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ABSTRACT OF DISSERTATION

ANGULAR DISTRIBUTION OF ELECTRON-HELIUM SCATTERING IN THE
PRESENCE OF A 1.17 eV LASER FIELD

We have measured relative differential cross sections for 350 eV electrons scattered
by a helium target in the presence of 1.17 eV photons from an Nd:YAG laser. We
report an angular distribution of free-free electrons that were scattered elastically at
angles between 15◦ and 80◦ and of free-free electrons that underwent the process of
electron-impact excitation of helium to its unresolved (1s2s)1S and (1s2p)1P excited
states at angles between 1◦ and 80◦. Our experiments test the momentum transfer
dependence and the relationship between elastic and inelastic scattering in the Kroll-
Watson approximation. We also explored potential light-dressed atom effects for
inelastic scattering at low-scattering angles in helium.

We found good agreement between our experimental results and the Kroll-Watson
approximation. Due to the presence of an unknown uncertainty in our apparatus,
we are unable to unambiguously test the elastic-inelastic relationship of the KWA
and our exploration into light-dressed atom effects are inconclusive. Methods to
potentially identify and reduce the impact of this unknown uncertainty are discussed
for future works.

KEYWORDS: atomic physics, free-free transitions, helium, laser-assisted free-free
scattering, angular distribution, electron scattering
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Chapter 1 Introduction

What happens when an atom is hit by a free electron1 while in an electromagnetic
field? First consider the case without the field. This process can be described by the
following:

A(E0) + e(Ei) → A′(E0 +∆E) + e(Ef ). (1.1)

The reaction 1.1 refers to a free electron with some initial kinetic energy Ei being
scattered off a ground state atom A (with the ground state energy E0). After the
collision, the free electron is scattered with some final kinetic energy Ef and the atom
is in some final state A′. If the final state of the atom is still in its ground state (elastic-
scattering), then the atom will still have its ground state energy E0. If the atom is
in some excited state (electron-impact excitation), it will have the energy E0 +∆E,
where ∆E is the excitation energy of the state. In this work, we are interested in the
case where the atom stays neutral and we ignore the case where the atom is ionized
(electron impact ionization). In this reaction, we can also determine Ef . Due to the
mass of the atom being orders of magnitude greater than the electron, the amount
of kinetic energy transferred to the atom is negligible. Thus, for elastic-scattering
Ef ≈ Ei and for electron-impact excitation2 Ef = Ei −∆E.

Now we consider the same scattering process but in the presence of an electro-
magnetic field that is represented as Nℏω where N and ω refer to the number of
photons in, and the angular frequency of, the field, respectively, ℏ is the reduced
Planck constant. This process can be described by:

A(E0) + e(Ei) +Nℏω → A′(E0 +∆E) + e(Ef ) + (N ± n)ℏω. (1.2)

In this reaction, the electron interacts with the electromagnetic field and energy can
be transferred to or from the field. This is represented as the electron absorbing or
emitting photons. This process is referred to as free-free transitions due to the inci-
dent and scattered electron being free[1, 2]. Free-free transitions can also be described
in terms of bremsstrahlung, where the absorption and emission of a photon by the
electron can be referred to as inverse and stimulated bremsstrahlung, respectively[3].
Laser-assisted free-free (LAFF) scattering refers to free-free experiments where the
electromagnetic field is supplied by a laser, i.e. electron-atom3 scattering in a laser
field. In this work, elastic electron-atom scattering in the presence of a laser field will
be referred to as elastic LAFF 4 scattering and the inelastic equivalent as inelastic

1A free electron is an electron that is not bounded by any potential. Therefore, all the energy of
the electron is purely kinetic. In this work, unless stated otherwise, electron refers to a free electron.

2I will occasionally refer to electron-impact excitation as inelastic scattering.
3LAFF scattering can also be performed with molecular targets. However, this work uses atomic

helium as the target and thus I will refer to the process as electron-atom scattering.
4In other works, LAFF is refers to as free-free transitions, a term I will use occasionally as well.

In other works[4], elastic LAFF scattering is refered to as laser-assisted elastic electron scattering
(LAES).
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LAFF 5 scattering. Figure 1.1 shows a schematic of the energy profile of elastically
scattered electrons when the laser is present and not present.

Figure 1.1: Schematic of the energy profile of elastically scattered electrons when
the laser is not present (black) and is present (red). The energy profile of scattered
electrons that have absorbed or emitted one photon predicted by the Kroll-Watson
approximation when the laser is present is also plotted (blue). The energy width of
the elastic peak is due to the thermal width of the electrons emitted by the cathode
in our non-monochromated electron gun.

When the laser is not present, one sees the elastic-scattering peak. When the laser
is on, note that the peak is reduced and two additional peaks are formed one photon
energy away from the scattering peak (in this scenario, photon energy is 1.17 eV).
These two peaks are the free-free peaks, they are electrons that were elastically scat-
tered but also underwent free-free transitions/scattering.

Free-free transitions are not only of interest in fundamental collision physics. It
is also a phenomenon of interest in astrophysics and plasma physics. It was proposed
by Pannekoek[7] to be important for determining the infrared opacities of certain
stars[8]. It is essential in plasma modeling due to the importance of the laser-plasma
interaction[9]. A method of heating low density plasma with a laser primarily relies
on free-free transitions[10]. Free-free transitions are the dominant radiation transport
in air plasma, e.g. cascade arcs[11].

5In other works, inelastic LAFF is referred to as simultaneous electron-photon excitation
(SEPE)[5], inelastic free-free transition (IFFT), or laser-assisted inelastic electron scattering [6].
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A theoretical model by Kroll and Watson[12] has widely been compared to exper-
imental free-free data. It is a semiclassical model in the soft-photon limit6 that uses
quantum electron-atom scattering theory in the presence of a classical electromag-
netic field. The model relates the free-free differential cross section dσn

FF/dΩ (into
the solid angle dΩ) to the field-free (i.e., in the absence of a laser field) differential
cross section of the scattering peak dσ/dΩ. It has the form of

dσn
FF

dΩ
=
pf
pi
J2
n(x)

dσ

dΩ
(1.3)

x = −0.0220λ2I1/2E
1/2
i

(
ϵ̂ ·Q
pi

)
(1.4)

where n is the number of photons absorbed (n < 0) or emitted (n > 0); Jn is the Bessel
function of the first kind of order n; pi and pf are the initial and final momenta of the
electron, respectively; λ, I, and ϵ̂ are the wavelength in µm, intensity in GW/cm2,
and polarization direction of the field, respectively; Ei is the incident electron energy
in eV; and Q = pf − pi is the momentum transfer.

In LAFF scattering, there are three interactions: electron-atom, laser-electron,
and laser-atom. This model assumes that the laser-atom interaction is negligible;
the purpose of the atom is allow energy and momentum to be conserved during this
process. The Kroll-Watson approximation (KWA) will be covered in section 2.4.

In this work, we will measure the relative differential cross sections of 350 eV
electrons scattered by a helium target in the presence of a laser field from an Nd:YAG
laser as the scattering angle is adjusted. Our results are compared to the KWA to test
its momentum transfer dependence in helium for elastic and inelastic scattering. We
also discuss the search for deviations from the KWA due to light-dressed atom effects
(when the laser-atom interaction is not negligible). To our knowledge, this is the first
angular distribution measurement of electron-helium elastic and inelastic scattering
in a Nd:YAG laser field for electrons with 350 eV. In previous work, we presented the
angular distribution of elastic LAFF scattering of argon and found it consistent with
the KWA[14]. Thus, we expect that elastic LAFF scattering of helium will also be
found consistent with the KWA. Due to the presence of a high dipole polarizability
of certain excited states of helium, deviations from KWA at small inelastic scattering
angles are expected.

We will first briefly cover the experimental history of LAFF scattering experi-
ments. Chapter 2 will cover the relevant classical and quantum scattering theory for
these processes. The derivation of the Kroll-Watson approximation will be covered
and light-dressed atom effects will be discussed. Chapter 3 will describe our exper-
imental apparatus, chapter 4 will discuss the analysis and results of our work, and
chapter 5 contains our summary and conclusions.

6The soft-photon limit is when photon energy transferred is much smaller than the kinetic energy
of the scattered electron and any transition threshold energy[13].

3



1.1 Experiments in Laser-Assisted Free-Free Scattering

A comprehensive review of free-free experiments was given by Mason in 1993[1] and
of free-free theories was given by Ehlotzky in 1998[15]. Here we will briefly summarize
early LAFF experiments7 and discuss more recent developments. This section is split
into two parts: elastic LAFF and inelastic LAFF experiments.

1.1.1 Elastic Free-Free Experiments

In 1976, Andrick and Langhans[16] observed free-free transitions using an in-house
continuous-wave CO2 laser with a wavelength of 10.6 µm (photon energy of 0.117 eV).
An electron beam was scattered by argon atoms in the presence of the laser field. They
observed free-free peaks one photon energy away from the elastic-scattering peak. In
1978, they measured the ratio of the free-free and field-free elastic cross section with
a laser intensity of 7 kW/cm2[3]. They found their results to be consistent with a
perturbative model in the soft-photon limit by Krüger and Schulz[17] and a model
by Geltman[18] that evaluated the transition matrix element exactly using computed
elastic-scattering wave functions.

The first multiphoton free-free processes were observed in 1977 by Weingartshofer
et al.[19] by scattering electrons off argon atoms in the presence of a pulsed CO2 laser.
By using a pulsed laser, they were able to achieve laser intensities nearly on the order
of GW/cm2. At these intensities, multiphoton processes are excepted to occur and
can be described by semiclassical, soft-photon models. They used a model by Krüger
and Jung that is similar to the Kroll-Watson approximation but with a modification
to account for their less-than-ideal laser pulse conditions[20]. Up to three photon
processes were seen. Their results can be seen in figure 1.2.

Weingartshofer et al.[2] later carried out several qualitative studies of multipho-
ton free-free processes with argon and hydrogen molecules in the presence of a laser
field from their pulsed CO2 laser. By taking advantage of the temporal profile of the
laser beam, they were able to compare free-free signals at different laser intensities.
They also adjusted the incident electron energy and the scattering geometry. They
found their results to be in qualitative agreement to the theory by Krüger and Jung
(and by extension the KWA)[20]. In 1981, they reported quantitative measurements
of multiphoton free-free transitions with argon and found up to eleven-photons pro-
cesses. However, the lack of a single-mode, homogeneous laser beam made direct tests
of the KWA not experimentally feasible. Their measurements were indirect tests of
the incident electron energy and scattering geometry dependence. Due to their large
statistical uncertainties, no definite conclusions were made[21].

In 1985, Bader performed free-free experiments with a liquid-nitrogen cooled
continuous-wave CO laser with an output power of ∼20 W. The laser was focused
down to have a diameter of∼1.5 mm (which corresponds to an intensity of∼1.1 kW/cm2.
The wavelength of the CO laser is 5.3 µm and tested the wavelength dependence of
the KWA. He found his results to be consistent with the model[22].

7I define “early experiments” as the experiments that are discussed in these two reviews.

4



Figure 1.2: Electron energy-loss spectrum of electron-argon scattering. The left is
when the CO2 laser field was not present while it was present on the right. Figure
from [19].

In 1987, Wallbank et al. started a series of experimental tests of the KWA.
They experimentally measured the differential cross sections for free-free transitions
in argon as a function of laser intensity. With their pulsed CO2 laser with a hybrid
oscillator, they were able to produce both single longitudinal-mode and multimode
laser pulses[23, 24]. They continued their work in argon by measuring the free-
free differential cross sections for incident electron energies from 8 to 20 eV through
scattering angles 10◦ and 140◦. They measured up to three photon processes[25].

They continued their work by measuring the differential free-free cross sections of
helium with respect to incident electron energy at a scattering angle of 9◦[25, 26, 27].
They explored the soft-photon limit by using a scattering geometry that was known to
have produced experimental results consistent with KWA but used incident electron
energies ranging from 0.2 to 2.5 eV (which is comparable to the 0.117 eV photons
from the CO2 laser)[28]. They then performed series of experiments where the laser
polarization was perpendicular to the scattering plane where KWA predicts vanishing
cross sections. The experiments were performed with incident electron energies from
1 to 20 eV and scattering angles from 14◦ to 140◦. They concluded that KWA is
inadequate for describing free-free transitions for low-energy electrons in the presence
of a CO2 laser field[29].

Their studies were continued by performing two sets of free-free experiments with
helium with an incident electron energy of 22 eV for various scattering geometries.
The first set had the laser polarization parallel to the incident electron momentum
for scattering angles between 20◦ and 70◦. The second set had a fixed 70◦ scattering
angle but changed the laser polarization direction while it was still parallel with
the scattering plane. Their results were compared to both the KWA and a more
sophisticated R-matrix Floquet calculation. Both models were in good agreement
with the experimental data[30]. When the triatomic CO2 was used as the target,
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they found good qualitative agreement with KWA when the laser polarization was
parallel to the scattering plane. However, when the polarization was perpendicular to
the plane, they still observed a free-free signal despite the predictions of KWA. They
believe it may have been due to the presence of vibrational structure in the ground
state of CO2[31].

In 2011, the Martin laboratory started a series of experiments to test the KWA
for LAFF experiments in an Nd:YAG laser field. They explored the incident electron
energy dependence of KWA by performing one photon emission experiments with
helium. The scattering angle was 135◦ to align the electron-detector with the laser
polarization. Various incident electron energies ranging from 50 to 350 eV were
used[32]. Their results are shown in figure 1.3. They then performed an experiment
to test the KWA dependency on the direction of polarization. Electrons at varying
incident energies were scattered by helium. The scattering angle was 90◦ and the angle
between the electrons and laser beam was 45◦. The laser beam went through a beam-
splitter cube and a rotatable λ/2-plate before reaching the interaction region8. The
beam-splitter cube ensures only horizontally polarized light is transmitted and the
λ/2-plate rotates the direction of the linearly-polarized light. Thus, the polarization of
the laser can be rotated on a plane that is perpendicular to the scattering plane[33, 34].
Their results are shown in figure 1.4. (Simulations run by deHarak et al. explored the
effects of double scattering in free-free experiments as a possible explanation for non-
vanishing free-free cross sections forbidden by KWA[34].) The Martin laboratory also
explored the target independence of KWA by performing one, two, and three photon
processes in helium, argon, and molecular nitrogen[35]. These results are shown in
figure 1.5. Other experiments explored the momentum transfer dependence of elastic
electron-argon LAFF scattering. Electrons with an incident energy of 350 eV were
scattered by argon atoms at various scattering angles between 4◦ and 80◦[14]. The
results are shown in figure 1.6 and were found to be consistent with the Kroll-Watson
approximation.

This work is a continuation of testing the validity of the Kroll-Watson approxima-
tion for the momentum transfer dependence of elastic and inelastic electron-helium
LAFF scattering in an Nd:YAG laser field.

8The interaction region is where the electrons and atomic targets intersect.

6



Figure 1.3: Free-free transitions for helium at incident electron energies from 50 to
350 eV at a scattering angle of 135◦. The red points are for one-photon emission and
the blue point is for two-photon emission. The lines are fitted KWA calculations for
one-photon (red) and two-photon (blue) emission. Figure from [32].

Figure 1.4: Free-free signal for 350 eV electron-helium scattering with respect to
polarization direction. The polarization direction was varied in a plane that is per-
pendicular to the scattering plane (0◦ and 180◦ is parallel with the scattering plane
while 90◦ is perpendicular to the plane). The scattering angle is 90◦. The red curve
is the KWA. Figure from [33].
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Figure 1.5: The free-free signal for different targets: helium, argon, and molecular
nitrogen. The scattering angle is 90◦. Figure from [35].

Figure 1.6: The free-free signal for 350 eV electron-argon scattering with respect to
the scattering angle. The red data point had an estimated pressure of 1.0 torr at the
interaction region while the blue data points had an estimated pressure of 0.1 torr.
The green line is the KWA. Figure from [14].
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In 2010, Kanya et al. performed laser-assisted free-free scattering experiments
with xenon. 1 keV electrons were scattered by xenon in the presence of a femtosecond,
near-infrared Ti:sapphire laser field (corresponding photon energy of 1.56 eV)[36]. In
2015, they reported the first unambiguous experimental observation of light-dressed
atom effect in xenon. Their results are shown in figure 1.7. They observed a peak
profile at small scattering angles (< 0.5◦) which was not predicted by the KWA[37].
They compared their results to calculations based on a model by Zon[38] that stated
light-dressing effect are proportional to the dipole polarizability of the target atom.
These calculations showed that the peak profile at small scattering angles can be
interpreted as light-dressed atom effect. They noted that the discrepancies from
the Zon model for scattering angles less than 0.2◦ may have been due to a slight
misalignment between the electrons and laser beams[37, 39].
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Figure 1.7: The free-free angular distribution for one photon absorption (a) and
emission (b) of 1 keV electron-xenon scattering in a Ti:sapphire laser field with a
corresponding photon energy of 1.56 eV. Plots (c) and (d) are the expanded views of
(a) and (b), respectively. The blue dashed-line is the KWA and the black solid-line
is a modified Zon model. Figure from [37].
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1.1.2 Inelastic Free-Free Experiments

An inelastic free-free transition is when an electron is inelastically scattered by an
atomic target in the presence of a laser field. In additional to the energy lost in the
collision, the electron may absorb or emit photons from or to the laser field. The
first observation of inelastic free-free transitions was reported by Mason and Newell
in 1987[40, 5]. Low-energy electrons were scattered by ground state helium atoms
in a continuous-wave CO2 laser field. The electron energy was below the threshold
of excitation to the metastable 23S excited state. However, the helium atom can be
excited by a combination of electron-impact excitation and photon absorption. This
process is known as simultaneous electron-photon excitation (SEPE). In 1989, Wall-
bank et al. performed their own inelastic free-free experiments using a pulsed CO2

laser. Following a similar procedure to Mason and Newell, they detected metastable
23S state more than one photon energy away from the excitation energy. This was
the first multiphoton inelastic free-free transition process observed[41]. Geltman and
Maquet extended the KWA for inelastic free-free transitions and found good quali-
tative agreement between the KWA, the experimental results of Mason and Newell,
and Wallbank et al.[42].

Mason and Newell continued their work by changing the polarization of their
laser from linear to circular. Their results were consistent with KWA for electron
energies above the excitation energy for the 23S excited state of helium but there
were qualitative differences for electron energies below it[43].

Wallbank et al. continued their work by exploring the laser intensity and polar-
ization direction dependence of the inelastic KWA. They found qualitative agreement
between their experimental results and the model[44]. They also measured the rela-
tive free-free cross sections of the 21S excited state of helium and the 23P excited state
of argon and neon. These were the first results for states other than the 23S state of
helium[45]. Then they performed free-free experiments with incident electron energy
of 40 eV, much higher than the excitation energies for both the 21S and 21P excited
states of helium. They were able to observe the one photon free-free transitions of the
two excited states of helium[46]. An in depth study of the 21P excited state of helium
was performed for various incident electron energies and scattering angles from 36
to 70 eV and 13◦ to 31◦. They concluded that there was enough of a disagreement
with KWA where laser-atom interactions may need to be considered[47]. Recently,
Ajana et. al. performed inelastic free-free experiments for electron-helium scattering
of the 21P excited state using the same apparatus. They measured free-free angular
distributions of one photon processes using 45 eV electrons between the scattering
angles 5◦ and 35◦. They found good qualitative agreement between their experimen-
tal results and the KWA when the laser intensity was time-averaged. However, they
noticed signs of structure at scattering angles below 15◦[48].

Inelastic free-free transitions in helium were observed in an Nd:YAG laser field
by Luan et al. They measured the cross section of the 23S and 21S excited states of
helium with and without the laser field being present. They noticed a decrease in the
threshold incident electron energy necessary to excite a ground state helium atom to
these excited states. However, as the incident electron energy was increased, the cross

11



section started to decrease while the laser field was present. Eventually, the laser-on
cross section was lower than the laser-off cross section. They believe this may have
been due to multiphoton ionization of the metastable states of helium[49].

Copyright© Brian N Kim, 2022.
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Chapter 2 Theory

In this chapter, we will discuss the theory of free-free scattering. We begin by first
discussing how scattering is quantified in terms of cross sections.

2.1 Scattering Cross Section

Scattering theories and experiments are quantified by the concept of a cross section,
which can be modeled by theories and measured by experiments. It is useful to first
discuss cross sections in the framework of classical mechanics before moving to the
quantum analog. The classical scattering theory covered here is primarily based on
the text Classical Mechanics by John R. Taylor[50].

When a projectile approaches a target, the target will exert a force on it causing
the projectile to be deflected or scattered. Attempting to quantify every aspect of
the projectile’s interaction with a target is not practical. However, if there are many
similar projectiles and many similar targets, we can look at the statistical distribution
of the scattered projectiles to gain insight into the projectile-target interaction.

Consider a finite-sized beam that consists of non-interacting, monoenergetic pro-
jectiles that is directed towards a target assembly that consist of many identical
targets. The assembly is considered thin so we can assume any individual projectile
will only interact with at most one target. The region where the projectile beam and
the target assembly intersect is referred to as the interaction region. At the inter-
action region, the projectile can hit a target and be scattered or it can miss. The
probability of a hit is dependent on how much of the cross-sectional area Area of
interaction region was filled (i.e., a target was present instead of empty space). Note
that Area of the interaction region is also the cross-sectional area of the projectile
beam. Then the probability of a projectile being scattered is

Probability of scattering =
Ntarget σ

Area
(2.1)

where Ntarget is the number of targets in Area and σ is the cross-sectional area of
one target and is often referred to as the total cross section. σ is dependent on the
projectile, target, and the energy of the incident projectile[51]. Thus, finding σ gives
us information on the projectile-target interaction for a given incident energy. This
can be done by sending a known number of projectiles per unit time Ṅincident at the
targets and measuring the number of projectiles that are scattered per unit time
Ṅscattered giving us the following relationship:

Ṅscattered =
Ṅincident Ntarget

Area
σ. (2.2)

Let us define the incident projectile flux Fincident = Ṅincident/Area, the number
of incident projectiles per unit time that traverses the cross-sectional area of the
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projectile beam. After substituting in Fincident and rearranging equation 2.2, we find
that

σ =
Ṅscattered/Ntarget

Fincident

. (2.3)

The total cross section is the ratio of all scattered projectiles per unit time per target
and the incident flux.

2.1.1 Differential Scattering Cross Section

In many instances, we want to know how the projectile-target interaction depends on a
certain physical quantity such as projectiles being scattered in a specific direction. For
simplicity, we will define a coordinate system based on one projectile being scattered
by one target. Since the projectile can be scattered in any direction from the point
of collision (where the projectile interacted with the target), it is natural to use a
spherical coordinate system where the point of collision is the origin. Then we have
the polar angle θ and azimuth angle ϕ. After the collision, the projectile is scattered
into some solid angle dΩ. A solid angle can be considered the three-dimensional
analog to angular displacement. In spherical coordinates, it is defined as

dΩ = sin θ dθ dϕ. (2.4)

Experimentally, one puts the detector at the scattering angle θscatt facing the origin
and measure the number of scattered projectiles. The scattering angle is defined as
the angle between the momentum of the projectile before (initial) and after (final)
the collision. The detector will have a finite angular acceptance that can measure
scattered projectiles within a certain solid angle ∆Ω. However, we will continue
assuming our angular acceptance is the unit solid angle dΩ. Let us adjust equation
2.2 where we account for the angular acceptance.

Ṅscattered (into dΩ) =
Ṅincident Ntarget

Area
dσ (into dΩ) =

Ṅincident Ntarget

Area

dσ

dΩ
dΩ. (2.5)

We use Ṅscattered (into dΩ) since we only consider the scattered projectiles that enter
into the solid angle dΩ per unit time. Since the only change is what is being measured,
the incident projectile beam and target assembly are not changed. dσ (into dΩ) is
the cross-sectional area of the target where a projectile will be scattered into the solid
angle dΩ. In equation 2.5, I used the relationship

dσ (into dΩ) =
dσ

dΩ
dΩ (2.6)

where factor dσ
dΩ

is the differential cross section1. Note that if dσ
dΩ
dΩ is integrated over

all solid angles, we obtain the total cross section.

σ =

∫
dσ

dΩ
dΩ =

∫ 2π

0

∫ π

0

dσ

dΩ
(θ, ϕ) sin θ dθ dϕ (2.7)

1In this work, the differential cross section is the differential with respect to the solid angle.
However, it can be with respect to any combination of variables describing the scattering, such as
energy and/or solid angle.
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where we show explicitly the angular dependence of the differential cross section.
By rearranging equation 2.5 and substituting Fincident we find that

dσ

dΩ
(θ, ϕ) =

Ṅscattered (into dΩ)/Ntarget/dΩ

Fincident

. (2.8)

The differential cross section is the ratio of projectiles scattered into the solid angle
dΩ per unit time per target per unit solid angle and the incident flux.

2.2 Classical Free-Free Scattering

We now derive the classical differential cross section for free-free scattering. The
derivation here is similar to that of Kroll & Watson[12] and Madsen[13].

Consider a free electron being scattered by an atom in the presence of an electro-
magnetic field as shown in figure 2.1. pα and pβ refer to the instantaneous momenta
of the electron before and after the collision, respectively. pi is the asymptotic, time-
averaged momenta of pα and pf is the same to pβ. pi and pf are the observable linear
momenta of the electron (i.e., the momenta that can be measured). We consider the
collision to be instantaneous, thus pα and pβ occur at the same time at the same
phase of the electromagnetic wave.

Figure 2.1: Schematic of an electron-atom collision in an oscillating electric field.
The momenta are defined in the text. The blue region represent the electron in the
presence of an external electromagnetic field.

Since we are in the classical framework, we only consider elastic electron-atom
scattering. We can find the differential cross section by recalling equation 2.8. The
incident electron flux Fincident = Ṅincident/Area can be found by finding the number
of electrons that passes through a cross-sectional area Area per unit time2. The
number of electrons that passes through Area per unit time would be the same as
electrons in an imaginary volume defined by Area × pi

m
dt. For simplicity, we only

concern ourselves with one electron to find the incident electron flux per electron3

Fincident =
Ṅincident

Area
=

1× Area× pi
m
dt

Area dt
=
pi
m
. (2.9)

2This is the same Area that was used section 2.1.
3This is the equivalent of saying we define the density of electrons as 1 electron per unit volume.
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We concern ourselves with what happens immediately before and after the collision
in the electromagnetic field. We describe the field by its vector potential in the dipole
approximation:

A = a cos(ωt) (2.10)

where a is the vector potential amplitude and has the phase

α = ωt. (2.11)

We consider the collision to be instantaneous and therefore at a specific phase. Since
the phase is only present in the cosine function in equation 2.10, we only concern
ourselves in the phase range 0 ≤ α ≤ π. Then a normalized phase interval is dα

π
. We

can find an expression for the free-free differential cross section by using equation 2.8
and 2.9.

dσFF

dΩ
=
Ṅscattered (into dΩ)/Ntarget/dΩ

pi/m

dα

π
. (2.12)

The numerator can be found using equation 2.5 and 2.9 for elastic-scattering.

Ṅscattered (into dΩ)/Ntarget/dΩ =
pα
m

dσel
dΩ

. (2.13)

Substituting equation 2.13 into 2.12 results in

dσFF

dΩβ

=
pα
pi

dσel
dΩ

dα

π
(2.14)

where dΩβ is used to explicitly show this is the solid angle that momentum pβ is
directed towards. This expression is not sufficient since momentum pβ is not an
observable quantity. To continue, we look for the relationship between dΩβ and dΩf

where dΩf is the solid angle that momentum pf is directed towards.
We begin by multiplying both sides by dΩβ. The quantity dα dΩβ can be repre-

sented in the spherical coordinate system as

dα dΩβ = dα δ(pβ − pα)
d3pβ
p2β

(2.15)

where d3pβ is the volume element in pβ-space and δ is the Dirac delta function. The
momentum of the electron will change due to the field by an amount −eA 4. Then
the instantaneous momenta and the asymptotic, time-averaged momenta are related
by

pα = pi − eA

pβ = pf − eA.
(2.16)

The argument in the Dirac delta function in equation 2.15 can be converted from
δ(pβ − pα) to δ(p

2
β − p2α) by using the following relationship[52]:

4The elementary charged e is positive, i.e. e = |e|.
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δ[(x− a)(x− b)] =
1

|a− b|
[δ(x− a) + δ(x− b)], a ̸= b. (2.17)

Then we have the relationship

δ(p2β − p2α) = δ((pβ − pα)(pβ + pα))

=
1

2pβ
[δ(pβ − pα) + δ(pβ + pα)]

=
1

2pβ
δ(pβ − pα)

δ(pβ − pα) = 2pβ δ(p
2
β − p2α) (2.18)

where the term δ(pβ + pα) was removed since it is not physically realizable in the
spherical coordinate system.

We find an expression for p2β − p2α by using equations 2.16

p2β − p2α = p2f − p2i − 2eQ · a cos(α). (2.19)

where Q = pf − pi is the momentum transfer.
By substitution equation 2.18 and 2.19 into equation 2.15 and changing the co-

ordinate system from pβ-space to pf -space (replacing d3pβ with d3pf ), we obtain the
following:

dα′ dΩβ =
2

pβ
dα′ δ(p2β − p2α)d

3pβ

=
2

pβ
d3pf δ(p

2
f − p2i − 2e(Q · a) cos(α′))dα′

=
2

pβ
p2f dpf dΩf δ(p

2
f − p2i − 2e(Q · a) cos(α′))dα′

=
pf
pβ
dp2f dΩf δ(p

2
f − p2i − 2e(Q · a) cos(α′))dα′

(2.20)

where the last step used the relationship dp2 = 2p dp. To continue the derivation, we
use another Dirac delta function relationship[52]:

δ[f(x)] =
∑
i

δ(x− xi)

|f ′(xi)|
, if f(xi) = 0 and f ′(xi) ̸= 0, (2.21)

which we can use to evaluate the delta function

δ(p2f − p2i − 2e(Q · a) cos(α′))dα′ =
∑ δ(α′ − α) dα′

|2e(Q · a) sin(α′)|

→ 1

|2e(Q · a) sin(α)|
.

(2.22)
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We find the classical free-free cross section by substituting equation 2.20 with 2.22
into equation 2.14 to obtain

dσFF

dΩf

=
pf
pi

dσel
dΩ

dp2f
|2πe(Q · a) sin(α)|

. (2.23)

Recall that pα = pβ (see delta function in equation 2.15).
We can find the change in kinetic energy of the electron by using equation 2.19

and recognizing p2α − p2β = 0

∆E =
(p2

f − p2
i )

2m
=

e

m
(Q · a) cos(α) (2.24)

The maximum value of equation 2.24 is when cos(α) = 1.

Eclassical limit =
e

m
(Q · a) (2.25)

is the classical limit of the energy transferred between the field and the electron.

2.3 Quantum Scattering Theory

To continue our discussion on electron-atom scattering, we now discuss quantum
scattering theory.

Bransden & Joachain define cross sections as “the ratio of the number of events
of this type per unit time and per unit scatterer, to the flux of the incident particles
with respect to the target”[53]. Recall that cross sections are only dependent on
the interactions between projectile and target for a given energy. So, we are free to
choose the incident flux5. If the incident flux is set to unity, then cross sections can be
interpreted as transition probabilities per unit time (transition rate), per unit target
scatterer and per unit flux of the incident particles with respect to the target [53].

The following derivation to the cross section from the transition rate is from
the text Modern Quantum Mechanics by J. J. Sakurai[54]. The transition rate for
quantum scattering theory is given by

w(i→ f) =
2π

ℏ
|Tfi|2δ(Ef − Ei) (2.26)

where Tfi is the T matrix or the transition matrix 6. Equation 2.26 assumes it is
integrated over energy with the density of final states. Doing so gives the form

w(i→ f) =
mkf (2π)

3

(2π)2ℏ3
|Tfi|2dΩ (2.27)

5We took advantage of this earlier when we defined Fincident by setting the density of electrons
to be 1 electron per unit volume.

6Equation 2.26 is very similar to Fermi’s golden rule except it uses the more general T matrix.
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which is the transition rate for scattered particles in the solid angle dΩ. m and kf
are the mass and final wavenumber of the scattered particle, respectively. Equation
2.27 assumes the wave functions were normalized to a delta function. To find the
differential cross section, we divide equation 2.27 by the incident flux equation in
terms of wavenumber

Fincident =
pi

m(2π)3
=

ℏki
m(2π)3

(2.28)

where the density of incident electrons is taken to be 1 electron in a volume of (2π)3.
Then the differential cross section is

dσ

dΩ
=
kf
ki

(
m(2π)3

(2π)ℏ2

)2

|Tfi|2. (2.29)

If we find the T matrix for free-free transitions, then we can find the quantum
free-free differential cross section. To find the T matrix, we look at the relationship
between the S and the T matrix

Sfi = δfi − i2πδ(Ef − Ei)Tni (2.30)

and compare with the S matrix for free-free scattering[55]

Sfi = δfi −
i

ℏ

∫ +∞

−∞
⟨Xf (r, t

′)|V (r)|Ψi(r, t
′)⟩dt′ (2.31)

where X(r, t) is the wave function for an electron coupled with an external elec-
tromagnetic field and Ψ(r, t) is the wave function for an electron in the presence
of a scattering potential V (r) and coupled to an external electromagnetic field. To
continue, we must find X(r, t).

2.3.1 Volkov Wavefunction

To find the wave function of an electron coupled with an external electromagnetic
field, we solve the time-dependent Schrödinger equation. In the dipole approximation,
the laser field can be described by the vector potential A(t). Then the Hamiltonian
of an electron coupled to an external electromagnetic field is

He−laser =
1

2m
[p̂− eA(t)]2 (2.32)

wherem is the electron mass, e = |e| is the elementary charge, and p̂ is the momentum
operator. Then the time-dependent Schrödinger equation for the state wave function
X(r, t) is

iℏ
∂

∂t
X(r, t) =

1

2m
[p̂− eA(t)]2X(r, t). (2.33)

The solution to equation 2.33 can be found in atomic physics textbooks such as the
one by B. H. Bransden & C. J. Joachain[53]. The wave function that solves the
time-dependent Schrödinger equation is
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X(r, t) =
1

(2π)3/2
exp

{
i
p

ℏ
·
(
r +

e

m

∫ t

A(t′)dt′
)
− i

E

ℏ
t− i

e2

2mℏ

∫ t

A2(t′)dt′
}

(2.34)
and is known as the Volkov wave function. E is the kinetic energy of the free electron.
Note that p is the eigenvalue of the momentum operator p̂.

Equation 2.34 is the general form of the Volkov wave function. To proceed, we
use equation 2.10 to obtain

X(r, t) =
1

(2π)3/2
exp

{
− i

ℏ

(
E +

e2a2

4m

)
t+ i

p

ℏ
·
(
r +

ea

mω
sin(ωt)

)
− i

e2a2

8mℏω
sin(2ωt)

}
(2.35)

This is the form of the wave function we will use to describe the electron in a laser
field.

2.4 Kroll Watson Approximation

In this section, we derive the Kroll Watson Approximation (KWA), a widely used
model for free-free processes that we touched upon in chapter 1. The model is con-
sidered semiclassical since quantum scattering theory is used but the electromagnetic
field is treated classically. We follow a similar derivation as shown by Kroll and
Watson[12] and Rahman[55]. We return to equation 2.31 and use equation 2.35,

Sfi = δfi −
i

ℏ

∫ +∞

−∞
⟨Xf (r, t)|V (r)|Ψi(r, t)⟩dt′ (2.36)

Let us evaluate the time integral by assuming that the scattering potential is weak
to employ the first Born approximation[56] to obtain

i

ℏ

∫ +∞

−∞
⟨Xf (r, t)|V (r)|Xi(r, t)⟩dt′. (2.37)

We evaluate the matrix element and integrate to obtain

∫ +∞

−∞
⟨Xf (r, t)|V (r)|Xi(r, t)⟩dt′ =

1

(2π)3
i

ℏ

∫ +∞

−∞
ei(Ef−Ei)t

′/ℏ dt′

×
∫ +∞

−∞
exp

{
−i e

mℏω
Q · a sin(ωt)

}
dt′

×
∫
V (r)e−i(Q·r)/ℏ d3r′

(2.38)

where we used the momentum transferQ = pf−pi. To continue, we use the following
three relationships:
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� Jacobi-Anger Expansion[57] which expands plane wave into cylindrical waves

exp {iρ cos(φ′)} =
+∞∑

n=−∞

inJn(ρ)e
inφ′

(2.39)

where Jn is the n
th Bessel function of the first kind. For our use, we let φ′ = φ−π

2

to obtain

exp {iρ sin(φ)} =
+∞∑

n=−∞

Jn(ρ)e
inφ. (2.40)

� 1st Born Approximation scattering amplitude[54]

f
(1)
Born = − m

2πℏ2

∫
V (r)e−iQ·r/ℏ d3r′ (2.41)

� Inverse Fourier transform of the δ function[52]

2πδ(x− ζ) =

∫ +∞

−∞
eiη(x−ζ)dη (2.42)

Using equation 2.40, 2.41, and 2.42 on equation 2.38, we obtain

i

ℏ

∫ +∞

−∞
⟨Xf (r, t)|V (r)|Xi(r, t)⟩dt′

= − 1

(2π)3
i

ℏ
2πℏ2

m

+∞∑
n=−∞

Jn

(
− e

mℏω
(Q · a)

)
f
(1)
Born

∫ +∞

−∞
ei(Ef−Ei+nℏω)/ℏ dt′

= −2π
1

(2π)3
i

ℏ
2πℏ2

m

+∞∑
n=−∞

Jn

(
− e

mℏω
(Q · a)

)
f
(1)
Bornδ((Ef − Ei + nℏω)/ℏ).

(2.43)

We can now evaluate the S matrix using our result above for the nth element.

Sfi = δfi − i2πδ(Ef − Ei + nℏω)
[
− 1

(2π)3
2πℏ2

m
Jn(−

e

mℏω
(Q · a))f (1)

Born

]
. (2.44)

Comparing equation 2.44 with equation 2.30, we can see that the Tfi matrix is

Tfi = − 1

(2π)3
2πℏ2

m
Jn

(
− e

mℏω
(Q · a)

)
f
(1)
Born. (2.45)

By using our result of equation 2.45 in equation 2.29, we find the differential cross
section for LAFF scattering for n photons:
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dσn
FF

dΩ
=
kf
ki

(
m(2π)3

2πℏ2

)2 ∣∣∣∣− 1

(2π)3
2πℏ2

m
Jn

(
− e

mℏω
(Q · a)

)
f
(1)
Born

∣∣∣∣2
=
kf
ki
J2
n

(
− e

mℏω
(Q · a)

) dσ(1)
Born

dΩ

(2.46)

where dσ
(1)
Born/dΩ is the differential cross section for elastic electron scattering in the

first Born approximation. If the first Born approximation is sufficient in describing
the differential cross section for elastic-scattering, then we obtain the Kroll Watson
Approximation

dσn
FF

dΩ
=
pf
pi
J2
n(x)

dσel
dΩ

(2.47)

where

x = − e

mℏω
(Q · a) . (2.48)

Looking at the delta function in equation 2.44, n > 0 refers to photon emission and
n < 0 to photon absorption by the electron7. Then the kinetic energy of the electron
after n photons free-free scattering is

Ef = Ei − nℏω (2.49)

Kroll and Watson showed that if the first Born approximation is insufficient in de-
scribing the scattering cross section, then the KWA will still holds provided that the
frequency is low and if the photon energy transfer is less than the classical limit. To
find the classical limit, let us compare the the argument of KWA (equation 2.48) with
the classical maximum change in kinetic energy of the electron (equation 2.24).

|x| =
∣∣∣− e

mℏω
(Q · a)

∣∣∣ = Eclassical limit

ℏω
(2.50)

where it can be seen that x is the classical limit on the number of photons that can
be transferred in free-free scattering.

Let us now compare the KWA with the classical cross section. We look at the
Debye asymptotic formula for Bessel functions (the asymptotic limit for n ∼ x)[12,
58]:

J2
n ≈

2cos2[
√
x2 − n2 − |vcos−1(n

x
)| − π

4
]

π
√
x2 − n2

, when n < x (2.51)

J2
n ≈ 2e−2

∫ n
0 cosh−1( n′

|x| )dn
′

π
√
x2 − n2

, when n > x (2.52)

7Photon absorption may also be referred to as stimulated bremsstrahlung and photon emission
as inverse bremsstrahlung [12]
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where n is the number of photons absorbed/emitted by the electron and x is the
argument of the Bessel function in the KWA. Then equation 2.51 refer to the scenario
when the energy transfer is less than what is classically allowed while equation 2.52
refer to the scenario when more energy is transferred than classically allowed.

We can relate the classical scattering phase α to the quantum parameters of KWA
by the following relationship:

n = |x| cos(α). (2.53)

Now, consider the case where the energy transfer is below the classical limit equation
2.51. Since the number of photons transferred is large, we can use the average value
of cos2, ⟨cos2⟩ = 1

2
. Using equation 2.47, 2.48, 2.51, 2.53, and ⟨cos2⟩ = 1

2
, we find

that

dσFF

dΩ
≈ pf
pi

dσel
dΩ

mℏω
πe(Q · a)sin(α)

. (2.54)

When compared with the classical free-free differential cross section (equation 2.23),
we find that

dp2f = 2mℏω →
dp2f
2m

= ℏω (2.55)

One can think of dp2f as bins that correspond to “bins of energy” of ℏω[13].

2.4.1 Redefining x

The argument of the Bessel function in the KWA (equation 2.48) is not ideal for
experimentalists since the vector potential A is not a measurable quantity. All ex-
periments discussed in this work used a laser to supply the electromagnetic field.
Thus, it is more convenient to express x in terms of intensity I and wavelengths λ.
It is also more convenient to use the kinetic energy of the incident electron Ei rather
than its momenta pi and pf .

We start by recognizing that the direction of a is also direction of polarization ϵ̂
of the laser field.

x = − ea

mℏω
pi

(
ϵ̂ ·Q
pi

)
(2.56)

where (ϵ̂ ·Q) is normalized to the initial momenta pi. Then the quantity ( ϵ̂·Q
pi
) can

be determined by the scattering geometry of the experiment.
We use the following relationships:

� Electric field E(t) from the vector potential in the Coulomb gauge[59],

E(t) = −∂tA = ωa sin(ωt)ϵ̂ = E0sin(ωt)ϵ̂ (2.57)

then
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a =
E0
ω

(2.58)

where E0 is the magnitude of the electric field.

� Electric field and intensity of the field[60],

I =
1

2
cϵ0|E0|2 → E0 =

(
2I

cϵ0

)1/2

(2.59)

where ϵ0 is the permittivity of free-space and c is the speed of light in vacuum.

� The angular frequency ω with wavelength λ,

ω =
2πc

λ
(2.60)

� Incident electron momentum and energy

Ei =
p2i
2m

→ pi = (2mEi)
1/2 (2.61)

Substituting equation 2.58, 2.59, 2.60, (2.61) into equation 2.48 we obtain

x = −
(

4e2

(2π)4mℏ2c5ϵ0

)1/2

λ[m]2I

[
W

m2

]1/2
Ei[J]

1/2

(
ϵ̂ ·Q
pi

)
(2.62)

in the SI unit system. However, in our experiments, SI units are not convenient.
We make a unit conversation to have the wavelength λ, intensity I, and incident
electron energy Ei in [µm],

[
GW
cm2

]
, and [eV], respectively. Doing the unit conversions,

we obtain

x = −
(
e3 × 10−11

4π4mℏ2c5ϵ0

)1/2

λ[µm]2 I

[
GW

cm2

]1/2
Ei[eV]

1/2

(
ϵ̂ ·Q
pi

)
≈ −0.0220 λ[µm]2 I

[
GW

cm2

]1/2
Ei[eV]

1/2

(
ϵ̂ ·Q
pi

)
.

(2.63)

Now we have a form of KWA that is convenient for our experiments:

dσFF

dΩ
=
pf
pi
J2
n(x)

dσel
dΩ

(2.64)

where

x = −0.0220λ2I1/2E
1/2
i

(
ϵ̂ ·Q
pi

)
(2.65)
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where the wavelength of the field λ in µm, intensity of the laser at the collision I
in GW/cm2, and the incident electron energy Ei in eV. In our work, the electrons
have an incident energy of 350 eV. For elastic scattering, pi ≈ pf . In free-free scatter-
ing, there are three interactions: laser-electron, electron-atom, and laser-atom. The
laser-electron interaction is contained in the Bessel function and the electron-atom
interaction is contained in the elastic differential cross section. The main assumption
of KWA is that the laser-atom interaction is negligible. The purpose of the atom is
to allow the simultaneous conservation of energy and momentum during the free-free
transition.

2.4.2 Relative Cross Sections

In our laboratory, the exact geometric efficiency is not known. Thus, we are un-
able to directly measure absolute free-free cross sections. What is measured in our
experiments is the ratio of the laser-on signal to the laser-off signal. To within a
geometric overlap factor (the overlap between the laser, electron, and helium beam),
this quantity is related to the ratio of the free-free cross section to the field-free cross
section

dσFF

dΩ

/
dσel
dΩ

=
pf
pi
J2
n(x) , (2.66)

where the argument x is the same as equation 2.65. Note that on the RHS, there is
no dependence on the target. The advantage of relative cross sections can be seen by
looking at the definition of differential cross sections (equation 2.8). In an experiment,
Ntarget, dΩ, and Fincident can be kept constant. Thus, the relative cross section is

dσFF

dΩ

/
dσel
dΩ

=
ṄFF

Ṅel

(2.67)

where ṄFF and Ṅel refer to the scattering rate of free-free and elastically-scattered
electron measured by the detector, respectively. The relative cross section is simply
the ratio of their rates.

For inelastic free-free processes, Geltman and Maquet performed an ansatz and
extended the KWA to inelastic scattering processes. They replaced the elastic cross
section in equation 2.64 with the inelastic cross section[42]. They found good qualita-
tive agreement with the experimental results of Mason and Newell[61] and Wallbank
et al.[41].

As discussed section 1.1, many experiments were performed to test the validity
of the KWA in both elastic and inelastic free-free processes. Experimental results
have shown disagreements with the KWA, especially in regions where vanishing cross
sections are expected[25, 29]. Multiple scattering may be a potential explanation for
this deviation[34].

The limits of validity of the KWA are still of interest. This thesis is an experi-
mental examination of the KWA angular distributions in helium for both elastic and
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inelastic processes. Figure 2.2 shows predicted KWA angular distributions appropri-
ate to the experiments described in this thesis (see table 2.1). For inelastic scattering,
an electron energy loss of 21.22 eV (the energy necessary to excite a ground state he-
lium to its 21P excited state) was accounted for when calculating the final momentum
of the electron.

Figure 2.2: Angular distributions for one photon processes (n = ±1) calculated
with the Kroll-Watson approximation for elastic (blue solid-line) and inelastic (green
chained-line) scattering using values shown in table 2.1. Both curves were normalized
to the 45◦ elastic calculation.

Wavelength λ 1.064 µm
Intensity I 11.3 GW/cm2

Incident Electron Energy Ei 350 eV
Polarization ϵ̂ -133◦

Table 2.1: Values of the parameters used in the argument of KWA (see equation
2.65). The intensity used the nominal output power of the PowerLite Nd:YAG laser
with the measured beam size at the interaction region.
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2.5 Light-Dressing Effects

In equation 2.66, the KWA predicts that the properties of the target atom does not
affect the free-free relative cross section. The model assumes that the laser-atom
interaction is negligible. However, if the electric field of the laser is strong, the target
atom can be distorted introducing so-called light-dressing effects [62, 4].

We now discuss a model by Zon for free-free processes that does not neglect
the laser-atom interaction. The model uses perturbation theory in the context of
bremsstrahlung for S-state atoms[38]. He used the scattering potential

V (r, t) =
1

4πϵ0

[
−Ze

2

r
+ e2

Z∑
j=1

1

|r − rj|
+
eα(ω)

r3
(E0 · r)cos(ωt)

]
(2.68)

where Z is the nuclear charge, rj is the position of the jth electron of the atom, and
α(ω) is the dynamic dipole polarizability of the atom. The first two terms refer to
the scattering potential of the atomic target. The last term refers to the scattering
potential due to the external electric field polarizing the atom. Using the first Born
approximation, we obtain the differential cross section

dσZON

dΩ
=
pf
pi

∣∣∣∣Jn(x) 1

2πϵ0

mZe2

Q2 [1− Ff (Q)]− 1

4πϵ0

α(ω)m2ω2x

Q2 [Jn−1(x)− Jn+1(x)]

∣∣∣∣2
(2.69)

where Ff (Q) is the form factor for the excitation from the ground state |0⟩ to some
final state |f⟩.

The relationship between the differential cross section and the form factor is given
by Sakurai [54]:

dσ

dΩ
=
pf
pi

(
mZe2

2πϵ0Q
2

)2

|δf0 − Ff (Q)|2 (2.70)

that corresponds to the the scattering amplitude

ff0 = ±
(
mZe2

2πϵ0Q
2

)
[δf0 − Ff (Q)] (2.71)

where δf0 is the Kronecker delta function between some final state |f⟩ and the ground
state |0⟩. For elastic scattering,

f00 = fel = ±
(
mZe2

2πϵ0Q
2

)
[1− Ff (Q)]. (2.72)

Using equation 2.69 and 2.72, we obtain the following

dσZON

dΩ
=
pf
pi

∣∣∣∣ Jn(x)fel︸ ︷︷ ︸
KWA Term

−α(ω)
1

4πϵ0

2m2ω2x

Q2 J ′
n(x)︸ ︷︷ ︸

Light-Dressing Term

∣∣∣∣2 (2.73)
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where we used the derivative of the Bessel function of the first kind

J ′
n(x) =

1

2
[Jn+1(x)− Jn−1(x)] (2.74)

[52]. The Bessel function argument x is the same as in the KWA (equation 2.65).
We note that if the second term is ignored, we obtain the KWA. So, we call the
first term the KWA term and the second term the light-dressing term. We note that
angular frequency ω of a 1.17 eV laser field is much less than the atomic unit for
angular frequency. Thus, we can replace the dynamic dipole polarizability with the
static dipole polarizability α. The appeal of the Zon model is that the laser-atom
interaction depends only on the electric dipole polarizability α of the atom.

To compare with the KWA (equation 2.66), we divide both sides of Zon by the
elastic differential cross section to obtain the relative cross section

dσZON

dΩ

/
dσel
dΩ

=
pf
pi

∣∣∣∣Jn(x)− α
1

4πϵ0

2m2ω2x

Q2

J ′
n(x)

fel

∣∣∣∣2. (2.75)

To see light-dressing effects, we require that
∣∣∣α 1

4πϵ0
2m2ω2x

Q2
J ′
n(x)
fel

∣∣∣ ∼ |Jn(x)|. We note

that the light-dressing term increases by a factor of 1/Q (recall that x has a factor
of Q). Thus, we expect to see light-dressing effects if α is large and the scattering
angle θscatt is small.

Figure 2.3 shows equation 2.75 plotted for various static dipole polarizabilities
shown in table 2.28 along with the KWA using the values on table 2.1. Figure 2.4
has the same curves as figure 2.3 but for low scattering angles.

Atomic Target α [Atomic Units]

Helium 1.38
Argon 11.1
Xenon 27.3

Potassium 290

Table 2.2: Various static dipole polarizabilities used to plot the Zon model in figure
2.3. He, Ar, Xe, and K are in their ground states. The dipole polarizabilities came
from [63].

8These four dipole polarizabilities were chosen since He was used in this work, Ar was the
atomic target used in previous works[14], Xe was the atomic target used by Morimoto et al. where
light-dressing effects were observed[4], and K was a target that was considered but rejected for
experimental reasons (see text).
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Figure 2.3: The Zon model for various static dipole polarizabilities (see table 2.2).
The KWA is also plotted for comparison. Scattering amplitudes are from NIST
database[64].

Figure 2.4: The same plot as figure 2.3 for small scattering angles. Cross section data
from [64].
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Figures 2.3 and 2.4 show that deviations from KWA can be seen at low scattering
angles for all targets. However, these deviations occur at scattering angles below 1◦.
Due to potassium having a relatively large dipole polarizability, it is the only target
of the four where deviations from KWA can be seen at higher scattering angles. It
is interesting to note that a local minimum can be seen around 4◦, which is readily
accessible with our apparatus. Unfortunately, exploratory free-free experiments of
potassium showed this is not experimentally feasible since an intense potassium beam
is required to see a free-free signal. This quickly blocked up the exit aperture of the
electron gun requiring frequent cleaning. This makes potassium an unsuitable atomic
target for a free-free angular distribution[62].

It was noted that the (1s2s)1S excited state of helium has a static dipole polariz-
ability of 730 ± 90 a.u.[65]. It was assumed that the Zon model may be applicable
to inelastic free-free processes. Preliminary calculations using the cross section data
from Fursa and Bray[66] for electron-impact excitation for helium from the ground
state to the 21S excited state for 500 eV electrons showed unreasonably large relative
free-free cross sections. Unfortunately, the Zon model does not appear to work for
inelastic scattering. An inelastic free-free scattering model is needed to determine if
light-dressed atom effects are expected for inelastic LAFF scattering of helium.
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2.5.1 In-House Inelastic Light-Dressed Model

[Hartree atomic units will be used for this subsection.]

Here we present a qualitative model developed by Martin (my thesis advisor)[67]
for inelastic free-free scattering. The model was developed by considering the Stark
mixing of excited states under the influence of an external electromagnetic field. We
start by finding the inelastic scattering amplitude for electron-helium scattering in
an external electromagnetic field that is linearly polarized as done by Akramine et
al.[68, 69]. The laser-electron interaction is treated similarly as in section 2.3.1 but
in the velocity gauge. The velocity gauge transformation for a wave function Ψ(r, t)
for an atom with N electrons is

Ψ(r, t) = e−iN
2

∫ t A2(t′)dt′ΨV (r, t) (2.76)

where ΨV is the wave function in the velocity gauge. For a free electron (N = 1), we
have the Volkov wave function in the velocity gauge:

XV (r, t) =
1

(2π)3/2
ei(k·r−Et−k·E0

ω2 sin(ωt)) (2.77)

where k is the wave vector. Since we are not ignoring the laser-atom interaction,
we need to find the dressed wave function Φ(r, t) for helium in an external elec-
tromagnetic field. The Hamiltonian for an atom in an external field in the dipole
approximation and velocity gauge is

H = H0 +Hlaser−atom = H0 − i
2∑

j=1

A(t) · ∇j (2.78)

where H0 is the Hamiltonian for the helium atom when it is not in an external field.
Since the magnitude of the electric field is much less than the atomic unit of electric
field strength, time-dependent perturbation theory is appropriate.

The Schrödinger equation for this process is

i∂t Φm(r, t) = [H0 +Hlaser−atom]Φm(r, t) (2.79)

where

Φm(r, t) = e−iA·ReiEmt

×

[
ψm(r) +

i

2

∑
m′

Mm′m

(
eiωt

Em′ − Em + ω
− e−iωt

Em′ − Em − ω

)
ψm′(r)

]
(2.80)

where the factor e−iA·R is included to ensure gauge consistency between the Volkov
wave function (see equation 2.77) and Φm(r, t)

9. ψm are the eigenstates of H0 with a

9Khalil et al. used the laser-atom interaction Hamiltonian in the velocity gauge and solved for
Φm(r, t) using the length gauge.
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corresponding energy Em and R is the vector sum of the coordinates of the electrons,
i.e. R = r1 + r2 for helium. Mm′m is the dipole coupling matrix elements defined as

Mm′m = E0⟨ψm′|ϵ̂ ·R|ψm⟩ (2.81)

where ϵ̂ is the direction of polarization. The sum in equation 2.80 is over all discrete
states and integrated over the continuum states. We now write the S matrix elements
in the first Born approximation for the inelastic collision:

Sfi = −i
∫ +∞

−∞
⟨XV

f (r, t)Φf (r, t)|Vd(r, t)|XV
i (r, t)Φi(r, t)⟩ dt′ (2.82)

where

Vd(r, t) = −2

r
−

2∑
j

1

rj
(2.83)

and rj is the position of the jth electron. Note that in equation 2.82 we use the product
of the Volkov and the dressed helium wave function since we are now concerned
with the initial and final electron as well as the initial and final state of the target
helium[54]. Then the S matrix of the n photon process is

Sfi = δ(Ef − Ei +∆E − nω)f
(1)
Born (2.84)

where ∆E is the energy difference between the excited and ground state. f
(1)
Born is the

first Born approximation inelastic free-free scattering amplitude.
The scattering amplitude f

(1)
Born is comprised of two parts: the scattering ampli-

tude due to laser-electron interaction flaser−electron and the the laser-atom interaction
flaser−atom.

f
(1)
Born = flaser−electron + flaser−atom (2.85)

where

flaser−electron = Jn(x)f
(1)
f0 (2.86)

flaser−atom = +
i

2

∑
m

[
Jn+1(x)

Em − Ei + ω
− Jn−1(x)

Em − Ei − ω

]
Mmif

(1)
fm

− i

2

∑
m

[
Jn−1(x)

Em − Ef + ω
− Jn+1(x)

Em − Ef − ω

]
Mfmf

(1)
mi

(2.87)

where

f
(1)
f0 is the scattering amplitude for 0 → f , and

f
(1)
fm is the scattering amplitude for m→ f , and

f
(1)
m0 is the scattering amplitude for 0 → m

(2.88)
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in the first Born approximation. The subscripts 0, m, and f refers to the ground
state, intermediate state, and the final state, respectively. This is the result found
by Akramine et al.[69]. If the laser-atom interaction is negligible, then we obtain the
scattering amplitude for the KWA.

The first term of equation 2.87 corresponds to light-dressing of the ground state.
Since the first excited state of helium has an excitation threshold energy of approx-
imately 20 eV and our laser has a photon energy of 1.17 eV, i.e., Em − Ei ≫ ω, we
ignore light-dressing of the ground state.

The second term of equation 2.87 corresponds to light-dressing of the final state.
Martin makes the approximation of treating the helium as a three-state atom: the
ground state (1s2)1S, (1s2s)1S, and (1s2p)1P states[67]. The energy difference between
these two excited levels is 0.602 eV, which is less than the next excited state (1s3s)1S
that is 1.702 eV above (1s2p)1P[70]. In this three-state atom, we only need to consider
the states 21S and 21P dressing each other due to the external field.

We note that the static dipole polarizability α for the two excited states are

αP =
|⟨21S|R|21P ⟩|2

ES − EP

= −|⟨21P |R|21S⟩|2

EP − ES

= −αS (2.89)

where αP and αS is the dipole polarizability for the 21P and 21S states, respectively.
EP and ES are the state energy of the two states. We also use the relationship
between the electric field magnitude E0 and the field intensity I:

E0 = (8παFSI)
1/2 (2.90)

where αFS ≈ 1
137.036

is the fine structure constant. Then the dipole coupling matrix
element is

MSP = [8παFSIαP (ES − EP )]
1/2 (ϵ̂ · R̂) (2.91)

MPS = [8παFSIαS(EP − ES)]
1/2 (ϵ̂ · R̂) (2.92)

where the first equation refers to the inelastic scattering of (1s2)1S to (1s2s)1S with
(1s2p)1P being the intermediate dressing state. The second equation is when the
roles of (1s2p)1P and (1s2s)1S are switched. Then using equation 2.85, 2.86, 2.87,
2.91, and 2.92, we can find the relative differential free-free cross section

dσn
FF/dΩ

dσS0/dΩ
=

∣∣∣∣Jn(x)− [2παFSIαP (ES − EP )]
1/2 (ϵ̂ · R̂)

×
[

Jn−1(x)

EP − ES + ω
− Jn+1(x)

EP − ES − ω

]
×
(
i
fP0

fS0

) ∣∣∣∣2 (2.93)

and

dσn
FF/dΩ

dσP0/dΩ
=

∣∣∣∣Jn(x)− [2παFSIαS(EP − ES)]
1/2 (ϵ̂ · R̂)

×
[

Jn−1(x)

ES − EP + ω
− Jn+1(x)

ES − EP − ω

]
×
(
i
fS0
fP0

) ∣∣∣∣2 (2.94)
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where dσS0/dΩ, dσP0/dΩ, fS0, and fP0 are the inelastic differential cross section from
the ground state to the 21S state, differential cross section from the ground state to
the 21P state, the scattering amplitude from the ground state to the 21S, and the
scattering amplitude from the ground state to the 21P state, respectively.

Martin expanded the Born scattering amplitudes as a power series of the momen-
tum transfer Q and took the radial integral to equal the integrand evaluated at the
at the Bohr radius (a0) to obtain

(if0P/f0S) ∼ 6/Q (2.95)

(−if0S/f0P ) ∼ Q/6. (2.96)

The results of these calculations is shown in figure 2.5. This is a qualitative model
that shows we expect to see light-dressing effects for electron-impact excitation of
helium to its (1s2s)1S state in the presence of an Nd:YAG laser field.

Figure 2.5: The results of the qualitative in-house light dressing model. The left is
electron-impact excitation of helium from its ground state to the 21S excited state
that is dressed by the 21P excited state. The right is when the roles of the two excited
states are reversed. Figure from [71].

Copyright© Brian N Kim, 2022.
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Chapter 3 Experimental Apparatus

To perform laser-assisted free-free (LAFF) scattering experiments, there are four
things needed: electrons, targets, a laser field, and an electron detector. In our
LAFF spectrometer/apparatus, we employ the cross-beam geometry technique with
an electron beam, an atomic target beam, and a laser beam. The intersection of the
three beams is known as the interaction region. A scattered-electron detector is aimed
at the interaction region to measure the number of electrons scattered in a particular
direction. The orientation of the electron beam and the detector determines the
scattering plane. The laser beam enters the interaction region in the scattering plane
while the atomic target beam is perpendicular to the scattering plane. A schematic
of the LAFF spectrometer is shown in figure 3.1 and a photo is shown in figure 3.2.

Figure 3.1: Schematic of the LAFF spectrometer (inside a vacuum chamber). ϵ̂ is
the laser polarization direction.

The main components shown in the figures 3.1 and 3.2 are:

1. An unmonchromated electron gun to produce the electron beam.

2. A gas nozzle used to produce a helium target beam.

3. A scattered-electron detector to count electrons with a specific energy.
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Figure 3.2: Photograph of the LAFF spectrometer. The gas jet nozzle is oriented
perpendicularly outward. The laser is not in the photograph. An electrostatic shield
has been removed for clarity.

4. A laser (located outside the chamber) to produce a laser beam.

Excluding the laser, all components are located inside of a vacuum chamber.

3.1 Vacuum System

Electron-scattering experiments must be performed in a high vacuum. Our system is
able to reach pressures in the 10−7 torr range when the helium beam is off. During
experiments, the helium beam is kept on and the background helium pressure is in
the 10−4 torr range. A schematic of the major components of the vacuum system can
be seen on figure 3.3. The system is comprised of the following components:

1. The vacuum chamber where the electron gun, gas nozzle, and scattered-electron
detector are located. The stainless steel chamber is comprised of a hollow, up-
right cylindrical body with an inner diameter of 18 in, a fixed bolted-on disk
bottom, and a removable top disk lid. The inner surface of the chamber is
lined with high permeability µ-metal shielding to reduce the effects of external
magnetic fields. A vacuum seal between the bottom, top, and body is made
with Viton o-rings. A rail-mounted hoist is used to lift the lid when the chamber
is at atmospheric pressure.

Extending from the body, top, and bottom are multiple ConFlat flanges. The
flanges are used for the following:
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� an ion gauge head to monitor the pressure inside of the chamber.

� multiple voltage feedthroughs to electrically connect the electron gun and
detector to external power supplies.

� a gas feedthrough to connect the external helium tank to the gas nozzle.

� two high-transmission laser windows for the laser to enter and exit the
system.

� a rotary feedthrough to position the scattered-electron turntable.

A pumping port is used to connect the chamber to the diffusion pump.

Figure 3.3: Schematic of the vacuum system. Modified from [72].

2. A Varian VHS-6 diffusion pump is used to achieve high vacuum in the chamber.
The diffusion pump contains a reservoir of oil at its base which is heated to its
gas phase. The oil vapor rises through a jet assembly where it is directed back
down towards the inner wall of the pump. This directs other gases down the
body of the pump resulting in excess gas at the lower levels of the pump where
it is evacuated by a rotary backing pump. The body of the diffusion pump is
externally wrapped by a water cooling line that condenses the oil on the interior
surface of the pump. The oil returns to the reservoir to be heated again.

On top of the diffusion pump is a cold trap baffle to prevent oil from the diffusion
pump from entering the chamber. The trap is cooled by a Freon refrigerator
to temperatures in the -40’s ◦C. A thermocouple is placed at the cold trap to
monitor its temperature.
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3. A Welch Duo-Seal belt-drive pump is used for two purposes. Its primary duty is
to be the backing pump for the diffusion pump. Its second duty is to evacuate
the vacuum chamber, i.e., pump the vacuum chamber down to 1 mtorr, before
it is connected to the diffusion pump. The exhaust is vented to a fume hood.

Other components include two thermocouple gauges and various valves. The
thermocouple gauges are used to monitor the pressure of the diffusion pump and inlet
line of the belt-drive pump. Thermocouple gauges can measure pressures from 1 mtorr
to standard atmosphere. The valves are used to isolate the various components of
the system, such as when the chamber needs to be opened for maintenance or the
diffusion pump needs to be isolated as the chamber is evacuated. The location of the
valves are shown in figure 3.3.

The pumps and the cold trap are normally kept on continuously. There are several
conditions where the vacuum system will shutdown automatically. They include:

1. interruption of electric power.

2. interruption of water flow in the diffusion pump cooling line.

3. sudden change in the pressure inside the chamber.

4. pressure inside the chamber becomes too high.

5. overheating of the diffusion pump.

The diffusion pump and external power supplies are kept on a protected circuit
that will turn off and remain off until the system undergoes a manual reset if one of
the above conditions are met. The belt-drive pump and cold trap are kept on separate
outlets and will only turn off for loss of electric power. Once power is restored, they
will turn back on.

3.2 Electron Gun

The electron beam for this work was produced by an in-house electron gun based
on the design by Erdman and Zipf[73]. The electrons are produced by thermionic
emission from a cathode filament made from 1% thoriated tungsten wire with a
diameter of 0.114 mm. A series of electrostatic lenses are used to shape the electron
beam produced by the cathode until it goes through a nosecone of a known diameter
directed at the interaction region. A diagram of the electron gun is shown in figure
3.4. A photograph of the electron gun can be seen in figure 3.2.

The cathode is in a circuit with two power supplies: a constant current source
that heats the filament and a constant voltage source to hold the cathode at a known
electric potential. In this work, the cathode was held at the electric potential -350 V.
We consider the interaction region to be at electric ground (0 V) thus the incident
electrons have an energy of 350 eV. The cathode is placed in a copper housing with
a small aperture such that the tip of the cathode and the aperture are aligned. The
electric potential on the housing can determine the intensity of the electron beam. A
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Figure 3.4: Diagram of the electron gun. A is the cathode housing with the cathode
filament, B–E are electrostatic lenses, F is the “deflector plates” assembly, G is the
nosecone.

positive voltage between the cathode and its housing will usually produce a stronger
electron beam. However, a negative voltage may also produce a stronger electron
beam due to focusing effects into the aperture.

Following the cathode housing are two sets of two electrostatic lenses. Each set
includes a thin lens and a thick lens where the length of the thin lens is half of that
of the thick1. The thick lenses are electrically-grounded while the thin lenses have a
non-zero electric potential. Following these is the “deflector plates” assembly. The
housing of the assembly is a thin, cylindrical copper shell capped by copper plates
with a small aperture in the center and is electrically-grounded. Inside the assembly
are four rectangular plates that are top, left, down, and right from the perspective of
the electron. The four plates are electrically connected to each other and to a single
constant voltage supply2. Following the deflector plates assembly is an electrically-
grounded copper nosecone that is tipped with a molybdenum tube with an inner
diameter of 0.75 mm.

The cathode housing, the four electrostatic lenses, and the deflector plates assem-
bly, which includes 1 mm collinating apertures (see figure 3.4), shape the electron
beam as it travels towards the tip of the gun. The molybdenum tube allows the tip
of the electron gun to be placed close to the interaction region without the risk of it
being hit by the laser beam. The electron beam at the interaction region can then be
considered parallel due to the relatively long collimator and due to the short distance
between the tip of the electron gun and the interaction region. This can be seen in
figure 3.4.

1The thin lens in our electron gun has a length of 1/4 in while the thick lens had a length of
1/2 in. Both lenses have an outer and inner diameter of 1 in and 1/2 in, respectively.

2In the past, each plate was connected to a constant voltage supply. The purpose of the deflector
lens was to create a non-cylindrical symmetric electric field to adjust the path of the outgoing electron
beam. Since the four plates are now electrically connected to each other and to a single voltage
supply, it is effectively another electrostatic lens. For historic reasons, we still refer to this as the
deflector lens.

39



3.2.1 Electron Gun Tuning

Excluding the electrically-grounded components of the electron gun, all components
are connected to a power supply which can be adjusted. The cathode current and
its electric potential were not changed in this work. Changing the cathode current
and electric potential changes the energy profile of the electron beam. Due to the
electron gun being used in previous works[32, 33, 34, 14], the tuning of the electron
gun is known3. However, the electron gun must still undergo occasional fine tuning.
We believe the main reason for this is due to oil vapors from the diffusion pump
entering into the chamber despite the cold trap baffle. It settles on non-grounded
electrostatic lenses and breaks down to create a dielectric dark film that may cause
charging effects4. The fine tuning can compensate for the charging effects. Due to the
lack of a functioning Faraday cup, to directly measure the electron beam intensity,
tuning is performed by optimizing the scattered-electron signal.

Due to the elastic scattering peak increasing by orders of magnitude at small
scattering angles[64], it was necessary to reduce the scattering count rate to more
manageable levels. In previous work[14], adjusting the voltage between the cathode
and its housing accomplished this. However, in the present work, we noticed unstable
energy shifts that would take several hours to stabilize. It was decided a better
method was to intentionally detune the second thin lens (from the perspective of the
electrons). There were two concerns reducing the count rate using this method:

1. Charging of electron gun components

2. Divergence of the electron beam

For the first concern, following the second thin lens is a thick, electrically-grounded
lens followed by the first aperture of the deflector plates assembly (which is also
electrically-grounded). There is less of a concern about charging effects if the electrons
are impacting electrically-grounded components. For the second concern, recall that
the apertures of the deflector plates assembly and the nosecone acts as a collimator.
The tip of the nosecone is also placed close to the interaction region. Due to this, the
divergence of the electron beam is not a concern. As long as the electron gun tuning
for measuring free-free electrons and the scattering count rate of the scattering peak
are the same, no corrections are necessary when calculating the relative cross section.

3.3 Gas Jet Nozzle

The target beam is produced by helium gas that continuously flowed through a stain-
less steel nozzle inside the chamber from an external tank. The diameter of the target

3There was an instance where a new tuning of the electron gun was needed due to a power supply
failure and the lack of a suitable replacement at the time. We found no noticeable difference in the
electron beam profile and gave identical results for elastic free-free experiments for a scattering angle
of 45◦, the experiments we used to normalize our results.

4The dark film is visible on figure 3.2 where the second thin lens (from the perspective of the
electrons) is a darker shade than the other electrostatic lens.
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beam is closed to 1 mm due to the inner diameter of the nozzle being 1 mm, and it
is placed right under the interaction region5. The pressure at the interaction region
can be controlled by an external valve between the tank and the nozzle. To keep
the pressure constant between experiments, the background pressure of the chamber
when the helium beam was left on was monitored by an ion gauge.

3.4 Scattered-Electron Detector

The scattered-electron detector, which we also refer to as the electron detector, can
measure the number of electrons scattered at a specific direction and energy. In this
work, the word detector has two different usages. The scattered-electron detector
refers to the system of electrostatic lenses, the hemispherical electrostatic energy
analyzer, and the position-sensitive detector. The last component is the second usage
of detector. A diagram of the scattered-electron detector can be seen in figure 3.5.
Excluding the position-sensitive detector, all components of the scattered-electron
detector are covered in a thin layer of graphite6. A front cover, also covered in a layer
of graphite, is also placed in front of the electron detector. In figure 3.2, one can
see the electron detector with the cover off. The power supplies setting the electric
potential of the electron optics are electrically floated on a ramp, comprised of two
power supplies in series. The purpose of the ramp will be covered in section 3.4.3.

The scattered-electron detector is on a turntable inside of the chamber that can
be rotated externally without the need to open up the vacuum chamber. An external
single-turn rotary (400±3%) kΩ potentiometer is used to determine the scattering
angle inside the chamber. Each scattering angle has a corresponding resistance mea-
surement from the potentiometer. We determine what resistance corresponds to
θscatt = 0◦ by mechanical means when the chamber is open, and later checking for
scattering symmetry in the detector signal about 0◦. Using this latter technique, we
found that the resistance corresponding to 0◦ shifted from the beginning to the end of
our data collection. During the course of the experiment, the resistance was lowered
by 0.08 kΩ, which corresponds to a shift of -0.007◦, a negligible shift.

5When aligned, the gas nozzle is placed as close to the interaction region as possible while still
missing the laser beam.

6The graphite is applied by using Dag from Acheson company, colloidal graphite in a solvent
that evaporates when applied. Historically, applying Dag on the electron gun’s electrostatic lenses
created a “plastic” under electron bombardment that caused instabilities with the electron beam[72].
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Figure 3.5: Wiring diagram of the electron optics of the electron detector. A is
the nosecone; B–D are electrostatic lenses (C contains deflector plates); E are the
entrance and exit plates of the analyzer; F and G are the inner and out hemispherical-
sector electrodes of the analyzer, respectively. PSD is the position-sensitive detector.
Elements B–G are electrically floated on the RAMP.
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3.4.1 Electrostatic Lenses

The first component of the scattered-electron detector is the electrically-grounded
nose cone with an opening diameter of 1.5 mm which corresponds to an angular ac-
ceptance of approximately 2.5◦7 Following the nosecone are three electrostatic lenses.
The second lens contains four rectangular electrostatic deflector plates top, left, down,
and right from the perspective of the incoming electron. The top and bottom plates
are held at the same electric potential as the second electrostatic lens. The left and
right plates are attached to two separate power supplies and are electrically-floated
on top of the power supply connected to the second lens. The purpose of the lenses
is to both slow and shape the incoming electron beam. This is accomplished by the
electric field due to the voltages between the electron optics.

3.4.2 Electrostatic Energy Analyzer

The Comstock Model AC-901 Electrostatic Energy Analyzer, which we will now refer
to as the analyzer, consist of two concentric hemispherical-sector electrodes operated
with a constant voltage difference between them. This results in an electric field that
is directed radially outwards. The analyzer is a velocity selector for charged particles
and only electrons with kinetic energy within a certain range can pass through. All
components (with the exclusion of electric insulators) are covered in graphite.

The negatively charged electrons experience an acceleration radially inwards due
to the electric field. This specific kinetic energy required to traverse the analyzer
is the transmission energy. This energy can be derived using classical mechanics
and electrostatics8. Due to the shape of the analyzer, the electric field between the
two electrodes is spherically symmetric and radially outward. Since fringe effects are
ignored, one can represent the electric field as a field due to some fictitious, positive,
point charge q, where q is placed at the spherical origin of the two spherical electrodes.
We relate q to the voltage between the electrodes. This can be accomplished by finding
using the relationship between voltage and electric field:

∆V = −
∫ r1

r2

E⃗ · dr⃗ = −
∫ r1

r2

(ke
q

r2
r̂) · (dr r̂) = keq

(
r2 − r1
r1r2

)
(3.1)

q =
∆V

ke

(
r1r2
r2 − r1

)
. (3.2)

where ∆V is the voltage between the electrode; r1 and r2 are the radial distance
from the origin to the inner and outer electrode, respectively; and ke is the Coulomb
constant.

7The angular acceptance is determined from the solid angle formed by the area of the detector
entrance aperture and its distance from the interaction region.

8Specifically, one needs to relate centripetal with electrostatic force. One can find this informa-
tion in many textbooks but I will refer to Taylor[50] and Griffiths[60]
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An incoming electron experiences a centripetal force due to the electrostatic at-
traction between it and the point charge. Relating the two, we obtain

Fc = me
v2

r
= ke

eq

r2
(3.3)

where Fc is the centripetal force the electron undergoes,me is the mass of the electron,
v is the speed of the electron, e = |e| is the charge magnitude of an electron, and r
is the distance from the origin to the trajectory of the electron. Using equation 3.2
and 3.3, we can find the transmission energy

TE =
1

2
mev

2 =
r1r2

2r(r2 − r1)
e∆V (3.4)

The dimensions are given in the technical brochure[74]: r=36.5 mm, r1=32.5 mm,
and r2=40.5 mm.

TE[eV ] = 2.25 ∆V (3.5)

The transmission energy also determines the spread of energies of the electrons
passing through the analyzer. We found that the the energy spread is approximately
1 eV. Which is similar to the width of the electron beam and enables that observation
of a complete free-free peak.

3.4.3 Tuning

The tuning of the scattered-electron detector is determined by power supplies electri-
cally connected to the electron optics as shown in figure 3.5. All power supplies are
electrically floated on two power supplies in series (for coarse and fine adjustments)
that we refer to as the ramp. The ramp allows us to adjust the energy of an in-
coming electron to equal the pass-energy, the energy a scattered-electron must have
to enter the analyzer at the transmission energy after passing through the electron
optics. To begin the tuning of both the electron gun and electron detector, we first
obtain an electron beam and have the electron detector able to detect some scat-
tered electrons. This can be done through simulations of the electron optics, such as
with SIMION[75]. However, both are electron gun and detector are “mature” from
previous works. Thus, we have a “coarse tuning” that fulfills our first requirement.

Due to the presence of the collimator in the electron gun and the tip of its nosecone
being very close to the interaction region, the divergence of the electron beam is not a
primary concern. We want to maximize the electron beam current and maximize our
electron detector’s efficiency. Due to the lack of a functional Faraday cup, we use an
alternative method of maximizing the electron beam current. We set the pass-energy
of the detector at a scattering peak (we used the unresolved (1s2s)1S and (1s2p)1P
scattering peak, which we will now refer to as the inelastic peak). We tune both the
electron gun and detector to maximize the intensity of the peak.

We first tune the electron detector by adjusting the electric potentials of the three
electrostatic lenses and the deflector lenses in an iterative process to maximize the
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electron count rate of the inelastic peak. We found that the entrance and exit plate of
the analyzer required no adjustments. We then do the same with the electron gun by
adjusting the electric potential on the two thin lenses and the deflector plates to once
again maximize the intensity of the peak. We avoid adjusting the electric potential
of the cathode housing when possible due to the long period of time needed for the
electron beam to stabilize. We repeat this process until we are confident both the
electron gun and detector are tuned. Due to the charging effects discussed in section
3.2.1, the electron gun requires the occasional fine tuning. This is accomplished by
adjusting the electric potential on the electron optics of only the gun to maximize
the intensity of the scattering peak.

Since the detector is tuned on the inelastic scattering peak, the detector was most
responsive in this region of the electron energy-loss spectrum. Thus, when measuring
for free-free electrons near the elastic-scattering peak, the detector is slightly out-of-
tune. However, since we are looking for relative cross sections, this is not a significant
concern.

3.5 Data Acquisition

This section will discuss the data acquisition of measuring the number of scattered
electrons. The four key components of this system is the position-sensitive detector
(PSD), the Nuclear Instrumentation Modules (NIM), the in-house data acquisition
device (DAQ), and a computer for analysis9.

3.5.1 Position-Sensitive Detector

At the end of the analyzer is the position-sensitive detector (PSD) which allows for
temporal and spatial measurement of the incoming electron. The PSD is comprised
of three microchannel plates (MCPs) followed by the square resistive anode encoder
(RAE). Each MCP is an electron multiplier where an incoming electron causes a
large burst of secondary electrons from one or more microchannels of the MCP. A
high voltage across the MPCs brings the electrons to the next MCP and eventually to
the RAE. When the large burst of electrons is deposited on the RAE, the four corners
of the RAE will measure the relative charge (the portion of the charge measured at
a corner relative to the total charge)[76]. The four signals are sent to the Quantar
Technology 24012 Detector pre-amp that contains four charge and shaping amplifiers
along with one fast shaper amplifier for the sum of the four signals. They are sent
to the Quantar Technology 2401B position analyzer, where the signal is processed
to determine if the signal corresponds to a real electron impact and its position on
the RAE. The count rate of total incoming pulses that is above a certain threshold is
referred to as the RATE while the count rate of fully processed, valid event (what are
considered real electron impacting the RAE) is referred to as the STROBE (STR)[77].
The temporal and spatial data is sent to the data acquisition device. The lack of an
exit aperture on the analyzer results in an energy spread of electrons that impacted

9The specific details on the analysis will be covered in chapter 4
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the RAE. Due to the orientation of the PSD, the y-position of an electron corresponds
to its energy.

Figure 3.6: Schematic of the PSD and NIM with wiring diagram. PSD and NIM
ELECTRONICS are expanded on figure 3.8.

However, the STROBE is not the true count rate of electrons detected due to
dead-time effects. The processing of the signals gives the PSD a dead-time of 4 µs.
The dead-time curve due to the processing of the signal is shown in figure 3.7. There is
an additional dead-time effect if the microchannels in the MCPs do not have sufficient
time to “recharge.” This dead-time is unknown due to its difficulty to quantify (even
by the manufacturers)[78].
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Figure 3.7: PSD electronic dead-time curves. Model used in our work is the 8-bit
digitized output. Figure from [78].

47



3.5.2 Data Acquisition Device

Fully processed data from the position analyzer is sent to our data acquisition device
(DAQ) built in-house by W. L. Fuqua III and T. G. Porter of the UK Physics &
Astronomy electronic shop. The DAQ uses a Parallax Inc. PropellerTM 1 chip that
is comprised of eight independent 32-bit cores processors that is synchronized by a
common system clock. The maximum clock speed is 80 MHz (which results in time
intervals of 12.5 ns). The DAQ is triggered to collect data from the position analyzer
for a pre-determined time duration after a pre-determined time delay appropriate to
the laser Q-switch timing (see section 3.7). The DAQ is controlled by a Microsoft
Visual Basic 6.0 program on a Mirosoft Windows XP computer. The analysis is done
by a Microsoft Excel 2002 Visual Basics program. The analysis will be covered in
chapter 4.

3.5.3 Nuclear Instrumentation Modules

To compensate for the relatively large dead-time of the PSD, a nuclear instrumenta-
tion modules unit (NIM) was used in addition to the PSD. When the electron reaches
the second MCP of the PSD, a signal is also sent to the NIM unit as shown in figure
3.8. The voltage pulse from the second MCP is amplified by an Ortec 9301 Fast Pre-
Amplifier[79] and shaped by an Ortec 579 Fast Filter Amplifier[80] (doing a similar
function to the PSD Preamp). An Ortec 473A Constant Fraction Discriminator[81]
is used to determine if the signal corresponded to a real electron impact event. Ortec
661 RateMeter and Ortec 871 Timer and Counter are used to count the number of
events. These measurements are not recorded by the DAQ and are instead recorded
manually.

The advantage of using the NIM unit over the PSD is in its much faster processing
time that allows us to measure higher count rates with negligible dead-time effects.
From the literature, the NIM unit may have a dead-time as low as 400 ns and up to
approximately 1 µs, significantly less than the PSD deadtime that has a lower limit
of 4 µs. The threshold for significant dead-time effects on the NIM was determined
to be approximately 150 kHz. The reasoning for this is explained in section 4.2.
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Figure 3.8: Schematic of signal processing.
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3.6 Laser

The intense laser field present at the interaction region was supplied by a Continuum
Powerlite 9030 Nd:YAG laser. The laser has a repetition of 30 Hz and produces a
laser beam with a wavelength of 1064 nm (which corresponds to the photon energy
of 1.17 eV). The laser has a nominal energy-per-pulse of 1.6 J and a pulse width of
5-9 ns10. The laser is comprised of an oscillator cavity (labeled in figure 3.9), two
amplifiers, and various passive optical elements to control the direction, shape, and
polarization of the laser beam. The oscillator and amplifiers are comprised of an
Nd:YAG solid-state rod and a xenon flash lamp encased in a water-cooled laser head
with a high brilliance magnesium oxide diffuser [82]. The flash lamps are discharge
lamps used to optically pump the rods to achieve a population inversion, when a
higher energy level is more populated than a lower energy level[53].

Figure 3.9: Diagram of laser bench. Item(s) labeled A are the laser mirrors, B is the
Pockels cell, C are the λ/4 plates, D are the dielectric polarizers, E is the output
coupler, F is the beam expander made from a diverging and converging lens, G is
a λ/2 plate and an apodizer, and H is a diverging lens, rotator, and an apodizer.
Modified diagram from [82].

The oscillator cavity is comprised of a mirror, three λ/4 plates, the oscillator
laser head, two dieletic polarizers, an output coupler, and a Pockels cell. The dieletic
polarizers and output coupler transmit horizontally polarized light but deflects ver-
tically polarized light. The Pockels cell can be considered as an active wave-plate
where it rotates the polarization when on but is transparent to the light when off.
When the Pockels cell is off, light is trapped within the cavity and the laser cannot
lase due to the configuration of the passive optical elements in the cavity. With the

10The pulse width is the full-width half-max (FWHM) of the laser pulse.
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addition of an active Pockels cell, most of the light in the cavity is horizontally po-
larized and is allowed to leave. The laser beam goes through a beam expander and
two amplifiers increasing both its size and energy-per-pulse. The remaining passive
elements are used to shape the beam and control its polarization. The triggering for
the laser heads and Pockels cell is controlled by a Stanford Research System, Inc.
Model DG535 pulse generator with an accuracy of 1.5 ns[83]. The delay generator
will trigger the flash lamps to fire at a rate of 30 Hz. During the flash, the higher
energy levels in the rod will start to populate. After a pre-determined delay, the delay
generator will send another pulse, the Q-switch delay pulse, to activate the Pockels
cell allowing the laser beam to leave the oscillator cavity. The maximum population
inversion is achieved 355 µs after the flash lamps are triggered, i.e., when the power
output is maximized. More information on triggering and timing will be covered in
section 3.7.

After the laser beam leaves the laser, it is directed into the vacuum chamber
through a laser window by a mirror. Once inside the chamber, the beam is focused
slightly beyond the interaction by a +150 mm focal length lens. By using Linagraph
burn paper, we know the diameter of the laser beam at the interaction region. The
direction of the laser polarization relative to the incident electron momentum is -133◦

(see figure 3.1 where clockwise is negative angular displacement). Occasionally, the
mirror in the oscillator cavity requires adjustments. Which was done periodically
during this work.

3.6.1 Flash Lamp Degradation and Measuring Pulse Width

Over time, the flash lamps used to optically pump the Nd:YAG rods will degrade.
The degradation is due to the erosion of the flash lamp’s electrodes causing opaque
deposits to settle on the inner surface of tube. This is more prevalent on the cathode
end as shown in figure 3.10[84]. The degradation of the flash lamps results in two
noticeable effects: reduction of output power and an increase in laser pulse width.
Direct measurements of the output power is not experimentally feasible due to the
lack of a power meter with a sufficiently high damage threshold. Normalization due
to reduction of output power will be addressed in section 4.4. The pulse width can
be found by aiming a photodiode at a laser mirror as the beam is being reflected.
The laser mirror has an average reflectance of 0.995 so what is being measured by
the photodiode is a tiny fraction of the light that has been scattered rather than
reflected. This prevents the saturation of the photodiode allowing us to measure the
FWHM. An upper and lower bound was found by measuring the FWHM with flash
lamps that needed to be replaced and measuring again with new flash lamps. We
concluded that the pulse width of a laser beam is 18 ± 3 ns.

Free-free transitions can only occur if the scattering event occurs in an external
electromagnetic field. In LAFF experiments, the field is supplied by a laser. While
pulsed lasers can give us an intense field at the interaction region, the drawback is
the pulses are very short. For a 30 Hz laser, the data-taking efficiency is (5.4 ±
0.9) ×10-7. It takes approximately 2 million seconds of real-time to obtain 1 second
worth of experimental data.
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Figure 3.10: Degraded flash lamps. The left side is the anode and the right is the
cathode.

To monitor the status of the flash lamps, a thermocouple is attached to the beam
dump to monitor its temperature which is recorded by the data-acquisition software.
New flash lamps raise the temperature of the beam dump to approximately 40◦C
above room temperature. This will progressively drop over time. While this can
give us the qualitative status of the flash lamps, we found that this method is not
precise enough to quantify the reduction in output power of the laser. It also takes
approximately an hour for the beam dump to reach thermal equilibrium. There are
also external factors that affect the temperature of the beam dump such as room
temperature and humidity, which we do not have precise control over.

We also note that as the flash lamps decay, there is an additional delay in the
laser beam leaving the laser. The delay is large enough where it is noticeable in
our timing spectrum (see section 4.1). This requires us to shift the time bins that
we believe contain free-free electrons during the data analysis. This shift can be as
large as 3 to 4 time bins (37.5 to 50 ns). However, this delay occurs slowly over the
course of weeks. We periodically ran a free-free experiment for one photon emission
of elastically scattered electrons at a scattering angle of 45◦ to monitor the shift and
make adjustments in our analysis if necessary. We also noticed that the pulse width
increased as the flash lamps decayed. Since the increase is of order nanoseconds while
a time bin is 12.5 ns, no change was necessary to the data analysis.

3.7 Timing

Precise timing is required in a LAFF experiment for two reasons: The laser requires
precise and stable triggering and data collection must include the time when the laser
beam was present at the interaction region. A Stanford Research System, Inc. Model
DG535 pulse generator was used to both trigger the laser and our DAQ. Table 3.1
shows the timing of major events and a visual representation is shown in figure 3.11.
Since the repetition rate of the laser is 30 Hz, the delay generator is set to 30 Hz.

At the start of each cycle, the delay generator sends a 120 µs long pulse to the
laser and the DAQ. The rising edge triggers the flash lamps to fire which also starts
the population inversion. The population inversion is represented in figure 3.11 by
the green dashed line. The falling edge of the pulse triggers the DAQ which will start
to collect data after a 228 µs delay. The delay generator will send a second pulse to
the laser after a 355 µs delay. This Q-Switch pulse is sent to the Pockels cell in the
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Time (µs) Event

0 Flash lamps fire
120 DAQ Trigger
348 Data Acquisition Begins
355 Q-Switch Triggered
508 Data Acquisition Ends

Table 3.1: The timing of major events during the experiment.

Figure 3.11: Schematic of the timing diagram. The timing corresponds to the times
listed on table 3.1.

oscillator cavity to fire the laser. This occurs when the population inversion is at its
apex, thus maximizing the laser power output. 228 µs after the DAQ was triggered,
it will start to collect 160 µs worth of data. The collection window is large to ensure
free-free electrons are detected but also to gather a large background sample size.

Copyright© Brian N Kim, 2022.
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Chapter 4 Data and Analysis

In this chapter, we present our analysis of our LAFF experiments in helium. As
shown in equation 2.67, the relative cross section was found by taking the ratio of
the free-free to the field-free scattering peak rate1. Figure 4.1 gives a schematic of
the energy profile when the laser is on and off. The region Q and P are located one
photon energy away from the scattering peak (region R). The difference in regions P
and Q is the free-free scattering rate while region R is the field-free scattering peak
count rate.

Figure 4.1: A schematic of the energy profile of scattered electrons with the laser-on
(left) and laser-off (right). P , Q, and R are measured rates in the experiment. Figure
from [32].

Each experiment consisted of a timing spectrum that measured the number of
electrons detected in 12.5 ns time intervals. An example of a typical timing spectrum
is shown in figure 4.2. By performing experiments at various scattering angles, a
free-free angular distribution was made for elastic and inelastic one photon free-free
processes. The method of calculating the relative cross sections and the process of
normalization is described below.

4.1 Free-free Count Rate

In each experiment, we took a timing spectrum where the number of electrons de-
tected were placed into 12.5 ns time bins. By calculating the time it would take for

1Free-free refers to electrons that underwent free-free transitions while field-free refers to the
scattering peak when the laser was not present at the interaction region.
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Figure 4.2: An example of a timing spectrum. This experiment was an 1 photon
emission elastic LAFF experiment that ran for 1 hour. The blue line is the average
background count Nbackground. The left plot shows the full time range of data collec-
tion. On the right plot, the data points in red are the time bins when the laser beam
was present at the interaction region. The lines were included to guide the eye.

the laser beam to be present at the interaction region (and with the benefit of previous
works on this apparatus[32, 33, 35, 14]), we know which time bins contains electrons
that were scattered in the presence of the laser field. By measuring the background
counts and the use of Poisson statistics (see appendix A), we were able to find the
count rate of excess electrons that are free-free electrons. As one can see in figure
4.2, a timing spectrum has hundreds of time bins correspond to scattered electrons
when the laser was not present at the interaction region. We were able to obtain the
average background counts per bin Nbackground and its uncertainty δNbackground

Nbackground =
1

Nbins

Nbins∑
i=1

xi (4.1)

δNBackground =
1

Nbins

√√√√Nbins∑
i=1

xi (4.2)

where Nbins is the number of laser-off time bins and xi is the number of counts in the
ith laser-off time bin.

Knowing the background counts per bin, we are able to find the total free-free
count rate ṄFF . The free-free signal on the timing spectrum spans 5 time bins
(which we will refer to as the laser-on bins), corresponding to 62.5 ns. Despite the
measured pulse width of the laser being (18 ± 3) ns, there is a time spread of electron
trajectories through the analyzer. In principle, we can find ṄFF by taking the sum
of the laser-on bins after subtracting off the background and dividing it by the total
laser-on time T for the experiment.
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ṄFF =
1

T

5∑
i=1

(yi −Nbackground) =
1

T

((
5∑

i=1

yi

)
− (5 Nbackground)

)
(4.3)

where yi is the number of counts in the ith laser-on time bin. By Poisson statistics,
the uncertainty of yi is

√
yi. Nbackground has a negligible uncertainty (because Nbins

in equation 4.2 is very large) compared to the uncertainty of the counts in a laser-on
time bin. Thus, our free-free count rate is

ṄFF ± δṄFF =
1

T

((
5∑

i=1

yi

)
− (5 Nbackground)

)
± 1

T

√√√√( 5∑
i=1

yi

)
. (4.4)
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4.2 Determination of the Elastic and Inelastic Scattering Intensities

To find the relative cross section (see equation 2.67), we require the total elastic
and inelastic scattering rates. As stated in section 3.5.3, due to dead-time effects,
the NIM unit is used to measure the count rate in the scattering peaks rather than
the STROBE of the PSD. However, some scattering peaks are intense enough where
there are still significant dead-time effects. To overcome this, we used a method that
intentionally detuned the first electrostatic lens (which I will now refer to as the first
lens) of the scattered-electron detector. By intentionally detuning the first lens (by
changing its electric potential), we adjust the trajectory of the electrons entering the
detector. Detuning the first lens only reduced the number of electrons that reaches
the analyzer and the electron energy-loss spectrum did not shift in energy. Figure 4.3
shows the elastic peak at various detunings of the first lens.

Figure 4.3: Elastic-scattering peak profile for different detunings of the first lens of
the scattered-electron detector. The black dots are count rates measured on the NIM
unit. The red curve is a Gaussian curve whose profile (spread and peak location)
were determined when the first lens was detuned by 62.5 V. The Gaussian curve
corresponds to an energy full-width, half max (FWHM) of 1.05 eV.

In figure 4.3, when the first lens is not detuned, the shape of the peak is a plateau.
When the count rate is reduced by detuning the first lens by 22.5 V, the plateau is less
apparent. However, when the first lens is detuned by more than 42.4 V, the shape of
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the peak appears to be a Gaussian curve, as expected. By curve-fitting a Gaussian to
the 62.5 V detuned data using least-squares fit in Mathematica[85, 86, 87], the correct
profile of the scattering peak (its peak location and spread) was determined. The
spread of the profile corresponds to an energy full-width at half-maximum (FWHM)
of 1.05 eV. Count rates above 150 kHz produces significant dead-time effects, thus we
fit our 1.05 eV FWHM Gaussian curve to the other detunings in figure 4.3, but only
using data points in the wings below 150 kHz2. The scaling was determined using
Mathematica[85].

Figure 4.3 shows that detuning the first lens does not distort the energy profile
of the elastic-scattering peak. However, fitting a Gaussian curve to the wings of the
plateaued peaks is not accurate enough to obtain the true total elastic-scattering
count rate, and we therefore used the following indirect method.

We used a feature of the energy-loss spectrum where dead-time effects are not
expected when the detector is both tuned and detuned. We used an inelastic scatter-
ing peak (the unresolved 21S and 21P scattering peak) to find the count rate of the
elastic scattering peak. The following was used:

Ṅel(deduced) =
Ṅinel(tuned)

Ṅinel(detuned)
× Ṅel(detuned). (4.5)

To test this method, we carried out experiments for count rates where we can
measure both the tuned and detuned count rates directly.

These measurements comparing the count rate of the inelastic scattering peak
when the detector are tuned and detuned is shown in figure 4.2. The data is also
fitted with a linear model. We found that the tuned/detuned ratio is 40.3 ± 0.8.
Since the change in scale of the spectrum is due to detuning an electron optics lens of
the scattered-electron detector, we expect this ratio to hold for all scattering angles.
We assume the linear relationship holds for detuned count rates above 4 kHz, i.e.,
for tuned count rates above 150 kHz. This is a reasonable assumption provided that
detuning does not cause charging of the electron lenses. We saw no evidence of such
effects. Figure 4.3 also supports this argument.

Then the count rate for scattering peaks greater than 150 kHz can be found with
the following relationship:

(Ṅel ± δṄel)deduced = (40.3± 0.8)× (Ṅel ± δṄel)detuned (4.6)

(Ṅinel ± δṄinel)deduced = (40.3± 0.8)× (Ṅinel ± δṄinel)detuned (4.7)

If the scattering peak count rate was below 150 kHz, then this method is not
used and the rate is instead measured directly. Using the indirect method, we could
measure elastic peak count rates as high as 11 million counts per second (the count
rates in the wings, one photon energy away from the elastic scattering peak were, of
course, much lower).

2Only 8 out of 17 data points in figure 4.3a, and 10 out of 17 in figure 4.3b had count rates
under 150 kHz.
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Figure 4.4: A comparison of the count rate measured when the detector is tuned and
detuned. A linear model was fitted to the data.
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4.3 Relative Cross Section

The free-free rate is given by equation 4.4 and the field-free peak scattering rate
can be measured directly or indirectly using equation 4.6 and 4.7. One can then
find the relative cross section by dividing the two quantities. However, there are
still experimental factors that must be considered. Specifically, the PSD has dead-
time effects even when the detector is off-the-peak and additional free-free electrons
contributed from other parts of the spectrum.

4.3.1 PSD Dead-Time Effects

As stated in section 3.5.1, there is a known dead-time of 4 µs due to the signal
processing of the PSD. However, this is a lower limit since there are unaccounted
sources of dead-time effects, such as the “recharge” time of the MCPs. To characterize
the effective dead-time of the PSD, we compare the STR and NIM count rates in a
region where the NIM is believed to have negligible dead-time effects. We can reduce
the count rate by detuning the first lens of the scattered-electron detector. Our results
are shown in figure 4.5. If the PSD had negligible dead-time effects, we would expect
all measured points to lie on the blue dashed-line. However, we can see dead-time
effects for the STR count rates as low as 35 kHz. A model that relates the actual count
rate Ṅactual to the observed count rate Ṅobserved due to a non-paralyzable, effective
dead-time τ is

Ṅactual =
Ṅobserved

1− τṄobserved

. (4.8)

By performing a least-squares fit on our NIM vs STR count rate data, we found
an effective dead-time of τ = 5.50 µs with an uncertainty of 0.15 µs, a negligible
uncertainty. The red solid-line in figure 4.5 is equation 4.8 for a dead-time of 5.50 µs.

Since every scattering event can be considered random, dead-time effects should
not affect the signal-to-background ratio. We find a correction factor ξ to account
for the electrons not detected due to dead-time effects of the PSD by taking a ratio
of the actual count rate Ṅactual to the STR (observed) count rate ṄSTR

PSD Dead-time Correction Factor = ξ =
Ṅactual

ṄSTR

=
1

1− ((5.50± 0.15)× 10−6 s)ṄSTR

.

(4.9)
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Figure 4.5: The black dots are the measured STR vs. NIM count rates. The blue
dashed-line assumes the STR count rate had no dead-time effects while the red solid-
line assumes a 5.50 µs dead-time.
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4.3.2 Additional Free-Free Transition Corrections

In our elastic scattering experiments, we looked for free-free electrons that absorbed
or emitted a photon when scattered in the presence of the laser field. We did so by
setting the pass-energy of our detector to be one photon energy (1.17 eV) greater or
less than the pass-energy to detect the scattering peak. However, as one can see in
figure 4.3, due to the FWHM of the scattering peak profile being 1.05 eV, we were
looking for free-free electrons while sitting at the wings of the scattering peak. In
figure 4.1, the intensity of the scattering peak decreases in the presence of the laser
field due to free-free transitions. Let us find the free-free rate accounting for the
decrease in the intensity of the wings by following a similar derivation by deHarak et
al.[32].

We use the the same variables used in section 4.1. Let Ṅ
(n)
FF be the free-free rate

for the n photon(s) processes. The ratio of Q and R in figure 4.1 corresponds to the
ratio of the count rate in the wing Ṅwing to the count rate at the apex of the scattering

peak Ṅpeak. The reduction of the laser-on wing count rate is
Ṅwing

Ṅpeak

∑
|n|>0 Ṅ

(n)
FF . Then

we have the following relationship

1

T

5∑
i=1

yi = Ṅ
(1)
FF +

1

T

5∑
j=1

Nbackground −
Ṅwing

Ṅpeak

∑
|n|>0

Ṅ
(n)
FF (4.10)

where T is laser-on time of an experiment. The LHS of equation 4.10 is total scattering
rate detected in the laser-on bins.

Let us assume that only one photon processes are significant. Then we find

Ṅ
(1)
FF =

1

1− 2
Ṅwing

Ṅel

(
1

T

((
5∑

i=1

yi

)
− (5 Nbackground)

))
. (4.11)

When compared to equation 4.4, we see

Background Correction Factor =
1

1− 2
Ṅwing

Ṅel

(4.12)

Then the experimental relative free-free cross section, including PSD dead-time
effects is

dσFF

dΩ

/
dσel
dΩ

= ξ
Ṅ

(1)
FF

(Ṅel − 2Ṅwing)
. (4.13)

In elastic LAFF experiments, we use equation 4.13, however, due to Ṅel ≫ Ṅwing,
the correction is negligible. For inelastic processes, similar considerations apply but
due the complexity of overlapping scattering peaks (the wings are not isolated), equa-
tion 4.13 cannot be applied. However, since the correction is negligible for elastic
processes, we expect the same to hold for inelastic processes.
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4.4 Correcting for Laser Intensity Variations and Other Effects

We noticed time-dependent variations in our experimental results from preliminary
work. These variations occurred slowly enough so their effect on individual exper-
iments is negligible. However, when series of experiments over a long time period
are needed, such as for an angular distribution, these variations are a concern. To
characterize the time-dependent variations, several one photon free-free experiments
of elastically scattered electrons at a scattering angle of 45◦ were performed period-
ically during this work. Between scattering angles 0◦ and 90◦, KWA predicts the
maximum at 45◦ for relative cross sections, which enables good counting statistics to
be achieved in a relatively short time.

As stated in section 3.6.1, one source of time-dependent variations is flash lamp
degradation. As the flash lamps degrade, the laser intensity at the interaction region
is reduced. In this work, flash lamps were changed once. We refer to the first set of
flash lamps as old and the second set as new. Figure 4.6 shows the results of these
experiments and quadratic curves were fitted to the data as a function of experiment
number M, one for the old flash lamps Fold(M), and one for the new flash lamps
Fnew(M). The old flash lamps had been in use for two months prior to the data
collection for this work. These two curves were used to normalize the relative cross
sections of the angular distribution experiments.

It can be seen in figure 4.6 that Fold(M) and Fnew(M) do not exhibit behavior that
one would expect for decaying flash lamps. For the old flash lamps, the relative cross
section increased with time, which would suggest laser intensity increased. When
the flash lamps were replaced, the relative cross sections increased significantly but
continued to increase before it sharply decreased. Several experiments with the old
flash lamps had very small statistical uncertainties but fluctuated with respect to
time despite regular tuning to minimize other factors that could affect the laser
intensities, such as the alignment of the mirror in the oscillator cavity. Thus, these
time-dependent variations are not solely due to flash lamps decay. The origin of the
uncertainty is unknown.

Potential sources for this unknown uncertainty may include the instability of the
climate in our laboratory that could affect the stability of our laser path resulting in a
slight misalignment between the electron-helium interaction region and the laser (the
laser to interaction region distance is about two meters and the interaction region
has a diameter of 0.75 mm). Also, the elastic scattering cross section varies by two
orders of magnitude between the scattering angles 0◦ and 90◦[64]. We therefore had
to retune the electron gun at smaller scattering angles to have reasonable count rates
in the wings of the peak where we run our experiments. The gun was retuned again
when we returned to higher scatterings (such as 45◦). These retunings may have
introduced additional uncertainties.

In order to account for them, we can find an uncertainty based on the scatter of
the data points from their respective curve. This resulted in an uncertainty of ±21%
for the old flash lamps and ±15% for the new flash lamps. We refer to this as the
uncertainty of the apparatus and can be seen in figure 4.6 as the blue dashed-line.
We will at present proceed under the assumption that they are uncorrelated and of
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Figure 4.6: Time-dependent variations of relative cross sections (black dots) for one
photon free-free processes of elastically scattered electrons from helium at a scattering
angle of 45◦. Experiment numberM is a chronological identifier given to experiments.
The red vertical line is when the laser flash lamps were replaced. Experiments left
of the vertical line (old flash lamps) were taken over a four months period while the
ones on the right (new flash lamps) were taken over a two-and-half month period.
The blue curves are quadratic fits, Fold(M) and Fnew(M), to the data for the old
and new flash lamps, respectively. The dashed-lines represent the uncertainty of the
apparatus from unknown sources, found from the scatter of the data.

a statistical nature.
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4.5 Angular Distributions

Here we present the angular distributions (the angular behavior of dσFF

dΩ
/
dσel/inel

dΩ
, see

equation 2.66) for elastic and inelastic electron-helium scattering in an Nd:YAG laser
field. When multiple similar experiments (at a given angle) were combined, the
method of weighted averages was used. Each angular distribution was fitted with
the KWA whose scaling was determined by minimizing the χ2 between it and its
respective experimental data. A χ̃2 test was used to determine goodness-of-fit (see
Appendix A for more information on weighted averages, χ2, and the χ̃2 test). The
scales in the figures are normalized to the KWA elastic cross section at 45◦.

4.5.1 Elastic Free-Free Angular Distribution

The elastic free-free angular distribution is comprised of relative cross sections at
scattering angles 15◦, 25◦, 35◦, 45◦, 57◦, 67.5◦, and 80◦. The one photon emission and
absorption data were essential the same (as expected), and were therefore combined
to improve the statistics. The distribution is shown in figure 4.7. When compared to
KWA, it has a goodness-of-fit of χ̃2 = 2.1. Thus, the experimental data is described
quite well by the KWA.

Scattering Angle Relative Cross Section (arb. units)

15◦ 0.21 ± 0.05
25◦ 0.41 ± 0.10
35◦ 0.84 ± 0.09
45◦ 1.02 ± 0.04
57◦ 0.95 ± 0.15
67.5◦ 0.91 ± 0.11
80◦ 0.33 ± 0.13

Table 4.1: The elastic free-free relative cross sections for various scattering angles.
These values are plotted on figure 4.7. All experiments were normalized to the KWA
that was fitted to the elastic free-free data.
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Figure 4.7: Elastic free-free angular distribution for one photon processes (black
dots) with the Kroll-Watson approximation fitted to the data (blue solid-line) and
then normalized. It has a χ̃2 = 2.1.
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4.5.2 Inelastic Free-Free Angular Distribution

Our inelastic free-free experiments involve electron-impact excitation from the ground
state of helium to the unresolved excited states 21S and 21P in the presence of a laser
field. At high incident electron energies, exchange effects are small and singlet-singlet
scattering processes predominate. Figure 4.8 shows the excited state energies and sep-
aration. The electron energy-loss spectrum with a resolution of 1.05 eV, taken in our
laboratory, is shown in figure 4.9. The most intense peak in our spectrum is com-
prised of the unresolved 21S and 21P excited states of helium. A larger background
for inelastic free-free scattering experiments (see vertical arrows in figure 4.9) is a
consequence of having a broader scattering peak.

Figure 4.8: The three energy states of helium using in this work. Not shown are the
(1s2s)3S and (1s2p)3P states of helium. Due to the dominance of singlet-singlet scat-
tering processes for high incident electron energies, their contributions are negligible
compared to the (1s2s)1S and (1s2p)1P states. Energy levels from [70].

Our experimental inelastic free-free angular distribution is comprised of relative
cross sections at scattering angles 1◦, 2◦, 4◦, 5◦, 10◦, 15◦, 20◦, 25◦, 35◦, 45◦, 57◦,
67.5◦, and 80◦, see figure 4.10. The emission, and absorption, relative free-free cross
sections agree within statistics, and were therefore combined to reduce the uncertain-
ties. (Note that the 15◦ data point only includes emission: the absorption experiment
detected no signal and was clearly an outlier.)

In figure 4.10, the red dashed-line is the inelastic KWA fitted to the experimental
data. This fit has χ̃2 of 1.9 and would seem to indicate that the KWA is a good
description of our data. However, the green chained-line in the figure is a calculation
of the angular distribution expected for inelastic processes relative to the normalized
elastic fit shown in figure 4.7. Thus, the KWA predicts that the inelastic intensi-
ties should be about 80% of the elastic intensities due to the momentum transfer
magnitude and direction for a 21.2 eV energy loss for 350 eV incident electrons. In
fact, the green chained-line has χ̃2 = 2.5 for the experimental data. This χ̃2 value
is similar to the elastic free-free fit in figure 4.7. Clearly, further experiments with
better uncertainties are desirable to resolve this conundrum.
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Figure 4.9: Electron energy-loss spectrum due to the excited states of helium at a
scattering angle of 45◦. The largest peak is what we refer to as the inelastic peak.
It is predominately made up of the (1s2s)1S and (1s2p)1P scattering peaks (in red).
Energy states (vertical lines) are from [70]. The location of the inelastic scattering
peak, one photon absorption, and one photon emission are labeled.
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Scattering Angle Relative Cross Section (arb. units)

1◦ 0.037 ± 0.035
2◦ 0.018 ± 0.006
4◦ 0.094 ± 0.109
5◦ 0.068 ± 0.118
10◦ 0.11 ± 0.11
15◦ 0.77 ± 0.24
20◦ 0.75 ± 0.22
25◦ 0.85 ± 0.28
35◦ 1.2 ± 0.3
45◦ 1.1 ± 0.3
57◦ 1.0 ± 0.2
67.5◦ 0.36 ± 0.15
80◦ 0.29 ± 0.33

Table 4.2: The inelastic free-free relative cross sections for various scattering angles.
These values are plotted on figure 4.10. All experiments were normalized to the curves
that were fitted to the elastic free-free data for a scattering angle of 45◦.
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Figure 4.10: Inelastic LAFF angular distribution for one photon processes (purple
dots). The red dashed-line is the the Kroll-Watson approximation that was fitted to
our data with χ̃2 = 1.9. The green chained-line is the predicted inelastic KWA based
on the elastic free-free data. It has a χ̃2 = 2.5.
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4.5.3 Reanalyzed: Uncertainty of Apparatus

As stated at the end of section 4.4, the uncertainty of the apparatus was assumed to be
uncorrelated and of a statistical nature. However, the origin of the uncertainty in the
laser intensity plot (figure 4.6) is unknown and may not be purely statistical. Thus,
it is not clear if it should be added in quadrature. We have therefore repeated the
analysis assuming it should not be added in quadrature (i.e., the uncertainty should
be added linearly). When this is done, we obtain two new figures for the elastic and
inelastic angular distribution and the χ̃2 for both are dramatically lowered. For the
elastic angular distribution (figure 4.11), a reduced chi-squared of 2.1 is lowered to
1.3. For the inelastic angular distribution (figure 4.12), a reduced chi-squared of 1.9
is lowered to 1.1 when compared to the red curve, and a reduced chi-squared of 2.5 is
lowered to 1.3 when the data is compared to the green curve. This seems to indicate
the data may, in fact, be consistent with the calculated inelastic KWA.

Scattering Angle Relative Cross Section (arb. units)

15◦ 0.21 ± 0.07
25◦ 0.42 ± 0.12
35◦ 0.84 ± 0.12
45◦ 1.02 ± 0.05
57◦ 0.95 ± 0.20
67.5◦ 0.91 ± 0.14
80◦ 0.33 ± 0.19

Table 4.3: The elastic free-free relative cross sections with the uncertainty of the
apparatus being added linearly for various scattering angles. These values are plotted
on figure 4.11. See table 4.1 for details of the normalization.
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Figure 4.11: Elastic free-free angular distribution with the uncertainty of the appa-
ratus being added linearly rather than in quadrature.
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Scattering Angle Relative Cross Section (arb. units)

1◦ 0.038 ± 0.044
2◦ 0.014 ± 0.007
4◦ 0.094 ± 0.120
5◦ 0.068 ± 0.132
10◦ 0.11 ± 0.13
15◦ 0.77 ± 0.34
20◦ 0.76 ± 0.31
25◦ 0.85 ± 0.40
35◦ 1.2 ± 0.4
45◦ 1.1 ± 0.4
57◦ 1.0 ± 0.3
67.5◦ 0.31 ± 0.19
80◦ 0.23 ± 0.37

Table 4.4: The inelastic free-free relative cross sections with the uncertainty of the
apparatus being added linearly for various scattering angles for various scattering
angles. These values are plotted on figure 4.12. All experiments were normalized to
the curves that were fitted to the elastic free-free data for a scattering angle of 45◦.
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Figure 4.12: Inelastic free-free angular distribution with the uncertainty of the appa-
ratus being added linearly rather than in quadrature.
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Chapter 5 Summary and Conclusion

We have performed electron-helium scattering in an Nd:YAG laser field for various
scattering angles between 1◦ to 80◦. The electrons had an incident energy of 350 eV
and the photons had an energy of 1.17 eV. Elastic laser-assisted free-free scattering
is when an electron is elastically scattered by a helium atom in the presence of a
laser field which allows the absorption or emission of one or more photons. In this
work, what we refer to as inelastic laser-assisted free-free scattering is when a helium
atom undergoes electron-impact excitation from its ground state to either its (1s2s)1S
or (1s2p)1P excited energy states in the presence of a laser field. Similar to the
elastic case, the electron will absorb or emit one or more photons of energy. In this
work, we only focused on one photon processes (absorption and emission) of elastic
and inelastic scattering. A theoretical model that is often compared with free-free
experiments is the Kroll-Watson approximation (KWA). This model ignores the laser-
atom interaction and at the soft-photon limit. Other theories, such as the Zon and
our in-house model, included this interaction and predicts light-dressed atom effects
to noticeably deviate from the KWA at small scattering angles for targets with high
dipole polarizabilities.

To our knowledge, this is the first measurements of elastic and inelastic free-free
angular distributions of helium with 350 eV incident electrons in an Nd:YAG laser
field. Due to the unknown origin of the uncertainty of the apparatus, we analyzed our
experimental results with this uncertainty added in quadrature, and also with this
uncertainty being added linearly. The experimental results compared to the KWA for
the former are shown in figures 4.7 and 4.10 and the latter are shown in figures 4.11
and 4.12. In all cases, the experimental data was consistent with the KWA, but the
data was not accurate enough to reveal any possible deviations from the KWA. Thus,
the present experiments cannot test the relationship between elastic and inelastic
scattering of the KWA. Clearly, it would be desirable to repeat the experiments with
a higher level of accuracy.

Our search for dressed-atom effects is inconclusive. Performing small angle scat-
tering experiments is difficult due to the large background counts. At small scattering
angles, the 21P contribution of the inelastic peak is an order of magnitude larger than
the 21S[88], which is where light-dressing effects are expected to occur. As shown in
figure 4.6, there are time-dependent variations and small angle experiments must be
run over the course of days and possibly weeks. This causes some concerns about the
stability of our apparatus during these long experiments.

To continue our investigation into the KWA and light-dressed atom effects, it is
necessary to reduce the uncertainty of each data point. The uncertainty of the ap-
paratus is our largest source of uncertainty. A method to better characterize and
correct for these variations is necessary. We can follow a similar procedure performed
in section 4.4 but the frequency of the normalization experiments should be increased
and the experiment should be run long enough to obtain very small statistical uncer-
tainty. Instead of normalization curves, we can normalize experiments directly to a
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45◦ elastic free-free experiment.
We can also attempt to identify the specific sources of the uncertainty in our

apparatus to minimize or correct them. We mentioned that a potential source of this
unknown uncertainty may be due to the instability of the laboratory climate affecting
the stability of our laser path. We can minimize the instability of our laser path by
using a pair of steering mirrors and a pair of irises to define the laser path into the
vacuum chamber. We can periodically check the laser path to see any shifts that
may have occurred. The steering mirrors would allow us to correct the laser beam
path if any deviations are observed. Additionally, the temperature and humidity
of the laboratory should be monitored and note any correlation between the laser
path deviation and temperature and humidity. It would be advantageous to monitor
the degradation of the flash lamps independent of running experiments. A possible
method could use a beamsplitter cube to “pick off” a tiny portion of the laser beam
and into a photodiode to monitor the output power of the laser. In combination with
monitoring the climate of the laboratory, we may find a correlation between the laser
output with the temperature and humidity of the laboratory.

The effects of time-dependent variations can also be limited by reducing the time
necessary to perform the experiments by reducing the background counts and by
increasing our data-taking efficiency. A monochromated electron gun to resolve the
21S and 21P and a multipass laser system which traps the laser beam in a repetitive
loop to increase the signal are currently being installed on our apparatus to accomplish
this.

Copyright© Brian N Kim, 2022.
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Appendices

Appendix A: Statistics

Here we will briefly discuss the relevant statistics definitions and relationships from
Taylor[89].

Poisson Statistics

The Poisson distribution is used to describe counting experiments where the events
occur randomly but at a definite average rate. This distribution is therefore suited
for our experiments where we measure the rate of electrons detected. Any individ-
ual scattering event is random but there is a definite average scattering rate. The
probability of observing ν events in some time interval T is

Probability(ν counts in time interval T ) = Pµ(ν) = e−µµ
ν

ν!
(1)

where µ is the expected average number of events in time T . The standard deviation
of observing ν events is

σν =
√
µ. (2)

The standard deviation of the observed number of events in the Poisson distribution
is the square root of the observed number of events.

Weighted Averages

In this work, there are times when we measure the same physical quantity, but with
varying uncertainties. To simply take the average gives equal importance to each mea-
surement despite the size of their uncertainties. To combine multiple measurements
together, we use weighted averages.

The ith data point with an uncertainty σi is given a weight wi that is defined as

wi =
1

σ2
i

. (3)

The weighted average is

x̄weighted =

∑
wixi∑
wi

(4)

with the weighted uncertainty

σweighted =
1√∑
wi

. (5)
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The χ̃2 Test

Since we cannot measure the cross sections directly, we test the Kroll-Watson approx-
imation (KWA) by fitting the model to our experimental data. We first define the χ2

between the ith observe value Oi with uncertainty σi to its corresponding expected
value Ei. Then

χ2 =
n∑
i

(
Oi − Ei

σi

)2

(6)

where n is the number of data points.
To determine the scaling factor of the KWA, we minimize the χ2 between the

model and our data.
To determine the goodness-of-fit of our experimental data to KWA, we use the

reduced χ2 (χ̃2) defined as

χ̃2 =
χ2

d
(7)

where d is the degrees of freedom. It is the number of data points n minus constraints.
In our fit, only the scale factor of the model was determined by our experimental data.
Thus, the degrees of freedom is d = n − 1. A “great fit” between data and a model
is χ̃2 ≈ 1 and a “good fit” is χ̃2 ≈ 21. Anything larger would suggest a not so good
fit between data and the model.

1What is considered a “good fit” can be somewhat subjective.’
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