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ABSTRACT OF THESIS 

 

 

Radiative Conductivity Estimation Using Direct Approach For Fibrous 

Materials  
 

During planetary entry, space vehicles encounter high loads of thermal energy 

which requires a thermal protection system. Ablative thermal protection systems 

are usually made out of fibrous materials that exhibit internal radiation. In order to 

model the internal radiation response of a thermal protection system one should 

obtain proper radiative properties as well as thermal properties. The objective of 

this work is to provide a method that solves for the solid/gas thermal conductivity. 

Which can be used in coupled detailed radiative analysis.  

Keywords: radiative conductivity, fibrous materials, radiative transfer, thermal 

protection system, P1 approximation, Finite Volume method.  
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Chapter 1  

1.1 Introduction  
 

     Space vehicles approaching a planetary body travel at extremely high velocities, 

which creates a challenge for the entering phase of the mission. Some of the challenges 

constraining the design of such vehicles include deceleration, heating, and accuracy of 

landing.  

     Heating is one of the main challenges that a space vehicle encounter during planetary 

entry. According to NASA [3] a shuttle with an approximate mass of 100,000 kg moves at 

an estimated speed of 7900 m/s. The kinetic energy of the shuttle is therefore in the 

vicinity of 312 MJ, equivalent to the electric energy consumption of nearly 300 thousand 

households in one day. For the space shuttle to come to a complete halt, its kinetic 

energy must become zero. Since energy is conserved a large portion of it is transferred 

into thermal energy.  

     Even though most of the energy is converted away some of it reaches the structure of 

the vehicle, therefore a thermal protection system is needed.  

     There are multiple types of thermal protection systems such as passive, active, and 

semi-passive thermal protection systems. 
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Figure 1.1: Artistic visualization of Orion spacecraft re-entry from Ref. [60] 

     Passive thermal protection systems are ones that do not involve any moving 

components, and whose temperature is controlled using their own material properties. 

Passive thermal protection systems include heat sinks made of metal structures with a 

high heat capacitance [4, 5], hot structures reradiating heat once the surface 

temperature exceeds a certain value [4, 6], and insulated structures made of an outer 

layer reradiating most of the incident energy, as well as a lower insulating material 

slowing down heat transfer towards the surface [7].  

     Active thermal protection systems implies a working mechanisms that mitigate heat. 

For instance, convective cooling can be used by pumping a coolant fluid underneath the 

thermal protection surface [8]. Film cooling can also be used for hypersonic vehicles, by 

injecting the coolant at specific locations across the vehicle’s surface [9-13]. Finally, 
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transpiration cooling can be used for extremely high temperatures, by passing a coolant 

through the porous structure to cool it down.  

     Semi-passive protection methods include heat pipes, to manage heat through phase 

change processes, in addition to ablative thermal protection systems [4]. The latter will 

be discussed in the following paragraphs.  

     Ablative thermal protection systems are a non-reusable type of thermal protection 

systems. During reentry, the system sacrifices its material through phase change, 

oxidation, spallation, and erosion processes. By sacrificing its material, the system 

prevents energy from reaching the surface since it is ejected along with the removed 

mass.  

     Ablative materials can be generally subdivided into two main categories: charring and 

non-charring ablators. Charring ablators, also known as decomposing ablators, undergo 

surface reactions, as well as in depth decomposition. Non-charring ablators do not 

decompose internally, and only change phase at the exposed surface. Carbon-carbon, 

silica, and Teflon are all examples of non-charring ablators [4].  

     The decomposing ablator consists of a phenolic resin, combined with a binder 

material such as carbon or silica. When the ablator’s internal temperature reaches a 

certain value, the resin pyrolyze and creates a porous charred layer [14].  
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1.2 Motivation  
 

     Hypersonic entry is associated with elevated temperatures, creating a chemically 

reacting flow, which can be composed of molecules, atoms, free electrons, and ions. 

Each one of the previously mentioned components could contribute to the absorption 

and emission of an electromagnetic wave, causing variation within the incident heat 

flux.  

     For velocities higher than 10 km/s, radiation becomes important and can be larger 

than convective heating, especially in the wake region of the capsule [16]. This was 

previously neglected, as Fire II and Apollo measured negligible values [17]. When 

radiation was considered, one of the following assumptions was made: a Boltzmann 

distribution of electronic state [18-20], or negligence of vacuum ultraviolet radiation 

[21]. In contradiction with the latter assumption, [16] showed that the contribution of 

vacuum ultraviolet radiation could be seven times the non-vacuum ultraviolet radiation.  

     Hassan et al [22] showed that the tangent slab method, a commonly used method for 

solving the radiative transfer equation, does not always predict the accurate radiation 

results. This was particularly true in the flow field’s wake region. They also showed that 

better results can be obtained at the same flow region, by using a method based on the 

spherical harmonics method. This will be further discussed in upcoming sections of this 

paper.  

     It is clear from the previously mentioned, that for radiation to be examined, multiple 

factors should be accounted for. On one hand, the variation of radiation intensity, as 
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well as changing radiative transfer properties with wavelength, should be considered. 

On the other hand, an adequate method should be used to accurately predict the 

radiative heat flux. Predicting accurate heat flux levels experienced by a vehicles shield, 

will enable optimizing the vehicle’s size, preventing oversizing. This is return will 

eventually increase the payload capabilities of the vehicle.  

1.3 Background  

 

     Heat transfer is the transfer of energy due to the presence of temperature gradients 

which happens either by conduction or radiation. In solids, conduction occurs through 

atomic lattice vibrational waves. In gases and liquids however, conduction occurs due to 

intermolecular collisions. Molecules at higher temperatures possess a higher energy 

content. When these molecules collide with lower energy molecules, energy is 

transferred. Conduction is predominant in solids and in stationary fluids not exhibiting 

any bulk fluid movement. Conduction transfers energy within the medium in a diffusive 

manner.  

     The transfer of energy via electromagnetic waves is known as radiation. Unlike 

conduction, radiation does not require a medium to transfer energy, as it can travel 

through vacuum. In addition, radiation does not require a continuous temperature 

gradient between the source and the recipient. A source at a hot temperature can 

transfer radiation to a recipient, without heating the medium in-between. For example, 

solar radiation is transferred from the hot sun to Earth through the cold space.  
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     All materials at a temperature above absolute zero emit and absorb radiation by 

adjusting their molecular energy content. The strength and wavelength of emission 

depends mainly on the temperature of the source. Temperature affects radiation to a 

great extent, as radiation is proportional to fourth power of temperature gradient unlike 

conduction which is linearly proportional to the temperature gradient. Radiation’s 

dependance on temperature gives it dominance over other modes of heat transfer, 

particularly in applications involving very elevated temperatures.   

     Radiation is not only fundamentally different in the way heat is transferred, but also 

in the way it is analyzed. Conduction occur between molecules close to each other. The 

short distance between molecules enables an energy balance on an infinitesimal 

volume, where the volume is small enough compared to the medium, but large enough 

when compared to the mean free path. The same approach cannot be used with 

radiation, as the mean free path of photons can either be very small, such as in metal 

absorption, or very large as is the case with solar radiation. Hence, energy conservation 

cannot be computed within an infinitesimal volume, but rather needs to be applied over 

the entire volume.  

     Applying energy conservation over the entire volume leads to an integral equation 

with six different variables: three variables in the spatial directions, two variables in the 

angular directions, and the wavelength as the sixth variable. Solving such an equation is 

not a simple task, and may not be possible in some cases, unless further simplifications 

are assumed. Moreover, obtaining radiation dependent properties is a major problem 

complicating matters even further.   
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     Before proceeding with the radiative heat transfer equation, an overview of the 

nature of radiation, as well as some useful definitions will be provided in the following 

section.  

1.3.1 Nature of radiation  
 

     Thermal radiation can either be considered as an emission of electromagnetic waves, 

or as an emission of photons. Waves propagate at the speed of light, but the speed of 

light depends on the medium in which it propagates through. The speed of light in any 

medium can be calculated relative to the speed of light in vacuum as follows:  

𝐶 =  
𝐶𝑜

𝑛 
                 (1.1) 

where  𝐶𝑜 = 2.998 × 108 m/s and 𝑛 is the refractive index of the medium. 

     Electromagnetic waves contain different amounts of energy depending on their 

wavelength. Energy and frequency are related through the following equation, where 

the Planck constant, ℎ =  6.625 × 10−34 j/s and 𝜈 is the frequency of the wave:  

𝜖 = ℎ 𝜈               (1.2) 

     Because different waves carry different amounts of energy, waves behave differently.  

Figure 1.2 represents the electromagnetic spectrum, which shows the different 

categories of electromagnetic waves.  
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Figure 1.2: radiation spectrum from Ref. [47]  

     The portion of the electromagnetic spectrum that is of interest for thermal radiation 

falls between wavelengths of 0.1 and 100 micrometers. This part of the spectrum 

contains parts of the ultraviolet, visible, and infrared radiations.  

1.3.2 Solid angle  
 

     The solid angle is an important parameter in radiative heat transfer, used to define 

other parameters such as radiative heat flux, and radiative intensity. Since both latter 

parameters will be used in subsequent sections of this paper, the solid angle must be 

defined. 

     Despite the sun being significantly larger than the human hand, a hand can be used 

as a shield from the sun. This is possible because the sun is substantially further away 

from the hand, and hence the sun subtends a smaller angle. This is a simplified example 

of what a solid angle is.  
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      The solid angle in Fig. 1.3 is defined as the projection of surface 𝑑𝐴𝑗, as observed 

from point 𝑃, onto a plane normal to the direction between point 𝑃 and the surface, 

divided by the square of the distance [15]. 

     The total solid angle is defined as the total hemispherical area above point 𝑃, as 

shown in Fig. 1.3. The total solid angle can be expressed in terms of the polar angle 𝜃, 

where 0 < 𝜃 <  𝜋/2, and the azimuthal angle 𝜓, where 0 < 𝜓 <  2𝜋  

 

Figure 1.3: solid angle  

If the hemisphere is a unit hemisphere, the solid angle is equal to: 

𝑑Ω =
𝑑𝐴𝑗𝑝

𝑆2
 =

𝑐𝑜𝑠𝜃𝑗  𝑑𝐴𝑗

𝑆2
= 𝑑𝐴𝑗

′′              (1.3) 

Thus, the infinitesimal solid angle can be expressed as  

𝑑Ω = 𝑑𝐴𝑗
′′ = 𝑠𝑖𝑛𝜃 𝑑𝜓 𝑑𝜃                         (1.4) 
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Integrating Eq. 1.4 over all directions, results in the following relation: 

∫ ∫ 𝑠𝑖𝑛𝜃 𝑑𝜓 𝑑𝜃 = 2𝜋
𝜋/2

𝜃=0

 
2𝜋 

𝜓=0

                   (1.5) 

1.3.3 Intensity ,Emission, Incident radiation  
 

     All matter at a temperature above absolute zero, emit radiation in all directions. With 

the directional dependence of radiation, there is a need to describe the radiative heat 

flux as a function of direction. Radiative intensity is defined as the energy flow per unit 

area normal to the direction of propagation, per solid angle. 

𝐼 (𝜃, 𝜓) =
𝑑𝑄

𝑑𝐴 𝑐𝑜𝑠𝜃 𝑑Ω
=

𝑑𝑄

𝑑𝐴 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓
                 (1.6) 

     Unlike intensity, emitted radiation is only a function of the area. Emitted radiation 

can be defined as the rate at which energy is emitted per unit area, and it is related to 

the intensity as follows: 

𝑑𝐸 =
𝑑𝑄

𝑑𝐴
= 𝐼(𝜃, 𝜓) × 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓                                  (1.7)  

Integrating the previous equation over the entire hemisphere yields the following:  

𝐸 = ∫ 𝑑𝐸 =  ∫ ∫ 𝐼(𝜃, 𝜓) cos 𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓     

𝜋
2

𝜃= 0

2𝜋

𝜓=0 

          (1.8) 

     Some surfaces can be approximated as diffusive surfaces, where the intensity 

𝐼(𝜃, 𝜓) is a constant, and the previous equation can be reduced into: 

𝐸 = 𝜋 𝐼(𝑟, �̂�)                     (1.9) 
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    Since blackbodies are diffusive emitters; the black body emission, 𝐸𝑏 = 𝜎𝑇4, can be 

expressed in terms of intensity: 

𝐸𝑏 = 𝜋 𝐼𝑏                (1.10) 

And the blackbody intensity as a function of the absolute temperature becomes:  

𝐼𝑏 =
𝜎𝑇4

𝜋
                      (1.11)  

     Incident radiation is another term used in radiative heat transfer. Incident radiation 

can be defined as the rate of radiation energy incident on a surface, per unit area, per 

solid angle. Incident radiation flux on a surface from all solid angle directions is known 

as irradiation, and can be described as: 

𝐺 = ∫ 𝑑𝐺 =  ∫ ∫ 𝐼𝑖(𝜃, 𝜓) 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃

𝜋
2

𝜃=0

 2𝜋

𝜓 = 0

 𝑑𝜓                (1.12) 

where G has SI units of w/m2 

    In most applications, the total quantities discussed earlier are sufficient. However, for 

this work, there is a need to consider the spectral quantities, which depend on the 

wavelength as well as the direction.  

    Spectral intensity is the emitted radiation, per unit area, per unit solid angle, at a 

specific wavelength. Spectral intensity can be expressed as: 

𝐼 (𝜆, 𝜃, 𝜓) =
𝑑𝑄

𝑑𝐴 𝑐𝑜𝑠𝜃 𝑑Ω dλ
                    (1.13) 

The spectral emissive power can be expressed as: 
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𝐸𝜆 =  ∫ ∫ 𝐼(𝜆, 𝜃, 𝜓) 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜓
𝜋/2

𝜃=0

2𝜋

𝜓=0

                       (1.14) 

     It is possible to relate the total and spectral quantities through an integration over 

the entire wavelength spectrum. For example, total and spectral intensities are related 

through the following equation:  

𝐼(𝑟, �̂�) = ∫ 𝐼 (𝜆, 𝑟, �̂�) 𝑑𝜆
∞

0

                                (1.15) 

     Max Planck provided the spectral intensity of emitted radiation by a blackbody as a 

function of absolute temperature and wavelength:  

𝐼𝑏𝜆(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5 (exp [
ℎ𝑐

𝜆 𝜎 𝑇
] − 1) 

                             (1.16) 

where h is the Planck constant which is equal to 6.6256 × 10−34J.s, 𝜎 is the Boltzmann 

constant equal which is equal to 1.38065 × 10−23J/K, and c is the speed of light which 

is equal to 2.9979 × 108m/s. 

1.3.4 Radiative heat flux  
 

     Heat flux is usually defined as the amount of energy passing through a surface. For 

radiative heat transfer, the radiative heat flux can be related to the intensity as follows: 

𝑑𝑄 = 𝐼𝜆 𝑑Ω 𝑑𝐴 = 𝐼𝜆 𝑑Ω 𝑑𝐴 𝑐𝑜𝑠𝜃                        (1.17) 

 the angle 𝜃 in Eq. 1.17 represents the angle between the direction of propagation, and 

the direction normal to the surface. The previous equation can be presented after 

integrating over the solid angles as: 
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𝑞𝜆 =  ∫ 𝐼𝜆 (�̂�) �̂�. �̂�  𝑑Ω                                          (1.18)
4𝜋

 

     And the total radiative heat flux can be obtained by integrating over the wavelength 

spectrum: 

𝑞 . 𝑛 =  ∫ ∫ 𝐼𝜆(�̂�) �̂� . �̂�  𝑑Ω 𝑑𝜆                       (1.19)
4𝜋

∞

0

 

1.3.5 Radiative properties  
 

     Depending on the wavelength of radiation, materials exhibit different behaviors. For 

example, visible radiation can penetrate through water, while infrared radiation cannot, 

making water a transparent medium in visible radiation, and an opaque medium in 

infrared radiation. This wavelength dependence is extremely important especially in this 

study.   

1.3.5.1 Emissivity  
 

     Emissivity is a property that compares the emitted radiation from a surface to the 

blackbody emission at the same temperature. The value if emissivity, 𝜖, varies between 

zero and one, where a value of one represents the blackbody emission.  

The value of emissivity depends on the direction, wavelength, and temperature. The 

dependence of emissivity on such variables could vary its value within a surface. This 

variance must be considered if spectral radiation is of interest.  
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Spectral emissivity can be defined as the ratio of emitted radiation in a specified 

direction and wavelength, to the blackbody emission at the same temperature and 

wavelength:  

𝜖𝜆(𝜆, 𝜃, 𝜓. 𝑇) =
𝐼𝜆(𝜆 , 𝜃 , 𝜓 , 𝑇) 

𝐼𝑏𝜆 (𝜆, 𝑇)
                              (1.20) 

     The total emissivity is defined as the emitted radiation in a specified direction, to the 

total blackbody emissive radiation: 

𝜖 (𝜃 , 𝜓 , 𝑇) =
𝐼(𝜃 , 𝜓 , 𝑇) 

𝐼𝑏(𝑇)
                                           (1.21) 

     Sometimes it is more convenient to use properties averaged over all directions 

(hemispherical properties). Knowing that the integration of emitted intensity over all 

directions is defined as the emissive power, the hemispherical emissivity is defined as:  

𝜖 =
𝐸(𝜆, 𝑇)

𝐸𝑏(𝜆, 𝑇) 
                                                 (1.22) 

     With all the complexities associated with radiation, sometimes it is useful to use 

certain approximations to simplify calculations. For instance, gray and diffuse 

approximations can be used. A gray surface is one with properties that are wavelength 

independent. A diffuse surface is one with directional independent properties. For 

instance, the emissivity of a gray diffuse surface is equivalent to the total hemispherical 

emissivity.  
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1.3.5.2 Absorptivity, reflectivity, Transmissivity    

     When there is an interaction between radiation and a material, part of the radiation 

gets reflected, another part gets absorbed within the medium, and the remaining part is 

transmitted. Absorptivity is defined as the fraction of absorbed radiation to the total 

incident radiation, and can be expressed as: 

𝛼 =
𝐺𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝐺
                                       (1.23) 

where the value of absorptivity 𝛼 is between zero and one. An absorptivity of one 

indicates that the entire incident radiation is absorbed.  

     Reflectivity is another fraction relating the reflected wave potion to the incident total 

radiation, and can be expressed as: 

𝜌 =
𝐺𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

𝐺
                                          (1.24) 

     The value of reflectivity, 𝜌, is between zero and one; where one indicates that the 

entire incident radiation is reflected  

Lastly, transmissivity relates the transmitted radiation to the total incident radiation, 

and can be expressed as: 

𝜏 =
𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝐺
                                      (1.25)  

     Like reflectivity and absorptivity, the value of transmissivity, 𝜏, falls between zero and 

one. A value of one indicates that the entire incident radiation was transmitted and 

passed through the surface.  
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Figure 1.4 incident radiation  

     The sum of the three portions; absorbed, reflected, and transmitted radiations, must 

be equal to the total incident radiation. 

𝐺𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 + 𝐺𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 + 𝐺𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 = 𝐺                                       (1.26) 

     The following can be obtained by dividing Eq. 1.26 by the incident radiation, 𝐺:  

𝛼 + 𝜌 + 𝜏 = 1                                                     (1.27) 

    The previously discussed properties are the total hemispherical properties, which 

means that, they are directional and wavelength independent.       

     Spectral directional absorptivity is defined as the fraction of absorbed directional 

intensity at a specific wavelength, to the total incident directional intensity at a specific 

wavelength. Spectral directional absorptivity can be expressed as: 

𝛼𝜆,𝜃 (𝜆, 𝜃, 𝜓) =
𝐼𝜆,𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 (𝜆, 𝜃, 𝜓)

𝐼𝜆(𝜆. 𝜃, 𝜓)
                                         (1.28) 

Transmitted  

Reflected  

Absorbed 

Incident  
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      Spectral directional reflectivity is defined in a similar manner; it is considered as the 

fraction of reflected directional intensity, to the total incident directional intensity, and 

is expressed as: 

𝜌𝜆,𝜃 (𝜆, 𝜃, 𝜓) =
𝐼𝜆,𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 (𝜆, 𝜃, 𝜓)

𝐼𝜆(𝜆. 𝜃, 𝜓)
                                          (1.29) 

     Unlike other properties, reflectivity depends on both the incident radiation as well as 

the reflected radiation. As shown in Fig. 1.5 (A), the reflected rays from a real surface 

form an irregular shape, which complicates the analysis. To overcome this issue, two 

assumptions are usually made. Firstly, the surface is assumed to be diffuse, as shown in 

Fig. 1.5 (B), which means that the reflected radiation is assumed equal in all directions. 

Secondly, the surface is assumed specular, as shown in Fig. 1.5 (C), and hence the angle 

of incidence is assumed equivalent to the angle of reflection.  

 

Figure 1.5 reflected rays (A) Real, (B) diffuse, and (C) specular surface 

Reflected Rays  

Incident ray 

(A) 

Incident ray  

Reflected Rays 

(B) 

𝜃 

𝜃 

Reflected Ray 

Incident Ray  

(C) 
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Chapter 2  

2.1 Modeling radiation transport  

     As discussed previously, radiative heat transfer differs from the other heat transfer 

mechanisms in the way it is modeled. The behavior of radiative heat transfer within an 

absorbing, emitting, and scattering medium is governed by the radiative transfer 

equation. The radiative transfer equation describes the radiative intensity field as a 

function of location, spectral properties, and direction. 

     To obtain the radiative heat flux, all contributions from all directions and wavelengths 

should be accounted for. Integrating the equation over all directions and wavelengths 

leads to the conservation of radiative energy over an infinitesimal volume. Once 

combined with conduction, the overall conservation of energy is obtained.  

     The radiative transfer equation describes the change occurring for a radiative 

intensity beam when a participating medium is penetrated. Those changes could be 

categorized into two categories: attenuation and augmentation. 

2.1.1 Attenuation  

     Attenuation describes the decrease in radiative intensity as radiation moves through 

a medium. This occurs due absorption within the medium, as well as out-scattering, as 

shown schematically in Fig. 2.1.      
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Figure 2.1 attenuation due to scattering  

2.1.1.1 Attenuation due to absorption  

     As the intensity ray travels through a participating medium, part of it gets absorbed 

and transformed into internal energy. Absorption is proportional to the magnitude of 

incident energy, as well as distance traveled by an intensity beam through a medium. 

This is described mathematically as follows:  

𝑑𝐼 =  −𝜅𝜂𝐼𝜂𝑑𝑠                            (2.1) 

where 𝜅𝜂 is the absorption coefficient, and 𝑑𝑠 is the distance traveled by the intensity 

beam within the medium. Integrating Eq. 2.1 over distance yields: 

𝐼𝜂(𝑆) = 𝐼𝜂(0)  𝑒−𝜏                             (2.2) 

where 𝐼𝜂(0) is the intensity entering the medium, 𝐼𝜂(𝑆) is the intensity leaving the 

medium, and 𝜏 is the absorption optical thickness expressed as: 

𝜏 = ∫ 𝜅𝜂 𝑑𝑠 
𝑠

0

                             (2.3) 

 2.1.1.2 Attenuation by scattering 

     Attenuation by scattering describes the portion removed from the intensity beam 

due to out-scattering. Out-scattering is considered to redirect energy from one direction 

dA 

Scattered photons  
Incident photons  

Transmitted Photons  
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to another, making it appear as augmentation. The attenuation due to out-scattering 

can be expressed as: 

𝑑𝐼𝜂 =  −𝜎𝜂  𝐼𝜂 𝑑𝑠                             (2.4) 

where 𝜎𝜂is the scattering coefficient, and is a property of the medium. It is also possible 

to define an optical thickness based on scattering, by integrating the previous equation, 

similar to before:  

𝐼𝜂(𝑆) = 𝐼𝜂(0)  𝑒−𝜏                        (2.5) 

𝜏 = ∫ 𝜎𝜂 𝑑𝑠 
𝑠

0

                                 (2.6) 

2.1.1.3 Total attenuation 

     As discussed previously, attenuation is due to both out-scattering, as well as 

absorption. It is more convenient to deal with properties that account for both. The 

total attenuation that occurs for radiative intensity is called extinction. The extinction 

coefficient is defined as: 

𝛽𝜂 = 𝜅𝜂 + 𝜎𝜂                            (2.7) 

and the optical thickness based on the extinction coefficient is defined as: 

𝜏  =    ∫ 𝛽 𝑑𝑠 
𝑠

0

                          (2.8) 

2.1.2 Augmentation  

     Augmentation accounts for energy added to the intensity pencil ray as it travels 

through a medium. Augmentation occurs mainly because of emission, as well as in-
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scattering, which accounts for the scattered radiation from directions other than that of 

traveling.  

2.1.2.1 Emission 

     Emission accounts for the energy gain from a small element and is proportional to 

the element’s volume. Recalling the definition of emitted intensity as the emitted 

energy per unit area; one can conclude that the emission is proportional to the distance 

traveled by intensity within the medium. The energy gain due to emission can be 

expressed as follows:  

𝑑𝐼𝜂 = 𝜅𝜂 𝐼𝜂 𝑑𝑠                                 (2.9) 

where 𝜅𝜂 is the emission constant. The emission constant is equivalent to the 

absorption coefficient. If the emission and absorption equations are taken into account, 

the transfer equation describing the change in intensity within an absorbing-emitting, 

but non scattering medium, can be obtained as follows:  

𝑑𝐼𝜂

𝑑𝑠
= 𝜅𝜂 (𝐼𝑏𝜂 − 𝐼𝜂)                           (2.10) 

the first term on the right side of Eq.2.10 accounts for augmentation due to emission, 

and the second term accounts for the attenuation due to absorption.  
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2.1.2.2 Augmentation due to scattering  

     Augmentation due to scattering is the addition of energy to an intensity ray traveling 

in one direction, from the other directions.  

 

Figure 2.2 scattered intensity from direction �̂�𝑖 𝑖𝑛𝑡𝑜 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 �̂� 

     Recalling the definition of intensity as the radiative flux per unit area normal to the 

ray, per unit wavelength, and per unit solid angle. It is possible to calculate the radiative 

heat flux striking a volume element, as shown in Fig. 2.2, from direction 𝑠�̂�, using the 

following formula: 

𝐼𝜂(𝑠�̂�) 𝑑𝐴 𝑠�̂�. 𝑠  𝑑Ω 𝑑𝜂                       (2.11) 

     The distance the flux travels within the control volume 𝑑𝑉 is  
𝑑𝑠

𝑠�̂�.�̂� 
, and the total 

energy scattered from direction 𝑠�̂� is: 

𝜎𝜂 (𝐼𝜂(𝑠�̂�) 𝑑𝐴 𝑠�̂�. 𝑠  𝑑Ω 𝑑𝜂) (
𝑑𝑠

𝑠�̂�. �̂� 
) = 𝜎𝜂 𝐼𝜂(𝑠�̂�) 𝑑𝐴 𝑑Ω 𝑑𝜂 𝑑𝑠                      (2.12)   

𝑑𝐴 

𝑑Ω 

𝑑Ωi 

�̂� 

�̂�𝑖 
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     Only a fraction of that scattered energy will be added to direction �̂�, this fraction can 

be described using the scattering phase function Φ𝜂, known as the probability that the 

intensity from direction 𝑠�̂� will be scattered into direction �̂�  

𝜎𝜂  𝐼𝜂(𝑠�̂�) 𝑑𝐴 𝑑Ωi 𝑑𝜂 𝑑𝑠 
Φ𝜂(𝑠�̂� . �̂�)

4𝜋
 𝑑Ω                              (2.13) 

the fraction Φη (𝑠�̂� . �̂�)𝑑Ω/4𝜋 represents the fraction that is scattered into the solid angle 

in direction �̂�. Integrating Eq. 2.13 over all solid angle directions provides the total in-

scattering term: 

𝑑𝐼𝜂(�̂�) 𝑑𝐴 𝑑Ω 𝑑𝜂 =  ∫ 𝜎𝜂 𝐼𝜂(𝑠�̂�) 𝑑𝐴 𝑑Ω 𝑑𝜂 𝑑𝑠 Φ (𝑠�̂�. �̂�)
𝑑Ω

4𝜋
 

4𝜋

             (2.14)  

or 

𝑑𝐼𝜂(�̂�)   = 𝜎𝜂

𝑑𝑠

4𝜋
∫  𝐼𝜂(𝑠�̂�) Φ (𝑠�̂�. �̂�)𝑑Ω

4𝜋

                     (2.15) 

for isotropic scattering, the term 
1

4𝜋
 ∫ Φ(𝑠�̂�. �̂�) 𝑑Ω 

4𝜋
is equal to one. It indicates that 

scattering is equal in all directions. 

2.2 Radiative transfer equation 

      The radiative transfer equation provides an energy balance, combining all four 

contributions discussed earlier. The equation describes the change occurring to an 

intensity ray as it travels through a participating medium, as shown in Fig. 2.3.  
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Figure 2.3 Intensity propagation within participating medium    

     Summing all the equation’s components discussed earlier, the following results: 

𝐼𝜂(𝑠 + 𝑑𝑠, �̂�, 𝑡 + 𝑑𝑡) − 𝐼𝜂(𝑠, �̂�, 𝑡)

= 𝜅𝐼𝐵(𝑠, 𝑡) 𝑑𝑠 − 𝜅 𝐼𝜂(𝑠, �̂�, 𝑡)𝑑𝑠 − 𝜎𝜂  𝐼(𝑠, �̂�, 𝑡) 𝑑𝑠

+
𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖)Φ(�̂�𝑖 , �̂�)𝑑Ω 𝑑𝑠 

4𝜋

                      (2.16) 

     Since the ray travels at the speed of light, it is possible to relate the speed of light and 

distance traveled, using 𝑑𝑠 = 𝑐 𝑑𝑡. Doing so yields the following equation:  

1

𝑐
(

𝜕𝐼𝜂

𝜕𝑡
) +

𝜕𝐼𝜂

𝜕𝑠
= 𝜅 𝐼𝑏 − 𝜅 𝐼 𝜂 − 𝜎 𝐼𝜂 +

𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(𝑠𝑖 . 𝑠) 𝑑Ω

4𝜋

           (2.17) 

     For most engineering applications, the speed of light is extremely large compared to 

the time scales of the application. Hence, the first term in the previous equation can be 

dropped out, leading to the following equation: 

𝜕𝐼𝜂

𝜕𝑠
= �̂�. ∇ Iη = 𝜅 𝐼𝑏 − 𝛽 𝐼 𝜂 +

𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(𝑠𝑖 . 𝑠) 𝑑Ω

4𝜋

                  (2.18) 

where 𝛽 is the extinction coefficient 𝛽 = 𝜎 + 𝜅.  

     The radiative transfer equation is often expressed in terms of the scattering albedo 

defined as:  

dA 

�̂� �̂� + 𝑑�̂�  
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𝜔 =
𝜎

𝜅 + 𝜎
=

𝜎

𝛽
                            (2.19) 

which leads to: 

𝜕𝐼𝜂

𝜕𝑠
= (1 − 𝜔)𝐼𝑏 −  𝐼 𝜂 +

𝜔

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(𝑠𝑖 . 𝑠) 𝑑Ω

4𝜋

                   (2.20) 

     The radiative transfer equation described, is an integro-differential equation, with six 

variables: three in space, two directional, and the last variable being the wavelength. 

This multivariable equation is a complicated equation. It cannot be solved except for 

very special and simplified cases. Most of the simplified cases do not fulfill practical 

needs, yet, solving the equation is needed for practical applications. Many 

approximating numerical solutions are used to solve the equation; some of them will be 

discussed in the following section.  

2.3 Solution methods to the RTE 

2.3.1 The flux method 
 

     This method was proposed by Schuster [38] and Schwarzchild [39] to solve one 

dimensional problems. The main idea behind this method is dividing the entire solid 

angle into two solid angles as shown in Fig. 2.5. The magnitude in each solid angle 

direction is assumed to be uniform but different. Radiative energy is allowed to travel in 

all directions. 
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Figure 2.4     Intensity distribution A- real infinite directions     b- Two flux method  

     By assuming there are only two directions for radiation propagation, the radiative 

transfer equation is reduced into two partial differential equations, one equation for 

each direction.  

𝐼 =  𝐼+       𝑛. �̂� > 0          (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

𝐼 = 𝐼−        𝑛. �̂� < 0           (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑟𝑐𝑡𝑖𝑜𝑛) 

Using 𝜙 = 1 (isotropic scattering), the radiative transfer equation can be defined as  

𝑑𝐼+

𝑑𝑥
=  −𝛽 𝐼+ + 𝜅 𝐼𝑏 +

𝜎

4𝜋
 (𝐼+ + 𝐼− )                       (2.21) 

     Integrating Eq. 2.30 over the positive solid angle yields: 

𝑑𝐼+

𝑑𝑥
 ∫ 𝑛. 𝑠 𝑑𝜔

𝑛.𝑠>0 

= [−𝛽 𝐼+ + 𝜅 𝐼𝑏 +
𝜎

2
(𝐼+ + 𝐼−)] ∫ 𝑑Ω

𝑛.𝑠>0

                   (2.22) 

or 

1

2

𝑑𝐼+

𝑑𝑥
=  −𝛽 𝐼+ + 𝜅 𝐼𝑏 +

𝜎

2
(𝐼+ + 𝐼−)                           (2.23) 

(A) 

Control angle  

𝐼− 𝐼+ 

(B) 
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     By repeating the previous step for the other direction, and integrating afterwards, a 

similar formula is obtained for the negative direction.  

1

2

𝑑𝐼−

𝑑𝑥
=  −𝛽 𝐼− + 𝜅 𝐼𝑏 +

𝜎

2
(𝐼+ + 𝐼−)                         (2.24) 

2.3.2 Discrete Ordinates Method  

     The discrete ordinates method is one of the methods used to solve the radiative 

transfer equation discussed in the previous section. It was first introduced by 

Chandrasekar [24] in his stellar and atmospheric radiation work. The method was 

applied to problems in neutron transport theory by Lee [25] and Lathrop [26, 27]. Early 

attempts were done by Love [28, 29] and Hottel [30] to use the method with one 

dimensional planer thermal radiation problems. Lately this method has been applied 

and optimized for radiative transfer applications by Fiveland [31-33] and Truelove [35-

37]  

 

Figure 2.5 Intensity distribution A- real infinite directions     B- finite discrete directions       

(A) (B) 
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     The discrete ordinates method divides angular space into a finite number of control 

angles (directions shown in Fig 2.4 A), enabling the transformation of the radiative 

transfer equation into a set of linear equations. Each one of the equations is associated 

with a direction. In addition, the evaluation of integrals is done using numerical 

quadrature schemes. 

     The general radiative transfer equation for an emitting, absorbing, and scattering 

medium is: 

𝜕𝐼𝜂

𝜕𝑠
= �̂�. ∇ Iη = 𝜅 𝐼𝑏 − 𝛽 𝐼 𝜂 +

𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(𝑠𝑖 . 𝑠) 𝑑Ω

4𝜋

            (2.25) 

      The equation is subject to diffusive emitting reflecting boundary conditions: 

𝐼(𝑟, �̂�) = 𝜖 𝐼𝑏 +
𝜌

𝜋
 ∫ 𝐼(𝑟, �̂�) |𝑛. �̂�| 𝑑Ω

𝑛.𝑠<0 

                     (2.26) 

where 𝜖 is the wall emissivity, 𝜌 is the wall reflectivity equal to 𝜌 = 1 − 𝜖, �̂� is the 

normal to the surface, and �̂� is the direction of intensity propagation. The discrete 

ordinates formulation of the radiative transfer equation is as follows:  

𝑠�̂� . ∇ 𝐼(𝑟, 𝑠�̂�) = 𝜅(𝑟)𝐼𝑏(𝑟) − 𝛽(𝑟)𝐼(𝑟, 𝑠�̂�) +
𝜎

4𝜋
 ∑ ωj I(r, sj) Φ(r, si, sj)

𝑛

𝑗

       (2.27)  

subject to the boundary condition: 

𝐼(𝑟, �̂�) = 𝜖(𝑟) 𝐼𝑏 +
𝜌

𝜋
 ∑ 𝜔𝑗  𝐼(𝑟, �̂�𝑗) |𝑛. �̂�|

𝑛.𝑠<0

                 (2.28) 

For one dimentional problems Eq. 2.23 can be reduced to the following: 
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𝜇
𝑑𝐼

𝑑𝑥
=  −𝛽 𝐼 + 𝜅 𝐼𝑏 +

𝜎

4𝜋
 ∑ 𝐼 𝜙𝑙′𝑙 𝑤

𝐿

𝑙=1

                  (2.29) 

where 𝜇 is the directional cosine, and 𝜔 is the quadrature weight.  

Choosing a quadrature scheme is arbitrary, but restrictions must be applied and must 

satisfy the following relations: 

∫ 𝑑Ω = 4𝜋 =  ∑ 𝑤𝑖

𝑛

𝑖

                          (2.30)
4𝜋

 

∫ �̂�𝑑Ω = 0 =  ∑ 𝑤𝑖�̂�

𝑛

𝑖4𝜋

                            (2.31) 

∫ �̂�. �̂�𝑑Ω =
4𝜋

3
𝛿 =  ∑ 𝑤𝑖 �̂�. �̂�

𝑛

𝑖4𝜋

              (2.32) 

     The following half moment equation has to be satisfied as well;  

∫ |𝑛. �̂�|𝑑Ω = ∫ 𝑛. �̂� 𝑑Ω = 𝜋 = ∑ 𝑤𝑖 𝑛. 𝑠 ̂

𝑛.�̂�>0𝑛.�̂�>0𝑛.𝑠<0

                (2.33) 

     The discrete ordinates method suffers multiple drawbacks, such as false scattering 

occuring due to spatial discretization, and ray effect occuring as a result of angular 

discretization. Both of the drawbacks produce negative intensities, which are 

nonphysical. The major drawback for the discrete ordinates method is that it does not 

ensure energy conservation, as a result of using the Gaussian quadrature for angular 

discretization.  
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2.3.3 Spherical harmonics  

     Spherical harmonics is a method transforming the radiative transfer equation into a 

set of partial differential equations. The method was first introduced by Jeans [40], 

further explanation can be found as done by Kourganoff [41], Davidson [42], and Murray 

[43]. The full derivation of this method can be found by Modest [15].  

     The intensity field at a location, r, can be described using spherical harmonics. 

Spherical harmonics are considered as special functions defined on a spherical surface, 

and can be expressed in terms of a Fourier series as 

𝐼(𝑟, �̂�) = ∑ ∑ 𝐼𝑙
𝑚 (𝑟)

𝑙

𝑚=−1

∞

𝑙=0

 𝑌𝑙
𝑚(�̂�)                         (2.34) 

where 𝐼𝑙
𝑁 are coefficients that depends on the position, and 𝑌𝑙

𝑁 is the spherical 

harmonics function expressed as  

𝑌𝑙
𝑚(�̂�) = (−1)

𝑚+|𝑚|
2  [

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
]

1/2

 𝑒𝑖𝑚𝜓 𝑃𝑙
|𝑚|

cos(𝜃)                         (2.35) 

where 𝜃 is the polar angle, 𝜓 is the azimuthal angle, and 𝑃𝑤
𝑁 are the associated Legendre 

polynomials.   
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Figure 2.6 one dimensional coordinates for parallel plane medium  

     For a plane medium, the intensity does not depend on the azimuthal angle 𝜓. 𝜃 is 

assumed measured similar to what is shown in Fig. 2.6. Equation 2.35 can be simplified 

into  

𝐼(𝜏, 𝜇 ) = ∑ 𝐼𝑙(𝜏) 𝑃𝑙(𝜇) 

𝑁

𝑙=0

                      (2.36) 

the phase function can be expressed as  

Φ(𝜇, 𝜇′) =  ∑ 𝐴𝑚 𝑃𝑚(𝜇′) 𝑃𝑚(𝜇)

𝑀

𝑚=0

               (2.37) 

∫ Φ(𝜇, 𝜇′) 𝐼(𝜏, 𝜇′) 𝑑𝜇′
1

−1

= ∑ 𝐼𝑙(𝜏) ∑ 𝐴𝑚 𝑃𝑚(𝜇) ∫ 𝑃𝑙(𝜇′)𝑃𝑚(𝜇′)𝑑𝜇′
1

−1

𝑀

𝑚=0 

𝑁

𝑙=0 

              (2.38) 

Utilizing the orthogonally for the Legendre polynomials  

∫ 𝑃𝑙(𝜇) 𝑃𝑚(𝜇)
1

−1

  𝑑𝜇 =
2𝛿

2𝑚 + 1
= {

2

2𝑚 + 1
 for 𝑚 = 1; 0  for 𝑚 ≠  1}                (2.39) 

𝜏 

𝜃 

𝜏 = 𝜏𝐿 

𝜏 = 𝜏0 

𝜓 
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Employing this orthogonal relation in Eq. 2.38 gives  

∫ Φ(𝜇, 𝜇′) 𝐼(𝜏, 𝜇′) 𝑑𝜇′ = ∑
2𝐴𝑖

2𝑖 + 1 
 𝐼𝑖(𝜏)𝑃𝑖(𝜇)

𝑁

𝑖=0

                       (2.40)
1

−1

 

For a one-dimensional parallel plane, the radiative transfer equation is presented as: 

𝜇
𝑑𝐼

𝑑𝑠
+ 𝐼(𝜏) = (1 − 𝜔)𝐼𝑏(𝜏) +

𝜔

2
 ∫ Φ(𝜇, 𝜇′)𝐼(𝜇, 𝜇′)𝑑𝜇′

1

−1

                 (2.41) 

or 

∑ [
𝑑𝐼𝑖

𝑑𝜏
 𝜇 𝑃𝑙(𝜇) + 𝐼𝑙(𝜏)𝑃𝑙(𝜇)] = (1 − 𝜔)𝐼𝑏(𝜏) + 𝜔 ∑

𝐴𝑙𝐼𝑙(𝜏)

2𝑙 + 1 
 𝑃𝑙(𝜇)

𝑁

𝑖

𝑁

𝑖=0

             (2.42) 

     Marshak proposed a boundary condition for the spherical harmonics, describing the 

intensity for a diffusive emitting reflecting wall: 

∫ 𝐼(0, 𝜇) 𝑃2𝑙−1 (𝜇)𝑑𝜇 = ∫ 𝐼𝑤1(𝜇)𝑃2𝑖−1 (𝜇) 𝑑𝜇           𝑖 = 1,2, …
1

2
(𝑁 + 1 )     

1

0

      (2.43)
1

0

 

∫ 𝐼(0, 𝜇) 𝑃2𝑙−1 (𝜇)𝑑𝜇 = ∫ 𝐼𝑤2(𝜇)𝑃2𝑖−1 (𝜇) 𝑑𝜇        𝑖 = 1,2, …
1

2
(𝑁 + 1 )             (2.44)

0

−1

0

−1

 

 

2.3.3.1 P1 approximation  

The P1 approximation is considered as the lowest order of the spherical-harmonics 

method described earlier. The approximation can be obtained by truncating Eq. 2.34 

after 𝑙 = 1, resulting in the following equation: 

𝐼(𝑟, �̂�) = 𝐼0
0𝑌0

0 + 𝐼1
−1𝑌1

−1 + 𝐼1
0𝑌1

0 + 𝐼1
1𝑌1

1                     (2.45) 
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     Using the associate Legendre polynomials by MacRobert [44], it is possible to 

describe the intensity field as follows:  

𝐼(𝑟, 𝜃, 𝜓) = 𝐼0
0 + 𝐼1

0 cos(𝜃) −
1

√2
 (𝐼1

1 𝑒𝑖𝜓 − 𝐼1
−1 𝑒−𝑖𝜓) sin(𝜃) 

                     =    𝐼0
0 + 𝐼1

0 cos(𝜃) +  
1

√2
 (𝐼1

−1 − 𝐼1
1) sin (𝜃) cos (𝜓)  

− 
1

√2
 (𝐼1

−1− 𝐼1
1) sin (𝜃) sin (𝜓)                    (2.46) 

the first term in the previous equation is directionally independent, the second term is 

proportional to the z component of the direction vector, the third term is proportional 

to the x component of the direction, and the last term is proportional to the y 

component of the direction.  

     A compact form of the previous relation can be presented as follows:  

𝐼(𝑟, �̂�) = 𝑎(𝑟) + 𝑏(𝑟) . �̂�               (2.47) 

Substituting Eq. 2.47 in the definition of the incident radiation will produce the 

following: 

𝐺(𝑟) =  ∫ 𝐼(𝑟, �̂�) 𝑑Ω = 𝑎(𝑟) ∫ 𝑑Ω + 𝑏(𝑟) .  ∫ �̂� 𝑑Ω = 4𝜋 𝑎(𝑟)
4𝜋

                        (2.48)
4𝜋4𝜋

 

By substituting the intensity, defined in Eq. 2.47, in the radiative heat flux equation, the 

following can be obtained 

𝑞(𝑟) =  ∫ 𝐼(𝑟, �̂�) �̂�𝑑Ω = 𝑎(𝑟) ∫ 𝑑Ω + 𝑏(𝑟) .  ∫ �̂�. �̂� 𝑑Ω =
4𝜋

3
 𝑏(𝑟)

4𝜋4𝜋4𝜋

            2.49 
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  Using both, the incident radiation and the radiative heat flux, the equation can be 

written as 

𝐼(𝑟, �̂�) =
1

4𝜋
 [𝐺(𝑟) + 3 𝑞(𝑟). �̂�]                              (2.50) 

The linear anisotropic relation is described by: 

Φ(�̂� . �̂�′) = 1 + 𝐴1 �̂� . �̂�′                                            (2.51)  

 By substituting Eq. 6.30 and Eq. 6.31 into the radiative transfer equation, the following 

can be obtained 

∫ 𝐼(�̂�′) Φ(ŝ . �̂�′) 𝑑Ω =
1

4𝜋
 ∫ (𝐺 + 3 𝑞 . �̂� )( 1 + 𝐴1 �̂� . �̂�′) 𝑑Ω′

4𝜋4𝜋

           

=
𝐺

4𝜋
 [∫ 𝑑Ω′  + 𝐴1 �̂�   .  ∫ �̂�′ 𝑑Ω′    

4𝜋4𝜋

]  +
3𝑞

4𝜋
 [∫ �̂�′𝑑Ω′ + 𝐴1 (∫ �̂� �̂� 𝑑Ω′)  . 𝑠 ̂ 

4𝜋4𝜋

] 

                                           = 𝐺 + 𝐴1 𝑞. �̂�                   (2.52) 

       After multiple manipulations, as can be found in Modest [15], it is possible to obtain 

two relations: one gives an expression for the radiative heat flux as a function of the 

incident radiation, and the other gives an expression for the incident radiation as a 

function of the radiative heat flux, more specifically  

∇ . 𝑞 = (1 − 𝜔)( 4𝜋𝐼𝑏 − 𝐺)                       (2.53)             

∇ 𝐺 = (−3 − 𝐴1 𝜔 ) 𝑞                          (2.54)   
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The previous two equations forms the P1 approximation, representing a set of 

equations solved for the unknown incident radiation and radiative heat flux. The 

numerical solution for these equations will be described in later sections.  

2.3.4 Finite volume method  

     The finite volume method approximates the radiative transfer equation by double 

integrating it directly over control angles, as well as control volumes. The finite volume 

method divides angular space into several control angles, where the intensity is 

considered constant, as shown in Fig. 2.7. By doing so, a set of equations is produced. 

Each equation represents a direction and can be solved with proper boundary 

conditions.  

   

Figure 2.7    Intensity distribution A- real infinite directions     b- finite volume method   

     

     Both, the finite volume method, and the discrete ordinate method, divide the angular 

space into a finite number of control angles. Nevertheless, both methods are 

(A) Control Angles  (B) 
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fundamentally different, in which unlike the finite volume method, the discrete ordinate 

method does not ensure energy conservation. This is a result of the finite differencing 

scheme.  

     The discrete ordinates method suffers from multiple drawbacks. For instance, the ray 

effect produced because due to angular discretization, and false scattering resulting due 

to spatial discretization. The finite volume method tries to address these problems. 

      The finite volume method starts by integrating the radiative heat transfer equation 

over a control volume and a control angle: 

∫ ∫
𝜕𝐼𝜂

𝜕𝑠
 𝑑𝑉 𝑑𝜔

𝜔𝑣

 = ∫ ∫ [𝜅𝜂𝐼𝑏 − 𝛽 𝐼𝜂 +
𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(�̂�𝑖 . 𝑠) 𝑑Ω 

4𝜋

]  𝑑𝑉 𝑑𝜔
𝑤𝑣

          (2.55) 

using the divergence theorem for the left-hand side: 

∫ ∫𝐼(𝑠. 𝑛) 𝑑𝐴𝑑𝜔
𝐴𝜔

= ∫ ∫ [𝜅𝜂𝐼𝑏 − 𝛽 𝐼𝜂 +
𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) Φ(�̂�𝑖 . 𝑠) 𝑑Ω 

4𝜋

]  𝑑𝑉 𝑑𝜔
𝑤𝑣

      (2.56)  

where A is the surface area of the control volume, V is the volume of a control volume, 

and 𝜔 is the solid angle associated with the direction of interest.  
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Chapter 3 

3.1 Numerical algorithm  

     This chapter will provide the numerical solution for both, the P1 approximation, as 

well as the finite volume method, described in the preceding chapter. A solution for the 

energy equation will be provided as well.  

3.1.1 P1 method  

     As concluded in the preceding chapter, the P1 approximation results in a coupled set 

of differential equations. The first equation describes the divergence of incident 

radiation in terms of radiative heat flux. The second equation describes the divergence 

of radiative heat flux in terms of incident radiation more specifically  

∇ . 𝑞 = (1 − 𝜔)( 4𝜋𝐼𝑏 − 𝐺)        (3.1) 

∇ 𝐺 = (−3 − 𝐴1 𝜔 ) 𝑞                 (3.2) 

which can also be written as  

∇ . 𝑞 = 𝜅𝜆 (4𝜋𝐼𝑏𝜆 − 𝐺𝜆)              (3.3) 

∇ 𝐺𝜆 =  −3 𝛽𝐼 𝑞𝜆                          (3.4) 

where 𝛽𝐼 is the anisotropic extinction coefficient expressed as 

𝛽𝐼 = 𝛽 −
𝜎𝐴𝑖

3
                     (3.5) 

and 𝐼𝑏𝜆 is the Planck function described previously as 

𝐼𝑏𝜆(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5 (exp [
ℎ𝑐

𝜆 𝜎 𝑇
] − 1) 

            (3.6) 
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     As obtained from Eq. 3.4, it is possible to substitute the value of  
−1

3 𝛽𝐼
∇ 𝐺𝜆 for the heat 

flux term (𝑞𝜆), in Eq. 3.3. The combined result provides an equation for the unknown 

incident radiation, (𝐺𝜆), as follows 

∇ .
−1

3 𝛽𝐼
∇ 𝐺𝜆 =  𝜅𝜆 (4𝜋𝐼𝑏𝜆 − 𝐺𝜆)              (3.7) 

Integrating Eq. 3.7 over a control volume, the following can be obtained 

− ∮
−1

3 𝛽𝐼
∇ 𝐺𝜆. 𝑛 𝑑𝐴 =   ∫ 𝜅𝜆 (4𝜋𝐼𝑏𝜆 − 𝐺𝜆)

𝑉

                (3.8) 

     A cell centered finite volume discretization is used to solve the previous equation.  

For a one-dimensional geometry in Cartesian plane this result in  

[
1

3𝛽𝐼
(

𝜕𝐺𝜆

𝜕𝑥
)

𝑟
 𝐴𝑟]  − [

1

3𝛽𝐼
(

𝜕𝐺𝜆

𝜕𝑥
)

𝐿
 𝐴𝐿] =  −𝜅𝜆 (4𝜋𝐼𝑏𝜆 − 𝐺𝜆) Δ𝑉              (3.9) 

where the first term represents the flux from the right-hand side surface, the second 

term represents the flux from the left-hand side surface, and Δ𝑉 is the volume of the 

control element. It is possible to represent Eq. 3.9 in a discrete format for the 𝑖𝑡ℎ cell as  

(𝐺𝜆,𝑖+1 − 𝐺𝜆,𝑖) 𝐹+ − (𝐺𝜆,𝑖 − 𝐺𝜆,𝑖−1) 𝐹− =  −3𝜅𝜆,𝑖 (4𝜋𝐼𝑏𝜆,𝑖 − 𝐺𝜆,𝑖) Δ𝑉𝑖         (3.10) 

where 

𝐹− =

2 𝐴
𝑖−

1
2

β𝐼𝜆−  (Δ𝑥𝑖 + Δ𝑥𝑖−1)
 

𝐹+ =

2 𝐴
𝑖+ 

1
2

β𝐼𝜆+  (Δ𝑥𝑖+1 + Δ𝑥𝑖)
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𝛽𝐼𝜆− =  𝛽𝐼𝜆,   𝑖 −1 + (𝛽𝐼𝜆,   𝑖 − 𝛽𝐼𝜆,   𝑖 −1)
Δ𝑥𝑖−1 

Δ𝑥𝑖−1 + Δ𝑥𝑖
 

𝛽𝐼𝜆+ =  𝛽𝐼𝜆,   𝑖+1 + (𝛽𝐼𝜆,   𝑖+1 − 𝛽𝐼𝜆,   𝑖 )
Δ𝑥𝑖+1 

Δ𝑥𝑖+1 + Δ𝑥𝑖
 

The final discretized equation can be presented as 

𝑏𝑖 𝐺𝜆𝑖 + 𝑎𝑖 𝐺𝜆,𝑖−1 + 𝑐𝑖  𝐺𝜆,𝑖+1 = 𝑑𝑖        (3.11)  

where 

𝑎𝑖 = 𝐹− 

                         𝑏𝑖 =  −12 𝜅𝜆 𝐼𝑏𝜆 Δ𝑉  

𝑐𝑖 = 𝐹+ 

                                   𝑑𝑖 =  3𝜅𝜆𝑖 Δ𝑉𝑖 − 𝐹− + 𝐹+  

     In 1D this set of linear equations can be solved using a tridiagonal matrix solver for 

the unknown incident radiation, G. Other radiative parameters can be solved for 

afterwards.    

3.1.2 Finite volume method  

     A two-dimensional domain is used to describe the method. The extension to one- and 

three-dimensional domains is straight forward. The finite volume method subdivides the 

angular domain into control angles, and the spatial domain into control volumes as 

subsequently explained.  
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3.1.2.1 Control volumes  

     The spatial domain is subdivided as shown in Fig. 3.1.  

 

Figure 3.1 two dimensional spatial domain  

     This method works for both structured and unstructured meshes. However, only 

structured mesh will be used throughout this study.  

     The spatial domain is divided into 𝑁𝑥 × 𝑁𝑦 control volumes with equal spacing as 

shown in Fig 3.1. 

Δ 𝑋 =
𝐿𝑥

𝑁𝑥
 

and 

Δ 𝑌 =
𝐿𝑦

𝑁𝑦
 

3.1.2.2 Control angles  

     Similar to the spatial domain, angular space is discretized by dividing the 4𝜋 solid 

angle into control angles. Structured and unstructured meshes can be used. However, 

only the structured mesh will be considered in this study as shown in Fig. 3.2.  

dx 

dy 

Y 

X 

P 

N 

S 

E W 
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 Figure 3.2 angular domain (generated using GeoGebra) 

     The angular domain is subdivided into 𝑁𝜃 × 𝑁𝜙control angles, with equal spacing in 

the polar and azimuthal angles more specifically   

Δ𝜃 =
2𝜋

𝑁𝜃
  

Δ𝜙 =
4𝜋

𝑁𝜙
  

3.1.2.3 Numerical algorithm  

     Reconsidering the radiative transfer equation 

𝜕𝐼𝜂

𝜕𝑠
= 𝜅𝜂𝐼𝑏 − 𝛽 𝐼𝜂 +

𝜎

4𝜋
 ∫ 𝐼𝜂(𝑠𝑖) 𝜙(�̂�𝑖 . 𝑠) 𝑑Ω

4𝜋

 

which can be rewritten as:  

𝑑𝐼(𝑟, 𝑠)

𝑑𝑠
=  −𝛽(𝑟) 𝐼(𝑟, 𝑠) + 𝑆(𝑟, 𝑠)            (3.12) 



42 
 

where 𝛽 = 𝜎 + 𝜅 is the extinction coefficient, and 𝑆(𝑟, 𝑠) is a source term defined as 

follows 

𝑆(𝑟, 𝑠) = 𝜅 𝐼𝑏 +
𝜎

4𝜋
 ∫ 𝐼(𝑟, �̂�) Φ(�̂�′, �̂�) 𝑑Ω

4𝜋

 

     Integrating the transfer equation over the control volume and control angle results in  

∫ ∫
𝑑𝐼′

𝑑𝑠
 𝑑𝑉 𝑑Ω  = ∫ ∫ (−𝛽 𝐼′ + 𝑠′) 𝑑𝑉 𝑑Ω

Δ𝑉ΔΩΔ𝑉ΔΩ

        (3.13) 

     Using the divergence theorem, Eq. 3.13 can be presented as 

∫ ∫ 𝐼(𝑟, 𝑠) (�̂�. 𝑛) 𝑑𝐴 𝑑Ω = 
ΔAΔΩ

∫ ∫ (−𝛽 𝐼′ + 𝑠′) 𝑑𝑉 𝑑Ω
Δ𝑉ΔΩ

                    (3.14) 

where �̂� represents the normal unit vector to the boundary surface. The left-hand side 

of Eq. 3.14 represents the inflow and outflow of radiation energy across the control 

volume surface. 

Equation 3.14 can be further simplified as follows: 

∑ 𝐼𝑖
′𝐴𝑖  ∫ �̂�′. 𝑛𝑖 𝑑Ω = (−𝛽 𝐼′ + 𝑆′) Δ𝑉 ΔΩ′

ΔΩ

                      (3.15)

𝑖=𝑛𝑏

 

where 

        𝑆′ = 𝜅 𝐼𝑏 +
𝜎

4𝜋
 ∑  𝐼′ Φ𝑙′𝑙 ΔΩ

l′=1

 

In this equation, Φ is the scattering phase function from direction 𝑙′ to direction 𝑙, which 

equals one for isotropic scattering. 
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Solving Eq. 3.15 for the angular grid shown in Fig. 3.2, the following equation is obtained  

𝐴𝑒𝐷𝑐𝑒𝐼𝑒 + 𝐴𝑤 𝐷𝑐𝑤 𝐼𝑤 + 𝐴𝑛 𝐷𝑐𝑛 𝐼𝑤 + 𝐴𝑠 𝐷𝑐𝑠 𝐼𝑠 = (−𝛽 𝐼′
𝑝 + 𝑆′

𝑝) Δ𝑉𝑝 ΔΩ            (3.16)  

where 

𝐷′𝑐𝑒 = ∫ �̂�. 𝑒𝑥 𝑑Ω
ΔΩ

                   𝐷′𝑐𝑛 = ∫ �̂�. 𝑒𝑦 𝑑Ω
ΔΩ

 

𝐷′𝑐𝑤 = −𝐷′𝑐𝑒                      𝐷′𝑐𝑠  =  −𝐷′𝑐𝑛 

ΔΩ = ∫ 𝑑Ω
ΔΩ

 

𝑆′𝑝 = 𝜅𝑝 𝐼𝑏 +
𝜎

4𝜋
 ∑ 𝐼𝑝

𝑙′ 𝜙𝑙′𝑙 ΔΩ 

𝑙′=1

 

𝐴𝑒 = 𝐴𝑤 =  Δ𝑦   

𝐴𝑛 = 𝐴𝑠  = Δ𝑥 

Δ𝑉 = Δ𝑦 Δ𝑥  

     The directional cosines 𝐷𝑐𝑖
′  are evaluated analytically before proceeding with the 

numerical calculations. The evaluation of directional cosines requires the mathematical 

formulation of the direction vector, as well as the solid angle.  

    The direction vector �̂� in Cartesian coordinates is defined as 

𝑠 = 𝑠𝑥𝑒𝑥  + 𝑠𝑦𝑒𝑦  + 𝑠𝑧𝑒𝑧                (3.17)  

Or, more specifically  

𝑠 = 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑒𝑥 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 𝑒𝑦  + 𝑐𝑜𝑠𝜃 𝑒𝑧          (3.18)   
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The solid angle is defined as  

𝑑Ω = 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙          (3.19) 

The directional cosines in the x-direction for a two-dimensional domain are evaluated as  

𝐷′𝑐𝑒 = ∫ �̂�. 𝑒𝑥  𝑑Ω
ΔΩ

 

𝐷′𝑐𝑒 = ∫ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑑Ω
ΔΩ

 

𝐷′𝑐𝑒 = ∫ ∫ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙  (𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙)
Δ𝜃Δ𝜙

 

𝐷′𝑐𝑒 = ∫ ∫ sin2 𝜃  𝑐𝑜𝑠𝜙  𝑑𝜃𝑑𝜙  
Δ𝜃Δ𝜙

 

𝐷𝑐𝑒 =  −
1

4
[2(𝜃+ − 𝜃−) − (sin(2𝜃+) − sin(2𝜃−)) × [sin(𝜙+) −   sin (𝜙−)] 

and in the y-direction as  

𝐷′𝑐𝑛 = ∫ �̂�. 𝑒𝑦  𝑑Ω
ΔΩ

 

𝐷′𝑐𝑛 = ∫ 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 𝑑Ω
ΔΩ

 

𝐷′𝑐𝑛 = ∫ ∫ 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙  (𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙)
Δ𝜃Δ𝜙

 

𝐷′𝑐𝑛 = ∫ ∫ sin2 𝜃  𝑠𝑖𝑛𝜙  𝑑𝜃𝑑𝜙  
Δ𝜃Δ𝜙

 

𝐷𝑐𝑛 =  −
1

4
[2(𝜃+ − 𝜃−) − (sin(2𝜃+) − sin(2𝜃−)) × [cos(𝜙+) −   cos (𝜙−)] 
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The directional cosines should be evaluated for each solid angle bounded 

between 𝜃+, 𝜃−, 𝜙+, 𝑎𝑛𝑑 𝜙−, as shown in Fig. 3.3.  

 

Figure 3.3 Control angle (generated using GeoGebra) 

     The left-hand side of Eq. 3.16 describes the intensities at the faces of control 

volumes. Since the finite volume method is a cell centered method, where the solution 

is obtained for the intensities at the cell centers, there must be a relation that relates 

both intensities, to proceed with the calculation.   

     Most often, a linear relation is provided to relate the nodal and face intensities in the 

form of: 

𝐼𝑝𝑖 = 𝛾𝑦 𝐼𝑁𝑖 + (1 − 𝛾𝑦) 𝐼𝑠𝑖 = 𝛾𝑥 𝐼𝐸𝑖 + (1 − 𝛾𝑥) 𝐼𝑤𝑖                (3.20) 

where 𝛾 is a constant number varying between 
1

2
 and 1.   
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There are multiple schemes based on Eq. 3.20, such as the diamond scheme, the 

exponential scheme, and the step scheme.  

     The diamond scheme is one of the popular differencing schemes. The relation can be 

obtained easily by substituting a value of 0.5 for 𝛾 in Eq. 3.20. However, Carlson [27] 

showed that this scheme may lead to negative intensities. This is physically not possible. 

Fiveland [33] showed that if the dimensions are kept within a certain value, the error 

can be minimized.  

     The exponential scheme is considered more accurate, especially for one-dimensional 

problems. This scheme was used by Raithby et al [51], and it is possible to obtain the 

relation by substituting the value of 𝛾 with: 

𝛾 =
1

1 − 𝑒𝜏𝑠
 −

1

𝜏𝑠
                 where s is the spatial direction (e. g.  𝑥, 𝑦)      

𝜏 = 𝛽
Δ𝑠

𝜁
                   𝜁 is the directional cosine 

    This scheme is the simplest scheme. It can be obtained by simply substituting 𝛾 = 1 in 

Eq. 3.20. This scheme is considered as the only scheme that does not produce negative 

intensities, and is the one used in the present work.    

 After applying the step scheme, Eq. 3.16 reduces to  

𝑎𝑝
𝑙  𝐼𝑝

𝑙  = 𝑎𝑤
𝑙 𝐼𝑤

𝑙 + 𝑎𝑠
𝑙  𝐼𝑠

𝑙 + 𝑏𝑙                (3.21) 

where 

𝑎𝑤 = 𝐴𝑤 |𝐷𝑐𝑤|               𝑎𝑠
𝑙 = 𝐴𝑠|𝐷𝑐𝑠| 
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𝑎𝑙𝑝 = 𝐴𝑒 𝐷𝑐𝑒
𝑙 +   𝐴𝑛 𝐷𝑐𝑛 + 𝛽 Δ𝑉 ΔΩ 

𝑏𝑙 = 𝑆𝑝
𝑙  Δ𝑉𝑝 ΔΩ 

     The boundary condition is the only missing part needed to make the solution 

possible. The boundary condition used in this study describes the radiant intensity 

leaving an opaque diffuse reflecting surface, as presented in Eq. 3.22.  

𝐼(𝑟, 𝑠) = 𝜖 𝐼𝑏 +
𝜌

𝜋
 ∫ 𝐼(𝑟, �̂�) |𝑠. 𝑛| 𝑑Ω

𝑠.𝑛<0

              (3.22) 

where 𝜖 is the emissivity, 𝜌 is the reflectivity (𝜌 = 1 − 𝜖), and 𝐼𝑏 is the blackbody 

emission. 

    The previous relation describes the intensity towards the medium as a function of the 

emitted wall radiation. It is a function of the wall temperature, as well as the reflected 

radiation. 

3.1.2.4 Solution procedure  

     The solution procedure shown in Fig. 3.4 constitutes of four steps. When combined, 

the four steps form a one cycle “iteration”.  

    Starting from the bottom left corner with the defined intensities at the bottom and 

left surfaces, the solution marches toward the top right corner, calculating the 

intensities in the directions associated with the quadrant, as shown in Fig. 3.4 A. This 

step calculates the incoming intensities toward the top and right surfaces. Aiming for 

the boundary condition, it is possible to calculate the intensity leaving those surfaces.  
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    The second step starts from the bottom right corner, calculating the intensities 

associated with the quadrant, shown in Fig. 3.4 B. By doing so, the incoming intensities 

on the top and left surfaces are provided. Using the boundary condition, and after 

updating the values for the top surface intensities, it is possible to calculate the 

intensities leaving the top and left surfaces. 

    The third step starts from the top left corner, and marches toward the bottom right 

corner, providing the directional intensities associated with the quadrant shown in Fig. 

3.4 C. After updating the incoming intensities on the bottom and right surfaces, and 

using boundary conditions, it is possible to calculate the intensities leaving those 

surfaces.  

    The last step is done to calculate the intensities in the directions shown in Fig. 3.4 D. 

This is done by starting at the top right corner and marching towards the bottom left 

corner. After updating the intensities on the bottom and left surfaces, it is possible to 

find the intensities leaving those surfaces by aiming for the boundary condition.    

     The four steps are required to find the directional intensities within the full solid 

angle range. The four steps are considered as one cycle, or iteration. The steps are 

repeated until convergence is achieved. 
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Figure 3.4 Solution procedure for the finite volume method  

3.2 Energy equation 

     The radiation solver is coupled to an energy equation solver in a one dimensional 

space. The one dimensional energy equation can be presented as 

𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
=  [

∂

∂x
 𝐾 

𝜕𝑇

𝜕𝑥
− 𝑆  ]                    (3.23) 

where the source term S represents the divergence of the radiative heat flux, defined as 

𝑆 =  
𝜕𝑞

𝜕𝑥
 = 𝜅 (4𝜋𝐼𝑏 − 𝐺𝜆)                 (3.24) 

W P 

S 

E P 

S 

P 

N 

E 

N 

W P 

B A 

D C 
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This equation can be solved using one of the radiative heat transfer equation (RTE) 

solvers. For this work both the FVM and the P1 approximation will be used.       

     A finite volume discretization is used to obtain the numerical solution for the energy 

equation, with cell centered nodes and explicit scheme, as follows:  

∫ ∫ 𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
 𝑑𝑡 𝑑𝑣 = ∫ ∫ [

∂

∂x
 𝐾 

𝜕𝑇

𝜕𝑥
− 𝑆 ]  𝑑𝑡 𝑑𝑣 

Δ𝑉𝑡Δ𝑉𝑡

                 (3.25) 

Integrating the terms in Eq. 3.25 will result in the following: 

∫ ∫ 𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
 𝑑𝑡 𝑑𝑣 = 𝜌 𝐶𝑝 (𝑇𝑖+1 − 𝑇𝑖) Δ𝑣 

Δ𝑉𝑡

                                (3.26) 

∫ ∫ [
∂

∂x
 𝐾 

𝜕𝑇

𝜕𝑥
− 𝑆 ]  𝑑𝑡 𝑑𝑣 

Δ𝑉𝑡

= [𝐾𝐸  
𝑇𝑖+1 − 𝑇𝑖 

Δ𝑥
]

𝐸 
Δ𝐴 Δ𝑡 −   [𝐾𝑊  

𝑇𝑖 − 𝑇𝑖−1 

Δ𝑥
]

𝑊 
Δ𝐴 Δ𝑡

− 𝑆 Δ𝑡 Δ𝑣      (3.27) 

      

    The divergence theorem is applied to obtain the convective terms in Eq. 3.27 

described as  

∫ ∇ .  𝐾 ∇𝑇 =  ∯ 𝐾 ∇T . n ds

Δ𝐴 

 
Δ𝑣

              (3.28) 
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3.3 Verification  

     As stated previously, except for simplified cases, it is nearly impossible to obtain 

exact solutions for the radiative transfer equation. The aim of this section is to ensure 

that the different codes used in this work produce the exact analytical solutions for 

different simplified conduction and radiation cases.  

3.3.1 Energy Equation  

A- Transient conduction with Dirichlet boundary condition 

     This problem describes a 1D slab, with an imposed constant surface temperature 

boundary condition on one side, and with constant properties. The governing equation, 

as well as the boundary and initial conditions are  

𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
                   (3.34)  

𝑇(𝑥, 𝑡 = 0) =  𝑇0                  (3.34) 

𝑇(𝑥 = 𝑙, 𝑡) = 𝑇𝑤                   (3.35) 

−𝑘
𝜕𝑇

𝜕𝑥
(𝑥 = 0, 𝑡) = 0           (3.36)  

 The analytical solution for this problem was published by Bird [52] and it is expressed as 

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇0
= 2 ∑

(−1)𝑛

(𝑛 +
1
2

) 𝜋

∞

𝑛=0

 𝑒
−(𝑛+

1
2)

2
π2𝛼𝑡

𝑙2 cos (𝑛 +
1

2
)

𝜋𝑥

𝑙
 

The boundary conditions and the parameters for this problem are listed in Table 1.  
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Table 1: Conduction with direchlet boundary conditions case parameters  

Parameter  Value  

𝑇0 300 K 

𝑇𝑤 500 K 

𝑙 0.01 m 

𝜌 8000 kg/m3 

𝐶𝑝 500 J/Kg.K 

𝐾 10 w/m.K 

 

     Analytical and numerical solutions were compared for times 4, and 40 s as shown in 

Fig. 3.5. The relative error was calculated and shown in Fig. 3.6.  

 

Figure 3.5 Conduction with Direchlet boundary conditions case results  
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Figure 3.6 Conduction with Direchlet boundary conditions relative error  

     As clear from Fig. 3.5 and Fig. 3.6, the predicted numerical solution matches well with 

the analytical solution, and produced an error less than 0.37% for time 40 s and less 

than 0.004 for time 4 s.  

B- Transient conduction with Neumann boundary condition  

     This problem describes the transient conductive heat transfer in a 1-dimensional slab, 

with a specified constant heat flux on one side. The governing equation, as well as the 

initial and boundary conditions, are described as follows:  

𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
                       (3.37)    

𝑇(𝑥, 𝑡 = 0) =  𝑇0                  (3.38) 

−𝑘
𝜕𝑇

𝜕𝑥
(𝑥 = 𝑙, 𝑡) = 0             (3.39) 
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−𝑘
𝜕𝑇

𝜕𝑥
(𝑥 = 0, 𝑡) = 𝑞′′        (3.40)  

     The analytical solution for this problem was published by Bird [52], and is expressed 

as 

𝑇 − 𝑇0

𝑞′′𝑙/𝐾
=

𝛼𝑡

𝑙2
+

1

3
−

𝑥

𝑙
+

1

2
(

𝑥

𝑙
)

2

−
2

𝜋2
∑

1

𝑛2
 𝑒

−
𝑛2𝜋2𝛼𝑡

𝑙2 cos (
𝑛𝜋𝑥

𝑙
)

∞

𝑛=1

 

The boundary conditions and the parameters for this case are listed in Table 2.   

Table 2: Conduction with Neumann boundary conditions case parameters    

Parameter  Value  

𝑇0 300 K 

𝑞′′ 7.5 × 105 K 

𝑙 0.01 m 

𝛼 2.5 × 10−6 m2/s 

 

     Analytical and numerical solutions are compared for times 4, and 40 s as shown in 

Fig. 3.7. The relative error is shown in Fig. 3.8.   
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Figure 3.7 Conduction with Nuemann boundary conditions case results  

 

Figure 3.8 Conduction with Neumann boundary conditions relative error  

     As clear from Fig. 3.7 and Fig. 3.8, there was a negligible error between the analytical 

and numerical solutions where the error did not exceed 0.25% for 4s and 0.2 % for 40s.   
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C- Transient conduction with periodic heat flux boundary condition  

     This problem is similar to the previous one, except that the applied heat flux is 

periodic, in the way it varies with time. The heat flux is expressed as: 

𝑞′′ = 𝑞0
′′ cos(𝜔 𝑡)                (3.41) 

     The governing equation, initial condition, and boundary conditions are expressed as 

follows: 

𝜌 𝐶𝑝

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
                 (3.42) 

𝑇(𝑥, 𝑡 = 0) =  𝑇0                 (3.43) 

−𝑘
𝜕𝑇

𝜕𝑥
(𝑥 = 𝑙, 𝑡) = 0              (3.44)  

−𝑘
𝜕𝑇

𝜕𝑥
(𝑥 = 0, 𝑡) = 𝑞′′            (3.45) 

The analytical solution for this problem was published by Bird [52], and it is expressed as 

𝑇 − 𝑇0 =
𝑞0

𝑘
 √

𝛼

𝜔
 𝑒

−𝑥√
𝜔
2𝛼  cos (𝜔 𝑡 − √

𝜔

2𝛼
 𝑥 −

𝜋

4
) 

The boundary and the parameters for this case are listed in Table 3.  
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Table 3: Conduction with periodic heat flux test parameters   

Parameter  Value  

𝑇0 300 K 

𝑞0
′′ 7.5 × 105 K 

𝑙 0.01 m 

𝜌 8000 kg/m3 

𝐶𝑝 500 J/Kg.K 

𝐾 10 W/m.K  

 

      Results are compared against pblished analytical soultions as shown in Fig. 3.9 and 

the relative error is shown in Fig. 3.10.  

 

Figure 3.9 Conduction with time varying heat flux case results  
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Figure 3.10 conduction with time varying heat flux boundary condition relative error 

     Figures 3.9 and 3.10 shows that the analytical and numerical solutions agree with a 

relative error less than 0.2%.  

 

3.3.2 Radiation  

     For a one-dimensional space, both, the finite volume and P1 approximation solvers, 

will be verified against analytical solutions.  

     The dimensionless parameters used in the different cases are defined as follows:  

 Non-dimensional distance:  

𝑥∗ = 𝑋/𝐿𝑥                and             𝑦∗ = 𝑌/𝐿𝑦 

 Non-dimensional heat transfer flux:    𝑞∗ =  
𝑞

𝜎(𝑇ℎ
4−𝑇𝑐

4)
 

 Optical thickness:     𝜅∗ =   𝛽 𝐿𝑦 
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A- One dimensional purely isotropically scattering medium  

     The first case describes the radiative heat flux in a purely scattering medium, 

enclosed between two black surfaces, with isotropic scattering for a range of optical 

thicknesses.  

Test parameters for this problem are provided in Table 4.  

Table 4: Purely isotropically scattering medium case parameters  

Parameter  Value  

𝑇𝑡𝑜𝑝 0 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 0 K 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 100 K 

𝜎 1 m-1 

𝜅 0 m-1 

Ω 1 

𝜅∗ 𝜎 𝐿 

 

Problem schematic for this test case is provided in Fig. 3.11.  

 

 

 

 

 

 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 = 100, 𝜖 = 1  

𝑇𝑡𝑜𝑝 = 0 , 𝜖 = 1 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 = 0 K 

Ω = 1 

Figure 3.11 Purely isotropically scattering medium case schematic 
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Figure 3.12 Non dimensional heat flux on a hot bottom surface for purely isotropically 
medium  

     Figure 3.12 compares the results obtained using the P1 approximation and the FVM, 

against the analytical solutions published by Heaslet [54] for a wide range of optical 

thicknesses. It was noted that for the optical thickness shown in Fig. 3.12, the relative 

error for the FVM did not exceed 1%, while the P1 approximation did reach 4.5%. These 

results are consistant with the behaviour of both methods since the FVM performs 

better in the optically thin medium, unlike the P1 approximation which performs better 

within an optically thick medium.   

     For optically thick medium, the finite volume solution consumed a lot of time, and 

the solver did not converge to a solution. On the contrary, the P1 approximation was 

able to perform the calculation without consuming too much time.  
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     Figure 3.13 shows the obtained results for the P1 approximation within the optical 

thick region for the same case described earlier.   

 

Figure 3.13 Non dimensional heat flux on the bottom hot surface using the P1 
approximation   

     It is clear from Fig. 3.13 that the P1 approximation as discussed above performs 

better within the optical thick range. As the optical thickness increases the predicted 

solution agrees better with the analytical solution.    

B- One dimensional purely absorbing medium   

     This case describes the radiative heat flux in an emitting-absorbing medium 

contained between black surfaces.  

The test parameters for this test case are listed in Table 5.  
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Table 5: Purely absorbing medium case parameters  

Parameter  Value  

𝑇𝑡𝑜𝑝 100 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 50 K 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 100 K 

𝜎 0 m-1 

𝜅 1 m-1 

Ω 0 

 

The schematic for this test case is provided in Fig. 3.14.  

 

 

 

 

 

Figure 3.15 compares both results, obtained using the finite volume method and the P1 

approximation, against the analytical solution published by Modest [15]. Figure 3.15 

describes the radiative heat flux on the hot bottom surface for a range of optical 

thicknesses.  

     It is clear from Fig. 3.15 that the finite volume method provides a better 

approximation to the analytical solution since the P1 approximation over predicts the 

solution within the shown optical thickness range.  

 

Figure 3.14 Purely absorbing medium case schematic  

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 = 100, 𝜖 = 1  

𝑇𝑡𝑜𝑝 = 100 , 𝜖 = 1 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 = 50 K 

Ω = 1 
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Figure 3.15 Non dimensional heat flux on the bottom hot surface  

C- Two dimensional purely isotropically scattering square enclosure  

     This case describes the radiative heat flux in a square enclosure with black surfaces 

and isotropic scattering.  

The parameters for this test case are provided in Table 6.   

Table 6: Purely isotropically scattering 2D medium case parameters  

Parameter  Value  

𝑇𝑡𝑜𝑝 = 𝑇𝑙𝑒𝑓𝑡 = 𝑇𝑟𝑖𝑔ℎ𝑡 0 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 0 K 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 100 K 

𝜎 1 m-1 

𝜅 0 m-1 

Ω 1 

𝐿𝑥 = 𝐿𝑦 1 
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The schematic for this test case is provided in Fig. 3.16.  

 

 

 

 

 

Figure 3.17 Non dimensional heat flux on a bottom hot surface of a 2D isotropically 
scattering medium for multiple optical thicknesses  

     Figure 3.17 present the radiative heat flux on a hot surface for a two dimensional 

isotropically scattering enclosure for three optical thicknesses (0.25, 1, and 10) on the 

Ω = 1 

Φ = 1  

𝑇𝑟𝑖𝑔ℎ𝑡 = 0 , 𝜖

= 1  

𝑇𝑡𝑜𝑝 = 0 , 𝜖 = 1  

 𝑇𝑙𝑒𝑓𝑡 = 0 , 𝜖

= 1  

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 = 100 , 𝜖 = 1  

Figure 3.16 Purely isotropically scattering 2D medium schematic 
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bottom hot surface along half of the domain. The results are compared to the analytical 

solutions obtained by Crosbie [55].  

     Figure 3.17 shows that the finite volume method approximates the analytical solution 

of the problem with accuracy, for multiple optical thicknesses. It was noted that as the 

optical thickness increase, the convergence rate decreases.  

D- Two dimensional purely scattering medium in a rectangular enclosure 

     This case describes the radiative heat flux in a rectangular enclosure with black 

surfaces and isotropic scattering. This case aims to describe the effect of the aspect ratio 

on the results. 

The test parameters are listed in Table 7.  

Table 7: purely scattering 2D rectangular enclosure test parameters  

Parameter  Value  

𝑇𝑡𝑜𝑝 = 𝑇𝑙𝑒𝑓𝑡 = 𝑇𝑟𝑖𝑔ℎ𝑡 0 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 0 K 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 100 K 

𝜅 0 m-1 

Ω 1 

𝜅∗ 𝜎 𝐿𝑦 = 1 

 

The schematic for this test case is shown in Fig. 3.18.  
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Figure 3.19 non dimensional heat flux along a hot surface of an isotropically scattering 
rectangular enclosure for two aspet ratios  

      

Ly = 10 Lx  

Lx 

Lx = 5 Ly  

Ly
 

Figure 3.18: purely scattering 2D rectangular enclosure case schematic; Aspect ratio = 10 (left), Aspect 
ratio = 0.2 (Right) 
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    As shown in Fig. 3.19, the finite volume method performs well for non-square 

geometries, where the approximated the analytical solutions for different aspect ratios. 

The exact solutions for this problem were published by Crosbie et al [55].     

E- Two dimensional absorbing-scattering medium  

     Previous cases dealt with each one of the properties independently. On the contrary, 

this case studies the radiative heat flux in an absorbing-scattering medium enclosed 

between black surfaces, with isotropic scattering for two scattering albedos.  

The Test parameters for this case are listed in Table 8.  

Table 8: Absorbing-isotropically scattering 2D enclosure case parameters   

Parameter Value  

𝑇𝑡𝑜𝑝 = 𝑇𝑙𝑒𝑓𝑡 = 𝑇𝑟𝑖𝑔ℎ𝑡 0 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 0 K 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 100 K 

𝐿𝑥 = 𝐿𝑦 1 

𝜅∗ 𝛽 𝐿 

 

The problem schematic for this test case is shown in Fig. 3.20.  

 

 

  

Φ = 1  𝑇𝑐 = 0 , 𝜖 = 1  

𝑇𝑐 = 0 , 𝜖 = 1  

 𝑇𝑐 = 0 , 𝜖 = 1  

𝑇𝐻 = 100 , 𝜖 = 1  

Figure 3.20 Absorbing-isotropically scattering 2D enclosure case schematic 
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Figure 3.21 Non dimensional heat flux on a bottom surface of an absorbing-scattering 
2D enclosure for different scattering albedos  

     Different scattering albedos were studied to show the effect of varying the radiative 

properties on the solution. As presented in Fig. 3.21, the FVM approximates the 

analytical solutions published by Crosbie [55].  

F- Two dimensional isothermal absorbing emitting medium  

     This case studies the radiative heat flux in an absorbing emitting medium enclosed by 

cold surfaces.  

The test parameters are listed in Table 9.  
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Table 9: isothermal absorbing-emitting 2D enclosure case parameters  

Parameter  Value  

𝑇𝑡𝑜𝑝 = 𝑇𝑙𝑒𝑓𝑡 = 𝑇𝑟𝑖𝑔ℎ𝑡 = 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 0 K 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 100 K 

𝜎 0 m-1 

Ω 0 

𝐿𝑥 = 𝐿𝑦 1 

𝜅∗ = 𝜅 𝐿 1 

 

The schematic for this test case is shown in Fig. 3.22. 

 

 

 

 

     Figure 3.23 describes the non-dimensional radiative heat flux along a bottom surface 

of an absorbing-emitting 2D hot medium enclosed by cold surfaces. Two optical 

thicknesses were used and the obtained results agrees with the analytical solutions 

published by Pedram [49]. 

 

Φ = 1 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 = 100 K 
𝑇𝑟𝑖𝑔ℎ𝑡 = 0 , 𝜖

= 1  

𝑇𝑡𝑜𝑝 = 0 , 𝜖 = 1  

 𝑇𝑙𝑒𝑓𝑡 = 0 , 𝜖

= 1  

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 = 0 , 𝜖

= 1  Figure 3.22 isothermal absorbing-emitting 2D enclosure case schematic  
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Figure 3.23 Non dimensional heat flux on a bottom surface of an absorbing-emitting 2D 
enclosure for different optical thicknesses  

 

     In general, the Finite Volume code did perform well for multiple test cases in one and 

two dimensional domains. It was noted that the optical thickness had a huge impact on 

the convergence rate. As the optical thickness increased, the convergence rate 

decreased. The P1 approximation did not consume a lot of time in comparison with the 

FVM. However, in most cases the FVM predicted closer solutions to the analytical 

solution.  
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Chapter 4  

4.0 Decoupled analysis 

     There are multiple factors that could contribute to the analysis of radiative heat 

transfer, such as the radiative properties, and the method of solution adopted to solve 

the radiative heat transfer equation. The following sections will discuss the effect of 

both on the analysis. 

4.1 Effect of properties on the radiative parameters  

    To study the effect of changing the absorption coefficient on the radiative flux as well 

as the divergence of radiative heat flux, a one-dimensional case as shown in Fig. 4.1 

schematically is used. For this test case, both the finite volume method and the P1 

approximation, are used.  

     The test case can be described as a purely absorbing one dimensional geometry with 

a relatively cold medium enclosed between two hot surfaces. The boundaries are gray, 

and diffusively scattering surfaces.  

 

 

 

 

 

 

  

Figure 4.1 One dimensional absorbing-scattering one dimensional enclosure 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 = 100, 𝜖 = 1  

𝑇𝑡𝑜𝑝 = 100 , 𝜖 = 1 

𝑇𝑚𝑒𝑑𝑖𝑢𝑚 = 50 K 
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Figure 4.2 radiative heat flux in an absorbing-scattering one dimensional enclosure for 
multiple absorption coefficients    

 

     As evident from Fig. 4.2, the radiative heat flux value changes dramatically as the 

absorption coefficient is altered. Since each wavelength is associated with a different 

property, this provides evidence on how wavelength could change the analysis. Both 

methods provides comparable results except at the boundaries were a slight difference 

was noted especially with a higher absorption coefficient.  

     The divergence of radiative heat flux is an important parameter used in the coupled 

conduction-radiation analysis. The effect of changing the properties has on the 

divergence of radiative heat flux, is presented in Fig. 4.3.  
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Figure 4.3 the divergence of radiative heat flux using the P1 approximation 

 

    As can be seen, the divergence of the radiative heat flux is extremely affected by the 

radiative properties. Consequently, the temperature response will be affected. It is also 

noted that as the absorption coefficient increases, the difference between both 

methods increase as well.  
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4.1.2 Comparison between P1, P3, and FVM  

     As evident in the previous section, there was a difference between results obtained 

using the P1 approximation, and results obtained using the finite volume method. This 

section discusses the results obtained using the finite volume code, against published 

two-dimensional Monte Carlo results by Yang [56] and Modest [57], as well as P3 and P1 

approximations results by Ravishankar et al. [58].  

     The non-dimensional parameters used subsequently are defined as: 

- Non-dimensional heat flux 𝑞∗ = 𝑞/𝜎𝑇4 

- Non-dimensional length in the x-direction: 𝑥∗ = 𝑥/𝐿𝑥  

- Non-dimensional length in the y-direction: 𝑦∗ = 𝑦/𝐿𝑦 

Case A  

     The first test case represents a participating medium surrounded by four walls, in 

which one of the walls is hot, and the rest of the walls are cold, as shown in Fig. 4.4. All 

the walls are assumed to be black and only isotropic scattering is considered.  

 

 

 

 
L 

L 
𝑇𝐶  

𝑇𝐶  

𝑇𝐶  

𝑇𝐻 

Figure 4.4 cold medium surrounded by three cold surfaces and one hot surface   
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Figure 4.5 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 0.1 



76 
 

 

 

 

Figure 4.6 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 1 
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Figure 4.7 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 5 
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     Figures 4.5-4.7 presents the non-dimensional radiative heat flux on different surfaces 

for three optical thicknesses. The obtained results using the FVM were compared with 

published spherical harmonics as well as Monte Carlo results.  

    It is clear from the previous figures that as the optical thickness increases the FVM 

produces more error this is the opposite of the spherical harmonics methods which 

produces lower error as the optical thickness increases. This is consistent with the 

behavior of both methods since the FVM performs better with optical thin material 

unlike the spherical harmonics methods which performs better with optical thick 

materials.  

    Figure 4.5 provides the results obtained for optical thickness equal to 0.1. As clear 

from Fig. 4.5, the P1 approximation provides larger error compared with the other two 

methods. The P1 approximation did produce an error that exceeds 150% for the right 

surface compared with a negligible error produced by the FVM. It is noted that the right 

surface produces larger error than the other surfaces. 

    Figure 4.6 compares the results obtained for optical thickness equal to 1. The error 

produced by the P1 approximation was reduced and the FVM error did increase. For the 

right surface, the P1 approximation did produce a maximum error of 82% compared 

with a maximum error of 20% produced by the FVM. The P3 approximation did not 

produce results as bad as the P1 approximation nor as good as the FVM. In general, the 

error produced using the P3 approximation is in between the other two methods. 
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     Figure 4.7 presents the results obtained for optical thickness equal to 5. The error 

produced using the P1 approximation was reduced dramatically where it did not exceed 

16%. The error associated with the FVM increased. However, it did not exceed the error 

produced by the P1 approximation except for the top surface where it produced a 

slightly higher error.  

CASE B  

    The second case represents a partially heated surface, surrounded by three cold walls, 

as shown in Fig. 4.8 

 

 

 

 

 

 

 

 

 

 

 

0.2 L 

L 

L 
𝑇𝐶  

𝑇𝐶  

𝑇𝐶  

𝑇𝐻 

Figure 4.8 Partially heated surface surrounded by three cold surfaces schematic  
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Figure 4.9 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 0.1 
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Figure 4.10 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 1 
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Discussion 

Figure 4.11 non dimensional heat flux and relative error for the bottom surface (Top), Right 
surface (Middle), and top surface (Bottom) for optical thickness 5 
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      Figures 4.9-4.11 presents the non-dimensional radiative heat flux on different 

surfaces for three optical thicknesses. The obtained results using the FVM were 

compared with published spherical harmonics as well as Monte Carlo results. 

     This test case results agrees with the findings obtained from the previous case; as the 

optical thickness increases, the error associated with the spherical harmonics decrease, 

which can be noted by comparing the bottom surfaces. For optical thickness 0.1 the P1 

approximation over predicts the solution with 100% error compared with 20% error for 

optical thickness 5, as shown in Fig. 4.11.   

    The FVM did perform better than the other two methods in general, except for the 

top surface. It is clear that the method produces a large error on the top surface 

opposite to the hot segment which could be as a consequence of using the step scheme. 

The error reduces as the optical thickness increases which is observed by comparing Figs 

4.9, 4.10, and 4.11.  
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Chapter 5 
     Heat transfer through fibrous materials involve heat conduction through the solid 

matrix as well as the filling gas, and internal radiation through the pore structure. In the 

past, an effective thermal conductivity was used to account for both heat transfer 

mechanisms. However, this model fails to capture internal radiative heat transfer effects 

as was shown by Marcshall [59]. Moreover, it does not permit detailed radiative studies 

such as shock layer radiation which is dominated by line emission. 

     In order to perform coupled conduction-radiation analysis, the thermal conductivity 

should account for the conduction through the solid and gas phases without taking 

radiation into account therefore, the effect of internal radiation should be subtracted 

from the effective thermal conductivity (otherwise radiation will be added twice).  

     This chapter is dedicated to provide a method to extract the solid/gas thermal 

conductivity based on internal temperature measurements as well as heat fluxes. 

Retrieving thermal conductivity from internal temperature measurements is one form of 

inverse heat conduction problems (IHCP) which are considered ill posed problems 

[61,62].  

     Many methods has been proposed to estimate the unknown thermal conductivity 

based on minimization techniques which require iterative methods [63]. In this work a 

novel approach that does not require iterative procedures, and does not assume any 

functional form for the thermal conductivity is proposed.    
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  A silica fiber LI-900 was used to perform validation of the proposed method using 

effective thermal conductivities published by NASA [64]. The results are compared 

against previously published results based on iterative methods.  

5.1 method description  

     The proposed method to obtain the temperature dependent solid/gas thermal 

conductivity consists of two main problems: the direct problem, and the inverse 

problem.  

5.1.1 Direct problem  

     The direct problem is used to obtain the internal temperature measurements using 

the temperature dependent effective thermal conductivities by solving the one 

dimensional energy equation.  

The mathematical formulation as well as the boundary conditions are described as 

following  

𝜌 𝑐𝑝

𝜕𝑇

𝜕𝑡
 =

𝜕

𝜕𝑥
[𝑘𝑒𝑓𝑓

𝜕𝑇

𝜕𝑥
]          (5.1) 

𝑞𝑥=0 = [𝑘𝑒𝑓𝑓

𝜕𝑇

𝜕𝑥
 ]

𝑥=0
 

𝑞𝑥=𝐿 = [𝑘𝑒𝑓𝑓

𝜕𝑇

𝜕𝑥
]

𝑥=𝐿
 

where 𝜌 is density, 𝑐𝑝 is specific heat, 𝑡 is time, 𝑇 is temperature, and 𝑘𝑒𝑓𝑓 is the 

effective thermal conductivity.  
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5.1.2 Inverse problem 

     The inverse problem is used to estimate one of the unknown parameters in the 

energy equation. Here, this parameter is the temperature dependent solid/gas thermal 

conductivity, since the internal temperature measurements, radiative heat fluxes, and 

conductive heat fluxes are all known quantities.  

     The mathematical formulation for the inverse problem is described as  

𝜌 𝑐𝑝

𝜕𝑇

𝜕𝑡
 =

𝜕

𝜕𝑥
[𝑘𝑠𝑜𝑙𝑖𝑑

𝜕𝑇

𝜕𝑥
] + 𝑞𝑟𝑎𝑑      (5.2) 

where 𝜌 is density, 𝑐𝑝 is specific heat, 𝑡 is time, 𝑇 is temperature,  𝑘𝑠𝑜𝑙𝑖𝑑 is the solid/gas 

thermal conductivity, and 𝑞𝑟𝑎𝑑 is the radiative heat source term.   

The numerical formulation for the inverse analysis is described using the finite volume 

discretization over a control volume as shown in Fig. 5.1. The gradients appearing in Eq. 

5.2 are approximated using a forward first order differencing scheme. 

 

Figure 5.1 one dimensional control volume 

𝜌 𝑐𝑝

𝛥𝑇

𝛥𝑡
 𝛥𝑉 = [𝑘𝑠𝑜𝑙𝑖𝑑

𝛥𝑇

𝛥𝑥
]

𝑖+1/2
− [𝑘𝑠𝑜𝑙𝑖𝑑

𝛥𝑇

𝛥𝑥
]

𝑖−
1
2

+ 𝑞𝑟𝑎𝑑 𝛥𝑉                 (5.3) 

𝜌 𝑐𝑝

𝛥𝑇

𝛥𝑡
𝛥𝑉 + [𝑘𝑠𝑜𝑙𝑖𝑑

𝛥𝑇

𝛥𝑥
]

𝑖−1/2
− 𝑞𝑟𝑎𝑑 𝛥𝑉 = [𝑘𝑠𝑜𝑙𝑖𝑑

𝛥𝑇

𝛥𝑥
]

𝑖+1/2
                (5.4) 

𝑖 + 1 𝑖 − 1 

Δ𝑥 

𝑖 
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𝑘𝑠𝑜𝑙𝑖𝑑𝑖+1/2
= [

𝛥𝑥

𝛥𝑇
]

𝑖+1/2
×  [𝜌 𝑐𝑝

𝛥𝑇

𝛥𝑡
𝛥𝑉 + [𝑘𝑠𝑜𝑙𝑖𝑑

𝛥𝑇

𝛥𝑥
]

𝑖−
1

2

− 𝑞𝑟𝑎𝑑 𝛥𝑉]      (5.5)  

     Solving Eq. 5.5 for each grid point results in a system of equations for the unknown 

solid/gas thermal conductivity at each surface of the control volume. In Eq. 5.5 both 

solid thermal conductivities 𝑘𝑖−1/2, and 𝑘𝑖+1/2  are unknowns, making the number of 

unknowns larger than the number of equations. To close the set of equations boundary 

conditions are needed.  

Thermal conductivities at the boundaries are obtained by extracting the radiative heat 

flux from the effective heat flux 

     The direct problem provides the effective heat flux, as well as the internal 

temperature measurements required for the radiative heat transfer solver to obtain the 

radiative heat flux. With the known quantities it is possible to obtain the solid 

conductivity at the boundary using the following relations  

𝑞𝑒𝑓𝑓 = 𝑞𝑠𝑜𝑙𝑖𝑑 + 𝑞𝑟𝑎𝑑                     (5.6) 

keff

ΔT

Δx
= ksolid

ΔT

Δx
+ qrad          (5.7) 

ksolid =
Δx

ΔT
 [ keff

ΔT

Δx
− qrad]     (5.8) 

     After obtaining the solid thermal conductivity at the boundary it is possible to 

substitute its value in Eq. 5.5 and solve for the unknown thermal conductivities.  
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5.2 Results  

    Temperature dependent solid/gas thermal conductivities were obtained using the P1 

approximation as well as the Finite Volume method for an LI-900 ceramic tile material. 

The radiative properties used are the ones published by Marschall [59]. Shown in Fig. 

5.2. 

 

Figure 5.2 Spectral radiative properties for LI-900  
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Figure 5.3 Effective and solid/gas Temperature dependent thermal conductivity for 
pressure 0.01 atm (top), 0.1 atm (bottom-left), and 1 atm (bottom-right)   

    Figure 5.3 shows the obtained solid/gas thermal conductivity using the P1 

approximation for a wide range of temperatures against the effective thermal 

conductivities published by NASA [64] for pressures 0.01, 0.1, and 1 atm.  
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The procedure was repeated using the Finite volume and the results are shown in Fig. 

5.4 in comparison with the results obtained using the P1 approximation.  

 

 

Figure 5.4 Solid/gas Temperature dependent thermal conductivity for pressure 0.01 atm 
(top), 0.1 atm (bottom-left), and 1 atm (bottom-right)   

     As clear from Fig. 5.4, both methods provides similar predictions for the solid/gas 

thermal conductivity up to around 2000 K, afterwards the finite volume method 

provides lower values. The finite volume method consumed larger amount of time 

compared with the P1 approximation for the given spectral radiative properties which 
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prevented the possiblty to run spectral studies using the FVM. The P1 approximation is 

adopted for the rest of this work and is used to validate the values obtained for the 

solid/gas thermal conductivity. 

5.3 Validation  

     The three test cases were proposed by Marschall [59] are reproduced in this section, 

using the new thermal conductivity values. A Li-900 sample was used to compare the 

results obtained using the effective thermal conductivity model (pure conduction) and 

the coupled approach using the solid/gas thermal conductivity with the P1 

approximation model.  

   The first test case is a radiant heating test case with a 1.25 cm sample at 1 atm 

pressure. A 60 s heating profile was imposed on one side of the sample as shown in Fig. 

5.5, while keeping the other side at 256 K. Figure 5.5, shows the surfaces temperature 

as well as the internal temperature measurements for 0.1, 0.3, and 0.5 cm for both 

models as well as the temperature difference between them.  

Figure 5.5 Radiant heating simulation; Left: internal temperature profile, Right: 
Temperature difference between pure conduction and the coupled approach. 
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It is clear from Fig 5.5, that larger differences were obtained near the hot surface, where 

large temperature gradients are present.  

     The second test case represents an arc-jet simulation test case with a 4 cm sample at 

0.01 atmospheric pressure. The front surface temperature rise to 1700 k within 5 

seconds, as shown in Fig 5.6, followed by a cool down period. The back surface remains 

adiabatic. Temperature measurements were obtained for 0.5, 1, 2, 3, and 4 cm depths.  

 

Figure 5.6 Arc-jet simulation; Left: internal temperature profile, Right: Temperature 
difference between pure conduction and the coupled approach. 

    Major temperature differences were obtained near the hot surface as well as during 

the cool down period.  

     The third test case represents the conditions of a space shuttle entry simulation on a 

5 cm specimen at 0.1 atm pressure. The front surface was subject to the temperature 

profile shown in Fig. 5.7, while the back surface was kept adiabatic. Temperature 

measurements were taken at 1, 2, 3, 4, and 5 cm depths.  
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Figure 5.7 Space Shuttle heating simulation; Left: internal temperature profile, Right: 
Temperature difference between pure conduction and the coupled approach. 

     Lower temperature differences were obtained for this case due to the relatively 

lower temperature gradients present. It is noted from Fig. 5.7, that the major 

temperature differences were obtained during the cool-down period.  

5.4 Comparison  

     In this section multiple cases will be used to compare the results obtained using the 

solid/gas thermal conductivities published by Marschall [59], and the results obtained 

using the solid/gas thermal conductivities proposed in this work as described earlier 

with similar domain parameters.   

     The RMS error presented in the following tables is calculated using the following 

relation  

𝑒 =
√∑ (

𝑇𝑐𝑜𝑛𝑑  − 𝑇𝑐𝑜𝑢𝑝𝑙𝑒𝑑 
𝑇𝑐𝑜𝑛𝑑

)
2

 𝑛
𝑖=1 

𝑛
 

where 𝑛  represents the number of time steps  
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5.4.1 Radiant heating simulation  

     The first validation case described in the previous section will be replicated with the 

solid/gas thermal conductivities published by Marschall [59]. Figure 5.8 represents the 

internal temperature measurements as well as the temperature difference between the 

coupled approach and the effective thermal conductivity approach.  

 

Figure 5.8 Radiant heating simulation; Left: internal temperature profile, Right: 
Temperature difference between pure conduction and the coupled approach using 

Marschall et al. [59] thermal conductivities.  

 

     It is clear from Fig 5.8 that greater differences were obtained using the solid/gas 

thermal conductivities published by Marshall et al. [59], especially within the shallow 

region near the hot surface. 

     Table 10 shows the maximum absolute temperature difference between the coupled 

and the effective thermal conductivity models, and compares the results obtained using 

the current and previously published solid/gas thermal conductivities.  
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     Table 11 shows the RMS error for each thermo-couple and compares between the 

error obtained using the current and previous solid/gas thermal conductivities. The 

temperature difference and the associated error were reduced by using the current 

thermal conductivities.  

Table 10: Maximum temperature difference (K). 

TC Previous     Current 

0.1 (cm) 35.84 26.18 

0.3 (cm) 24.91 12.85 

0.5 (cm) 12.30 10.92 

 

Table 11: RMS error comparison between current and previous work. 

TC Previous work error (%) Current work error (%) 

0.1 (cm) 1.50 ×10-2 1.03 ×10-2 

0.3 (cm) 1.76 ×10-2 7.84 ×10-3 

0.5 (cm) 1.31 ×10-2 8.94 ×10-3 

 

 

 

 

 



96 
 

5.4.2 Arc-Jet simulation   

     The second test case described in section 5.3 is replicated with the thermal 

conductivities published by Marschall et al. [59] and the results are presented in Fig. 

5.10.   

 

Figure 5.9 Arc-jet simulation; Left: internal temperature profile, Right: Temperature 
difference between pure conduction and the coupled approach using Marschall et al [59] 

thermal conductivities.  

     Similar results were obtained for the second case where higher differences were 

obtained near the hot surface as shown in Fig. 5.9. 

     Table 12 shows the maximum temperature difference between the coupled and 

effective thermal conductivity models and compares between the error obtained using 

current and previous solid/gas thermal conductivities.  

     Table 13 shows the RMS error for each thermo-couple and compares it with the error 

obtained using current and previous solid/gas thermal conductivities.  

     Both tables shows that the maximum temperature difference and the error were 

reduced by using the current solid/gas thermal conductivities.  
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Table 12 Maximum temperature difference (K)   

TC Previous work Current work 

0.5 (cm) 118.75 49.03 

1  (cm) 61.28 36.97 

2  (cm) 40.29 34.06 

3  (cm) 36.07 12.69 

4  (cm) 44.47 3.16 

 

Table 13 RMS error comparison between current and previous work. 

TC Previous work error (%) Current work error (%) 

0.5 (cm) 3.53 ×10-2 1.98 ×10-2 

1  (cm) 3.14 ×10-2 2.71 ×10-2 

2  (cm) 3.49 ×10-2 3.31 ×10-2 

3  (cm) 4.95 ×10-2 1.87 ×10-2 

4  (cm) 4.96 ×10-2 3.65 ×10-2 
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5.4.3 KRUPS 

    The available thermal conductivities published by Marschall et al. [59], do not cover a 

wide range of temperatures. Because most heat shield average surface temperature far 

larger than 1900 K the maximum temperature covered by Marschall et al. [59]. To 

illustrate that example, the heat flux projected for the Kentucky Re-Entry Universal 

Payload System (KRUPS) is used.  

     A temperature profile was imposed on one side of a 5 cm LI-900 sample, as shown in 

Fig. 5.10. An adiabatic wall is applied on the other side, with a 0.1 atm pressure. Internal 

measurements were taken at 1, 2, 3, 4, and 5 cm depths.  

 

Figure 5.10 KRUPS heating simulation, Left: internal temperature profile, Right: 
Temperature difference between pure conduction and the coupled approach using 

Marschall et al [59] thermal conductivities. 
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Figure 5.11 KRUPS heating simulation, Left: internal temperature profile, Right: 
Temperature difference between pure conduction and the coupled approach using 

current solid/gas thermal conductivities.  

     Figures 5.10 and 5.11 presents the internal temperature measurements as well as the 

temperature difference between the coupled and effective thermal conductivities 

model using the thermal conductivities published by Marschall et al. [59] and the 

thermal conductivities obtained in this work respectively.  

    Table 14 represents the maximum temperature difference between the coupled and 

effective thermal conductivity models and compares between the maximum difference 

obtained using current and previous solid/gas thermal conductivities. Table 15 

represents the RMS error for each thermo-couple using current and previous solid/gas 

thermal conductivities.  

    It is clear from the figures as well as the tables provided that both of the error and the 

maximum temperature difference were reduced for similar domain parameters.  
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Table 14 Maximum temperature difference (K) 

TC Previous work Current Work 

1 (cm) 131.32 113.93 

2 (cm) 108.14 57.97 

3 (cm) 87.47 47.20 

4 (cm) 45.34 44.89 

5 (cm) 20.84 12.22 

 

 

Table 15 RMS error comparison between current and previous work. 

TC Previous work error (%) Current Work error (%) 

1 (cm) 4.12 ×10-2 2.68 ×10-2 

2 (cm) 4.48 ×10-2 2.98 ×10-2 

3 (cm) 3.80 ×10-2 2.69 ×10-2 

4 (cm) 3.12 ×10-2 3.03 ×10-2 

5 (cm) 2.12 ×10-2 1.37 ×10-2 
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5.4.4 IsoQ 

     Arc jet facilities are used to produce extreme environments suitable for thermal 

protection systems (TPS) material testing [50]. Test samples are shaped into an IsoQ 

shape to achieve a constant heat flux on the front surface. An IsoQ sample subject to a 

hypersonic flow is presented in Fig. 5.12.  

 

Figure 5.12 IsoQ sample in an arc-jet test (Courtesy of NASA [23])  

     A 2D IsoQ sample was heated from 300 K to a non-uniform temperature profile in 5 

seconds and remains constant for the heating time, at 1 atm. This calculation was 

performed using the KATS-MR code (courtesy of Raghava S.C. Davuluri), more details 

about the case can be found in ref. [65,53].  

     Figure 5.13 represents the mesh and the imposed temperature profile at the surface 

of the sample.   
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Figure 5.13 2D Mesh of IsoQ sample (left), Non-uniform temperature profile at the 
surface of an IsoQ sample (right) courtesy of Raghava [65].  

     Figure 5.14 represents the internal temperature measurements at different 

thermocouple locations, shown in Table 16. The results were obtained using previously 

published solid/gas thermal conductivities by Marschall et al. [59] as well as the current 

conductivities in comparison with the effective thermal conductivity model.  

     It is noted that the difference between the effective thermal conductivity model and 

the coupled model was reduced specially for high temperature locations, which agrees 

with the previously discussed results for one dimensional geometries.  

Table 16 Thermo-couple locations  

 

Thermo Couple (TC) Coordinate (m) Thermo Couple 
(TC) 

Coordinate (m) 

1 (0.0 , 0.0) 6 (0.02286, 0.02540) 

2 (0.00381, 0.0) 7 (0.02286,0.03810) 

3 (0.00762, 0.0) 8 (0.02286,0.04445) 

4 (0.01143, 0.0) 9 (0.03048,0.04445) 

5 (0.01542,0.0)   
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Figure 5.14 IsoQ simulation, internal temperature measurements. 



104 
 

     Figure 5.15 shows the tempreature difference between the effictive thermal 

conductivity model and the coupled model using current conductivities and previous 

conductivities for the IsoQ case.  

    It is noted that the tempreature difference was reduced in general with the current 

thermal conductivities, espicially for the first thermocouples where the tempreature is 

high.  

 

Figure 5.15 IsoQ simulation, Temperature difference between pure conduction and the 

coupled approach using current conductivities, and Marschall et al. [59] previously 

published conductivities.  
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Chapter 6  

6.1 summary  

     Heat transfer through fibrous materials involves conduction as well as internal 

radiation. Previously, the effect of internal radiation was accounted by using an effective 

thermal conductivity model. However, this model does not permit detailed radiative 

studies which are required for shock layer radiation.  

     A coupled model based on the radiative transfer equation was proposed and 

compared with the previous model. There are two main requirements for the coupled 

conduction-radiation model: a proper thermal conductivity, and a radiative transfer 

equation solver. 

     There are multiple methods that approximate the radiative transfer equation. 

However, only two of them were considered in this work and compared against 

analytical and Monte Carlo solutions. Both solvers were verified and tested for multiple 

cases, and it was concluded that the P1 approximation serves the purpose of this 

research better for one dimensional geometries. It does not consume too much 

computational time and provides comparable results to the finite volume method.  

     To run coupled analysis a proper solid/gas thermal conductivity should be used, to 

avoid accounting for radiation multiple times.     

     A novel approach was proposed in this work that does not require iterative 

procedures nor does it assume any functional form for the temperature dependent 

thermal conductivity. A wide range of temperature dependent thermal conductivities 

were obtained using the P1 approximation as well as the FVM method.  
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     The obtained values were verified using multiple test cases and compared against 

previously published results. It was noted that the new thermal conductivities produced 

better results and smaller differences when a similar domain was used. 

     The proposed method gives the capability to obtain the solid/gas thermal 

conductivities for different materials, and for any required temperature range. Which 

enables as a consequence, the analysis of spectral radiative studies needed to optimize 

thermal protection systems (TPS) materials.      

6.2 Future studies   

This work provided coupled analysis for a one dimensional domain. However, it is of 

interest to check the fidelity of the proposed method for multidimensional domains 

since many materials exhibit anisotropic behavior. It is important to study the behavior 

of the solver for multidimensional domains since optical thickness as well as radiative 

properties do affect the solution.  

 Only isotropic scattering was considered for this work, however; fibrous materials 

exhibit anisotropic scattering behavior. It is important to study the effect of scattering 

on the results as well as the time required to obtain the solution.  

Only LI-900 fibrous material was used for this work. Different materials exhibit different 

behaviors and it is important to test the proposed method for a variety of materials.  

It was noted from the comparison cases against the Monte Carlo results that the 

spherical harmonics method produced larger error compared to one dimensional cases. 

It is important to test the applicability of the radiative heat transfer solver for 

multidimensional geometries.  
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