑡

: + 𝜀&$ B
𝜕𝐸$
𝜕𝑡
DG

𝜕𝐻@&	
𝜕𝑥

−
𝜕𝐻@(
𝜕𝑦

	 =
−1
𝑐'
	 E𝜀$(B

𝜕𝐸(
𝜕𝑡
D + 𝜀$& 5

𝜕𝐸&
𝜕𝑡

: + 𝜀$$ B
𝜕𝐸$
𝜕𝑡
DG	

	

𝐁 = [µ]	 ∗ 	𝐇	*	wD
wD
	

𝐇 = 𝐇l

wD
,		nB	 =

µD	
zD
	

[µ]	 = µB	[µ{]		

cB	=
1

¨εBµB
	

𝐁 = µB	[µ{] ∗
𝐇¦
ηB
	

− H𝐁
HJ
= K[M|]

O}
	H𝐇
@

HJ
	

𝐃 = [ε]	 ∗ 	𝐄	

∂𝐃
∂t 	 = 	

[ε{]
cB

	
∂𝐄
∂t 	

	

∇ × 𝐄 = − ~𝐁
~�

∇ × 𝐇 =
∂𝐃
∂t

33

Figure 2.17. Summary of the Formulation of the FDTD equations.

For one or two-dimensional cases, when the derivative is not changed in one axis the derivatives in

figure (2.17.) is set to zero.

!
𝜕𝐸!	
𝜕𝑦

−
𝜕𝐸#	
𝜕𝑧

' =
−1
𝑐$
+𝜇%% !

𝜕𝐻.%
𝜕𝑡

'0 								𝐸% = 𝐸% +
𝑐$∆𝑡
𝜀%%

(
𝐻!(𝑗) − 𝐻!(𝑗 − 1)

∆𝑦
−	
𝐻#(𝑘) − 𝐻#(𝑘 − 1)

∆𝑧
)

9
𝜕𝐸%	
𝜕𝑧

−
𝜕𝐸!	
𝜕𝑥 ;

=
−1
𝑐$
<𝜇## !

𝜕𝐻.#
𝜕𝑡

'= 								𝐸% = 𝐸% +
𝑐$∆𝑡
𝜀##

(
𝐻%(𝑘) − 𝐻%(𝑘 − 1)

∆𝑧
−	
𝐻!(𝑖) − 𝐻!(𝑖 − 1)

∆𝑥
)

!
𝜕𝐸#	
𝜕𝑥

−
𝜕𝐸%	
𝜕𝑦

' =
−1
𝑐$
+𝜇!! !

𝜕𝐻.!
𝜕𝑡

'0 									𝐸% = 𝐸% +
𝑐$∆𝑡
𝜀!!

(
𝐻#(𝑖) − 𝐻#(𝑖 − 1)

∆𝑥
−	
𝐻%(𝑗) − 𝐻%(𝑗 − 1)

∆𝑦
)

𝜕𝐻.!	
𝜕𝑦

−
𝜕𝐻.#	
𝜕𝑧

	 =
−𝜀%%
𝑐$

𝜕𝐸%
𝜕𝑡

																										𝐻% = 𝐻% +
𝑐$∆𝑡
𝜇%%

(
𝐸#(𝑘 + 1) − 𝐸#(𝑘)

∆𝑧
−	
𝐸!(𝑗 + 1) − 𝐸!(𝑗)

∆𝑦
)

𝜕𝐻.%	
𝜕𝑧

−
𝜕𝐻.!	
𝜕𝑥

	 =
−𝜀##
𝑐$

𝜕𝐸#
𝜕𝑡

																										𝐻# = 𝐻# +
𝑐$∆𝑡
𝜇##

(
𝐸!(𝑖 + 1) − 𝐸!(𝑖)

∆𝑥
−	
𝐸%(𝑘 + 1) − 𝐸%(𝑘)

∆𝑧
)

𝜕𝐻.#	
𝜕𝑥

−
𝜕𝐻.%	
𝜕𝑦

	 =
−𝜀!!
𝑐$

𝜕𝐸!
𝜕𝑡

																										𝐻! = 𝐻! +
𝑐$∆𝑡
𝜇!!

(
𝐸%(𝑗 + 1) − 𝐸%(𝑗)

∆𝑦
−	
𝐸#(𝑖 + 1) − 𝐸#(𝑖)

∆𝑥
)

	

34

CHAPTER 3

3. HARDWARE ACCELERATION OF FDTD METHOD – CUDA

3.1. Introduction

The FDTD algorithm can be easily divided into independent tasks that can be executed in parallel.

For example, the update equation of the components Ex is not depending on the values of the Ey and

Ez. Similarly, to update the Ey and Ez we only need the magnitude of the H field (Hx, Hy, and Hz) and

previous values of themselves. Thus, the update equations of Ex, Ey, and Ez can be executed

simultaneously in parallel without any contention. Similarly, the components Hx, Hy, and Hz of the

magnetic field can be computed independently of one another, see Figures (3.1.) and (3.2.). That is

one reason the FDTD method is preferred by the computational electromagnetic developer

community.

The FDTD problem can be divided into small programs that are independent and distributed into

blocks of threads that can be executed concurrently in parallel.

Figure 3.1. FDTD Equations in serial

𝑈𝑝𝑑𝑎𝑡𝑒	𝐸(

Done
? Finished

Y

N

𝑈𝑝𝑑𝑎𝑡𝑒	𝐻& 	

𝑈𝑝𝑑𝑎𝑡𝑒	𝐻(

𝑈𝑝𝑑𝑎𝑡𝑒	𝐸$	

𝑈𝑝𝑑𝑎𝑡𝑒	𝐸&	

𝑈𝑝𝑑𝑎𝑡𝑒	𝐻$	

𝐸(= 𝐸(+ 𝑐1(𝐻$(𝑖, 𝑗, 𝑘) − 𝐻$(𝑖, 𝑗 − 1, 𝑘)) − 𝑐2(𝐻&(𝑖, 𝑗, 𝑘) − 𝐻&(𝑖, 𝑗, 𝑘 − 1))

𝐸& = 𝐸& + 𝑐1(𝐻((𝑖, 𝑗, 𝑘) − 𝐻((𝑖, 𝑗, 𝑘 − 1)) − 𝑐2(𝐻$(𝑖, 𝑗, 𝑘) − 𝐻$(𝑖 − 1, 𝑗, 𝑘))

𝐸$ = 𝐸$ + 𝑐1(𝐻&(𝑖, 𝑗, 𝑘) − 𝐻$(𝑖 − 1, 𝑗, 𝑘)) − 𝑐2(𝐻((𝑖, 𝑗, 𝑘) − 𝐻&(𝑖, 𝑗 − 1, 𝑘))

𝐻(= 𝐻(+ 𝑐1(𝐸&(𝑖, 𝑗, 𝑘 + 1) − 𝐸&(𝑖, 𝑗, 𝑘)) − 𝑐2(𝐸$(𝑖, 𝑗 + 1, 𝑘) − 𝐸$(𝑖, 𝑗, 𝑘))

𝐻& = 𝐻& + 𝑐1(𝐸$(𝑖 + 1, 𝑗, 𝑘) − 𝐸$(𝑖, 𝑗, 𝑘)) − 𝑐2(𝐸((𝑖, 𝑗, 𝑘 + 1) − 𝐸((𝑖, 𝑗, 𝑘))

𝐻$ = 𝐻$ + 𝑐1(𝐸((𝑖, 𝑗 + 1, 𝑘) − 𝐸((𝑖, 𝑗, 𝑘)) − 𝑐2(𝐸&(𝑖 + 1, 𝑗, 𝑘) − 𝐸&(𝑖, 𝑗, 𝑘))

35

Figure 3.2. FDTD Updated Equations in Parallel

3.2. GPU Programming using CUDA

The graphics processing unit (GPU) was initially designed in 1999 by NVIDIA as a specialized

processor to accelerate graphics rendering. However, with massively parallel matrix-processing

capabilities, it was later realized that GPU’s floating-point performance and memory bandwidth

were much higher in performance in data parallel applications than the CPU.

Although a GPU’s single thread executing time is often much slower than that of a CPU, GPUs can

often achieve much higher performance when executing parallel applications due to the way that

the GPU is designed with more transistors for data processing and less data caching and flow control

[10], see Figure (3.3.). For FDTD applications, the programmer can collapse “for loop” constructs into

thousands of independent threads that the GPUs can process simultaneously,

Yes

No

𝑈𝑝𝑑𝑎𝑡𝑒	𝐸&	 𝑈𝑝𝑑𝑎𝑡𝑒	𝐸$	

𝑈𝑝𝑑𝑎𝑡𝑒	𝐻$	𝑈𝑝𝑑𝑎𝑡𝑒	𝐻(𝑈𝑝𝑑𝑎𝑡𝑒	𝐻& 	

simulation-time

end?

𝑈𝑝𝑑𝑎𝑡𝑒	𝐸(

36

Figure 3.3. Distributions of chip resources for CPU versus a GPU [10]

3.2.1. Compute Unified Device Architecture

GPUs are becoming more powerful with an increase in the number of processors and memory

associated with each processor. To take the advantage of these increased abilities, especially in

computing applications, it is important to have software that can use all the GPU’s processors in an

efficient way as compared to the CPU. Additionally, this new software should be easy enough for

programmers that are familiar with high level languages, like C, C++, Fortran, etc.

NVIDIA, In November 2006, produced a general-purpose parallel computing platform and

programming model called Compute Unified Device Architecture (CUDA). This supports both high-

level languages such as C and directives-based languages like FORTRAN [9].

The CPU program launches the kernel grid along with execution configurations to run in parallel. The

blocks of the grid are divided and distributed to be executed on multithreaded streaming

multiprocessors (SMs) of the NVIDIA GPU. In the case of NVIDIA Quadro P400 (256 core), two SMs

each consist of 128 cores for arithmetic operations and 4 warp schedulers. SM with a single

instruction multiple threads (SIMT) architecture will receive one or more blocks, group the block’s

37

threads into warps1 (One warp has 32 parallel threads) and assign warps equally among four warp

schedulers. When the instruction issue time comes, the scheduler assigns the warp to be executed

[10].

3.2.2. Programming Model

3.2.2.1 CUDA Kernel

 In C, functions when called are run sequentially, one by one on the CPU. In CUDA Kernels are

executed in parallel on different GPU threads [14]. CUDA GPUs (in CUDA the GPU is called the device

while the CPU is called the host) run kernels using blocks of threads that are multiple of 32 in size.

The user can define the kernel by using the __global__ declaration specifier. The programmer also

can tell the CUDA runtime how many (N) parallel threads are needed to use for the launch on the

CUDA device using execution configuration like the example below:

Let the kernel’s function be declared as:

__global__ void ADD (float* A[N], float* B[N], float* C[N])

To call the kernel we use:

Kernel’s name (in this case, ADD) the triple angle bracket syntax<<<….>>> (parameter list): i.e.,

ADD<<<Dg, Db, Ns, S>>> (A, B, C)

Where Dg has the type of an integer vector (3d) based on unit3 used to specify grid dimensions

gridDim.x * gridDim.y * gridDim.z equals the number of blocks being launched.

Db has the type of an integer vector (3d) based on unit3 used to specify block dimensions

blockDim.x * blockDim.y * blockDim.z equals the number of threads per block.

Ns is an optional argument which defaults to 0[14].

1 number of warps = 𝑐𝑒𝑖𝑙	()*+,-.	/0	12.-345	6-.	,7/89
:3.6	5;$-<	=>

, 1)[10].

38

S is of type cudaStream_t and is used to specify the associated stream. This is also optional with a

default of 0.

In addition to the built-in variables mentioned above (gridDim, and blockDim), CUDA also has two

more built-in variables for the block and thread indices: blockIdx (block index within the grid) and

threadIdx (thread index within the block).

The number of thread blocks that the kernel requires to execute all N elements, can be determined

by dividing N elements by the size of threads per block and rounding up to the nearest one:

(&Kd.�,q	0-<*LD)
d.�,q	0-<*

 (3.1)

3.2.2.2 Thread Hierarchy. In CUDA, every thread has its own unique ID which is related to the index

of the thread as shown below.

Thread ID (x, y, z) = (x + y Dx + z Dx Dy) --- for three-dimensional block size (D� , D� , D�).

Thread ID (x, y) = (x + y Dx) --- for two-dimensional block size (D� , D�).

Thread ID (x) = threadIdx.x --- for one-dimensional block size (D�).

 By knowing that each thread block has its own memory resources that reside on the processor core

shared by all threads in the block, it follows that the number of the threads per block is limited

depending on the resources available in the architecture of the GPU.

3.2.2.3 Memory Hierarchy.

There are multiple memory spaces available for a thread during execution as shown below in Figure

(3.4.)

39

Figure 3.4. Available memories for thread execution period [10]

One should notice that CPU and GPU have separate memories. Thus, data needs to be copied from

the host to the device to be processed, and after the computation is done, the results need to be

copied back to the CPU. This is one downside of the NVIDIA CUDA (prior to the release of CUDA 6), as

such copies are expensive in terms of time and power.

The CUDA environment used in this work is summarized below in Table 3.1.

40

Name / Brand / Architecture

Manufacturer: NVIDIA

Model: Quadro P400

Reference card: Yes

Target market segment: Desktop Workstation

Die name: GP107

Architecture: Pascal

Fabrication process: 14 nm

Transistors: 3.3 billion

Bus interface: PCI-E 3.0 x 16

Launch date: February 2017

Frequency

Base clock: 1070 MHz

Boost clock: 1170 MHz

Memory specifications

Memory size: 2 GB

Memory type: GDDR5

Memory clock: 1752 MHz

Memory clock (effective): 7008 MHz

Memory interface width: 64-bit

Memory bandwidth: 56.06 GB/s

Cores / Texture

41

Table 3.1. Specifications of CUDA Quadro P400

Table 3.1 Continued.

CUDA: 6.1

CUDA cores: 256

ROPs: 16

Texture units: 16

Electric characteristics

Maximum power draw: 30 W

Video features

Maximum digital resolution: 7680 x 4320 @60 Hz

Maximum DP resolution: 7680 x 4320 @60 Hz

Maximum HDMI resolution: 4096 x 2160 @ 60 Hz

Performance

Pixel fill rate: 18.72 Gigapixels/s

Texture fill rate: 18.72 Gigatexels/s

Single precision compute power: 599.04 GFLOPS

Open CL support: 1.2

OpenGL support: 4.5

DirectX support: 12.0

Shader model: 5.0

42

3.3. Hardware Testing Platform

In this thesis, three platforms have been used to run and test the performance of one-dimensional

and two-dimensional FDTD problems. In the case of the one-dimensional problem, propagation of

electromagnetic waves through a dielectric device with relative permeability of 1 and relative

permittivity of 12 and thickness of 3 cm were used.

- Platform one: Haswell-EP w/ NVIDIA Quadro P400 (for full specifications see table (4.1.).

- HP Pavilion Notebook, Intel core i5—6200U CPU @ 2.30GHz (4 CPUs), ~2.4GHz, 8192MB

RAM, Intel HD Graphics 520

- OpenCL platform information:

o Platform 0:

§ Platform name: NVIDIA CUDA

§ Platform version: OpenCL 1.2 CUDA 11.2.162

§ Platform profile: FULL_PROFILE

o Platform 1:

§ Platform name: Intel CPU Runtime for OpenCL™ Applications

§ Platform version: OpenCL 2.1 LINUX

§ Platform profile: FULL_PROFILE

o Platform 2:

§ Platform name: Portable Computing Language

§ Platform version: OpenCL 1.2 pocl 1.6, None+Asserts, LIVM 9.0.1, RELOC,

SLEEF, DISTRO, POCL_DEBUG

§ Platform profile: FULL_PROFILE

43

3.4. CUDA Implementation of the One-, and Two-dimensional Problems

3.4.1. Initializing

In general, the FDTD code needs to define specific constants that appear in Maxwell’s equations

(and specify the units used), define the materials of the device we need to simulate, initialize the

fields arrays, and values like computed time step dt, and space step, …etc.

The steps to initialize any FDTD code are listed below. In addition to an example of the flowchart of

initializing and defining any two-dimensional FDTD problem in MATLAB. See figure (3.5.).

General steps to initialize and define any FDTD code:

- Define units and constants

- Define the device and initialize its materials

- Calculate space steps ∆𝑥, ∆𝑦, 𝑎𝑛𝑑	∆𝑧

- Compute grid size (i.e., how many grid cells (Nx, Ny, and Nz) are needed in x, y, and z-

directions, respectively).

- Compute the time step (∆𝑡)

- Compute number of time steps needed for simulation

- Compute the source functions

- Initialize the Fourier transform for the frequency response

- Initialize EM fields

- Calculate update coefficients

The following flow chart in figure (3.5) showing an example of the general steps of initializing 2D-

FDTD program in MATLAB platform.

44

Figure 3.5. An example of initializing and defining Two- Dimensional FDTD problem in MATLAB.

3.4.1 Main Time Loop

After completing the steps above, we can now enter the main updating loop. This loop will be

running repeatedly over the time needed for the simulation, usually thousands of steps. The number

of steps depends on the device features and materials simulated.

For one-, and two-dimensional FDTD, the updating loop algorithms will be like that shown in figures

(3.6.), and (3.7.) respectively.

INITIALIZE CURL ARRAYS

CEx = zeros(Nx,Ny);

INITIALIZE FIELDS

Hx = zeros(Nx,Ny,Nz)

Hy = zeros(Nx,Ny,Nz)

Compute time step dt

dt = dx/ (2* c0)

Define units and constants

e0 = 8.85418782e-12

Define source parameters

NFREQ = 500

FREQ = linspace(1,10,NFREQ) *

gigahertz

Compute grid parameters

NFREQ = 500

NRES = 20. #cells per λ

Compute grid resolution

dx = λ+;) /NRES

Build device on grid

Calculate GAUSSIAN

tau = 0.5/max(FREQ);

INITIALIZE CURL ARRAYS

CHx = zeros(Nx,Ny,Nz)

CHy = zeros(Nx,Ny,Nz)

Calculate number of steps

d = sqrt((Nx*dx)^2 + (Ny*dy)^2 +

Calculate Gaussian source

t = [0:STEPS - 1] *dt

g = exp(-((t - t0) / tau).^2)

45

Figure 3.6. One-dimensional FDTD algorithm.

T = 1: STEPS Finished
Yes

Update	𝐸)⃗ from	𝐻))⃗ 	

Inject	source	

Update	H	from	E	

Draw	fields	

46

Figure 3.7. Two-dimensional FDTD algorithm (CPU).

3.4.2. Programming GPGPU CUDA

In this thesis we will take the 1D-FDTD c code and parallelize it using CUDA. First, we need to add the

header #include <cuda.h> for CUDA libraries and #include <papi.h> for time measurements. Second,

we will follow the steps below to program a GPGPU:

T = 1: STEPS

Calculate CHz
cHz(1,ny) = (Hy(1,1) - 0)/dx - (Hx(1,1) - 0)/dy
for nx = 2 : Nx
 CHz(nx,1) = (Hy(nx,1) - Hy(nx-1,1))/ dx
 - (Hx(nx,1) - 0)/dy;
end
 for ny = 2 :Ny
 CHz(1,ny) = (Hy(1,ny) - 0)/dx
 - (Hx(1,ny) - Hx(1,ny-1))/dy
 for nx = 2 : Nx
 CHz(nx,ny) = (Hy(nx,ny) - Hy(nx-1,ny))/ dx ...
 - (Hx(nx,ny) - Hx(nx,ny-1))/dy;
 end
 end

 Update Dz

Inject Source

Draw fields

 Update Ez
 compute CEx

for ny = 1 : Ny-1

 for nx = 1 : Nx

 CEx(nx,ny) = (Ez(nx,ny+1)- Ez(nx,ny))/dy

 end

end

Update	Hx	and	Hy	
Hx = Hx + mHx.*CEx;
Hy = Hy + mHy.*CEy;

compute CEy
for nx = 1 : Nx-1
 for ny = 1 : Ny
 CEy(nx,ny) = - (Ez(nx+1,ny) - Ez(nx,ny))/dx
 end
end

47

Step one: Write a kernel to update the electrical and magnetic fields. The kernels will be run using

Nvidia CUDA in parallel. The following code sample shows how to write a CUDA kernel for updating

the Hx field.

The CUDA runtime uses the two parameters from the execution configuration: the number of blocks

per grid and the block size to determine how many parallel threads to use for the launch on the GPU.

To get the indices of the running threads (which should equal to the number of Yee cells) we use

int tid = blockIdx.x*blockDim.x + threadIdx.x.

Also, the if-condition (tidy<n-1) in the above code is necessary to make sure to set a limit for the “tid”

to not to go out of the range of the processing N elements.

Step two: Allocate memory on the GPGPU for Ey, Hx, mEy, and mHx and make a copy of field’s arrays

from host to device using:

__global__ void cuda_update_magnetic (int n, double dz,double *Ey, double *Hx, double

 *mHx, int src, double Esrc) {

 int tid = blockIdx.x*blockDim.x + threadIdx.x;

 double e1=0.,e2=0.,e3=0.;

 if (tid<n-1) {

 Hx[tid] = Hx[tid] + mHx[tid] * (Ey[tid + 1] - Ey[tid])/dz;

 }

 if(tid==(n-1)) {

 e3 =e2,e2=e1,e1=Ey[n-1];

 Hx[src-1] = Hx[src-1] - (mHx[src-1]/dz) * Esrc;

 Hx[tid] = Hx[tid] + mHx[tid] * (e3 - Ey[tid])/dz;

 }}

48

Step three: run the program by calling the kernel

Step four: Copy the data values back to the host

3.5. Verification

One important step during parallelizing the FDTD code is verification which was implemented in this

thesis. The simple sequential code must be modified significantly before it can run in a parallel

platform. The error during parallelizing could arise and the simulation could become unstable and may

give exploding values. For that, the same code has been executed twice or more in MATLAB, C, and

CUDA and the results have been compared for accuracy (see table (3.2.) below). When the results of

MATLAB, CUDA, and C were confirmed to be matching, we set the results of that code as a reference

result for any future modifications.

Consider the problem in Figure (3.8.) which was first coded using MATLAB, and then C languages see

Figure (3.9.) and (3.10) respectively. The Hx field components have been recorded in both approaches

(MATLAB and C).

cudaMalloc((void**)&dev_Hx , Nz*sizeof(double));

cudaMemcpy(dev_Hx ,Hx ,Nz*sizeof(double),cudaMemcpyHostToDevice);

cuda_update_magnetic<<<numBlocks,blockSize>>>

 (Nz,dz,dev_Ey,dev_Hx,dev_mHx,src,Esrc[T]);

cudaMemcpy(Ey,dev_Ey,Nz*sizeof(double),cudaMemcpyDeviceToHost);

49

Figure 3.8. An example of FDTD problem

The MATLAB code above transferred to C and verified that the results are accurate with zero error to

the machine precision. Then the code was modified to run in a CUDA parallel environment and to

compare the timing results with those previously obtained. The MATLAB and C code of the main loop

of one- dimensional FDTD problem is as shown below in Figure (3.9) and (3.10):

e0 = 8.85418782e-12;

u0 = 1.25663706e-6;

c0 = 299792458 ;

er1 = 12.0; %relative permitivity device

er2 = 1; %relative permitivity air

ur1 = 1;

ur2 = 1;

L = 0.03 % thickness of the slab 0.03 m

dz = 0.0021;

Nz = 217

xa = [0:Nz-1]*dz;

ERyy = ones(1,Nz);

URxx = ones(1,Nz);

ERyy(103:116) = 12;

URxx(103:116) = 1;

dt = 3.5739e-12;

tau = 2.4137e-10;

t0 = 5 * tau;

d =0.4650;

nmax = 3.4641;

tg = 2*t0 + 5*nmax*d/c0;

STEPS = 400;

t = [0:STEPS - 1] *dt;

delay = (dz/(2*c0))+ dt/2; % total delay between E and H

A = -1; %-sqrt(eps_rltv_src/mu_rltv_src); % amplitude of H field

Esrc = exp(-((t - t0) / tau).^2);

Hsrc = A*exp(-((t-t0+delay)/tau).^2); % H field source

src = 2;

mHx = c0*dt./URxx;

50

Figure 3.9. An example of FDTD code in MATLAB

Figure 3.10. An example of the 1D-FDTD sequential code in C

After running the code in Figure (3.9.) and (3.10.), the Hx field values recorded and used to compute

the error. The Table (3.2.) showing the values of Hx field at time (1.429e-9 sec) when the code

executed on different platforms MATLAB, C, and CUDA.

for T = 1 : STEPS

 % Update H from E

 for nz = 1 : (Nz-1)

 Hx(nz) = Hx(nz) + mHx(nz)*(Ey(nz+1) - Ey(nz))/dz;

 end

 e3=e2;e2 = e1;e1 = Ey(Nz);

 % Handle H source

 Hx(src-1)= Hx(src-1)-(mHx(src-1)/dz) * Esrc(T);

 Hx(Nz) = Hx(Nz) + mHx(Nz) * (e3 - Ey(Nz))/dz; %(Perfect

Absorbing)

 h3 = h2 ; h2 = h1; h1 = Hx(1);

 % Update E from H

 Ey(1) = Ey(1) + mEy(1) * (Hx(1) - h3)/dz; %(Perfect

Absorbing)

 for nz = 2 : Nz

 Ey(nz) = Ey(nz) + mEy(nz)*(Hx(nz) - Hx(nz - 1))/dz;

 end

 Ey(src)=Ey(src) - ((mEy(src)/dz) * Hsrc(T));

end

51

 MATLAB CUDA C Error

Hx(0) -0.44448 -0.44448 -0.44448 0.00000

Hx(1) -0.46842 -0.46842 -0.46842 0.00000

Hx(2) -0.49278 -0.49279 -0.49279 0.00000

Hx(3) -0.51751 -0.51751 -0.51751 0.00000

Hx(4) -0.54252 -0.54252 -0.54252 0.00000

Hx(5) -0.56774 -0.56774 -0.56774 0.00000

Hx(6) -0.59310 -0.59310 -0.59310 0.00000

Hx(7) -0.61850 -0.61850 -0.61850 0.00000

Hx(8) -0.64386 -0.64386 -0.64386 0.00000

Hx(9) -0.66908 -0.66908 -0.66908 0.00000

Hx(10) -0.69407 -0.69408 -0.69407 0.00000

Hx(11) -0.71874 -0.71874 -0.71874 0.00000

Hx(12) -0.74298 -0.74298 -0.74298 0.00000

Hx(13) -0.76668 -0.76668 -0.76668 0.00000

Hx(14) -0.78976 -0.78976 -0.78976 0.00000

Hx(15) -0.81211 -0.81211 -0.81211 0.00000

Hx(16) -0.83362 -0.83362 -0.83362 0.00000

Hx(17) -0.85421 -0.85421 -0.85421 0.00000

Hx(18) -0.87376 -0.87377 -0.87376 0.00000

Hx(19) -0.89220 -0.89220 -0.89220 0.00000

Hx(20) -0.90944 -0.90944 -0.90944 0.00000

Hx(21) -0.92537 -0.92538 -0.92537 0.00000

52

Table 3.2 Continued.

 -0.93994 -0.93994 -0.93994 0.00000

 -0.95307 -0.95307 -0.95307 0.00000

 -0.96468 -0.96468 -0.96468 0.00000

 -0.97472 -0.97472 -0.97472 0.00000

 -0.98314 -0.98314 -0.98314 0.00000

 -0.98990 -0.98990 -0.98990 0.00000

 -0.99495 -0.99495 -0.99495 0.00000

 -0.99828 -0.99828 -0.99828 0.00000

 -0.99986 -0.99986 -0.99986 0.00000

 -0.99969 -0.99969 -0.99969 0.00000

 -0.99776 -0.99776 -0.99776 0.00000

 -0.99410 -0.99410 -0.99410 0.00000

 -0.98871 -0.98871 -0.98871 0.00000

 -0.98163 -0.98163 -0.98163 0.00000

 -0.97289 -0.97289 -0.97289 0.00000

 -0.96254 -0.96254 -0.96254 0.00000

 -0.95063 -0.95063 -0.95063 0.00000

 -0.93722 -0.93722 -0.93722 0.00000

 -0.92238 -0.92238 -0.92238 0.00000

 -0.90618 -0.90618 -0.90618 0.00000

 -0.88871 -0.88871 -0.88871 0.00000

 -0.87005 -0.87005 -0.87005 0.00000

53

Table 3.2 Continued.

 -0.85029 -0.85029 -0.85029 0.00000

 -0.82952 -0.82952 -0.82952 0.00000

 -0.80784 -0.80784 -0.80784 0.00000

 -0.78535 -0.78535 -0.78535 0.00000

 -0.76215 -0.76215 -0.76215 0.00000

 -0.73834 -0.73834 -0.73834 0.00000

 -0.71402 -0.71402 -0.71402 0.00000

 -0.68929 -0.68929 -0.68929 0.00000

 -0.66425 -0.66425 -0.66425 0.00000

 -0.63900 -0.63900 -0.63900 0.00000

 -0.61363 -0.61363 -0.61363 0.00000

 -0.58824 -0.58824 -0.58824 0.00000

 -0.56292 -0.56292 -0.56292 0.00000

 -0.53774 -0.53774 -0.53774 0.00000

 -0.51278 -0.51278 -0.51278 0.00000

 -0.48813 -0.48813 -0.48813 0.00000

 -0.46386 -0.46386 -0.46386 0.00000

 -0.44002 -0.44002 -0.44002 0.00000

 -0.41667 -0.41667 -0.41667 0.00000

 -0.39388 -0.39388 -0.39388 0.00000

 -0.37168 -0.37168 -0.37168 0.00000

 -0.35012 -0.35012 -0.35012 0.00000

54

Table 3.2 Continued.

 -0.32923 -0.32924 -0.32924 0.00000

 -0.30906 -0.30906 -0.30906 0.00000

 -0.28961 -0.28961 -0.28961 0.00000

 -0.27092 -0.27092 -0.27092 0.00000

 -0.25300 -0.25300 -0.25300 0.00000

Hx(211) -0.23585 -0.23585 -0.23585 0.00000

Hx(212) -0.21949 -0.21949 -0.21949 0.00000

Hx(213) -0.20391 -0.20391 -0.20391 0.00000

Hx(214) -0.18911 -0.18911 -0.18911 0.00000

Hx(215) -0.17510 -0.17510 -0.17510 0.00000

Hx(216) -0.16184 -0.16185 -0.16185 0.00000

Table 3.2. An example of Hx values when the 1D-FDTD code executed in MATLAB, C, and CUDA C

3.6. Speedup, Parallel Efficiency, and Strong and Weak Scaling

Speedup is the improvement in time to run [16], and is typically defined as:

𝑺 = 	 𝒕𝒐𝒍𝒅
𝒕𝒏𝒆𝒘

 (3.2)

The parallel efficiency is the speedup divided by the number of processors[16]:

𝐸� =	
(T
�
	= 	 �U

��T
 (3.3)

Here p is the number of processors (threads) and Ts is the serial execution time, Tp is the parallel

execution time.

Two types of scaling will be used to analyze the performance of parallelization strategy: Strong and

Weak scaling.

55

Strong scaling describes the speedup we can get when we add more processors with a fixed

problem size. Amdahl’s law for strong scaling is shown below in equation (3.4):

S = 𝟏
(𝟏L𝑷)K		𝑷𝑵

 (3.4)

S is the maximum speed up, N is the number of processors, P is the parallel fraction of the code (if

the total time needed for running sequential program is t, then P is the fraction of the time t that can

be parallelized).

Weak scaling describes the speedup we can get when expanding the problem size with a fixed

number of processors as shown in Equation 3.5 below:

S = N + (1 – P) (1 - N) (3.5)

3.7. Timing

The time of the computation including launching kernels, copying to and from the device, and the

total time of running has been recorded through the CPU- PAPI and through the GPU-CUDA events.

By measuring the timing two diverse ways, higher accuracy can be assured.

The code of the CPU PAPI timer is as shown below:

PAPI_library_init(PAPI_VER_CURRENT);

Start_time = PAPI_get_real_usec();

…..

Stop_time = PAPI_get_real_usec();

56

While the code of the GPU CUDA events timer will be as below:

3.8. Performance of the FDTD Parallel Code

For measuring the performance of parallelized FDTD code, we used two methods. The first method

is when the serial FDTD code runs on GPU first with one thread. Then it runs again with many

threads, which is what we call GPU-GPU performance. The second method is when the code is first

executed on the CPU then parallelized and executed on GPU with many threads. We call this method

CPU-GPU performance.

3.8.1 GPU-GPU Performance

The C code was implemented in the CUDA language. The following sections will explore using one or

more threads.

3.8.1.1. Grid Size 217 cells. In section 3.5, we ended with the C code that is verified and prepared for

the parallel process. But the time needed to run the code in CPU would be differ than if it were

executed in GPUs (GPU memory allocation time, copy data to and back from GPU, GPU free memory,

cudaEvent_t start, stop;

float time;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

57

etc.) and we would need the elapsed time of sequential code to compute the speedup and parallel

efficiency. For that, the same C code in Figure (3.10.) would need to be modified first to be run in

CUDA sequentially using one thread, the result would need to be verified and recorded for parallel

comparison. The following Figure (3.11.) illustrates how to call the kernel with the one thread:

Figure 3.11. CUDA function to call the kernel of the same code of figure (3.10.)

The CUDA Toolkit comes with a tool called the GPU profiler. This tool can be used to find the elapsed

time that the kernel takes during running the program.

Entering the command nvprof ./cuda file name on the command line gives the following:

- Notice that both PAPI and CUDA-Event timers give the same field updated time (136 ms).

58

Next, we parallelize the code by adding more threads for computation. The kernel code needs to be

modified by collapsing the for loop and getting the right threads indices. Additionally, the execution

configuration needs to be modified as follows:

Where number of threads per block = 1, and number of blocks using equation (3.1)=

 217+1-1/1 = 217

Thus, we added 217 threads in this case and the field updated time reduced to about (136 -3.8 ms),

but the total elapsed time increased from 614 msec to 667 msec, as shown below:

59

Finally, using the full range of threads per block, which is 256 threads for Quadro P400, the updated

time for one block with 256 threads was 3.8 ms and the total time was 629 msec.

The following table (3.3.) shows the performance of running one-dimensional FDTD problem with

different values of execution configurations. Equations (3.2), and (3.3) are used to compute

speedups and parallel efficiencies.

CUDA QUADRO P400 EP machine

217 Yee cells, 400 Steps

Version Update Time(ms) Total Time(ms) Speedup Efficiency

1 Block , 1 Thread 136.000 614

217 Block , 1 Thread 3.176 667 43 20%

1 Block , 217 Thread 3.140 660 43 20%

1 Block , 256 Thread 3.148 629 43 20%

Table 3.3. Performance of CUDA with 217 cells and 400 steps

60

Grid size 217

Iterations

GPU update

 Time-one thread

(ms)

Update Time- 256

threads

 (ms)

speedup

400 136 3.1 43

8193 2331 52.5 44.4

10000 2838 64.0 44.3

Table 3.4. Performance of CUDA of 217 cells with 400,8193, and 10000 steps

The simulation of the totally parallel (number of threads = grid size) code with grid size of 217 has

been checked with (1.42e-9 , 2.928e-8 , and 3.573e-8 sec) and verified with average speedup of 44.

3.8.1.2. Grid Size 617 cells. In this case, The CUDA code tested with a bigger problem size. The

number of cells needed to represent the FDTD space Nz is 617, and the number of blocks = Nz +block

size -1 /block size = 617 blocks will be running on 256 GPU- cores. As shown below, in Table (3.5.),

when expanding the problem space (217 cells – 617 cells) the GPU throughput increases as shown in

Table (3.5).

Grid size 617

Iterations

Update Time-one

thread

(ms)

Update Time- 256

threads

 (ms)

Speedup Parallel Efficiency

400 483.6 3.3 146 57%

10000 8125 68.9 118 46%

22049 1767.4 150 118 46%

Table 3.5. Performance of CUDA of 617 cells with 400,10000, and 22049 steps

61

With 617 grid sizes, the parallel CUDA shows better speedup and better parallel efficiency with an

average speed up and average proficiency of 127 (44 with 217 size), and 50% (20% with size 217)

respectfully.

3.8.1.3. Grid Size 4017 cells. We can expand our FDTD problem size to 4017 grid cells with a fixed

compute capability of 256 cores of NVIDEA GPU. The following table (3.6.) shows the total times

needed to update the electromagnetic fields with 400, 50000, and 139829 steps.

Grid size 4017

Iterations
Time-one thread

(ms)

Time- 256 threads

 (ms)

Speedup Parallel Efficiency

400 3572 8.6 415 162%

50000 273803 670.8 409 160%

139829 738341 1794.6 411 161%

Table 3.6. Performance of CUDA of 4017 cells with 400,50000, and 139829 steps

As it can be seen in the following table (3.7.), speedup of up to 500 can be achieved in case of 80000

grid cells and 10000 iterations when launching more processors (256 instead of one) in the problem.

10000 iterations
Grid Size GPU-1 thread GPU-256 thread speedup

217 3225 454 7

617 8462 462 18

4017 67476 535 126

10000 213078 857 249

20000 458816 1282 358

40000 980718 2181 450

80000 1975507 3912 505

Table 3.7. GPU-GPU Performance with 10000 iterations with different grid sizes

62

3.8.2. CPU-GPU Performance

The second method to measure the performance of parallelizing the FDTD sequential code is CPU-

GPU method. The C code of the FDTD is first executed on the CPU then parallelized and executed on

GPU with many threads. The following table (3.8.) and figure (3.12.) show the total running times in

(msec) of the one-dimensional FDTD code in three platforms (C, MATLAB, and CUDA) with 10000

iterations and different grid sizes (217, 617, 4017, 10000, 20000, 40000, and 80000).

10000 iterations

Grid

Size

Time(msec)

CPU-C

Time(msec)

MATLAB

Time(msec)

CUDA
Speedup/CPU-CUDA

Parallel

Efficiency

1 217 37 48 454 0.08 0.03%

2 617 78 70 462 0.17 0.07%

3 4017 1287 373 535 2.40 0.94%

4 10000 4323 902 857 5.04 1.97%

5 20000 4873 1809 1282 3.80 1.48%

6 40000 5920 3641 2181 2.71 1.06%

7 80000 7669 7257 3912 1.96 0.77%

Table 3.8. CPU-GPU Performance with 10000 iterations in different grid sizes

63

Figure 3.12. C, MATLAB, and CUDA running time with 10000 iterations and different grid size

In the case of one-dimensional FDTD problems, the CPU-GPU performance shows speedup of

running time up to 5, as shown in above table (3.8.), and Figure (3.12.).

The speedup of the parallel code increased when we increased the FDTD size with weak scaling as

shown in the following Figure (3.13.) when the number of the CUDA threads used to accelerate the

code (256 threads or cores in Quadro-P400) was fixed while increasing the size of the problem (217,

417, 617, 10000, 20000, and 40000).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7

Ru
nn

in
g

Ti
m

e
pe

r m
se

c

Grid Size

CPU-C MATLAB CUDA

64

Figure 3.13. CUDA performance when increase grid size with fixed threads number (256 threads)

3.9. Conclusion of CPU-GPU method

Parallelizing the FDTD code using GPU-CUDA is efficient under the condition that the running time of

the code using a single CPU is more than the time that CUDA needs to allocate memory on GPU. In

other words, if the problem size is not big enough, then the parallelization will be inefficient. The

following Figure (3.14.) shows a sample of the times that CUDA needed to run the FDTD code.

Figure 3.14. An example of the times that CUDA needed to perform FDTD code

Grid Size x104

Sp
ee

du
p

65

As shown in the above Figure (3.14.), CUDA spent about 248.195 msec of 385 msec (64%) in

allocating the GPU’s memory, while spending 137.477 msec of 385 (35%) on the computation

process. See the following figure (3.15.).

Figure 3.15. speedup of the CUDA with different grid sizes

When the time for allocating the GPU memory is more than the time for computation as in case of

217 and 417 grid size, as showed in Table (3.8.), then the performance of CUDA code was inefficient.

We were able to speed up the running time and got better parallel efficiency when the problem size

expanded to 4017 cells or higher.

.

0

50000

100000

150000

200000

250000

300000

cudamalloc cpyHostToDevice Loop time cpyDiviceToHost cudafree_time

Ti
m

e
(m

se
c)

CUDA

66

CHAPTER 4

4. HARDWARE ACCELERATION OF THE FDTD METHOD – OPENCL

4.1. Introduction

The OpenCL (Open Computing Language) is an open-source software package that is used for

accelerating parallel computation. In contrast to CUDA, which only supports NVIDIA and enabled

GPUs, OpenCL supports a wide range of parallel processing platforms such as CPUs, GPUs, DSPs,

FPGAs, and others.

In addition to graphics pipeline applications, OpenCL is a powerful tool to use on other parallel

computational algorithms. In particular, the programmer can use OpenCL to write general purpose

portable and efficient programs that can be executed on different devices and architectures.

4.2. GPU Programming Using OpenCL

The architecture of OpenCL can be divided into four models: platform model, memory model,

execution model, and programming model.

4.2.1. Platform Model

The way that OpenCL defines the hardware and connection between the host device and the GPU

can be described under the platform model. Compute devices can be defined as any devices that

have one or more processors that execute parallel programs. These include CPUs, GPUs, DSPs, … etc.

When the programmer writes an OpenCL application, the code is divided into two parts: one part to

be executed (sequential part) on the CPU or the host and the second part to be run on the OpenCL

devices, the kernel. The host is where the sequential part of the program is executed, and the kernel

is where the parallel computation is performed. The OpenCL API connects the host with the kernel

device. The kernel device is designed to have a set of compute units (CUs), each with one or more

processing elements (PEs), memories, and schedulers.

67

Figure (4.1.)“below shows a typical OpenCL platform model with one host plus one or more compute

devices each with one or more compute units composed of one or more processing elements” [17].

Figure 4.1. Platform Model[17]

4.2.2. Memory Model

There are several levels of memory that may be available during an OpenCL application. OpenCL has

four memory domains as shown in Figure (4.2.), private, local, global, and constant. Host global

memory and OpenCL devices memory can be divided into global memory (accessed for

reading/writing by all independent but not synchronized work-items), constant memory (constant

memory within the global memory for the host to allocate and initialize memory objects), local

memory (shared and synchronized -memory fences or barriers-by work-items within workgroups),

and private memory (per work-item). Table (4.1.) illustrates the difference between each type of

memory.

68

Memory Description

Private Specific for work-item

Local Specific for workgroup (shared per work-items within the workgroup) , very

 low-latency, at least one order of magnitude higher effective bandwidth than global

Global accessible to the host(r/w and map) and to all work-items

Constant accessible to the host (allocates, and initializes memory objects) and to the OpenCL

 devices for reading only

Table 4.1. Description of OpenCL device’s memories [20]

Figure 4.2. Memory Configuration [20]

69

4.2.2. Execution Model

In this mode, three key items need to be defined: kernel, host program, and applications queue

Kernel execution instances.

Kernel is the parallel part of the program which will be executed concurrently in OpenCL devices. A

kernel function, specified by using the kernel keyword, is a data-parallel or task-parallel function

executed for each work-item (the equivalent of threads in CUDA). A group of 64 work-items, on most

AMD GPUs [20], is called a wavefront. Workgroups (the equivalent of thread blocks in CUDA) are

composed of one or more wavefronts. Workgroups are then assigned to one or more computing units

(CUs).

The host program uses the OpenCL API to launch and define the execution configuration (the context)

of the devices through a command-queue.

The index space used to assign work items is called NDRange (N-Dimensional index Range). NDRange

can be one-, two-, or three- dimensional. The programmer can specify the total number of work-items

to run at the same time, as well as the workgroups required on NDRange to perform the computation.

Figure (4.3.) and (4.4.) provide examples of an NDRange.

In OpenCL, the total range of work-items needed for fully parallel computation (for FDTD there is one

work-item per cell) is called a global domain and can be called using the function

get_global_id(n=0,1,2) which returns the current position (the address) of the work-item. There is one

unique global id for each work-items domain. Other helpful functions are get_work_dim, which

returns the dimensions of the work (for one dimension work = 0), and get_global_size, which returns

the size of the work.

The size of the work, returned by get_global_size, is divided into several local groups (that can be

found from get_num_group) with size (get_local_size) so the global work size is equal to the number

of local groups multiplied by the size of the local group. Every local group has a unique id that can be

accessed using the function get_group_id() , and every work-item has a unique id inside the local

70

group which can be accessed by using get_local_id(). So, every work-item has two ids, global and

local, returned by get_global_id and get_local_id.

Figure 4.3. An example of two dimensional NDRange [17]

Figure 4.4. An example of three-dimensional NDRange (AMD)[18]

71

4.2.3. Programming Model

The main steps to run an OpenCL computation are initialization, allocate resources, creating and

compiling programs and kernels, executions, and cleanup.

4.2.3.1 Initialization. The OpenCL application needs to define and set up the platform and devices

available, create context, and create command queues. The order of operation is:

1- Get the platform and the devices

2- Create a context

3- Create command queue(s)

1: The list of platforms and devices available can be obtained using the functions

Where:

MAX_PLATFORMS = size of the platform array

Platform = pointer to platform array

&num_platforms = number of platforms available

platform[which_platform] = cl_platform_id platform,

CL_DEVICE_TYPE_ALL = cl_device_type device_type,

cl_uint num_platforms;

cl_uint num_devices;

cl_device_id devices;

err = clGetPlatformIDs(MAX_PLATFORMS,platform,&num_platforms);

err = clGetDeviceIDs(platform[which_platform], CL_DEVICE_TYPE_ALL, MAX_DEVICES, devices,

&num_devices);

 CL_DEVICE_TYPE_CPU

 CL_DEVICE_TYPE_ACCELERATOR

 CL_DEVICE_TYPE_GPU

72

MAX_DEVICES = cl_uint num_entries,

devices = cl_device_id* devices,

&num_devices = cl_uint* num_devices);

There are many helpful functions that can be used to get more information about the device such as

local memory size, global memory size, maximum compute units, max clock frequency, and many

others [17]. Knowing compute device information helps one choose the best device for the

computation application needed. Calling the device information function is straightforward, and the

below function shows how to get the size of the local memory.

clGetDeviceInfo(device_id, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(device_local_mem_size),

&device_local_mem_size, &returned_size).

2: To create the context call the function, clCreateContext, devices within the same context may

share memory objects.

Where:

NULL, means selected platform is implementation-defined

1, Number of devices specified before

&device_id is a pointer to a list of unique devices returned by clGetDevice

NULL, no callback function is registered.

NULL, user-data

&error will return an appropriate error code

Cl_context context;

context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &err);

73

3: Create command queue(s) call the function (we need at least one queue for every device)

4.2.3.2 Allocating memory. To create memory objects, we used the function in figure (4.5.)

Figure 4.5. Create buffer function

The buffer memory is associated with a context. The buffer is for reading and/or writing and has a

size of the size in bytes of a double number multiplied by the number of elements of the Hx array.

To access memory object (read, write, map, and copy) data, we use the following functions:

clEnqueueReadBuffer(queue, object, blocking, offset, size, *ptr, …)

clEnqueueWriteBuffer(queue, object, blocking, offset, size, *ptr, …)

clEnqueueMapBuffer(queue, object, blocking, flags, offset, size, …)

clEnqueueCopyBuffer(queue, srcobj, dstobj, src_offset, dst_offset, …)

operate synchronously (blocking = CL_TRUE) or asynchronously

4.2.3.3. Program and Kernel Objects: After allocating memory objects, the next step will be creating

the program object which consists of all the executable kernels. This requires the use of two

functions (clCreateProgramWithSource and clBuildProgram) to create and build the program and

(clCreateKernel) to create the kernel as shown in Figure (4.6.).

cl_command_queue commands

commands = clCreateCommandQueue(context, device_id, 0, &err);

cl_mem dev_Hx;

dev_Hx = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(double)* Nz, NULL,NULL);

err = clEnqueueWriteBuffer(commands, dev_Hx, CL_TRUE, 0, sizeof(double) * size, Hx, 0, NULL,

NULL);

clFinish(command);

74

Figure 4.6. Create and Build (program and kernel) functions

The kernel of updating FDTD E and H fields is as shown below in figure (4.7.)

Figure 4.7. FDTD Updating Kernel

program_updateHx = clCreateProgramWithSource(context, 1,(const char **) &KernelSource_up

 dateHx, NULL, &err);

err = clBuildProgram(program_updateHx, 0, NULL, NULL, NULL, NULL);

kernel_updateHx = clCreateKernel(program_updateHx,"opencl_updateHx", &err);

const char *KernelSource_updateHx = " \n" \

"__kernel void opencl_updateHx(\n" \

" int n, \n" \

" double dz, \n" \

" __global double *Ey, \n" \

" __global double *Hx, \n" \

" __global double *mHx, \n" \

" int src, \n" \

" double Esrc) \n" \

"{ \n" \

" int tid = get_global_id(0); \n" \

" double e1=0.,e2=0.,e3=0.; \n" \

" if (tid<n-1) { \n" \

" Hx[tid]=Hx[tid]+mHx[tid]*(Ey[tid+1]-Ey[tid])/dz; \n" \

" } \n" \

" if(tid==(n-1)) { \n" \

" e3 =e2,e2=e1,e1=Ey[n-1]; \n" \

" Hx[src-1]=Hx[src-1]-(mHx[src-1]/dz)*Esrc; \n" \

" Hx[tid] = Hx[tid] + mHx[tid]*(e3-Ey[tid])/dz; \n" \

" } } \n" \

"\n";

75

4.2.3.4 Execution. For the execution step, arguments to the kernel need to be set, and the command

queue needs to be set as well. An example is shown below in figure (4.8.):

Figure 4.8. Kernel’s Arguments

4.3. Performance of One-, and Two-Dimensional FDTD Problems

Three platforms have used to perform the FDTD computation using OpenCL as showing in the

following figure (4.9.)

Size_t global_work_size[1] , local_work_size[1];

Global_work_size[1] = Nz;

Local_work_size[1] = Nz/2;

err |= clSetKernelArg(kernel_updateHx, 0, sizeof(unsigned int), &Nz);

err |= clSetKernelArg(kernel_updateHx, 1, sizeof(double), &dz);

err |= clSetKernelArg(kernel_updateHx, 2, sizeof(cl_mem), &dev_Ey);

err |= clSetKernelArg(kernel_updateHx, 3, sizeof(cl_mem), &dev_Hx);

err |= clSetKernelArg(kernel_updateHx, 4, sizeof(cl_mem), &dev_mHx);

err |= clSetKernelArg(kernel_updateHx, 5, sizeof(unsigned int), &src);

err |= clSetKernelArg(kernel_updateHx, 6, sizeof(double), &Esrc[T])

err = clEnqueueNDRangeKernel(commands, kernel_updateHx, 1, NULL, &global, NULL, 0, NULL,

 NULL);

76

Figure 4.9. OpenCL platforms

The OpenCL function clGetDeviceInfo , as in figure(4.10), can be used to get important information

about the device available, such as: compute units, maximum frequency, global memory, local

memory.

77

Figure 4.10. OpenCL platforms

In this thesis, three platforms (CUDA, Intel CPU, and PCL) were used to run the OpenCL code. The

portable computing language (Platform 2), as in following table (4.2.), has same global mem size as

the Intel with a higher operating frequency (3400 MHz). So, one would expect to get more speed up

with the PCL platform. Also, we should mention that both the Intel CPU and the PCL backends are

running on the CPUs on the machine with different implementations of OpenCL.

 Device Specifications Platform 0

GPU CUDA

Platform 1

Intel CPU

Platform 2

Portable Computing Language

1 Device max compute units 2 units 32 units 32 units

2 Device max clock frequency 1252 MHz 2600 MHz 3400 MHz

3 Device global memory size 2097479680 bytes 84320153600 bytes 82172669952 bytes

4 Device local memory size 49152 bytes 32768 bytes 262144 bytes

Table 4.2. OpenCL platforms

The FDTD code was tested with the three platforms and the results verified with zero numeric error.

As expected, the time of platform 2 (PCL) was faster as the device is more powerful. We were able to

increase the speed up to 22.4 with 10000 iterations and 150000 grid sizes. The following table (4.3)

showed the speedup of the three platforms with different grid sizes.

cl_uint device_max_compute_units;

cl_uint device_max_clock_frequency;

cl_ulong device_global_mem_size;

cl_ulong device_local_mem_size;

err = clGetDeviceInfo(device_id,

CL_DEVICE_COMPUTE_UNITS,sizeof(device_max_compute_units),

&device_max_compute_units, &returned_size);

78

10000 iterations

 Grid Size CPU-C CUDA Intel-CPU PCL
Speedup

CPU-PCL

1 217 37 494 560 383 0.1

2 617 78 488 492 385 0.2

3 4017 1287 499 550 447 2.9

4 10000 4323 489 525 480 9.0

5 20000 4873 556 508 482 10.1

6 40000 5920 588 531 518 11.4

7 80000 7669 661 582 477 16.1

8 100000 8950 680 508 516 17.3

9 150000 11554 749 532 515 22.4

Table 4.3. OpenCL Performance

79

CHAPTER 5

5. CONCLUSIONS AND FUTURE WORK

5.1 FDTD Method

The Finite-Difference Time-Domain (FDTD) method is one simple way to find the numerical solutions

of Maxwell’s equations. The partial spatial and temporal derivatives form of Maxwell’s equations can

be approximated by using second-order central differences along with Yee’s algorithm that offsets

electrical and magnetic field’s components within half time and space step offset. For example, in

three-dimensional FDTD space, consider the point (𝑖, 𝑗, 𝑘) the electric field components 𝐸%,𝐸', 𝑎𝑛𝑑	𝐸<

will be staggered at	(𝑖 + ∆𝑥, 𝑗 + ∆𝑦, 𝑘 + ∆𝑧)	and the magnetic field components 𝐻%,𝐻', 𝑎𝑛𝑑	𝐻< will

be staggered at	 q𝑖 + ∆%
I
, 𝑗 + ∆'

I
, 𝑘 + ∆<

I
r 	or vice versa, as explained previously in Figure (2.4.).

Depending on the features and the materials of the device under simulation, we may need thousands

of grid cells (or more) to implement both the electrical and magnetic fields’ components in the three-

dimensional space. All cells need to be updated every half time step (∆2
I

) using the set of updating

equations illustrated before in Figure (2.17.). Knowing that the time step (dt) must be chosen in very

small increments to satisfy the stability condition (courant condition)[3], the total number of iterations

depends on the device and its properties. For example, highly resonant devices may require thousands

of times as many time steps to be modeled.

Yee’s algorithm is elegant as it implicitly satisfies the two divergence equations of Maxwell’s set and

the physical boundary conditions. Since field components are modeled physically in different

locations, caution needs to be taken in case the components reside in different materials.

The FDTD method, as with other numerical computational methods, needs large memory size and

high-speed computational devices to efficiently simulate complicated EM engineering problems.

Engineers and researchers have studied many ways to optimize and speed up FDTD performance. High

Performance scientific Computers (HPC) open new opportunities for researchers to develop and

80

expand FDTD applications with acceptable running times. Graphics Processing Units (GPUs),

(especially since the release of NVIDIA’s Compute Unified Device Architecture (CUDA)), have been

increasingly used for numerical computing methods.

In this thesis we found that the updated equations of the fields’ components are related

independently to the values of each other making the FDTD well suited to be parallelized and executed

using parallel architecture’s computation devices. We have been testing the one- and two-

dimensional FDTD code on different platforms (Compute Unified Device Architecture CUDA and Open

Computing Language OpenCL).

In the case of the CUDA environment, the FDTD CPU program launches the kernel grid along with

execution configurations to run in parallel. The blocks of the grid are divided and distributed to be

executed on multithreaded streaming multiprocessors (SMs) of the NVIDIA GPU. In the case of NVIDIA

Quadro P400 (256 core), the elapsed time was recorded using perf tool, CUDA events and PAPI. The

GPU-GPU performance (of 217, 617, and 4017 gride size with 400 steps) was measured and the

speedup (of 43, 117, and 411) was recorded.

The CPU-GPU comparison showed weak performance of GPU especially with problem that were

generally small in terms of grid size. This can be attributed to the time needed to copy fields’ values

to GPU memory and back when done. Thus, CUDA is best suited to leads to large FDTD problems.

For the OpenCL platform, the FDTD update equation’s loops are transferred to kernels that run

concurrently on GPUs. The grid cells represented by work-items (the equivalent of threads in CUDA)

are grouped into Workgroups (the equivalent of thread blocks in CUDA) and assigned to one or more

computing units (CUs) on the GPU.

Finally, using CUDA to implement parallel FDTD code is extremely powerful, but it does works only

with NVIDIA-Compatible devices. However, OpenCL has an open architecture, allowing the code to be

written in high level language like C/C++ easily executed on any OpenCL- GPUs available. The code is

portable, and the programmer has more flexibility to choose the most suitable GPU-device available.

81

The serial C code was implemented in OpenCL language and tested within the available platforms

(CUDA, Intel CPU, and PCL). Different problem sizes with 10000 iterations showed that up to 22.3 of

speed factor can be obtained in case of 150000 grid size.

5.2 Future Work

5.2.1. FDTD Approximation

Section 2.2. to approximate the partial derivatives by finite differences we used the Taylor series

expansion of the function over a negligibly small interval in the x-direction (holding all other

dimensions constant). The forward finite differences approximation of the derivative is the Taylor

series expansion of: 𝑓 q× + △×
I
r = 𝑓(𝑥) + △×	

D!
#F(×)
#%

+ (△×)&

I!
#&F(×)
#%&

+ (△×)'

J!
#'F(×)
#%'

+⋯.

A path of future exploration would be to take the Taylor expansion of the function at the four

sample points nearest to x to obtain:

𝑓 q× + △×
I
r = 𝑓(𝑥) + △×	

D!
#F(×)
#%

+ (△×)&

I!
#&F(×)
#%&

+ (△×)'

J!
#'F(×)
#%'

+⋯. (5.1)

𝑓 q× + J△×
I
r = 𝑓(𝑥) + J△×	

D!
#F(×)
#%

+ (J△×)&

I!
#&F(×)
#%&

+ (J△×)'

J!
#'F(×)
#%'

+⋯. (5.2)

𝑓 q× − △×
I
r = 𝑓(𝑥) − △×	

D!
#F(×)
#%

+ (△×)&

I!
#&F(×)
#%&

− (△×)'

J!
#'F(×)
#%'

+⋯. (5.3)

𝑓 q× − J△×
I
r = 𝑓(𝑥) − J△×	

D!
#F(×)
#%

+ (J△×)&

I!
#&F(×)
#%&

− (J△×)'

J!
#'F(×)
#%'

+⋯. (5.4)

Now subtracting (5.1) from (5.3) and (5.2) from (5.4) yields:

𝑓 q× + △×
I
r − 	𝑓 q× − △×

I
r 	=△×	#F(×)

#%
+ I

J!
(△×
I
)I #

'F(×)
#%'

+⋯ (5.5)

𝑓 q× + J△×
I
r − 	𝑓 q× − J△×

I
r 	= 3 △×	#F(×)

#%
+ I

J!
(J△×
I
)I #

'F(×)
#%'

+⋯ (5.6)

Solving the above equations for #F(×)
#%

 and eliminating #
'F(×)
#%'

. The result is:

#F(×)
#%

=	¯
�FM×K△×& N	L	FM×L

△×
& N

�△×
° −	¯

DFM×K'△×& N	L	FM×L'△×& N

I�△×
° +	 𝑂(△×)� (5.7)

82

For future work, using Equation (5.7) to solve Maxwell’s equations should result in more accuracy, or

the ability to use a larger grid size to obtain the same accuracy.

5.2.2. CUDA

Before CUDA 6, both the CPU and GPU had their own separated memories and the programmer

needed to explicitly copy the data from CPU memory to the GPU memory for the kernel to do the

computation process. This process is expensive. With CUDA 6, a unified memory concept has

emerged whereby both GPU and CPU share some memory in common and copying data is no longer

required. In the future it will be interesting to run the FDTD code using a CUDA 6 GPU.

5.2.3. OpenCL

Future work with the use of OpenCL could include the exploration of optimizing the OpenCL code by

saving the fields’ data using local memory rather than global memory. Since local memory is closer

to the cores it would be expected to be faster than global memory. Writing codes to take advantage

of local memory may lead to faster overall performance.

5.2.4. Parallelizing Techniques

Although this thesis focused on GPU parallelization, other techniques could be explored. Options

include using other methods like pthreads, OpenMp, and MPI. This would allow the comparison the

speedup and the efficiency among them.

5.3 Conclusion

This thesis explored the FDTD method for electromagnetic simulation. It looked at one-, and two-

dimensional problems and explored the speedup and efficiency of parallelizing the code, most notably

using Graphics Processing Units and CUDA or OpenCL. The accuracy of the parallel code was the same

as the serial code and the speedup increased for larger problem sets. Overall, electromagnetic

simulation is well suited to parallel processing using finite difference methods.

83

This thesis is intended to provide the basis for simulating electromagnetic problems in one, two or

three dimensions. and the results show that the use of GPUs for such problems can be highly beneficial

with respect to reducing the computational time.

84

BIBLIOGRAPHY

1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time
Domain Method, 3rd edition. Norwood, MA: Artech House Publishers, 2005.

2. K. S. Yee, ‘‘Numerical solution of initial boundary value problems involving Maxwell’s

equations in isotropic media,’’ IEEE Transactions on Antennas and Propagation, vol. 14, pp.
302–307, 1966.

3. R. Courant, K. Friedrichs, and H. Lewy, ‘‘On the partial difference equations of mathematical

physics,’’ IBM Journal of Research and Development, vol. 11, no. 2, pp. 215–234, 1967.

4. J. A. Kong, Electromagnetic Wave Theory. Cambridge, MA: EMW Publishing, 2000.

5. Elsherbeni and Demir – The Finite-Difference Time-Domain Method for Electromagnetics
with MATLAB Simulations, 2nd Edition (2015)

6. Two-Dimensional Finite-Difference Time-Domain (FDTD) with MATLAB. EMPossible. (2020,

October 14). https://empossible.net/.

7. Stewart, James (2012). Calculus - Early Transcendentals (7th ed.). Brooks/Cole Cengage
Learning. p. 1122. ISBN 978-0-538-49790-9.

8. “AMPERE'S LAW.” Https://Web.iit.edu, web.iit.edu/.../pdfs/Amperes_law.pdf.

9. NVIDIA Developer. 2021. CUDA Zone. [online] Available at:

<https://developer.nvidia.com/cuda-zone>.

10. NVIDIA. (2021). Cuda C++ Programming Guide (Vol. 11.4). NVIDIA.

11. Dachuan, S., 2013. GPU-BASED ACCELERATION ON ACENET FOR FDTD METHOD OF
ELECTROMAGNETIC FIELD ANALYSIS. Nova Scotia, pp.99-100.

12. Z. L. He, K. Huang, Y. Zhang, Y. Yan, C. H. Liang, "Study on High Performance of MPI-Based

Parallel FDTD from WorkStation to Supercomputer Platform", International Journal of
Antennas and Propagation, vol. 2012, Article ID 659509, 7 pages, 2012.

13. https://doi.org/10.1155/2012/659509

14. Min Li, "Parallel FDTD simulation using CUDA," 2010 International Conference on Computer,
Mechatronics, Control and Electronic Engineering, Changchun, China, 2010, pp. 196-
199, doi: 10.1109/CMCE.2010.5610469.

15. Weaver, V. (2021, March). Lecture 15. Cluster computing.

16. Weaver, V. (2021, March). Lecture 3. P (2-9) Cluster computing.

85

17. Group, K. O. C. L. W. (2021, June 30). OpenCL API Specification, Version v3.0.8. The OpenCL™
Specification. https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/html/OpenCL_API.html.

18. Tompson, Jonathan; Schlachter, Kristofer (2012). “An introduction to the OpenCL
Programming Model.” New York University Media Research Lab. Archived from the original
(PDF) on July 6, 2015. Retrieved July 6, 2015.

19. Weaver, V. (2021, March). Lecture 17. Cluster computing.

20. “AMD APP SDK OpenCL User Guide.” Https://Developer.amd.com, AMD, Aug.
2015, developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_G
uide2.pdf.

21. “AMD APP SDK OpenCL User Guide.” Https://Developer.amd.com, AMD, Aug. 2015,
developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide2.
pdf.

22. Feynman, Richard P.” The Feynman Lectures on Physics Vol. II”
www.feynmanlectures.caltech.edu. Retrieved 2020-11-07.

23. Maxwell, J. C. (n.d.). File:on physical lines of force.pdf - Wikimedia commons.
https://commons.wikimedia.org/wiki/File:On_Physical_Lines_of_Force.pdf.

86

APPENDIX A

One-Dimensional FDTD sample code in MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% INITIALIZE MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all; clc; clear all.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% DEFINE UNITS AND CONSTANTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% units

meters = 1.

centimeters = 1e-2 * meters.

millimeters = 1e-3 * meters.

inches = 2.54 * centimeters.

feet = 12 * inches.

seconds = 1.

hertz = 1/seconds.

kilohertz = 1e3 * hertz.

megahertz = 1e6 * hertz.

gigahertz = 1e9 * hertz.

% CONSTANTS

e0 = 8.85418782e-12 * 1/meters.

87

u0 = 1.25663706e-6 * 1/meters.

N0 = sqrt(u0/e0).

c0 = 299792458 * meters/seconds.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% DASHBOARD

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SOURCE PARAMETERS

fmax = 2 * gigahertz.

NFREQ= 1000.

FREQ = linspace(0,fmax,NFREQ).

%DEVICE PARAMETERS

 er1 = 12.0; %relative permitivity device

 er2 = 1; %relative permitivity air

 ur1 = 1.

 ur2 = 1.

 L = 3.0 * centimeters; % thickness of the slab

% GRID PARAMETERS

NRES = 20; % number of points per wavelength

NRES_D = 2.

ermax = max([er1 er2]).

urmax = max([ur1 ur2]).

88

nmax = sqrt(ermax*urmax).

NSPC = ([100 100]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% CALCULATE OPTIMIZED GRID

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % COMPUTE GRID RESOLUTION

lambda_min = c0/fmax/nmax.

dz1 = lambda_min/NRES.

dz2 = L/NRES_D.

dz = min([dz1 dz2]).

%

% % SNAP GRID TO CRITICAL DIMENSIONS

nz = ceil(L/dz).

dz = L/nz.

% % CALCULATE NUMBER OF GRID CELLS

Nz = nz + sum(NSPC) + 3.

% COMPUTE GRID AXES (FOR GRAPHICS)

xa = [0:Nz-1]*dz.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

89

%% BUILD DEVICE ON GRID

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% INITIALIZE MATERIALS

ERyy = er2* ones(1,Nz).

URxx = ur2* ones(1,Nz).

nz1 = 2 + NSPC(1)+1.

nz2 = nz1 + nz -1.

ERyy(nz1:nz2) = er1.

URxx(nz1:nz2) = ur1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% CALCULATE SOURCE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPUTE TIME STEP

dt = dz/(2*c0).

% Calculate GAUSSIAN

tau = sqrt(2.3)/pi/fmax.

t0 = 5 * tau.

%CALCULATE NUMBER OF STEPS

d = (Nz*dz).

90

tg = 2*t0 + 5*nmax*d/c0.

STEPS = ceil(tg/dt).

%STEPS = 50000.

% CALCULATE GAUSSIAN SOURCE

t = [0:STEPS - 1] *dt.

delay = (dz/(2*c0))+ dt/2; % total delay between E and H

A = -1; %-sqrt(eps_rltv_src/mu_rltv_src)

Esrc = exp(-((t - t0) / tau).^2).

Hsrc = A*exp(-((t-t0+delay)/tau).^2); % H field source

src = 2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Initialize Fourier transforms

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K = exp((-1i * 2 * pi * dt) * FREQ).

Eref = zeros(1,NFREQ).

Etrn = zeros(1,NFREQ).

Src = zeros(1,NFREQ).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% CALCULATE UPDATE COEFFICIENTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% UPDATE COEFFICIENTS

91

mHx = c0*dt./URxx.

mEy = c0*dt./ERyy;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% INITIALIZE FDTD DATA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% INITIALIZE FIELDS

Hx = zeros(1,Nz);

Ey = zeros(1,Nz);

h3=0;h2=0;h1=0;e3=0;e2=0;e1=0;

tic

for T = 1 :2

 % Update H from E

 for nz = 1 : (Nz-1)

 Hx(nz) = Hx(nz) + mHx(nz)*(Ey(nz+1) - Ey(nz))/dz;

 end

 e3=e2;e2 = e1;e1 = Ey(Nz);

 % Handle H source

 Hx(src-1)= Hx(src-1)-(mHx(src-1)/dz) * Esrc(T);

 Hx(Nz) = Hx(Nz) + mHx(Nz) * (e3 - Ey(Nz))/dz;

92

 h3 = h2 ; h2 = h1; h1 = Hx(1);

 % Update E from H

 Ey(1) = Ey(1) + mEy(1) * (Hx(1) - h3)/dz;

 for nz = 2 : Nz

 Ey(nz) = Ey(nz) + mEy(nz)*(Hx(nz) - Hx(nz - 1))/dz;

 end

 Ey(src)=Ey(src) - ((mEy(src)/dz) * Hsrc(T));

93

BIOGRAPHY OF THE AUTHOR

Atheer Oufi was born in Baghdad, Iraq on March 09, 1978. He graduated from Jumhouriya

High School in 1996. He attended the University of Technology of Iraq and graduated in 2000 with a

bachelor’s degree in Computer and Systems Engineering. He moved to Maine, in the United States,

as a refugee in 2016 and entered the Electrical Engineering graduate program at The University of

Maine in the Fall of 2019. He is a candidate for the Master of Science degree in Electrical Engineering

from the University of Maine in August 2021.

	Computer Modeling Using The Finite-Difference Time-Domain (FDTD) Method for Electromagnetic Wave Propagation
	Recommended Citation

	Microsoft Word - Computer Modelling of FDTD.docx

